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Abstract— For the Oxford Aerial Tracking System (OATS)
we are developing a robot helicopter that can track moving
ground objects. Here we describe algorithms for the device
to perform path planning and trajectory prediction. The path
planner uses superquadratic potential fields and incorporates
a height change mechanism that is triggered where necessary
and in order to avoid local minima traps. The goal of the
trajectory prediction system is to reliably predict the target
trajectory during occlusion caused by ground obstacles. For
this we use two artificial neural networks in parallel whose
retraining is automatically triggered if major changes in the
target behaviour pattern are detected. Simulation results for
both systems are presented.

I. INTRODUCTION

There has recently been a resurgence of interest in small

autonomous helicopter systems, as the increase in their

perceived utility has coincided with the availability of better

hardware. In particular, it is now possible to fit enough

computing power on-board such small devices to achieve

useful mission objectives, whilst the considerable problems

of ensuring that the vehicle can fly in a stable fashion

can be largely relegated to small and lightweight commer-

cial control boxes called automatic flight control systems

(AFCSs). The Oxford Aerial Tracking System (OATS) is

designed to explore the design of such a vehicle, whose

high-level goal is that of visual tracking. The hardware

components of OATS consist of a miniature helicopter, a

commercial AFCS, a small on-board computer, radio links,

and a camera mounted on a two-axis gimbal. This hardware

is designed to be capable of autonomous visual tracking

of ground targets, the latter being selected in flight from a

ground station. The hardware components and basic tracking

algorithms employed in OATS are described in more detail

in [1], [2], and at the time of writing this paper the status

of this hardware is that the tracking algorithms are being

commissioned on the helicopter.

In parallel to the main hardware development, an impor-

tant part of OATS is the development of high-level mission

software in simulation. Our main simulator software is called

HeliSim, and the framework of HeliSim and its use in the

development of the visual tracking algorithms was given in

[1]. The work presented here introduces two additions to

OATS’s current capabilities, enhancing the overall autonomy

of the system. Experiments with HeliSim have shown that

automatic path planning is an essential ability for a small
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UAV operating in known environments. In contrast to fixed-

wing drones flying at high altitudes, our UAV helicopter is

designed for manoeuvring at low altitudes. Hence, the first

addition to OATS discussed in this paper concerns collision

avoidance between the robotic helicopter and obstacles found

close to the ground level (e.g. trees, buildings, power lines).

The second additional feature for OATS addresses the prob-

lem of target occlusion during tracking.

In [2] we introduced a re-acquisition strategy suitable for

stationary (occluded) targets; here we extend this idea to tar-

gets exhibiting complex movement patterns (e.g., aversion).

Since such movement patterns created by different types

of ground targets exhibit non-repetitive dynamic properties

that can not be modelled with a single dynamic model,

observation and subsequent learning is required for success-

ful trajectory prediction. We therefore allow for training of

artificial neural networks, thus confronting this problem in a

novel way.

The rest of this paper is organised as follows. Related

work is reviewed in §II, and §III explains our approach for

path planning, specifically focussing on the capabilities of

our robotic platform of performing changes in flight altitude.

§IV considers target trajectory prediction, and §V concludes

and looks forward to the planned field trials of the OATS

system.

II. BACKGROUND

Potential field approaches [3]–[5] are a popular choice

for path planners that have to work quickly, and have

been adapted for uncertain environments [6], [7], and in

particular our work is based on the use of superquadric

potential functions [8], [9]. Several papers have explicitly

considered the problem of path planning for a UAV. [10], [11]

considers the application of evolution-based path planning

to the motion of a UAV through a field of obstacles at

uncertain locations, and another evolution based approach

[12] calculates a curved path with desired characteristics

in a 3-D terrain using B-Spline curves. [13] incorporates

probabilities into mission planning for UAVs flying through

an area with multiple sources of threat, and [14] integrates

a probabilistic roadmap planner into the run-time system of

their UAV.

[15] deals with a strategy of path planning for a UAV to

follow a ground vehicle. The proposed strategy acts on the

assumption that the ground vehicle may change its heading

and speed while the UAV maintains a fixed air speed. [16]

presents a planner for UAVs using a Voronoi Graph, and

[17], [18] incorporates the kinematic and dynamic properties
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of a small UAV helicopter so that a non-linear control law

for manoeuvre execution can be provided. [19] use octrees

to effectively extend the search for a UAV path into three

dimensions.

[20] presents an approach for tracking vehicles in road

traffic scenes using an explicit occlusion reasoning step. A

contour based tracker is employed which uses intensity and

motion boundaries; the tracking is based on an affine motion

model; and the estimation process is decomposed into two

linear Kalman filters (one for estimating the motion parame-

ters and one for estimating the vehicle shapes and contours).

[21] describes the use of a Kalman filter for visually tracking

objects with the possibility of small occlusions, and also

an extended Kalman filter (EKF) to model more complex

movements.

Trajectory prediction in robot soccer is considered in

[22] using linear models and neural networks. Time series

prediction is a popular application for neural networks in

areas such as traffic forecasting in ATM networks [23]

and financial forecasting [24]; [25] includes a discussion

of choosing an appropriately sized input window which is

particularly relevant to our work.

III. PATH PLANNING FOR OATS

A. Prerequisites

We are interested in solutions to the problem of finding a

collision free and safe route for a small unmanned aerial

vehicle from a given (GPS) coordinate to a second one.

In this scenario, we assume the availability of a detailed

elevation map of the flight area that contains all major

fixed obstacles (e.g. buildings, mountains, power lines). Our

goal is to command the UAV to fly to new coordinates by

sending it a high level set of instructions via the wireless

link. Once a new command is received by the UAV, it

should automatically calculate a possible path between its

current configuration and the goal configuration. The path

consists of a series of roughly equidistant coordinates, which

can successively be fed into our existing Automatic Flight

Control System (AFCS). The AFCS then compiles these

inputs into a set of low-level motion primitives and executes

them accordingly. The sequence is complete when the UAV

approaches the given goal configuration.

Ideally the UAV should stay at a roughly constant height

above the ground in order for its camera to obtain a good

view of the object being tracked. However, in certain sit-

uations altitude changes are unavoidable: obstacles such as

power lines (which are at the same height or higher than the

current UAV flight height) can not be simply bypassed by

going around or under them. Here, the automatic path planner

needs to find a path that takes the UAV above the obstacle.

Consequently, the UAV first needs to ascend to a certain

height above the obstacle in question and then descend to

the previous height above ground once the obstacle has been

passed.

Finally, as the achievable UAV positioning accuracy dur-

ing flight relies on GPS (which has limited accuracy) and

depends on external disturbances (wind), a well dimensioned

(a) 3-D view repulsive potential field (b) Contour total potential field

Fig. 1. Superquadric potential field composition

safety margin between the UAV and the obstacles is crucial

in order to avoid collisions.

B. Potential Fields Based on Superquadric Isopotential Con-

tours

Our path planner uses a potential field method which

offers the following desirable properties: guaranteed obstacle

avoidance while keeping a safety distance; generation of a

smooth trajectory; low computational load; and expandable

for inclusion of dynamic obstacles. While many different

attractive potential functions have been proposed in the

literature, the most commonly used attractive potential field

takes the form of a quadratic well function:

Uatt(q) =
1

2
ξ ‖qTar − qRob‖

2
(1)

where ξ is a positive scaling factor, qTar and qRob are

the target and robot positions, and ‖·‖ is the Euclidean

distance function. This simple function has the advantages

of providing a linear control law with constant gain, and

that all potentials are approximately quadratic for small

displacements ( [8]).

For a repulsive field we use a superquadric [9], which

allows us to model all sorts of different shapes. The general

superquadratic isopotential contour is:

[

(

x
f1(x,y,z)

)2n

+
(

y
f2(x,y,z)

)2n
]

2m

2n

+
(

z
f3(x,y,z)

)2m

= 1 (2)

where f1, f2 and f3 are scaling functions, and m and n

are exponential parameters. For the polyhedral geometric

obstacles used here we follow the refinement of (2) given

in [8] to obtain constant functions for f1, f2 and f3, and

(also following [8]) we choose m and n to try to reduce the

likelihood of unwanted local minima. Since we will use the

vertical profile formed by an obstacle’s repulsive potential

field in §III-D, we set the z value for each obstacle equal

to the height of the corresponding obstacle as defined in the

elevation map of the flight area.

The overall potential UTotal is a linear combination of the

attractive and repulsive potentials, with weights chosen to set

the relative importance of achieving obstacle avoidance and

reaching the goal. Fig. 1 shows how the potential field based

on superquadric isopotential contours is composed: Fig. 1(a)

shows a 3-D view of the field due to three rectangular
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obstacles, and Fig. 1(b) shows a contour plot of Utotal when

the centre of the attractive well is located in the top right

hand corner of the plot.

C. Plan Generation and Selection

In a traditional potential field method we search for

the goal by following the negative gradient of the field;

however, local minima in the field can cause this method

to fail. Instead, we sample the potential in a directed search.

Specifically, we compute UTotal at Ns equidistant values on

a circle of radius r around the current robot position (x, y).
For values r = 1 and Ns = 32 with (xi, yi), i = 1, 2, ..., Ns

this generates 32 one-step plans where we “predict” one step

ahead. The set of plans can be viewed as “the robot is at

(x, y), move it to (xi, yi)”. The plan to be executed is then

found by choosing i∗ such that:

UTotal(xi∗ , yi∗) ≤ UTotal(xi, yi), i = 1, 2, ..., Ns. (3)

Thus, we determine the direction θ(k) which results in

minimising UTotal defined in (3). In the last step, the robot is

commanded to take a step of length λ in the direction θ(k).
This approach does not need analytical gradient information

since we do not calculate the gradient of the UTotal function

explicitly. Note that higher values of Ns are computationally

more expensive, but also provide more precise directional

commands. (In the context of OATS the cost of this planning

is not significant.)

D. Avoiding Local Minima by using the Third Dimension

One limitation of our path planning approach is the

existence of local minima for certain obstacle configurations.

Examples are “U” shaped convex obstacles or very long

obstacles, causing the robot to become trapped on its way

towards the goal position. These local minima are the result

of the unpredictable shape of the total potential field after the

superposition of the attractive and repulsive potential fields.

Furthermore, there might not exist a possible path in the

plane from the start configuration to the goal configuration,

because it is blocked by a number of obstacles.

We can overcome these limitations by controlling the

altitude of the helicopter. We monitor the progress of the

robot during path planning in order to detect situations in

which it has become trapped in a local minimum or has been

stopped by an obstacle configuration that can not be bypassed

because no 2-D path exists. Progress P is measured as the

Euclidean distance the robot has travelled during the last m

time steps based on the reference position Rt−m and the

current robot position Rt. If P < 1
2mλ (where λ is the step

size taken at each time step during path planning and m is

a natural number) we switch from path planning behaviour

(PPB) to obstacle overfly behaviour (OOB). Once OOB is

active, we determine which of the obstacles surrounding

the current robot position Rt is nearest to it based on the

Euclidean metric; we call this obstacle On. The height of

On is then determined from the elevation map and labelled

Ho, and the maximum overfly altitude Amax for the robot is

given by Amax = µHo, with µ > 1. Typically, a value for

(a) Path between 3 obstacles (b) Path in obstacle grid

(c) 3-D path planning

Fig. 2. Path planning results for different obstacle configurations

µ is chosen between 1.2 and 2, yielding an obstacle overfly

altitude between 120% and 200% relating to Ho.

In the following example of OOB, the robot is commanded

to fly towards the goal configuration as the crow flies,

following the contour of the repulsive potential field of On.

Thus, the robot vertically ascends (or descends, respectively)

in steps of λ, always keeping the vertical distance of µ

times the height given by the repulsive potential field of

On until Amax is reached. The contour following crow line

flight towards the goal configuration continues until On is

overflown and the original flight altitude is restored. At this

point, we switch back to PPB until the goal configuration is

reached. In case of further local minima or blocking obstacles

in the path of the robot, the “PPB → OOB → PPB” cycle

is repeated until the goal has been reached.

E. Results

Path planning results are shown in Fig. 2; the path gener-

ated by our planner is represented by a red line connecting

the start and goal positions. (The red line consists of indi-

vidual equidistant data points with λ = 0.1.) Fig. 2(a) shows

an example path that runs between the obstacle configuration

from Fig. 1. In Fig. 2(b), the robot has to find its way through

a grid of 64 obstacles located in close vicinity to one another.

Starting in the bottom corner of the field, it successfully

sidles towards the goal position, which is located at the

far end of the field. An example of the 3-D path planning

capabilities of our implementation is given in Fig. 2(c). The

robot starts in the bottom right corner but is stopped by a “V”

shaped obstacle, forming a classic local minimum in its path

towards the goal. Our path planning algorithm deals with the

situation by commanding the robot to ascend to an altitude

greater than the blocking obstacle, as described in §III-D.
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After this first local minimum is negotiated successfully and

the original flight altitude is restored, the robot continues its

path. However it is confronted by a second blocking obstacle

(the long structure on the left hand side of the figure), which

represents a power line in our simulation, and the robot is

forced to perform an altitude change once again. The goal

position, located on the far left corner, is finally reached

successfully and the path planning for this task is complete.

(Of course, if the desire for the helicopter to travel at a

particular altitude were relaxed then it would be possible to

filter out unnecessary height changes in order to save fuel.)

IV. TRAJECTORY PREDICTION FOR OATS

A. Prerequisites

OATS has the aim to autonomously track arbitrary ground

objects from within a UAV helicopter. In this section of

the paper we describe a novel technique we have developed

that allows predicting of the future trajectory of the tracked

ground object. The motivation for this research is twofold.

Firstly, the tracked target can become temporarily occluded

due to obstacles that are in the line of sight between robot and

target. Secondly, the tracked target might try to hide from the

observer; that is, purposely manoeuvre behind obstacles like

buildings and trees so that the observer loses its track on the

target. The use of an Extended Kalman Filter was rejected

due to the lack of a dynamic model for the task at hand.

We rather have to act on the assumption that the target we

are trying to track possesses highly non-linear dynamics that

do not follow any fixed rules: this stems from the fact that

we simply do not know beforehand whether we are going

to track a car, pedestrian, ship or tank (say). In addition, we

have to assume that we might be dealing with a target which

is aware of the airborne observer and is therefore trying to

hide from it.

Hence, our solution to this problem is to observe the

behaviour pattern of the target and learn its dynamics in the

process. Artificial neural networks (ANNs) have the ability

to be used as an arbitrary function approximation mechanism

which learns from observed data [26]; they have been used

for tasks such as regression analysis, time series prediction,

classification, filtering and clustering.

B. Neural Networks for Target Trajectory Prediction

We are trying to predict the trajectory of a target which

is moving in a two dimensional plane, and so we use two

independent feed-forward ANNs for the x and y coordinates.

(We use these coordinates rather than (r, θ) (say) to avoid

the looping that occurs with angular coordinates.) Each of

these two identical ANNs are composed of a multi-layer

feed-forward back-propagation network which employs 6

neurons in the input layer, 10 neurons in the hidden layer,

and 3 neurons in the output layer, with a nonlinear tan-

sigmoid transfer function being applied to the units in the

hidden and the output layer. This structure was selected based

on empirical observations from experiments with several

different ANN configurations.
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Fig. 3. Artificial neural network for target trajectory prediction

Fig. 3 shows the structure of ANNx including the symbolic

input data processing blocks. On the left, the absolute x

coordinate of the tracked target at present time t0 is fed into

the network (denoted by Xabs(0) in the figure). In order to

gain a set of data points that represent a history of the past

six x coordinates, the signal is passed through delay blocks

that are aligned in a linear sequence. After each delay, the

signals Xabs(m), m = 0,−1, ...,−6 are tapped and converted

into relative signals:

Xrel(n) = Xabs(n)−Xabs(n−1), n = 0,−1, ...,−5. (4)

The advantage of using coordinates which are relative com-

pared to the target position at time t0 comes from the fact that

the network generalises in this way and does not consider

absolute values. Hence, the network is able to make a correct

prediction for target behaviour patterns it is presented with

no matter which absolute coordinates they occurred at. In

the following, the six relative signals Xrel(n) are connected

to the six neurons of the ANN input layer. At each time

step the ANN predicts three target coordinates Xpred(k),

k = +2,+4,+6 which are available at the three neurons

of the ANN output layer.

In order to predict further into the future than the six

time steps given by Xpred(+6), an additional time span of

past values has to be considered. We achieve this by using

variable delay blocks. This has the advantage that the actual

ANN structure does not have to be changed and the number

of neurons in each layer can remain constant. Consequently,

for an integer delay of d we get:

Xabs(m), m = (0,−1, . . . ,−6) d

Xrel(n) = Xabs(n) −Xabs(n−d), n = (0,−1, . . . ,−5) d

Xpred(k), k = (+2, +4, +6) d
(5)

Even though the input data the ANN sees for values of

d > 1 exhibits “gaps”, experimental results suggest that this

does not affect its prediction accuracy excessively.

Fig. 4 illustrates for two cases (d = 1 and d = 2) how

the variable delay affects the creation of a set of history

coordinates to be fed into the ANN. In both cases, the

absolute target coordinate at present time t0 is represented by

a grey shaded field labelled ’Abs. 0’, located in the centre of

the timeline. Fields to its left stand for coordinates recorded

prior and carry negative indices. Likewise, fields to its right

are posterior coordinates carrying positive indices. For d = 1,

the six relative coordinates are calculated from ’Abs. 0’ to
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Fig. 4. Timeline of coordinates fed into the ANN for trajectory prediction.
Red fields denote prior, grey present, and green posterior coordinates.

’Abs. -6’ (fields shaded in red) and the ANN predicts the

relative coordinates ’Pred. +2’, ’Pred. +4’, and ’Pred. +6’.

The corresponding absolute prediction coordinates (green

shaded fields) are calculated by adding the relative prediction

coordinates to the ’Abs. 0’ coordinate. The same procedure

applies for d = 2, but interleaved prior coordinates are used

(odd negative indices).

C. Learning Target Behaviour Patterns

In general, there are two different styles of training an

ANN; incremental training where the weights and biases

of the network are updated each time an input is presented

to the network, and batch training where the weights and

biases are only updated after all the inputs are presented

(offline). At first glance, the possibility of learning target

behaviour patterns incrementally seems more desirable since

inputs and targets can be presented as sequences to the ANN

online during target tracking. However, this approach has

some profound disadvantages compared to the batch learning

method:

• It is not possible to compute the objective function for

any fixed set of weights. Consequently, it is hard to

determine if progress is being made during training;

• Neither can the objective function be computed on a

training set nor the error function on a validation set,

since these data sets are not stored;

• Cross-validation and bootstrapping can not be used to

estimate generalisation errors;

• The objective function can not be computed to any

desired precision.

Hence, incremental learning is generally more difficult and

unreliable than batch learning. Our experiments with trajec-

tory prediction showed furthermore that progress is very slow

when incremental learning is employed compared to using

the batch learning method.

The initial weights for the ANN described in §IV-B are

determined by training the network on a set of prerecorded

target tracking data, which is split into training, test, and val-

idation subsets for this purpose. We then use the Levenberg-

Marquardt (LM) algorithm for training until a satisfactory

network performance is achieved (MSE < 10−5). This algo-

rithm represents the current state-of-the-art learning method

for training a moderate-sized feed-forward ANN due to its

robustness and its capability to find a solution in many cases,

even if it starts off very far from the final minima.

We constantly monitor the trajectory prediction perfor-

mance during target tracking by computing a running average

of the prediction errors. If it falls below a certain level

(e.g. because the target changed its behaviour pattern), an

ANN retraining sequence is initiated automatically. For this

purpose, a variable sized target coordinate buffer is kept up-

to-date at all times. When retraining the ANNs becomes

necessary, the data in the buffer is split into training, test,

and validation subsets. Subsequently the LM algorithm is

applied to these subsets and the new ANN weights are

then used for prediction. For common buffer sizes, this

procedure is executed on the target platform in near real-

time (t < 500ms).

A noteworthy detail in this context is the correlation be-

tween target coordinate buffer size and the maximal number

of time steps we are trying to predict into the future (which

depends on the value chosen for d). For the time tfill it takes

to fill the coordinate buffer we get:

tfill = tstep Nbuff d (6)

where tstep is the duration of each time step in milliseconds,

Nbuff is the size of the coordinate buffer, and d is the

delay in time steps used in the variable delay blocks of

the ANN coordinate pre-processing stage. The buffer size is

furthermore the factor which limits the duration of observed

behaviour patterns tpatt to which the ANN is capable of

adapting itself to. Thus, it is only possible to exactly learn

patterns whose repetition frequency is the same or less than

the size of the used coordinate buffer. Consequently, the

following condition has to be met: tpatt ≤ tfill . If this is not

the case, the ANN prediction performance decreases rapidly.

D. Results

The trajectory prediction algorithm introduced in this

section has been implemented in Matlab/Simulink and tested

within the UAV helicopter simulation framework HeliSim we

presented in [1].

All results shown in Fig. 5 were obtained from real-time

experiments with our ANN implementation using a delay

value of d = 5 time steps. For this value of d, (5) gives us

the following three arithmetic series:

m = 0,−5, . . . ,−30

n = 0,−5, . . . ,−25 (7)

k = +10,+20,+30

where k denotes that we are predicting three target coordi-

nates that lie in the future, the most distant one being 30 time

steps ahead of the current target position. To do so, we use

six relative coordinates that lie in the past (denoted by n),

which are gained from seven absolute coordinates (denoted

by m) reaching back a maximum of 30 time steps. In Fig.

5(a) to 5(c) red dots indicate prior, black dots present, and

green dots posterior coordinates.

Fig. 5(a) and Fig. 5(b) are plots generated from the outputs

of ANNx and ANNy , respectively. Even though HeliSim

constantly predicts three posterior coordinates during run-

time, the calculation of intermediate coordinates between
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(a) ANNx prediction results
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(b) ANNy prediction results
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Fig. 5. Target trajectory prediction results for d = 5. Blue circles ( c) connected by a solid blue line mark observed target coordinates; and red diamonds
(♦), green squares (�) and black crosses (×) denote the first, second and third prediction control points respectively.
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Fig. 6. Target trajectory prediction results for complex random trajectories as produced by a manoeuvring car. The figures show an overlay of the actual
(observed) trajectory and the three predicted trajectories pred(k), k = (+2, +4, +6)d.

these three control coordinates is only triggered when the

target becomes occluded. For filling out the gaps between the

control coordinates, interpolating cubic splines are employed

[27]. By choosing the spline sample density in such an extent

that the number of interpolated values equals the number of

missing data points between each pair of control coordinates,

a seamless trajectory is obtained that possesses a coordinate

for each time step. The cubic spline is shown as a blue line

in Fig. 5(a) and Fig. 5(b); the interpolated data points are

denoted by blue circles.

The required 2-D trajectory can be obtained by combining

the results gained by ANNx and ANNy (Fig. 5(c)); note that

the plots shown in Fig. 5(a) and Fig. 5(b) utilise time on the

x-axis and position on the y-axis, whereas the 2-D plot shown

in 5(c) displays the target’s x position on the x-axis and its y

position on the y-axis. Fig. 5(d) shows a plot of the original

tracking data together with the predicted coordinates. The

target describes a “figure-of-eight” in the plane. To make it

harder for the ANNs to learn and subsequently predict this

trajectory, changes in velocity were added to the target mo-

tion. This is identifiable from the varying distances between

the dots in the plot representing the target’s position after

each time step. The shape of the figure-of-eight performed

by the simulated target in the experiment was furthermore

altered by compressing it in the x direction.

The result plots shown in Fig. 5 demonstrate how well

our prediction algorithm performs in this task. The achieved

error values of the calculated running averages for the three

prediction control points were:

E2d = 0.02, E4d = 0.05, E6d = 0.10. (8)

The size of the windows used for calculating the running

averages in (8) were thereby set equal to the coordinate buffer

size defined by Nbuff .

The second trajectory prediction experiment (Fig. 6) in-

cluded in this paper describes the simulation of a ma-

noeuvring car (controlled by a joystick input device in

real-time) as the tracking target. Apart from frequent and

random changes in direction, this also involves variations

in velocity and acceleration, making for a very complex

overall movement pattern. The results shown in Fig. 6(a)–

6(d) use increasing delay values (d = 1, 3, 5, 7), which

yield increasing posterior prediction steps. Table I gives an

overview on how the choice of d affects the average errors

obtained from the experiments shown in Fig. 6. Naturally,

this gives rise to the fact that the further we are trying to

predict into the future, the more the prediction accuracy

deteriorates. However, we can confirm that even a delay value

of d = 7, as used in the experiment shown in Fig. 6(d), still

produces valuable trajectory prediction information. This is

largely due to the fact that the OATS helicopter only requires

a rough estimate of the target coordinates in order to re-

acquire the target (a target search strategy is triggered during

prolonged times of occlusion, see [2]).

We learnt from our experiments that the size of the

coordinate buffer used for recording target behaviour patterns

plays a crucial role for the obtainable trajectory prediction

accuracy. As a rule of thumb, the buffer should at least ac-

commodate the number of coordinates necessary to describe

one cycle of the observed target pattern to be learnt during

batch training. For more complex patterns that do not show

any repetitive behaviour, it is found that an increased buffer

WeC12.2

1047



TABLE I

AVERAGE TRACKING PREDICTION ERROR VALUES FOR THE

EXPERIMENTS SHOWN IN FIG. 6

Delay Post. Prediction E2d E4d E6d

d=1 k=+2,+4,+6 0.062 0.125 0.187

d=3 k=+6,+12,+18 1.129 2.231 3.269

d=5 k=+10,+20,+30 1.905 3.592 4.861

d=7 k=+14,+28,+42 2.624 4.811 6.062

size usually yields more accurate prediction results.

V. CONCLUSIONS AND FUTURE WORKS

We have presented two novel techniques suitable for small

UAVs with visual target tracking capabilities. The results

we obtained from experiments with the HeliSim framework

suggest potential enhancements to OATS in its current con-

figuration. By combining conventional path planning tech-

niques based on potential fields with our robot’s ability to

perform altitude changes, we successfully showed how local

minima and blocking obstacles (that can not be circumvented

in the plane) can be bypassed without the risk of collisions

occurring in the process. The trajectory prediction method

demonstrates how artificial neural networks can be employed

for learning target movement patterns that stem from visual

object tracking. The results suggest that two feed-forward

ANNs run in parallel are capable of adapting themselves

(via batch learning) well enough so that complex movement

patterns can be predicted with high accuracy.

Future work on OATS will be concerned with implement-

ing the techniques brought forward in this paper into the UAV

system software. We furthermore plan on carrying out field

experiments with our robotic helicopter. These experiments

will involve several different moving ground targets for

tracking. In addition, OATS will be deployed in cluttered

environments (as found in urban regions), thus heavy use of

the automatic path planner will be inevitable.
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