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Abstract. Large-scale visualization and analysis of HPIs involved in microbial CVDs can provide crucial insights into
the mechanisms of pathogenicity. The comparison of CVD associated HPIs with the entire set of HPIs can identify the
pathways specific to CVDs. Therefore, topological properties of HPI networks in CVDs and all pathogens was studied using
Cytoscape3.5.1. Ontology and pathway analysis were done using KOBAS 3.0. HPIs of Papilloma, Herpes, Influenza A virus
as well as Yersinia pestis and Bacillus anthracis among bacteria were predominant in the whole (wHPI) and the CVD specific
(cHPI) network. The central viral and secretory bacterial proteins were predicted virulent. The central viral proteins had
higher number of interactions with host proteins in comparison with bacteria. Major fraction of central and essential host
proteins interacts with central viral proteins. Alpha-synuclein, Ubiquitin ribosomal proteins, TATA-box-binding protein, and
Polyubiquitin-C &B proteins were the top interacting proteins specific to CVDs. Signaling by NGF, Fc epsilon receptor,
EGFR and ubiquitin mediated proteolysis were among the top enriched CVD specific pathways. DEXDc and HELICc were
enriched host mimicry domains that may help in hijacking of cellular machinery by pathogens. This study provides a system
level understanding of cardiac damage in microbe induced CVDs.
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1. Introduction

Host-pathogen interactions (HPIs) between host
and pathogen proteins play a crucial role in invasion,
infection, and induction of immune response of the
host [1, 2]. The study of HPIs is significant for better
understanding of infectious disease mechanisms and
for developing therapeutic measures [3]. Cardiovas-
cular diseases (CVDs), which are the major cause of
deaths worldwide, are known to have microorganisms
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as one of their etiological agent [4]. The involvement
of microbes in CVDs was highlighted in the past by
identification of viruses and bacteria in atheroscle-
rotic plaques [5], sero-epidemiological data [6], and
a strong association between viral infections with
transplant atherosclerosis [7]. While conventional
CVDs have extensively been studied [8], the contri-
bution of microorganisms and their protein-protein
interactions with human host in the development of
CVDs is yet to be explored [9].

Several studies have been conducted on microor-
ganisms and their associations with CVD. Chronic
Hepatitis C virus replicates within carotid plaques
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and promotes a local environment of pro-atherogenic
factors leading to the development of atherosclero-
sis leading to CVD [10]. Evidence also shows HIV
infection as an independent risk factor for coronary
artery disease and heart failure due to low CD4+ T
cell counts related to HIV-associated central nervous
system disorders rather than traditional mechanisms
of stroke [11]. Acute cardiac conditions including
injury, arrhythmia, hypotension, tachycardia, as well
as a high proportion of co-morbid CVD have been
reported in individuals infected with Severe Acute
Respiratory Syndrome-Corona Virus 2 (SARS-CoV-
2), particularly those requiring intensive care [12].
The interaction between the viral spike (S) protein
and Angiotensin converting enzyme 2 (ACE2), which
triggers entry of the virus into host cells, is likely to
be involved in the cardiovascular manifestations of
COVID-19. ACE2 is a part of Renin-Angiotensin-
Aldosterone System that opposes the vasoconstrictive
angiotensin (Ang) II functions by converting Ang
II to Ang (1–7), that has vasodilatory effects [13].
Apart from this, SARS-CoV-2 infection disturbs the
vascular endothelium that has an intricate role in
immune regulation and inflammation. The infection
leads activates the immune system leading to a hyper-
inflammatory state in the vascular system, causing
deleterious effects such as endothelial cells dysfunc-
tion [14]. The direct interaction between the activated
viral glycoprotein Spike 1 with myocardial tissue also
leads to direct tissue damage and downregulation of
ACE2 receptors, thus resulting in myocardial dam-
age [15]. High-risk human papilloma virus infection
is significantly associated with an increased risk of
developing CVD but the mechanism has not been
fully understood yet [14].

For a better understanding of the role of microor-
ganisms in CVDs it could be beneficial to study
the molecular level interactions between host and
pathogens. These molecular interactions control
important biological processes within a cell and
between organisms. In particular, at the cellular and
molecular level, interactions between a pathogen and
its host play a vital role in initiating infection and
successful pathogenesis [15]. The overall mapping
of host-pathogen protein-protein interactions (HP-
PPIs) can ideally be represented with the help of
a large network. Such a mapping can highlight the
microorganisms involved in maximum number of
interactions and the biological characteristics of the
highly interacting pathogen proteins [16] and host
proteins [17]. Visualizing the rewiring of host cell
functioning by pathogens at multiple signaling path-

ways and cellular functions using network theory
has been used for identifying the potential drug tar-
get proteins and common disease mechanisms [18,
19]. Biological characteristics like essentiality and
pathogen fitness have been shown to correlate with
network topological features like high number of
interactions in HPI networks [20, 21]. Network posi-
tions of power have also been used to prioritize
potential antiviral drug candidates [22]. New pro-
posed measures of centrality coined for HPIs to aid in
the design of multipurpose drugs include Connectiv-
ity of human proteins targeted by same virus protein,
propagation speed, diversity of predators, decreased
shortest path, component index, crown centrality and
vulnerable centrality [23]. The development of novel
drugs, vaccines and other therapeutics for CVDs
caused by microorganisms is highly dependent on
the knowledge gained from investigating HPIs [24].

The role of systems biology approach in predicting
potential drugs via understanding the HPIs is advanc-
ing rapidly. An atlas of the gene expression signatures
of Mycobacterium tuberculosis, their interactions and
higher order gene functions in macrophage envi-
ronment at the time of infection has been prepared
using a systems biology approach [25]. Another
gene interaction network study made use of systems
biology approach to unravel the role of gut bac-
terial species in cardiovascular diseases [26]. The
molecular level interactions between the host cellu-
lar components and Francisella tularensis genes were
studied to understand the interplay between the host
and pathogen and identified the pathways associated
with the pathogen offensive strategies in invasion of
host defensive systems [27].

Despite the certain involvement of microorganisms
in CVDs, a systems level study has not yet been
attempted to identify the main pathogens, proteins,
domains, and pathways causing CVD effects. Unlike
the traditional approach of considering the host
or pathogen separately, a systems-level approach,
considers the HPI system as a continuum of signal-
ing proteins, and is indispensable to elucidate the
mechanisms of infection. This approach is gaining
increasing demand as the inference and analysis of
HPI regulatory, metabolic, and protein–protein net-
works shed light on several infection mechanisms
simultaneously. The knowledge derived from the
HPIs may largely contribute to the identification of
new and more efficient therapeutics to prevent or cure
infections [28]. Our laboratory recently reported the
use of topological parameters from host pathogen
interaction networks for development of a highly
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Fig. 1. A layout of host-pathogen protein-protein interaction networks. a) The schematic of wHPI network with distribution of pathogens
shown in blue circular shapes and their respective numbers of proteins in orange pentagonal shapes interacting with total number of host
proteins shown in light red ellipse. b) The schematic of cHPI network with distribution of pathogens shown in red circular shapes and their
respective numbers of proteins in purple pentagonal shapes interacting with total number of host proteins shown in green ellipse.

accurate random forest algorithm for selection of
therapeutic targets for treatment of microbial CVDs
[29].

In this study, all the unique experimental HP-PPIs
were collated from different databases and used to
construct a tripartite network composed of three enti-
ties, namely: pathogens, pathogen proteins and host
proteins as shown by the schematic in Fig. 1a. Next,
the HP-PPIs involved in CVDs were also represented
as a tripartite network (Fig. 1b). Both the networks
were compared so that unique proteins and pathways
of HP-PPIs leading to microbe induced CVDs could
be discerned. The scale-free nature of the networks
was evident at every level, in that a small number
of proteins have remarkably high number of interac-
tions in pathogens as well as in the host. The common
pathways of CVD and whole pathogens associ-
ated HPIs were mainly related to immune system,
metabolism, signal transduction, post-translational
protein modification and cytokine signaling. How-
ever, the pathways specific to microbe induced CVDs
were mainly related to signaling by Nuclear Growth
Factor (NGF), Fc epsilon receptor and Epidermal
Growth Factor Receptor (EGFR), ubiquitin-mediated
proteolysis, Epstein Barr virus infection and Human
T-cell Leukemia Virus 1 (HTLV-1) infection. The role

of specific pathways in mediating CVD was validated
by comparison of the pathways to gene expression
datasets of myocarditis, endocarditis, and pericarditis
in human heart. In an attempt to discern the homol-
ogous domains to be involved in molecular mimicry,
the DEXDc (DEAD-like helicases superfamily) and
HELICc (Helicase superfamily c-terminal domain)
were found enriched amongst pathogens. Thus, in
this study the proteins and pathways specific to CVDs
have been unveiled by of comparison between CVD
specific and entire set of HPIs.

2. Results

A total of 61,218 experimentally determined HPIs
were gathered from several HPI databases (listed in
the methodology section) between the human host
and all the different categories of pathogens and
wHPI (whole host-pathogen interactions) network
was constructed. Similarly, a comprehensive CVD
associated HPI (cHPI) network was constructed for
14,951 experimentally determined HP-PPIs associ-
ated with CVDs between human host and pathogens
and has been reported previously in the MorCVD
database. The statistics for host proteins, pathogens,
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Table 1
Distribution of HP-PPIs across top pathogens (Microbes in bold are top pathogens in cHPI network but not in wHPI network)

S. No. Group Total HPIs in cHPI network Total HPIs in wHPI network

1 Human papillomavirus 2262 3520
2 Human herpesvirus 2191 4931
3 Influenza A virus 1970 3200
4 Yersinia pestis 1778 2179
5 Bacillus anthracis 1296 2013
6 Saccharomyces cerevisiae 1243 2436
7 Hepatitis virus 897 1078
8 Human immunodeficiency virus 769 1211
9 Francisella tularensis 534 835
10 Measles virus 182 757
11 Human adenovirus 178 238
12 Polyomavirus 141 295
13 Vaccinia virus 134 330
14 Dengue virus 100 267
15 Human T-cell leukemia virus 60 192

Fig. 2. The layout of the cHPI network. The network shows the host-pathogen interactions between host and pathogen proteins. On the
right-hand side there is zoomed version of a small portion of the large network.

and their proteins of the resulting wHPI and cHPI
networks are shown in Fig. 1a and 1b, respectively.

The interactions computed within the host proteins
of the wHPI network resulted in a connected com-
ponent of 9270(91%) of the total host proteins of
wHPI network (Fig. 1a). Similarly, the computation
of interactions amongst host proteins of cHPI network
showed that 2801(89%) of the total host proteins were
connected in a single component as shown in Fig. 1b.
In both the networks viral proteins constituted the
maximum HPIs followed by bacterial proteins. The
distribution of HPIs across different pathogen species
having maximum number of pathogen protein inter-
actions in the wHPI and cHPI network is shown in
Table 1 that also shows the abundance of interactions
of pathogens in CVDs. The overall layout of the tri-

partite cHPI network for microbial CVDs generated
from Cytoscape is shown in Fig. 2.

2.1. Scale free networks: wHPI and cHPI

Both the wHPI and cHPI network followed the
power law similar to other HPI networks [21], with
correlation value of 0.845 and 0.728 and R2 value of
0.902 and 0.825, respectively. The high correlation
and R value indicate that it is a scale free network
with few nodes having large number of interactions
and majority of the nodes having a small number of
interactions. The average clustering coefficient value
of wHPI and cHPI network was 0.453 and 0.521,
respectively, much higher as compared to that of
0.018 in the random networks, further validating the
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Fig. 3. The degree distribution graphs of the network. The scatter plot of nodes based on their degree values is depicted in the graphs. a)
The node vs degree graph of the wHPI network. b) The node vs degree graph of the cHPI network. The red line indicates the fitting of power
law in both the networks.

node organization. The degree distribution of wHPI
and cHPI network is shown in Fig. 3a and 3b, respec-
tively. From the figures, it is apparent that only few
pathogens and their proteins are responsible for a
remarkably high number of interactions with a subset
of host proteins and hence follow the power law.

2.2. Central proteins of the wHPI and cHPI
networks

The proteins having a large number of interactions
(high degree) and degree exponent <2 were consid-
ered central in the network. The comparison of such
central proteins in wHPI and cHPI network is as fol-
lows:

1) Pathogen proteins
There were 478 central viral proteins in the wHPI

network from 44 viruses and 103 central proteins
in cHPI network that originated from 28 viruses.
Similarly, there were 228 central bacterial proteins
of wHPI network from 22 bacteria and 73 central
bacterial proteins of the cHPI network from 17 bac-
teria. The comparison between the mean degree value
of central and non-central proteins is given in Sup-
plementary Table 1. After intersecting the central
proteins, 113 proteins (52 viral and 61 bacterial) were
found to be shared by wHPI and cHPI network. The
top 10 central viral and bacterial proteins that were
unique to the cHPI network and were not central in the
wHPI network are listed in Table 2. These pathogen
proteins are likely to have an important role in specific
CVD complications due to microbial infection.

2) Host proteins
There were 287 central host proteins in the wHPI

network that had interactions with proteins of 415
pathogens (225 viruses, 168 bacteria and 22 other
species) and the 78 central host proteins of the cHPI
network interacted with proteins of 124 pathogens,
(81 viruses, 28 bacteria and 15 other species). The
mean degree value of non-central host proteins was
much lower than the mean degree value of central
host proteins of the respective networks as shown in
Supplementary Table 1.

The central nodes from the intra-species inter-
actions between host proteins are essential for
information flow in the network and are more likely
to be associated with the disease [30]. In intra-species
wHPI network there were 245 and in the intra-species
cHPI network there were 81 central host proteins.
Comparison of the wHPI and cHPI networks showed
that 58 central inter-species and 21 central intra-
species proteins were shared by both the networks.
However, 20 central proteins from the inter-species
interactions and 60 central proteins from intra-species
interactions were found unique to the cHPI network.
These unique central proteins are likely to be solely
associated with CVD effects of microbes rather than
the usual host response to pathogenic infections. The
high number of central unique proteins among the
intra-species interactions of the cHPI network indi-
cates that there is an exclusive subset of host proteins
which is specifically involved in the flow of informa-
tion during CVD condition in the body that is different
from the subset of central intra-species proteins of
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Table 2
Top 10 highly interacting pathogen proteins in the cHPI network specific to CVDs

S.No. Viral proteins Name of the virus Bacterial proteins Name of the Bacteria

1. Protein BNLF2a
(P0C739)

Epstein-Barr virus (strain
B95-8) (HHV-4) (Human
herpesvirus 4)

Proline–tRNA ligase (Q5NF37) Francisella tularensis
subsp. tularensis (strain
SCHU S4 / Schu 4)

2. E5B (B9UPF3) Human papillomavirus 11 Methyl-accepting chemotaxis
protein (A0A6L8PKS7)

Bacillus anthracis

3. Apoptosis regulator
BHRF1 (P0C6Z1)

Epstein-Barr virus (strain
AG876) (HHV-4) (Human
herpesvirus 4)

Periplasmic pectate lyase
(A0A0H2W8V3)

Yersinia pestis

4. Protein E6 (P06463) Human papillomavirus type 18 Proline-specific
aminopeptidase
(A0A2S9PFE9)

Yersinia pestis

5. Non-structural protein 1
(P0DOE9)

Human respiratory syncytial
virus A (strain A2)

Fibrinogen-binding protein
(Q2FZB8)

Staphylococcus aureus
(strain NCTC 8325 / PS
47)

6. BVLF1 (Q2MG95) Epstein-Barr virus (strain
B95-8) (HHV-4) (Human
herpesvirus 4)

Multidrug resistance protein
MdtB (Q8ZCW0)

Yersinia pestis

7. Epstein-Barr nuclear
antigen leader protein
(Q8AZK7)

Epstein-Barr virus (strain
B95-8) (HHV-4) (Human
herpesvirus 4)

Succinate dehydrogenase
flavoprotein (Q5NIJ3)

Francisella tularensis
subsp. tularensis (strain
SCHU S4 / Schu 4)

8. Polymerase basic protein
2 (C5E527)

Influenza A virus (A/New
York/1682/2009(H1N1))

5,10-methylenetetrahydrofolate
reductase (A0A6L8PX73)

Bacillus anthracis

9. Protein E7 (P06788) Human papillomavirus type 18 Flavodoxin (Q8CZW4) Yersinia pestis
10. Apoptosis regulator

BALF1 (P0CK58)
Epstein-Barr virus (strain

B95-8) (HHV-4) (Human
herpesvirus 4)

Beta-lactam antibiotic acylase
family protein
(A0A6L7HHZ0)

Bacillus anthracis

wHPI network. The top 10 central proteins (from both
inter-species and intra-species interactions) that are
unique to the cHPI network are listed in Table 3. We
evaluated the sensitivity of the confidence of interac-
tions on the topological parameters of the network.
Upon adding medium and low confidence interac-
tions for the intra-species cHPI and wHPI network
proteins, no change was observed in the list of top 10
central proteins reported in this study. However, the
degree of a few nodes was observed to change in both
the cases.

2.3. Biological attributes of the wHPI and cHPI
network proteins

1) Pathogen proteins
Mapping of biological characteristics of pathogen

proteins was carried out based on virulence predic-
tion and ontology analysis to probe the mechanism
of action as described in the methodology. In the
wHPI network 1452(74.5%) of the total viral pro-
teins and 1027 (35.87%) of the total bacterial
proteins were predicted to be virulent. Similarly,
in the cHPI network 628 (66%) of the total viral
proteins and 522 (26%) of the total bacterial pro-
teins were predicted to be virulent. The fraction

of virulent viral proteins dominated in both the
networks.

Virus and bacteria use different types of infection
strategies. While many bacterial pathogens are intra-
cellular, others use diverse processes and systems to
secrete toxins and virulence factors into the extra-
cellular milieu of the host cell. Bacteria also secrete
proteins that interact with host proteins to adhere with
host proteins or disrupt the immune response mech-
anisms [31]. In our study, 381 bacterial proteins of
the wHPI network and 92 of the cHPI network were
mapped as secretory bacterial proteins. Of the secre-
tory bacterial proteins, 266 of the wHPI network and
72 of the cHPI network were predicted as virulent.
Thus, in case of bacteria higher fraction of secretory
proteins were observed to be virulent than the central
ones.

2) Host proteins
The host proteins were biologically character-

ized based on essentiality, immune-relatedness, host
factor role and extracellular location. Among the
total host proteins of the wHPI network there were
5462(54%) essential proteins, 4759(47%) host fac-
tors, 741(7.35%) were immune related proteins and
3804(37%) proteins were extracellular in nature. The
cHPI network contained 1863 (59%) essential pro-



N. Singh et al. / Network analysis of host-pathogen protein interactions in microbe induced cardiovascular diseases 121

Table 3
Top 10 highly interacting host proteins in the cHPI network specific to CVDs

S.No. Inter-species host proteins Intra-species host proteins

1. Alpha-synuclein (P37840) Ubiquitin-60 S ribosomal protein L40 (P62987)
2. Breast cancer type 1 susceptibility protein (P38398) Ubiquitin-40 S ribosomal protein S27a (P62979)
3. TATA-box-binding protein (P20226) Polyubiquitin-C (P0CG48)
4. Gamma-interferon-inducible protein 16 (Q16666) Polyubiquitin-B (P0CG47)
5. Short transient receptor potential channel 1 (P48995) RAC-alpha serine/threonine-protein kinase (P31749)
6. Heat shock protein beta-1 (P04792) Mitogen-activated protein kinase 1 (P28482)
7. Cathepsin B (P07858) Proto-oncogene tyrosine-protein kinase Src (P12931)
8. BAG family molecular chaperone regulator 3 (O95817) Histone acetyltransferase p300 (Q09472)
9. Calreticulin (P27797) Cell division control protein 42 homolog (P60953)
10. Serine/arginine-rich splicing factor 1 (Q07955) Transforming protein RhoA (P61586)

teins, 1777 (56%) host factors, 627 (19%) immune
related proteins and 920 (29%) proteins were extra-
cellular in nature. Overall, the cHPI network host
proteins had a higher fraction of immune related and
host factor proteins in comparison with the wHPI
network proteins.

2.4. Biological attributes of the central proteins
of wHPI and cHPI networks

1) Central viral proteins
Amongst central viral proteins, 391(82%) in the

wHPI network, and 80 (78%) in the cHPI network
were predicted to be virulent. In contrast, very few
of the central bacterial proteins of wHPI and cHPI
networks were predicted to be virulent. However,
a higher fraction of non-central secretory bacterial
proteins of wHPI (82%) and cHPI (78%) networks
were predicted to be virulent. This indicates that for
a bacterial protein to be virulent, high number of inter-
actions are not necessary, but the protein is likely to
be secretory in nature.

2) Central host proteins
The biological features of the central proteins from

the inter-species and intra-species interactions were
studied for both wHPI and cHPI networks. Mapping
of central host proteins of the wHPI and cHPI net-
works with biological attributes showed that both
inter-species and intra-species central host proteins
had high fraction of host factors, extracellular and
essential proteins. In the cHPI network, the fraction
of immune proteins was much higher in the intra-
species central host proteins. The fraction of central
host proteins mapping to the biological attributes is
shown in Supplementary Table 2.

Biological and network topological feature map-
ping of the host proteins interacting with viral
proteins was also carried out as there were a very
high number of interactions between the two. It was

observed that the central proteins of the virus inter-
acted with a high fraction of essential (88%) and host
factor proteins (72%). The host proteins interacting
with the central viral proteins also had a high fraction
of central human proteins (96%). Our observations
are in line with the previous reports showing that
virus interacting proteins of the host occupy positions
of power in the network [32]. It has also been sug-
gested that viral proteins tend to target more central
and highly connected host proteins that help the viral
proteins in invading the host cell and hijack host’s
machinery for its own use [33].

2.5. Functional enrichment analysis

1) Gene ontology analysis
The KOBAS server mapped 92% pathogen pro-

teins and 98% of the host proteins of the wHPI
network. 86.5% pathogen proteins and 99.9% of the
host proteins of the cHPI network were also mapped
by the KOBAS server. Some common enriched bio-
logical processes for the host proteins of wHPI
and cHPI network were observed which included
apoptotic process, positive regulation of transcrip-
tion (DNA-templated), protein homodimerization
activity, signal transduction, protein ubiquitination
and phosphorylation, MAPK cascade, and GTPase
activity. Similarly, the molecular functions of the
host proteins of both the networks were predomi-
nantly represented by protein binding, ATP binding,
metal-ion binding, DNA binding, transcription reg-
ulator activity and catalytic activity. The location
of host proteins involved in wHPI and cHPI net-
works was predominantly intracellular. Similar to
the host proteins, there were some common and
enriched gene ontology components observed for
the pathogen proteins of the wHPI and cHPI net-
works. Such common biological processes were
small molecule metabolic process, cellular nitrogen
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compound metabolic process, biosynthetic process,
oxidation-reduction process and cellular amino acid
metabolic process. The common predominant molec-
ular functions were catalytic activity, nucleotide
binding, protein binding, ATP binding and hydrolase
activity. The pathogen proteins of wHPI and cHPI
networks were mainly located in the host cell cyto-
plasm, nucleus, and other intracellular parts. These
ontology components were believed to be involved
in both CVDs and other pathogenic infections.

However, certain biological processes, molecular
functions and cellular components were found to be
enriched exclusively for the proteins of cHPI net-
work and were not enriched in the wHPI network.
These ontology components characterize the nature
of the proteins associated with CVDs and determine
the particular processes and functions carried out by
the proteins that comes in action to cause the CVD
effects in the body rather than just usual pathogenic
conditions. Such CVD specific enriched gene ontol-
ogy components are shown in Fig. 4 (host proteins)
and Fig. 5 (pathogen proteins). Taken together, the
comparison of ontology analysis of the CVD associ-
ated host and pathogen proteins with the whole wHPI
proteins indicates that during the CVD condition
in the body, the pathogen proteins mainly perform
single-organism metabolic processes, bind to nucle-
osides, and are present in extracellular vesicles and
organelles. The host proteins are also involved in the
single organism signaling, cell communication, per-
form cellular macromolecule metabolic processes,
and are present in the organelles.

2) Pathway analysis
The aim of the pathway analysis was to iden-

tify the pathways that are exclusively involved and
over-represented in CVD complications rather than
the usual pathogenic infections. Hence, the path-
way analysis of both whole cHPI associated host
proteins as well as CVD associated host proteins
was carried out to identify the pathways that are
specific to CVDs during microbial infection. A
total of 1787 and 1420 pathways were found to be
enriched for the host proteins of wHPI and cHPI
network, respectively with statistically significant p-
value < 0.05. The commonly enriched pathways for
the host proteins of both the networks were related
to immune system, metabolism, signal transduction,
post-translational protein modification and cytokine
signaling. However, certain enriched pathways that
were specific to the host proteins of cHPI net-
work only were Signaling by NGF (R-HSA-166520),
Epstein Barr virus infection (hsa05169), HTLV-1

infection (hsa05166), Fc epsilon receptor (FCERI)
signaling (R-HSA-2454202), Herpes simplex infec-
tion (hsa05168), Viral carcinogenesis (hsa05203),
Signaling by EGFR (R-HSA-177929), Cellular
responses to stress (R-HSA-2262752), VEGFA-
VEGFR2 pathway (R-HSA-4420097), ubiquitin-
mediated proteolysis (hsa04120), and NGF signaling
via TRKA from the plasma membrane (R-HSA-
187037). These pathways are proposed to be involved
in causing the CVD effects through microbial
infections. The results indicate that the CVD compli-
cations can be specific to certain pathogens. However,
other host specific pathways could also be identified
and may be used by multiple pathogens.

2.6. Validation of cHPI network host pathways
with gene expression datasets

The validation of the pathways enriched in host
proteins from the cHPI network with the GEO
datasets showed that similar pathways were enriched
in common cardiovascular conditions induced by
microorganisms. Interestingly, the maximum similar-
ity of the pathways from the cHPI network was with
that of the Human iPSC-cardiomyocytes infected
with SARS-CoV-2. In this dataset of viral myocardi-
tis, 84% of the significantly enriched pathways from
our network were similar. Comparison with other
conditions also showed overlap between pathways,
i.e., 54% in endocarditis and 78% in pericarditis GEO
datasets. In total, 232 such enriched pathways of the
HP-PPIN were found to be present in all the three
gene expression datasets of heart damage and were
significantly enriched. The top 20 such enriched path-
ways are shown in Table 4 along with their respective
p-values in each GEO dataset. A Venn diagram of
the pathway overlap between the different datasets
is shown in Fig. 6. This validates the findings with
respect to enriched host response pathways identified
from the HP-PPIN.

3) Enriched protein domains: Structural mimicry
of host protein domains by pathogen

The pathogens utilize their domains homologous
with the host protein domains for molecular mimicry
to hijack the host machinery [34]. Hence, such homol-
ogous domains were identified for the pathogen
proteins of cHPI network which they could use to imi-
tate their counterpart, hijack the host cell and cause
CVD effects. In case of viral proteins, 36 enriched
homologous domains were identified that may be uti-
lized to mimic the interactions with host proteins.
In bacteria, 44 such enriched homologous domains
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Fig. 4. Gene ontology analysis of host proteins. a) The bar plot of enriched biological processes of host proteins; b) The bar plot enriched
molecular functions of host proteins; c) The bar plot of enriched cellular components of host proteins. The blue bar represents the number
of proteins; the green bar represents the reference p-value, and the red bar represents the p-value of the respective ontology term.

were identified. The F-actin binding domain (FABD)
and Interferon-regulatory factor 3(IRF3) were the top
enriched viral domains. Alkaline phosphatase homo-

logues (alkPPc) and Alpha-2-macroglobulin family
(A2M) were the top enriched domains in bacteria.
The list of all the enriched homologous domains
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Fig. 5. Gene ontology analysis of pathogen proteins. a) The bar plot of enriched biological processes of pathogen proteins; b) The bar plot
enriched molecular functions of pathogen proteins; c) The bar plot of enriched cellular components of pathogen proteins. The blue bar
represents the number of proteins; the green bar represents the reference p-value, and the red bar represents the p-value of the respective
ontology term.
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Fig. 6. A Venn diagram to see overlapping of number of enriched pathways. The purple ellipse represents the total number of enriched
pathways of cHPI network; the yellow ellipse represents the total number of enriched pathways involved in viral myocarditis related
GEO dataset (GSE150392); the green ellipse represents the total number of enriched pathways present in pericarditis related GEO dataset
(GSE122903) and the pink ellipse represents the total number of enriched pathways present in endocarditis related GEO dataset (GSE29161).

Table 4
P-value comparison of top 20 enriched pathways of cHPI network with each GEO dataset

S.No. Name of the pathway P-values
1. cHPI network GSE150392 GSE29161 GSE122903

2. Immune System 4.33E-167 1.84E-27 4.47E-09 2.14E-25
3. Signal Transduction 1.09E-131 1.53E-72 2.59E-20 1.31E-24
4. Cytokine Signaling in Immune system 3.99E-104 1.17E-69 0.007556464 8.00E-27
5. Metabolism 1.75E-98 1.17E-62 1.56E-76 1.56E-23
6. Disease 1.52E-89 4.26E-55 6.39E-20 7.12E-25
7. Innate Immune System 3.23E-86 8.33E-44 0.000244041 7.93E-41
8. Metabolism of proteins 5.15E-86 2.03E-19 2.64E-33 5.95E-17
9. Signaling by Interleukins 2.41E-82 2.79E-16 0.029975174 1.27E-14
10. Pathways in cancer 6.78E-78 1.52E-30 4.9052E-05 3.60E-13
11. Hemostasis 5.44E-77 1.79E-47 5.89E-09 6.92E-26
12. Post-translational protein modification 5.28E-69 3.46E-28 4.59E-11 2.33E-16
13. Gene expression (Transcription) 4.21E-67 5.45E-16 8.33E-10 6.14E-15
14. RNA Polymerase II Transcription 1.21E-63 2.31E-23 6.43E-10 3.41E-22
15. Generic Transcription Pathway 1.50E-61 7.43E-39 2.42E-10 4.64E-10
16. Adaptive Immune System 5.02E-61 4.80E-34 0.000427237 4.87E-15
17. Diseases of signal transduction 1.16E-56 1.61E-18 0.002207637 3.50E-18
18. PI3K-Akt signaling pathway 4.37E-54 2.59E-13 0.000545863 4.93E-12
19. Cellular responses to external stimuli 8.17E-53 1.62E-12 3.06062E-06 8.33E-10
20. Metabolic pathways 4.41E-52 1.36E-24 2.12E-48 4.74E-09
21. Developmental Biology 2.40E-50 1.26E-10 7.10E-10 1.86E-11

of virus and bacteria along with fold enrichment
and p-value are given in Supplementary Tables 3
and 4, respectively. Highly enriched domains that
were shared with host in both virus and bacteria
were DEAD-like helicases superfamily (DEXDc),
Helicase superfamily c-terminal domain (HELICc),
Protein tyrosine phosphatase, catalytic domain motif

(PTPc motif), Serine/Threonine protein kinases, cat-
alytic domain (S TKc) and ATPases Associated with
a variety of cellular Activities (AAA). The domains
identified to be utilized by both viral and bacterial
proteins represent often used mechanisms to mimic
the host protein interactions for rewiring the host cell
machinery to cause CVDs.
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3. Discussion

A systems level understanding of interactions
between pathogen and host proteins is a crucial step
to establish a relationship between pathogen and host
[24]. A collective study of interactions by multi-
ple pathogens provides an insight about the mutual
effect and strategy of pathogens to create the dis-
ease condition. Hence, a tripartite cHPI network was
constructed in this work to analyze the network pat-
terns and biological characteristics of all the HPIs
leading to CVD. It was further compared with the
wHPI network to distinguish the CVD specific pro-
teins and pathways. A high number of HP-PPIs were
observed from Papilloma virus, Herpes virus and
Influenza A virus in both the networks. Interestingly,
Saccharomyces cerevisiae, an opportunistic pathogen
causing several disease like fungemia, endocarditis,
pneumonia, peritonitis, urinary tract infections, skin
infections, and esophagitis[35] was found to have a
large number of HP-PPIs.

The top 10 pathogens of both wHPI and cHPI net-
work were found almost similar expect 5 pathogens
(shown in Table 1) that were amongst top pathogens
in the cHPI network but not in the wHPI network.
However, the large number of HP-PPIs reported for a
particular pathogen does not indicate its central role
in the disease network. For instance, Adenovirus and
Hepatitis A/B virus have many HP-PPIs reported, as
observed in the whole wHPIs but their proteins are not
reflected amongst the central pathogen proteins of the
cHPI network. Conversely, proteins from the Human
Respiratory Syncytial Virus are not abundant in the
whole wHPIs but they were central in the cHPI net-
work. Both the network contained a large number of
HP-PPIs and the computation of interactions between
host proteins created a connected network. Given the
important role of central hub proteins in the spreading
phenomenon [36, 37], the hub proteins of these well-
connected intra-species interactome were considered
to be involved in the spread of the infection.

The most central in the intra-species cHPI network
were Ubiquitin-60 S and 40 S ribosomal proteins
and Polyubiquitin C&B proteins while the most
central hub protein of the inter-species cHPI net-
work were Alpha-synuclein, Breast cancer type 1
susceptibility protein, and TATA-box-binding pro-
tein. The ubiquitin-mediated proteolysis pathway
was enriched in cHPI network as well as in the
three GEO datasets examined. The proteins of ubiq-
uitin system play a key role in fine-tuning the
innate immune response of the host and can also

be usurped by the pathogen to evade the innate
immunity [38]. The viruses have been found to
connect with the ubiquitin pathway at many lev-
els to enhance viral replication [39]. Modulation of
the host ubiquitin system by bacterial effector pro-
teins inhibits innate immune responses and hijacks
central signaling pathways [40]. Early inhibition
of the ubiquitin-proteasome system in pathologi-
cal hypertrophy restricted disease progression while
enhancement of proteasome activities improved the
outcome conditions like myocardial infarction caused
by oxidative damage [41]. The highly central position
of ubiquitin protein in pathogen interaction network
as well as the host intra species network combined
with pathway and domain enrichment analysis indi-
cates the significant role of this protein in microbe
induced heart disease.

Integrated ontology and pathway analysis showed
the activation of immune system including innate
immune system, complement system and cytokine
signaling in response to the pathways of micro-
bial infection. The immune response proteins were
high in fraction in the central nodes of the intra-
species network, indicating its highly significant role.
The inferred significance of immune response due
to the collective effect of multiple microbial infec-
tions in CVDs is in agreement with our ontology
and pathway analysis results. Chronic inflammatory
cardiomyopathy has been attributed to the trigger-
ing of heart autoimmunity by cytopathic effects of
the microbes [42]. The role of immune mediated
inflammatory response in cardiac damage has previ-
ously been reviewed [43]. The innate immune system
interacts with metabolic disturbances in pathogene-
sis of CVDs [44]. A definitive link between CVD and
abnormalities of immune activation has already been
reported in HIV infected individuals [45, 46]. SARS-
Cov-2 infection activates innate immune response
in pluripotent stem cell derived cardiomyocytes
[47]. Bacterial infection has been found to impair
the endothelial function by circulating endotoxins,
induce proliferation of smooth muscle cells and
local inflammation, and activate the innate immune
response [48].

The enrichment analysis for enriched protein
domains shared between pathogen and host pro-
teins showed protein helicase domains like DEXDc
and HELICc. The direct interaction of the host and
pathogen proteins containing DEXDc and HELICc
domains with the same host protein was verified from
the HP-PPIN. The helicase domains are a part of
proteins like Retinoic acid inducible gene I (RIG-I)
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and Melanoma differentiation associated gene 5
(MDA5) that are key cytosolic PRRs for detect-
ing nucleotide PAMPs of invading viruses [49]. The
DEXDc domain senses the viral RNA and activates
the caspase recruitment domain (CARD) via IRF-3,
NF-κB, Type I Interferon and Interferon stimulated
genes that directly inhibit viral replication. Several
viral proteins are known to selectively abrogate the
signaling by RIG-I and MDA5 to inhibit the innate
immune response [50]. The RIG-1/MDA5 constitutes
a surveillance system conserved across vertebrates
[51]. Apart from enrichment of DEXDc and HELICc
among host and pathogen domains, the constituent
proteins of this innate immune response were also
the top enriched ontology terms of pathogen proteins
in the HP-PPIN, namely - host type I interferon medi-
ated signaling pathway, host IRF-3 activity, and host
MDA5 activity. Taken together, both findings high-
light the mechanisms for the activation of the host
innate immune response and devious methods of its
inhibition by the pathogens.

4. Conclusion

Construction of cHPI network of pathogens pro-
teins interacting with host proteins in microbial
CVDs has allowed us to define the biological role
of its constituent entities. The comparison of cHPI
network with the wHPI network has overcome the
bias due to availability of the experimental HPIs and
aided in identifying the proteins and pathways that are
central and specific to CVDs. This work identifies the
main organisms, host proteins and pathways specif-
ically involved in pathogenesis of microbial CVDs.
Our analysis paves the way for future identification
of novel therapeutics based on network topology and
biological characteristics.

5. Materials and methods

5.1. Network construction

All the experimentally determined HP-PPIs related
to the human host and all pathogens were gath-
ered, housed in several HPI databases: Reactome
[52], HMDAD [53], PHI-base [54], OrthoHPI [55],
VirusMINT [56], MatrixDB [57], BioGrid [58],
HPIDb [59], MINT [60], IMEx [61], IntAct [62],
UniProt [63], MPIDB [64], VirHostNet [65], I2D
[66], InnateDB [67], DIP [68] and PHISTO [69].

These databases are exclusively dedicated for HPIs,
however, there are some other databases that serve as
data repositories to search and collect protein/gene
interaction data, provide the information of PPIs of
a single host [70]. These include STRING, HPRD,
GeneMANIA and PINA. The extracted raw data was
pre-processed to ensure that there was no discrepancy
in the data. The following pre-processing steps were
carried out -

1) Filtration and removal of the data pertaining to
the interactions between pathogen proteins and
hosts other than humans.

2) Conversion of different protein IDs collected
from different sources into UniProt accession
numbers in order to maintain the uniformity in
the data.

3) Transformation of pathogen names into a single
uniform format on the basis of the same UniProt
Taxon identifier to remove the differences in syn-
tax/nomenclature.

4) Any kind of duplicate records were removed
from the data to prevent redundancy.

For this HP-PPI data between host and whole
pathogens, a tripartite wHPI network was constructed
between pathogen with its proteins interacting with
the host proteins. This network was constructed to
compare the attributes of cHPI network with the
wHPI network. To construct the cHPI network the
information contained in the previously reported
MorCVD [71] database was used. A tripartite net-
work of pathogen and their proteins interacting with
the host proteins involved in CVDs was created.
Cytoscape 3.5.1 [72] was used for constructing the
networks.

The interactions between the host proteins of
wHPI and cHPI networks were also computed using
STRING v11 [73] tool to examine the intra-species
connections between host proteins. The confidence
mode of this tool was used to compute the high con-
fidence interactions with score ≥ 0.7 and by enabling
all prediction sources. To get a holistic set of HP-PPIs,
these inter-species and intra-species sets of wHPI and
cHPI networks were merged using Union operation
of Set Theory in Cytoscape 3.5.1. Hence, the resulting
networks were a tripartite graph which contained host
protein and pathogens and their proteins with three
types of edges: a) edges between pathogen proteins
and host proteins, b) edges between pathogen and
their proteins and c) edges between two host proteins.
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5.2. Network randomization and validation

The biological validation of the networks was car-
ried out by fitting the network to the power law using
the Network Analyzer module of Cytoscape 3.5.1.
The statistical validation was done by construct-
ing randomized networks using the Erdos-Renyi
[74] approach implemented using the “Igraph” pack-
age [75] in R statistical computing environment
(https://www.r-project.org/). Briefly, the number of
nodes and edges was preserved to construct 1000 ran-
dom networks. The average clustering coefficient of
the random networks was compared with that of the
wHPI and cHPI networks.

5.3. Topological analysis of the networks

Several topological measures have been proposed
to explore the specific features of complex net-
works [76]. Topological analysis of transcriptional
regulatory and metabolic networks helps to identify
essential nodes that possess vital functional activity
in microorganisms [77, 78]. Initial studies suggested
that highly connected nodes (having high degree or
“hubs”) are essential [79, 80]. It was also shown from
network analysis of a diverse set of 20 organisms
that degree and betweenness centralities show sig-
nificant correlation with lethality [81]. Degree and
eigenvector centrality are also positively correlated.
Additionally, hubs play important roles in structural
and functional properties of a network [82]. In case
of protein networks these nodes may tend to form
protein complexes or module like structures hav-
ing important functional roles [83]. It was found
that 10–100 from the top high degree proteins have
been listed as central in biological network stud-
ies [84, 85]. However, as we have used the top
selected nodes for analysis of enrichment of biolog-
ical properties, a more specific criterion was used.
The unique property of the biological networks is
that they follow the power law, which distinguishes
them from the non-biological networks. Therefore,
the significance of the hubs is indicated by the expo-
nent of the power law with smaller exponent values
signifying higher significance. Hubs possessing an
exponent value < 2 usually have important roles in
cellular systems and are considered as central hub
nodes [86–88]. Therefore, in this study, the nodes
that had degree exponent < 2 were denoted as cen-
tral proteins in both the networks. A comparison of
the mean degree of central and non-central nodes
in the network has also been shown in Supplemen-

tary Table 1. The degree, eigenvector centrality and
betweenness centrality of the central nodes was much
higher than the average value of these parameters
for the networks. These three topological param-
eters were calculated using Igraph package of R
studio. The code for network validation and the
topological analysis is available from the GitHub
link: https://github.com/nirupmajadaun21/Network-
biology.

5.4. Functional enrichment analysis

Functional enrichment was done to identify the
enriched pathways and processes in the wHPI and
cHPI network and those unique in the cHPI network.
It was done using gene set enrichment analysis tool
of KOBAS 3.0 [89], a web server for annotation
and identification of enriched pathways, diseases and
gene ontologies. The latest version of this server inte-
grates the information of approximately 5000 species
from databases including BioCyc, Gene Ontology,
KEGG Disease, OMIM, NHGRI GWAS Catalog,
PANTHER, Gene Ontology Slim, Reactome and
KEGG pathways. This server uses machine learning-
based approach integrating multiple gene set analysis
tools for better prioritization of biologically relevant
pathways. Therefore, the identification of statistically
significant enriched pathways and gene ontologies
was done using this tool and only those having p-
value < 0.05 were considered. Recent studies have
reported the use of molecular mimicry by pathogen
proteins to hijack host cellular pathways [90]. There-
fore, we looked for similar enriched domains between
the host and pathogen proteins of cHPI network.
These were computed using the UniProt database
profile in FunRich tool [91].

5.5. Biological characterization of network
proteins

1) Host proteins
Several biological characteristics were taken into

consideration to correlate the important network
topological parameters of the proteins with their bio-
logical significance. The host proteins were primarily
characterized based on the following biological char-
acteristics:

1. Essentiality: Essential proteins are those that are
indispensable for the survival of an organism,
and therefore are considered a foundation of life
[92]. The essential host proteins of the networks

https://www.r-project.org/
https://github.com/nirupmajadaun21/Network-biology
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were identified using the updated DEG 10 [93].
DEG database includes essential genes identified
by genome-wide essentiality screens determined
under diverse conditions for survival, pathogene-
sis, and antibiotic resistance.

2. Immune-relatedness: Immune-related proteins in
the networks that regulate the innate and adaptive
immune response along with cytokine signal-
ing response were identified using the proteins
extracted from the Reactome database [94] related
to immune system pathways (Adaptive Immune
System, Cytokine Signaling in Immune system
and Innate Immune System).

3. Host-factor role: Some proteins are utilized by the
pathogens at multiple stages of their life cycle i.e.
adhesion, invasion, replication, growth and mul-
tiplication[95]. Host factors were identified using
the vhfRNAi database [96].

4. Extracellular location: The cellular location of
a protein plays a major role in case of HPIs.
Proteins exposed to the extracellular environ-
ment, both cell surface receptors and secreted
proteins are required for initial invasion and
serve as entry points. The entry points of the
HPI play a key role in pathogen recognition and
subsequent immune-regulatory processes [97].
Therefore, extracellular host proteins present in
the networks were characterized with the help of
gene ontology annotation done by KOBAS server.

2) Pathogen proteins
The pathogen proteins were characterized on the

basis of virulence on the basis of sequence character-
istics with the VirulentPred server [98] using bilayer
cascade support vector machine based approach.
Unlike viruses, bacteria usually do not insert their
genome inside the host cell, rather express a wide
range of secretory molecules that bind to host cell
targets and facilitate a variety of host responses [99].
Therefore, secretory proteins of bacteria present in
the networks were also characterized through GO
annotation.

5.6. Validation of enriched host pathways with
expression data from cardiac damage studies

The gene expression datasets for the most com-
monly known cardiovascular conditions namely
myocarditis, endocarditis and pericarditis were col-
lected from the GEO database [100] to validate the
enriched pathways of cHPI network.

Three gene expression datasets with GEO acces-
sion ids were processed as follows:

a) GSE150392 – RNA seq of Human iPSC-
cardiomyocytes infected with SARS-CoV-2.
The DEGs were extracted from the published
supplementary dataset of the original study
[101].

b) GSE122903 - RNA-Seq data for global anal-
ysis of circRNA-associated ceRNA network
for investigating underlying pathogenesis of
constrictive pericarditis. This raw dataset was
processed in R Studio computing environment
using DESeq2 [102], a Bioconductor package.

c) GSE29161 – The whole genome microarray
analysis of circulating gene expression pro-
file to investigate the host response during
Infective Endocarditis and identify potential
biomarkers. The fold change from this whole
genome microarray dataset were computed
using GEO2 R tool of GEO.

The DEGs from all the datasets were extracted
based on fold change values of at least ± 1.5 and
corrected p-value < 0.05. Further, the enriched path-
ways were identified for the DEGs of each GEO
dataset using KOBAS server. The number of com-
mon enriched pathways with corrected p-value < 0.05
was computed. It was ensured that the p-values of the
top 20 enriched pathways of the cHPI network was
compared across the three datasets examined.

6. Appendices

CVD: Cardiovascular diseases; HP-PPI: Host-
pathogen protein-protein interactions; HPI: Host-
pathogen interactions; HIV: Human Immuno-
deficiency virus; SARS-CoV-2: Severe Acute
Respiratory Syndrome-Corona Virus 2; ACE2:
Angiotensin converting enzyme; NGF: Nuclear
growth factor; EGFR: Epidermal growth factor
receptor; HTLV1: Human T-cell leukemia virus
type 1; DEXDc: DEAD-like helicases super-
family; HELICc: Helicase superfamily c-terminal
domain; MAPK: Mitogen Activated Protein Kinase;
GTPase: Nucleotide guanosine triphosphatase; ATP:
Adenosine triphosphate; VEGFA-VEGFR: Vascu-
lar endothelial growth factor - vascular endothelial
growth factor receptor; TRKA: Tropomyosin recep-
tor kinase A; iPSC: Induced Pluripotent Stem Cells;
cHPI: CVD associated host-pathogen interactions;
wHPI: whole host-pathogen interactions; GEO: Gene
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Expression Omnibus; DEG10: Database of Essential
Genes; DEGs: Differentially expressed genes; PRRs:
Pattern recognition receptors; PAMPs: Pathogen
associated molecular patterns; KEGG: Kyoto Ency-
clopedia of Genes and Genomes; OMIM: Online
Mendelian Inheritance in Man; NHGRI: National
Human Genome Research Institute Home; GWAS:
Genome Wide Association Study; circRNA: circular
RNA; ceRNA: Competing endogenous RNA.
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[28] S. Durmuş, T. Çakır, A. Özgür, et al., A review on com-
putational systems biology of pathogen–host interactions
[Review], Frontiers in Microbiology 6(235) 2015.

[29] N. Singh and S. Bhatnagar, Machine Learning for
Prediction of Drug Targets in Microbe Associated Car-
diovascular Diseases by Incorporating Host-Pathogen
Interaction Network Parameters, Molecular Informatics
2021 2021/10/1;n/a(Accepted Manuscript).

[30] J. Zhao, T.-H. Yang, Y. Huang, et al., Ranking Candidate
Disease Genes from Gene Expression and Protein Interac-
tion: A Katz-Centrality Based Approach, PLoS One 6(9)
(2011), e24306.

[31] E.R. Green and J. Mecsas, Bacterial Secretion Sys-
tems: An Overview, Microbiol Spectr 4(1) (2016),
10.1128/microbiolspec.VMBF-0012-2015.

[32] E.E. Ackerman, J.F. Alcorn, T. Hase, et al., A dual con-
trollability analysis of influenza virus-host protein-protein
interaction networks for antiviral drug target discovery,
BMC Bioinformatics 20(1) (2019), 297.

[33] A.F. Brito and J.W. Pinney, Protein-Protein Interac-
tions in Virus-Host Systems, Front Microbiol 8 (2017),
1557–1557.

[34] S. Mondino, S. Schmidt and C. Buchrieser, Molec-
ular Mimicry: a Paradigm of Host-Microbe Coevo-
lution Illustrated by Legionella, mBio 11(5) (2020),
e01201-20.

[35] A. Murphy and K. Kavanagh, Emergence of Saccha-
romyces cerevisiae as a human pathogen: Implications for
biotechnology, Enzyme and Microbial Technology 25(7)
(1999), 551–557.

[36] R. Cohen, K. Erez, D. ben-Avraham, et al., Resilience
of the Internet to Random Breakdowns, Physical Review
Letters 85(21) (2000), 4626–4628.

[37] R. Pastor-Satorras and A. Vespignani, Epidemic Spreading
in Scale-Free Networks, Physical Review Letters 86(14)
(2001), 3200–3203.

[38] J. Li, Q.-Y. Chai and C.H. Liu, The ubiquitin system: a
critical regulator of innate immunity and pathogen-host
interactions, Cell Mol Immunol 13(5) (2016), 560–576.

[39] M.K. Isaacson and H.L. Ploegh, Ubiquitination, ubiquitin-
like modifiers, and deubiquitination in viral infection, Cell
Host Microbe 5(6) (2009), 559–570.

[40] S.W. Hicks and J.E. Galán, Hijacking the host ubiqui-
tin pathway: structural strategies of bacterial E3 ubiquitin
ligases, Current Opinion in Microbiology 13(1) (2010),
41–46.

[41] O. Drews and H. Taegtmeyer, Targeting the ubiquitin-
proteasome system in heart disease: the basis for new
therapeutic strategies, Antioxid Redox Signal 21(17)
(2014), 2322–2343.

[42] C. Massilamany, S.A. Huber, M.W. Cunningham, et al.,
Relevance of molecular mimicry in the mediation of infec-
tious myocarditis, J Cardiovasc Transl Res 7(2) (2014),
165–171.

[43] S. Epelman, P.P. Liu and D.L. Mann, Role of innate and
adaptive immune mechanisms in cardiac injury and repair,
Nat Rev Immunol 15(2) (2015), 117–129.

[44] J. Cai, M. Xu, X. Zhang, et al., Innate Immune Signaling
in Nonalcoholic Fatty Liver Disease and Cardiovascular
Diseases, Annu Rev Pathol 14 (2019), 153–184.

[45] C.T. Longenecker, C. Sullivan and J.V. Baker, Immune
activation and cardiovascular disease in chronic
HIV infection, Curr Opin HIV AIDS 11(2) (2016),
216–225.

[46] A.G. Vos, A. Hulzebosch, D.E. Grobbee, et al., Associ-
ation between Immune Markers and Surrogate Markers
of Cardiovascular Disease in HIV Positive Patients: A
Systematic Review, PLoS One 12(1) (2017), e0169986.

[47] A. Sharma, G. Garcia Jr., Y. Wang, et al., Human iPSC-
Derived Cardiomyocytes Are Susceptible to SARS-CoV-2
Infection, Cell Rep Med 1(4) (2020), 100052.

[48] M. Banach, L. Markuszewski, J. Zasłonka, et al., The role
of infection in the pathogenesis of atherosclerosis, Przegl
Epidemiol 58(4) (2004), 671–676.

[49] J. Zou, M. Chang, P. Nie, et al., Origin and evolution of the
RIG-I like RNA helicase gene family, BMC Evolutionary
Biology 9(1) (2009), 85.

[50] M. Yoneyama, M. Kikuchi, K. Matsumoto, et al., Shared
and Unique Functions of the DExD/H-Box Helicases RIG-
I, MDA5, and LGP2 in Antiviral Innate Immunity, The
Journal of Immunology 175(5) (2005), 2851.

[51] J. Zou, M. Chang, P. Nie, et al., Origin and evolution of
the RIG-I like RNA helicase gene family, BMC Evol Biol
9 (2009), 85.

[52] D. Croft, G. O’Kelly, G. Wu, et al., Reactome: a database
of reactions, pathways and biological processes, Nucleic
Acids Res 39(Database issue) (2011), D691-7.

[53] W. Ma, L. Zhang, P. Zeng, et al., An analysis of
human microbe-disease associations, Brief Bioinform
18(1) (2017), 85–97.

[54] M. Urban, R. Pant, A. Raghunath, et al., The Pathogen-
Host Interactions database (PHI-base): additions and
future developments, Nucleic Acids Research 43(Database
issue) (2015), D645-D655.

[55] Y. Cuesta-Astroz, A. Santos, G. Oliveira, et al., An inte-
grative method to unravel the host-parasite interactome:
an orthology-based approach, bioRxiv (2017), 147868.

[56] A. Chatr-aryamontri, A. Ceol, D. Peluso, et al., Virus-
MINT: a viral protein interaction database, Nucleic Acids
Research 37(Database issue) (2009), D669-73.

[57] G. Launay, R. Salza, D. Multedo, et al., MatrixDB, the
extracellular matrix interaction database: updated content,
a new navigator and expanded functionalities, Nucleic
Acids Res 43(Database issue) (2015), D321-7.

[58] C. Stark, B.J. Breitkreutz, T. Reguly, et al., BioGRID: a
general repository for interaction datasets, Nucleic Acids
Res 34(Database issue) (2006), D535-9.

[59] M.G. Ammari, C.R. Gresham, F.M. McCarthy, et al.,
HPIDB 2.0: a curated database for host–pathogen inter-
actions, Database (2016), 2016.

[60] A. Chatr-aryamontri, A. Ceol, L.M. Palazzi, et al., MINT:
the Molecular INTeraction database, Nucleic Acids Res
35(Database issue) (2007), D572-4.

[61] S. Orchard, S. Kerrien, S. Abbani, et al., Protein interac-
tion data curation: the International Molecular Exchange
(IMEx) consortium, Nat Methods 9(4) (2012), 345–350.

[62] H. Hermjakob, L. Montecchi-Palazzi, C. Lewington, et
al., IntAct: an open source molecular interaction database,
Nucleic Acids Res 32(Database issue) (2004), D452-5.

[63] R. Apweiler, A. Bairoch, C.H. Wu, et al., UniProt:
the Universal Protein knowledgebase, Nucleic Acids Res
32(Database issue) (2004), D115-9.



132 N. Singh et al. / Network analysis of host-pathogen protein interactions in microbe induced cardiovascular diseases

[64] J. Goll, S.V. Rajagopala, S.C. Shiau, et al., MPIDB:
the microbial protein interaction database, Bioinformatics
24(15) (2008), 1743–1744.

[65] V. Navratil, B. de Chassey, L. Meyniel, et al., VirHostNet:
a knowledge base for the management and the analysis of
proteome-wide virus-host interaction networks, Nucleic
Acids Res 37(Database issue) (2009), D661-8.

[66] K.R. Brown and I. Jurisica, Unequal evolutionary con-
servation of human protein interactions in interologous
networks, Genome Biology 8(5) (2007), R95-R95.

[67] K. Breuer, A.K. Foroushani, M.R. Laird, et al., InnateDB:
systems biology of innate immunity and beyond–recent
updates and continuing curation, Nucleic Acids Research
41(Database issue) (2013), D1228-33.

[68] I. Xenarios, D.W. Rice, L. Salwinski, et al., DIP: the
database of interacting proteins, Nucleic Acids Res 28(1)
(2000), 289–291.
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