

 University of Groningen

On the expressiveness and decidability of higher-order process calculi
Lanese, Ivan; Perez, Jorge A.; Sangiorgi, Davide; Schmitt, Alan

Published in:
Information and Computation

DOI:
10.1016/j.ic.2010.10.001

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lanese, I., Perez, J. A., Sangiorgi, D., & Schmitt, A. (2011). On the expressiveness and decidability of
higher-order process calculi. Information and Computation, 209(2), 198-226.
https://doi.org/10.1016/j.ic.2010.10.001

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 24-02-2022

https://doi.org/10.1016/j.ic.2010.10.001
https://research.rug.nl/en/publications/on-the-expressiveness-and-decidability-of-higherorder-process-calculi(7a09b8c8-2aae-49a2-8307-850af5963435).html
https://doi.org/10.1016/j.ic.2010.10.001

Information and Computation 209 (2011) 198–226

Contents lists available at ScienceDirect

Information and Computation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i c

On the expressiveness and decidability of higher-order process calculi<,<<

Ivan Lanese a, Jorge A. Pérez b, Davide Sangiorgi a,∗, Alan Schmitt c

a
Focus Team, Università di Bologna/INRIA, Italy

b
CITI – Department of Computer Science, FCT New University of Lisbon, Portugal

c
Sardes Project-Team, INRIA Grenoble - Rhône-Alpes, France

A R T I C L E I N F O A B S T R A C T

Article history:

Received 19 February 2010

Revised 3 June 2010

Available online 16 October 2010

Keywords:

Process calculi

Higher-order communication

Bisimulation

Expressiveness

In higher-order process calculi, the values exchanged in communications may contain

processes. A core calculus of higher-order concurrency is studied; it has only the opera-

tors necessary to express higher-order communications: input prefix, process output, and

parallel composition. By exhibiting a deterministic encoding of Minsky machines, the cal-

culus is shown to be Turing complete. Therefore its termination problem is undecidable.

Strongbisimilarity, however, is showntobedecidable. Furthermore, themain formsof strong

bisimilarity for higher-order processes (higher-order bisimilarity, context bisimilarity, nor-

mal bisimilarity, barbed congruence) coincide. They also coincide with their asynchronous

versions. A sound and complete axiomatization of bisimilarity is given. Finally, bisimilarity

is shown to become undecidable if at least four static (i.e., top-level) restrictions are added

to the calculus.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Higher-order process calculi are calculi in which processes (more generally, values containing processes) can be commu-

nicated. Higher-order process calculi have been put forward in the early 1990s, with CHOCS [1] and Plain CHOCS [2], the

higher-orderπ-calculus [3], and others. The basic operators are usually those of CCS: parallel composition, input and output

prefix, and restriction. Replication and recursion are often omitted as they can be encoded. However, the possibility of ex-

changing processes has strong consequences on semantics: in most higher-order process calculi, labeled transition systems

must deal with higher-order substitutions and scope extrusion, and ordinary definitions of bisimulation and behavioral

equivalences become unsatisfactory as they are over-discriminating (this point is discussed later in more detail). Higher-

order, or process passing, concurrency is often presented as an alternative paradigm to the first order, or name passing,

concurrency of the π-calculus for the description of mobile systems. Higher-order calculi are inspired by, and are formally

closer to, the λ-calculus, whose basic computational step – β-reduction – involves term instantiation. As in the λ-calculus,
a computational step in higher-order calculi results in the instantiation of a variable with a term, which is then copied as

many times as there are occurrences of the variable, resulting in potentially larger terms.

The expressiveness of higher-order communication has received little attention in the literature. Higher-order calculi

(both sequential and concurrent) have been compared with first-order calculi, but mainly as a way of investigating the

expressiveness of π-calculus and similar formalisms. Thomsen [4] and Xu [5] have proposed encodings of π-calculus into

Plain CHOCS. These encodingsmake essential use of the relabeling operator of Plain CHOCS. Sangiorgi andWalker’s encoding

< Extended and revised version of an homonymous paper that appeared in the Proceedings of LICS’08, IEEE Computer Society, 2008.
<< Research partially supported by European projects FET-GC II IST-2005-16004 Sensoria and FP7-231620 HATS and by French ANR project “CHOCO”.∗ Corresponding author.

E-mail addresses: lanese@cs.unibo.it (I. Lanese), jorge.perez@di.fct.unl.pt (J.A. Pérez), davide.sangiorgi@cs.unibo.it (D. Sangiorgi), alan.schmitt@inria.fr

(A. Schmitt).

0890-5401/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2010.10.001

http://dx.doi.org/10.1016/j.ic.2010.10.001
http://www.sciencedirect.com/science/journal/08905401
www.elsevier.com/locate/ic
http://dx.doi.org/10.1016/j.ic.2010.10.001

I. Lanese et al. / Information and Computation 209 (2011) 198–226 199

of a variant ofπ-calculus intohigher-orderπ-calculus [6] relies on the abstractionmechanismof thehigher-orderπ-calculus

(it needsω-order abstractions). Another strand ofwork on expressiveness (see, e.g., [7,8]) has looked at calculi for distributed

systems and compared different primitives for migration and movement of processes (or entire locations), which can be

seen as higher-order constructs.

The goal of this paper is to shed light on the expressiveness of higher-order process calculi, and related questions of

decidability and of behavioral equivalence.

We consider a core calculus of higher-order processes (briefly HOcore), whose grammar is:

P ::= a(x). P | a〈P〉 | P ‖ P | x | 0

An input prefixed process a(x). P can receive on name (or channel) a a process that will be substituted in the place of x in

the body P; an output message a〈P〉 can send P on a; parallel composition allows processes to interact. We can view the

calculus as a kind of concurrent λ-calculus, where a(x). P is a function, with formal parameter x and body P, located at

a; and a〈P〉 is the argument for a function located at a. HOcore is minimal, in that only the operators strictly necessary to

obtain higher-order communications are retained. For instance, continuations following outputmessages have been left out.

More importantly, HOcore has no restriction operator. Thus all channels are global, and dynamic creation of new channels is

impossible. This makes the absence of recursion/replication also relevant, as known encodings of fixed-point combinators

in higher-order process calculi exploit the restriction operator to avoid harmful interferences (notably for nested recursion).

Even though HOcore is minimal, it remains non-trivial: in Section 3, we show that it is Turing complete, therefore its

termination problem is undecidable, by exhibiting a deterministic encoding of Minsky machines [9]. The cornerstone of the

encoding, counters thatmay be tested for zero, consist of nested higher-order outputs. Each register ismade of twomutually

recursive behaviors capable of spawning processes incrementing and decrementing its counter.

We then turn to the question of definability and decidability of bisimilarity. As hinted at above, the definition of a

satisfactory notion of bisimilarity is a hard problem for a higher-order process language, and the “term-copying” feature

inherited from the λ-calculus can make the proof that bisimilarity is a congruence difficult. In ordinary bisimilarity, as in

CCS, two processes are bisimilar if any action by one of them can bematched by an equal action from the other in such away

that the resulting derivatives are again bisimilar. The two matching actions must be syntactically identical. This condition

is unacceptable in higher-order concurrency; for instance, it breaks fundamental algebraic laws such as the commutativity

of parallel composition. Alternative proposals of labeled bisimilarity for higher-order processes have been put forward. In

higher-order bisimilarity [3,4], one requiresbisimilarity, rather than identity, of theprocesses emitted in ahigher-order output

action. This weakening is natural for higher-order calculi and the bisimulation checks involved are simple. However, higher-

order bisimilarity is often over-discriminating as a behavioral equivalence [3], and basic properties, such as congruence, may

be very hard to establish. Context bisimilarity [3,10] avoids the separation between the argument and the continuation of an

output action, this continuation being either syntactically present or consisting of other processes running in parallel. To this

end, it explicitly takes into account the context in which the emitted process is supposed to go. Context bisimilarity yields

more satisfactory process equalities and coincides with contextual equivalence (i.e., barbed congruence). A drawback of this

approach is the universal quantification over contexts in the clause for output actions, which can hinder its use in practice to

check equivalences. Normal bisimilarity [3,10,11] is a simplification of context bisimilarity without universal quantifications

in the output clause. The input clause is simpler too: normal bisimilarity can indeed be viewed as a form of open bisimilarity

[12], where the formal parameter of an input is not substituted in the input clause, and free variables of terms are observable

during the bisimulation game. However, the definition of the bisimilarity may depend on the operators in the calculus, and

the correspondence with context bisimilarity may be hard to prove.

In Sections 4 and 5, we show that HOcore has a unique reasonable relation of strong bisimilarity: all the above forms

(higher-order bisimilarity, context bisimilarity, normal bisimilarity, barbed congruence) coincide, and they also coincide

with their asynchronous versions. Furthermore, we show that such a bisimilarity relation is decidable.

In the concurrency literature, there are examples of formalisms which are not Turing complete and where nevertheless

(strong) bisimilarity is undecidable (e.g., Petri nets [13] or lossy channel systems [14]).Weare not aware however of examples

of the opposite situation: formalisms that, as HOcore, are Turing complete but at the same time maintain decidability of

bisimilarity. The situation in HOcore may indeed seem surprising, if not even contradictory: one is able to tell whether two

processes are bisimilar, but in general one cannot tell whether the processes will terminate or evenwhether the sets of their

τ -derivatives (the processes obtained via reductions) are finite or not. The crux to obtaining decidability is a further charac-

terization of bisimilarity in HOcore, as a form of open bisimilarity, called IO bisimilarity, in which τ -transitions are ignored.

For an upper bound to the complexity of the bisimilarity problem, we can adapt Dovier et al.’s algorithm [15] to infer that

bisimilarity is decidable in time which is linear in the size of the (open and higher-order) transition system underlying IO

bisimilarity. In general however, this transition system is exponential with respect to the size of the root process. We show

in Section 6 that bisimilarity in HOcore can actually be decided in time that is polynomial with respect to the size of the

initial pair of processes. We obtain this through an axiomatization of bisimilarity, where we adapt to a higher-order setting

bothMoller andMilner’s unique decomposition of processes [16] and Hirschkoff and Pous’s axioms for a fragment of (finite)

CCS [17].

The decidability result for bisimilarity breaks downwith the addition of restriction, as full recursion can then be faithfully

encoded (the resulting calculus subsumes, e.g., CCS without relabeling). This however requires the ability of generating

200 I. Lanese et al. / Information and Computation 209 (2011) 198–226

unboundedly many new names (for instance, when a process that contains restrictions is communicated and copied several

times). In Section 7,we consider the addition of static restrictions toHOcore. Intuitively, thismeans allowing restrictions only

as the outermost constructs, so that processes take the form νa1 , . . . , νan P where the inner process P is restriction-free. Via

an encoding of the Post correspondence problem [18,19], we show that the addition of four static restrictions is sufficient

to produce undecidability. We do not know what happens with fewer restrictions.

In the final part of the paper, we examine the impact of some extensions to HOcore on our decidability results (Section

8), give some concluding remarks, and discuss related work (Section 9).

2. The calculus

WenowintroduceHOcore, the coreof calculi forhigher-order concurrency suchasCHOCS [1], PlainCHOCS [2], andhigher-

order π-calculus [3,20,21]. We use a, b, c to range over names (also called channels), and x, y, z to range over variables; the

sets of names and variables are disjoint

P, Q ::= a〈P〉 output

| a(x). P input prefix

| x process variable

| P ‖ Q parallel composition

| 0 nil

An input a(x). P binds the free occurrences of x in P; this is the only binder in HOcore. We write fv(P) for the set of free

variables in P, and bv(P) for the bound variables. We identify processes up to a renaming of bound variables. A process is

closed if it does not have free variables. In a statement, a name is fresh if it is not among the names of the objects (processes,

actions, etc.) of the statement. As usual, the scope of an input a(x). P extends as far to the right as possible. For instance,

a(x). P ‖ Q stands for a(x). (P ‖ Q). We abbreviate the input a(x). P, with x �∈ fv(P), as a. P; the output a〈0〉 as a; and the

composition P1 ‖ . . . ‖ Pk as
∏k

i=1 Pi. Similarly, we write
∏n

1 P as an abbreviation for the parallel composition of n copies

of P. Further, P{Q̃/̃x} denotes the simultaneous substitution of variables x̃ with processes Q̃ in P (we assume members of x̃

are distinct).

The size of a process is defined as follows.

Definition 2.1. The size of a process P, written #(P), is inductively defined as:

#(0) = 0 #(P ‖ Q) = #(P) + #(Q) #(x) = 1

#(a〈P〉) = 1 + #(P) #(a(x). P) = 1 + #(P)

We now describe the labeled transition system, which is defined on open processes. There are three forms of transitions:

internal transitions P
τ−→ P′; input transitions P a(x)−−→ P′, meaning that P can receive at a a process that will replace x in

the continuation P′; and output transitions P
a〈P′〉−−−→ P′′ meaning that P emits P′ at a, and in doing so evolves to P′′. We use

α to denote a generic label of a transition. The notion of free variables extends to labels as expected: fv(a〈P〉) = fv(P). For
bound variables in labels, we have bv(a(x)) = {x} and bv(a〈P〉) = ∅.

Inp a(x). P
a(x)−−→ P Out a〈P〉 a〈P〉−−→ 0

Act1
P1

α−→ P′
1 bv(α) ∩ fv(P2) = ∅

P1 ‖ P2
α−→ P′

1 ‖ P2

Tau1
P1

a〈P〉−−→ P′
1 P2

a(x)−−→ P′
2

P1 ‖ P2
τ−→ P′

1 ‖ P′
2{P/x}

(We have omitted Act2 and Tau2, the symmetric counterparts of the last two rules.)

Definition 2.2. The structural congruence relation is the smallest congruence generated by the following laws:

P ‖ 0 ≡ P, P1 ‖ P2 ≡ P2 ‖ P1, P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3.

Reductions P −→ P′ are defined as P ≡ τ−→≡ P′. We now state a few results which will be important later.

I. Lanese et al. / Information and Computation 209 (2011) 198–226 201

Lemma 2.3. If P
α−→ P′ and P ≡ Q then there exists Q ′ such that Q

α−→ Q ′ and P′ ≡ Q ′.

Proof. By induction on the derivation of P ≡ Q , then by case analysis on P
α−→ Q . �

Definition 2.4. A variable x is guarded in P ∈ HOcore (or simply guarded, when P is clear from the context) iff x only occurs

free in an output or in subexpressions of P of the form π . P′, where π is any prefix. A process P ∈ HOcore is guarded (or has

guarded variables) iff all its free variables are guarded.

In particular, notice that if x is guarded in P, then x does not appear in evaluation contexts (i.e., contexts which allow

transitions in the hole position), and if x is not free in P then it is guarded in P. For the next lemma, we recall that an

output action from an open process may contain free variables, thus α{̃R/̃x} is the action obtained from α by applying the

substitution {R̃/̃x}.
Lemma 2.5. Suppose that P ∈ HOcore and consider some variables x̃. Then, for all R̃ ∈ HOcore we have:

1. If P
α−→ P′, with free variables in R̃ disjoint from the variables in P, α, and x̃, then P{R̃/̃x} α{̃R/̃x}−−−−→ P′{R̃/̃x};

2. if P{R̃/̃x} α′−→ M′, with variables x̃ guarded in P, and free variables in R̃ disjoint from the variables in P and x̃, then there are

P′ and α such that P
α−→ P′, M′ = P′{R̃/̃x}, α′ = α{R̃/̃x}, and the free variables in R̃ are disjoint from the variables in α.

3. if P{m̃/̃x} α′−→ M′ with m̃ fresh in P and α′ �= mi for any mi ∈ m̃, then P
α−→ P′, M′ = P′{m̃/̃x}, and α′ = α{m̃/̃x}.

Proof. By induction on the transitions. �

Lemma 2.6. For every P ∈ HOcore and variable x, there are P′ ∈ HOcore with x guarded in P′ and an integer n ≥ 0 such that

1. P ≡ P′ ‖ ∏n
1 x;

2. P{R/x} ≡ P′{R/x} ‖ ∏n
1 R, for every R ∈ HOcore.

Proof. By induction on the structure of processes. �

3. HOcore is Turing complete

We present in this section an encoding of Minsky machines [9] into HOcore. The encoding shows that HOcore is Turing

complete and, as the encoding preserves termination, it also shows that termination in HOcore is undecidable. The encoding

is deterministic, i.e., at any step the encoding of any Minsky machine has at most one reduction.

3.1. Minsky machines

A Minsky machine is a model composed of a set of sequential, labeled instructions, and two registers. Minsky machines

have been shown to be a Turing complete model (see [9], Chapters 11 and 14), hence termination is undecidable for Minsky

machines. Registers rj (j ∈ {0, 1}) can hold arbitrarily large natural numbers. Instructions (1 : I1), . . . , (n : In) can be of

two kinds: INC(rj), which adds 1 to register rj and proceeds to the next instruction; DECJ(rj, k), which jumps to instruction

k if rj is zero, otherwise it decreases register rj by 1 and proceeds to the next instruction.

A Minsky machine includes a program counter p indicating the label of the instruction being executed. In its initial state,

the machine has both registers set to 0 and the program counter p set to the first instruction. The Minsky machine stops

whenever the program counter is set to a non-existent instruction, i.e., p > n.

A configuration of a Minsky machine is a tuple (i,m0,m1); it consists of the current program counter and the values

of the registers. Formally, the reduction relation over configurations of a Minsky machine, denoted −→M, is defined in

Table 1.

3.2. Encoding Minsky machines into HOcore

The encoding of a Minskymachine into HOcore is denoted as [[·]]M. In order to simplify the presentation of the encoding,

we introduce two useful notations that represent limited forms of guarded choice and guarded replication. Then we show

how to count and test for zero in HOcore and present the main encoding, depicted in Table 2.

Guarded choice. We introduce here a notation for a simple form of guarded choice to choose between different behaviors.

Assume, for instance, that ai should trigger Pi, for i ∈ {1, 2}. This is written as a1. P1 + a2. P2, whereas the choice of the

behavior Pi is written as âi.

202 I. Lanese et al. / Information and Computation 209 (2011) 198–226

Table 1

Reduction of Minsky machines.

M-Inc
i : INC(rj) m′

j = mj + 1 m′
1−j = m1−j

(i,m0,m1) −→M (i + 1,m′
0,m

′
1)

M-Dec
i : DECJ(rj, k) mj �= 0 m′

j = mj − 1 m′
1−j = m1−j

(i,m0,m1) −→M (i + 1,m′
0,m

′
1)

M-Jmp
i : DECJ(rj, k) mj = 0

(i,m0,m1) −→M (k,m0,m1)

Table 2

Encoding of Minsky machines.

Instructions (i : Ii)
[[(i : INC(rj))]]M = !pi .

(
încj ‖ ack. pi+1

)
[[(i : DECJ(rj, k))]]M = !pi .

(
d̂ecj ‖ ack.

(
zj . pk + nj . pi+1

))

Registers rj

[[rj = 0]]M =
(
incj . r

S
j 〈(| 0 |)j〉 + decj .

(
r0j ‖ ẑj

))
‖ REGj

[[rj = m]]M =
(
incj . r

S
j 〈(| m |)j〉 + decj . (| m − 1 |)j

)
‖ REGj

where:

REGj = !r0j .

(
ack ‖ incj . r

S
j 〈(| 0 |)j〉 + decj .

(
r0j ‖ ẑj

))
‖

!rSj (y).

(
ack ‖ incj . r

S
j 〈rSj 〈y〉 ‖ n̂j〉 + decj . y

)

(| k |)j =
⎧⎨
⎩ r0j ‖ n̂j if k = 0

rSj 〈(| k − 1 |)j〉 ‖ n̂j if k > 0.

The notation can be seen as a shortcut for HOcore terms as follows.

Definition 3.1. Let σ = {(a1, a2) | a1 �= a2} be a fixed set of pairs of distinct names. The notation for guarded choice can

be defined as follows:

a1. P1 + a2. P2 � a1〈P1〉 ‖ a2〈P2〉
â1 � a2(x2). a1(x1). x1

â2 � a1(x1). a2(x2). x2

where, in all cases, (a1, a2) ∈ σ .

We consider only binary guarded choice as it is sufficient to encodeMinskymachines. This way, given a pair (a1, a2) ∈ σ
and the process a1. P1 + a2. P2, the trigger âi (with i ∈ {1, 2}) consumes both Pi’s and spawns the one chosen, i.e.,

(a1. P1 + a2. P2) ‖ âi
τ−→ τ−→ Pi. This notation has the expected behavior as long as there is at most one message at a

guard (â1 or â2 in the previous example) enabled at any given time, and as long as concurrently running guarded choices

use distinct names.

Input-guarded replication. We follow the standard definition of replication in higher-order process calculi, adapting it to

input-guarded replication so as to make sure that diverging behaviors are not introduced. As there is no restriction in

HOcore, the definition is not compositional and replications cannot be nested.

Definition 3.2. Assume a fresh name c. The definition of input-guarded replication in HOcore is:

!a(z). P � (a(z). c(x). x ‖ c〈x〉 ‖ P) ‖ c〈a(z). c(x). x ‖ c〈x〉 ‖ P〉
where P contains no replications (nested replications are forbidden).

After having been activated by an output message, replication requires an additional τ step to enable the continuation P,

i.e., !a(z). P
a(z)−−→ τ−→ (!a(z). P) ‖ P.

I. Lanese et al. / Information and Computation 209 (2011) 198–226 203

Counting in HOcore. The cornerstone of our encoding is the definition of counters that may be tested for zero. Numbers are

represented as nested higher-order processes: the encoding of a number k + 1 stored in register j, denoted (| k + 1 |)j , is
the parallel composition of two processes: rSj 〈(| k |)j〉 (the successor of (| k |)j) and a flag n̂j . The encoding of zero comprises

such a flag, as well as the message r0j . This way, for instance, (| 2 |)j is rSj 〈rSj 〈r0j ‖ n̂j〉 ‖ n̂j〉 ‖ n̂j .

Registers. Registers are counters that may be incremented and decremented. They consist of two parts: their current state

and two mutually recursive processes used to generate a new state after an increment or decrement of the register. The

state depends on whether the current value of the register is zero or not, but in both cases it consists of a choice between

an increment and a decrement. In case of an increment, a message on rSj is sent containing the current register value, for

instancem. This message is then received by the recursive definition of rSj that creates a new state with valuem + 1, ready

for further increment or decrement. In case of a decrement, the behavior depends on the current value, as specified in the

reduction relation in Table 1. If the current value is zero, then it stays at zero, recreating the state corresponding to zero for

further operations using the message on r0j , and it spawns a flag ẑj indicating that a decrement on a zero-valued register has

occurred. If the current valuem is strictly greater than zero, then the process (| m− 1 |)j is spawned. Ifmwas equal to 1, this

puts the state of the register to zero (using a message on r0j). Otherwise, it keeps the message in a non-zero state, with value

m− 1, using a message on rSj . In both cases a flag n̂j is spawned to indicate that the register was not equal to zero before the

decrement. When an increment or decrement has been processed, that is when the new current state has been created, an

acknowledgment is sent to proceed with the execution of the next instruction.

Instructions. The encoding of instructions goes hand in hand with the encoding of registers. Each instruction (i : Ii) is a

replicated process guarded by pi, which represents the program counter when p = i. Once pi is consumed, the instruction

is active and an interaction with a register occurs. In case of an increment instruction, the corresponding choice is sent to

the relevant register and, upon reception of the acknowledgment, the next instruction is spawned. In case of a decrement,

the corresponding choice is sent to the register, then an acknowledgment is received followed by a choice depending on

whether the register was zero, resulting in a jump to the specified instruction, or the spawning of the next instruction

otherwise.

The encoding of a configuration of a Minsky machine thus requires a finite number of fresh names (linear on n, the

number of instructions).

Definition 3.3. Let N be a Minsky machine with registers r0 = m0, r1 = m1 and instructions (1 : I1), . . . , (n : In). Suppose
fresh, pairwise different names r0j , r

S
j , p1, . . . , pn, incj , decj , ack (for j ∈ {0, 1}). Given the encodings in Table 2, a configuration

(i,m0,m1) of N is encoded as

pi ‖ [[r0 = m0]]M ‖ [[r1 = m1]]M ‖
n∏

i=1

[[(i : Ii)]]M .

In HOcore, we write −→∗ for the reflexive and transitive closure of −→, and P ⇑ if P has an infinite sequence of

reductions. Similarly, in Minsky machines −→∗
M is the reflexive and transitive closure of −→M, and N ⇑M means that N

has an infinite sequence of reductions.

Lemma 3.4. Let N be a Minsky machine. We have:

1. N −→∗
M N′ iff [[N]]M −→∗ [[N′]]M;

2. if [[N]]M −→∗ P1, P1 −→ P2, and P1 −→ P3 then P2 ≡ P3;

3. if [[N]]M −→∗ P1 then there exists N′ such that P1 −→∗ [[N′]]M and N −→∗
M N′;

4. N ⇑M iff [[N]]M ⇑.

Proof. The proof of the lemma, which is detailed in Appendix A, relies on two properties. The first one ensures that for every

computation of theMinskymachine the encoding can performafinite, non-empty sequence of reductions that correspond to

the onemade by themachine. The second property ensures that if the process encoding aMinskymachine has a reduction to

P′ then (i) themachine also has a reduction toN′, and (ii) P′ has a finite deterministic sequence of reductions to the encoding

of N′. �

The results above guarantee that HOcore is Turing complete, and since the encoding preserves termination, it entails the

following corollary.

Corollary 3.5. Termination in HOcore is undecidable.

204 I. Lanese et al. / Information and Computation 209 (2011) 198–226

4. Bisimilarity in HOcore

In this section, we prove that the main forms of strong bisimilarity for higher-order process calculi coincide in HOcore,

and that such a relation is decidable. As a key ingredient for our results, we introduce open Input/Output (IO) bisimula-

tion, in which the variable of input prefixes is never instantiated and τ -transitions are not observed. We are not aware of

other results on process calculi where processes can perform τ -transitions and yet a bisimulation that does not mention

τ -transitions is discriminating enough. (One of the reasons that make this possible is that bisimulation in HOcore is very

discriminating.)

We define different kinds of bisimulations by appropriate combinations of the clauses below.

Definition 4.1 (HOcore bisimulation clauses, open processes). A symmetric relation R on HOcore processes is

1. a τ -bisimulation if P R Q and P
τ−→ P′ imply that there is Q ′ such that Q

τ−→ Q ′ and P′ R Q ′;
2. a higher-order output bisimulation if P R Q and P

a〈P′′〉−−−→ P′ imply that there are Q ′,Q ′′ such that Q
a〈Q ′′〉−−−→ Q ′ with

P′ R Q ′ and P′′ R Q ′′;
3. an output normal bisimulation if P R Q and P

a〈P′′〉−−−→ P′ imply that there are Q ′,Q ′′ such that Q
a〈Q ′′〉−−−→ Q ′ with

m. P′′ ‖ P′ R m.Q ′′ ‖ Q ′, where m is fresh;

4. an open bisimulation if whenever P R Q :

• P
a(x)−−→ P′ implies that there is Q ′ such that Q

a(x)−−→ Q ′ and P′ R Q ′,
• P ≡ x ‖ P′ implies that there is Q ′ such that Q ≡ x ‖ Q ′ and P′ R Q ′.

Definition 4.2 (HOcore bisimulation clauses, closed processes). A symmetric relation R on closed HOcore processes is

1. an output context bisimulation if P R Q and P
a〈P′′〉−−−→ P′ imply that there are Q ′,Q ′′ such that Q

a〈Q ′′〉−−−→ Q ′ and for all

S with fv(S) ⊆ {x}, it holds that S{P′′
/x} ‖ P′ R S{Q ′′

/x} ‖ Q ′;
2. an inputnormalbisimulation ifP R Q andP

a(x)−−→ P′ imply that there isQ ′ such thatQ
a(x)−−→ Q ′ andP′{m/x} R Q ′{m/x},

where m is fresh;

3. closed if P R Q and P
a(x)−−→ P′ imply that there is Q ′ such that Q

a(x)−−→ Q ′ and for all closed R, it holds that

P′{R/x} R Q ′{R/x}.
A combination of the bisimulation clauses in Definitions 4.1 and 4.2 is complete if it includes exactly one clause for

input and output transitions (in contrast, it needs not include a clause for τ -transitions). 1 We will show that all complete

combinations coincide. We only give a name to those combinations that represent known forms of bisimulation for higher-

order processes or that are needed in our proofs. In each case, as usual, a bisimilarity is the union of all bisimulations, and is

itself a bisimulation (the functions from relations to relations that represent the bisimulation clauses in Definitions 4.1 and

4.2 are all monotonic).

Definition 4.3. Higher-order bisimilarity, written ∼HO, is the largest relation on closed HOcore processes that is a τ -
bisimulation, a higher-order output bisimulation, and is closed.

Context bisimilarity, written ∼CON , is the largest relation on closed HOcore processes that is a τ -bisimulation, an output

context bisimulation, and is closed.

Normal bisimilarity, written ∼NOR, is the largest relation on closed HOcore processes that is a τ -bisimulation, an output

normal bisimulation, and an input normal bisimulation.

IO bisimilarity, written ∼o
IO, is the largest relation on HOcore processes that is a higher-order output bisimulation and is

open.

Open normal bisimilarity, written ∼o
NOR, is the largest relation on HOcore processes that is a τ -bisimulation, an output

normal bisimulation, and is open.

Environmental bisimilarity [22], a recent proposal of bisimilarity for higher-order calculi, in HOcore roughly corresponds

to (and indeed coincides with) the complete combination that is a τ -bisimulation, an output normal bisimulation, and is

closed.

Remark 4.4. The input clause of Definition 4.2(3) is in the late style. It is known [3] that in calculi of pure higher-order

concurrency early and late clauses are equivalent.

1 The clauses of Definition 4.2 are however tailored to closed processes, therefore combining them with clause 4 in Definition 4.1 has little interest.

I. Lanese et al. / Information and Computation 209 (2011) 198–226 205

Remark 4.5. In contrast with normal bisimulation (as defined in, e.g., [3,10]), our clause for output normal bisimulation

does not use a replication in front of the introduced fresh name. Such a replication would be needed in extensions of the

calculus (e.g., with recursion or restriction).

A bisimilarity on closed processes is extended to open processes as follows.

Definition 4.6 (Extension of bisimilarities). Let R be a bisimilarity on closed HOcore processes. The extension of R to open

HOcore processes, denoted R., is defined by

R. = {(P,Q) : a(x1). · · · . a(xn). P R a(x1). · · · . a(xn).Q}

where fv(P) ∪ fv(Q) = {x1, . . . , xn}, and a is fresh in P,Q .

The simplest complete form of bisimilarity is∼o
IO. Not only∼o

IO is the less demanding for proofs; it also has a straightfor-

ward proof of congruence. This is significant because congruence is usually a hard problem in bisimilarities for higher-order

calculi. Before describing the proof of congruence for ∼o
IO, we first define an auxiliary up-to technique that will be useful

later.

Definition 4.7. A symmetric relation R on HOcore is an open IO bisimulation up-to ≡ if P R Q implies:

1. if P
a(x)−−→ P′ then Q

a(x)−−→ Q ′ and P′ ≡R≡ Q ′;
2. if P

a〈P′′〉−−−→ P′ then Q
a〈Q ′′〉−−−→ Q ′ with P′ ≡R≡ Q ′ and P′′ ≡R≡ Q ′′;

3. if P ≡ x ‖ P′ then Q ≡ x ‖ Q ′ and P′ ≡R≡ Q ′.

Lemma 4.8. If R is an open IO bisimulation up-to ≡ and (P,Q) ∈ R then P ∼o
IO Q .

Proof. The proof proceeds by a standard diagram-chasing argument (as in, e.g., [23]): using Lemma 2.3 one shows that

≡R ≡ is a ∼o
IO-bisimulation. �

We now give the congruence result for ∼o
IO.

Lemma 4.9 (Congruence of ∼o
IO). Let P1, P2 be open HOcore processes. P1 ∼o

IO P2 implies:

1. a(x). P1 ∼o
IO a(x). P2;

2. P1 ‖ R ∼o
IO P2 ‖ R, for every R;

3. a〈P1〉 ∼o
IO a〈P2〉.

Proof. Items (1) and (3) are straightforward by showing the appropriate∼o
IO-bisimulations. We consider only (2). We show

that, for every R, P1, and P2

S = {(P1 ‖ R, P2 ‖ R) : P1 ∼o
IO P2}

is a ∼o
IO-bisimulation. We first suppose P1 ‖ R

α−→ P′; we need to find a matching action from P2 ‖ R. We proceed by case

analysis on the rule used to infer α. There are two cases. In the first one P1
α−→ P′

1 and P′ = P′
1 ‖ R is inferred using rule Act1

(by α-conversion we can ensure that R respects the side condition of the rule). By definition of ∼o
IO-bisimulation, P2

α−→ P′
2

with P′
1 ∼o

IO P′
2. Using rule Act1 we infer that also P2 ‖ R

α−→ P′
2 ‖ R. We conclude that (P′

1 ‖ R, P′
2 ‖ R) ∈ S. The second

case follows by an analogous argument and occurs when R
α−→ R′ so that P′ = P1 ‖ R′ by rule Act2.

The last thing to consider is when P1 ‖ R ≡ x ‖ P′; we need to show that P2 ‖ R ≡ x ‖ Q ′ and that (P′,Q ′) ∈ S. We

distinguish two cases, depending on the shape of P′. First, assume that P′ ≡ P′
1 ‖ R, that is, x is a subprocess of P1. Since

P1 ∼o
IO P2, then it must be that P2 ≡ x ‖ P′

2 for some P′
2, with P′

1 ∼o
IO P′

2. Taking Q ′ ≡ P′
2 ‖ R we thus have (P′,Q ′) ∈ S.

Second, assume x is a subprocess of R, and we have P′ ≡ P1 ‖ R′, we then take Q ′ ≡ P2 ‖ R′. Since S is defined over every

R, then (P′,Q ′) ∈ S. �

Lemma 4.10 (∼o
IO is preserved by substitutions). If P ∼o

IO Q then for all x and R, also P{R/x} ∼o
IO Q{R/x}.

Proof. We first show the property for processes P,Q in which x is guarded, namely

R = {(P{R/x} ‖ L, Q{R/x} ‖ L) : P ∼o
IO Q}

206 I. Lanese et al. / Information and Computation 209 (2011) 198–226

is a ∼o
IO-bisimulation up-to ≡ (Definition 4.7). Take a pair (P{R/x} ‖ L, Q{R/x} ‖ L) ∈ R. We shall concentrate on the

possible moves from P{R/x}, say P{R/x} α−→ P′; transitions from L, if any, can be handled analogously. We proceed by case

analysis on the rule used to infer α.

We only detail the case in which α is an input action a(y) inferred using rule Inp; the case in which α is an output is

similar (there may be a substitution on the label), and the case where α is a(x) is simpler (the substitution does not occur

under the prefix). Since x is guarded in P, using Lemma 2.5(2), there is P1 such that P
a(y)−−→ P1 and P′ = P1{R/x}. By definition

of ∼o
IO-bisimulation, also Q

a(y)−−→ Q1 with P1 ∼o
IO Q1. Hence, by Lemma 2.5(1), Q{R/x} a(y)−−→ Q1{R/x}. It remains to show

that P1{R/x} and Q1{R/x} can be rewritten into the form required in the bisimulation. Using Lemma 2.6(1), we have

P1 ≡ P′
1 ‖

n∏
x and Q1 ≡ Q ′

1 ‖
m∏

x

for P′
1,Q

′
1 in which x is guarded. As P1 ∼o

IO Q1, it must be n = m and P′
1 ∼o

IO Q ′
1. Finally, using Lemmas 2.6(2) and 4.9 we

have

P1{R/x} ≡ P′
1{R/x} ‖

n∏
R and Q1{R/x} ≡ Q ′

1{R/x} ‖
n∏

R

which closes up the bisimulation up-to ≡. We then conclude by Lemma 4.8.

For processes where x is not guarded, we proceed exactly as above: first we rewrite P into P′ ‖ ∏n x andQ intoQ ′ ‖ ∏m x

using Lemma 2.6(1), then we show that m = n and P′ ∼o
IO Q ′ by definition of ∼o

IO, and we conclude using the previous

result for guarded processes and Lemmas 2.6(2) and 4.9. �

The most striking property of ∼o
IO is its decidability.

Lemma 4.11. Relation ∼o
IO is decidable.

Proof. We have to check whether P ∼o
IO Q . We show that this is decidable by induction on #(P). The base case #(P) = 0

is trivial since in this case P has no transitions and no free variables. Let us consider the inductive case. We have one check

to perform for each possible output transition, input transition, and unguarded variable (thus, a finite number of checks):

P ∼o
IO Q iff all the checks succeed. We show that the checks are decidable:

• if P
a〈P′′〉−−−→ P′ then we have to verify that Q

a〈Q ′′〉−−−→ Q ′ with P′ ∼o
IO Q ′ and P′′ ∼o

IO Q ′′ (otherwise the check fails). We

have P ≡ a〈P′′〉 ‖ P′, thus #(P′) < #(P) and #(P′′) < #(P) and we can decide P′ ∼o
IO Q ′ and P′′ ∼o

IO Q ′′ by inductive

hypothesis. Thus the check is decidable.

• if P
a(x)−−→ P′ then we have to verify that Q

a(x)−−→ Q ′ with P′ ∼o
IO Q ′. We have P ≡ a(x). R ‖ R′ and P′ ≡ R ‖ R′, thus

#(P′) < #(P) and we can decide P′ ∼o
IO Q ′ by inductive hypothesis.

• if P ≡ x ‖ P′ then we have to verify that Q ≡ x ‖ Q ′ with P′ ∼o
IO Q ′. Since #(P′) < #(P) we can decide P′ ∼o

IO Q ′ by
inductive hypothesis. �

Next we show that ∼o
IO is also a τ -bisimulation. This will allow us to prove that ∼o

IO coincides with other bisimilarities,

and to transfer to them its properties, in particular congruence and decidability.

Lemma 4.12. Relation ∼o
IO is a τ -bisimulation.

Proof. Suppose (P,Q) ∈ ∼o
IO and P

τ−→ P′; we have to find a matching transition Q
τ−→ Q ′. We proceed by induction on

the derivation P
τ−→ P′. The cases Act1 and Act2 are immediate by induction. The remaining cases are using either rule

Tau1 or Tau2. We consider only the first one as the second is symmetric. If rule Tau1 was used, then we can decompose P’s

transition into an output P
a〈R〉−−→ P1 followed by an input P1

a(x)−−→ P2 ‖ P3, with P′ = P2{R/x} ‖ P3 (that is, the structure of

P is P ≡ a〈R〉 ‖ a(x). P2 ‖ P3). By definition of ∼o
IO, Q is capable of matching these two transitions, and the final derivative

is a process Q2 with Q2 ∼o
IO P2 ‖ P3. Further, as HOcore has no output prefixes (i.e., it is an asynchronous calculus) the two

transitions from Q can be combined into a τ -transition. Finally, since ∼o
IO is preserved by substitutions (Lemma 4.10), we

can use rule Tau1 to derive a process Q ′ = Q2{R/x} ‖ Q3 that matches the τ -transition from P, with (P′,Q ′) ∈ ∼o
IO. �

Next lemmas prove useful properties of higher-order bisimulations.

Lemma 4.13. Let P,Q be two processes and {x1, . . . , xn} be their free variables. We have P ∼.
HO Q iff P{R̃i/̃xi} ∼HO Q{R̃i/̃xi} for

any tuple of closed processes R̃i.

I. Lanese et al. / Information and Computation 209 (2011) 198–226 207

Proof. First assume that P ∼.
HO Q , and let a be a fresh name. By definition of ∼.

HO, we thus have a(x1). · · · . a(xn). P ∼HO

a(x1). · · · . a(xn).Q . Let R1, . . . , Rn be closed processes. By a repeated application of the input clause for ∼HO, we conclude

that P{R̃i/̃xi} ∼HO Q{R̃i/̃xi}.
For the other direction, by definition we have to prove a(x1). · · · . a(xn). P ∼HO a(x1). · · · . a(xn).Q . The only possible

transitions of a(x1). · · · . a(xn). P are the inputs, which lead to P{R̃i/̃xi} for some R̃i, and are matched by corresponding inputs

from a(x1). · · · . a(xn).Q leading to Q{R̃i/̃xi}. These last are bisimilar for any choice of the R̃i by hypothesis, thus the thesis

follows. �

Lemma 4.14. ∼o
IO and ∼.

HO coincide.

Proof. To show that ∼.
HO is a IO bisimulation we show a slightly more general result: the relation {(P,Q) | P{m̃i/x̃i} ∼.

HO

Q{m̃i/x̃i}, m̃i fresh in relation to P,Q} is a IO bisimulation. Note that we still use the open extension ∼.
HO, and do not require

every variable of P and Q to be substituted by fresh names.

Let P,Q be two processes such that P{m̃i/x̃i} ∼.
HO Q{m̃i/x̃i}. If either P or Q has an unguarded variable x, we let m stand

for a fresh variable and consider P{m̃i/x̃i}{m/x} and Q{m̃i/x̃i}{m/x}. We easily show that P{m̃i/x̃i}{m/x} ∼.
HO Q{m̃i/x̃i}{m/x}. To

keep notations short, we still write P{m̃i/x̃i} and Q{m̃i/x̃i} for the saturated processes with no unguarded variable.

We proceed by case on P
α−→ P′ (we also have an additional case for unguarded variables). Let {y1, . . . , yn} be the

free guarded variables of P{m̃i/x̃i} and Q{m̃i/x̃i}, and let R1, . . . , Rn be closed processes. By Lemma 4.13, P{m̃i/x̃i}{R̃j/ỹj} ∼HO

Q{m̃i/x̃i}{R̃j/ỹj}. As the Rj are closed, by Lemma 2.5(1), we can deduce that P{m̃i/x̃i}{R̃j/ỹj} α{m̃i/x̃i}{̃Rj/ỹj}−−−−−−−−−→ P′{m̃i/x̃i}{R̃j/ỹj}.
By definition of ∼HO, we have Q{m̃i/x̃i}{R̃j/̃yj} α{m̃i/x̃i}{R̃j/ỹj}−−−−−−−−−→ Q ′{m̃i/x̃i}{R̃j/ỹj}. By Lemma 2.5(2) we have Q{m̃i/x̃i} α{m̃i/x̃i}−−−−−→
Q ′{m̃i/x̃i} as the yj are guarded. Finally, by Lemma 2.5(3), we have Q

α−→ Q ′, as the mi are fresh thus α{m̃i/x̃i} = mi is

impossible. In the output case, by ∼HO, we have directly P′{m̃i/x̃i}{R̃j/ỹj} ∼HO Q ′{m̃i/x̃i}{R̃j/ỹj} and we conclude by Lemma

4.13 thatP′{m̃i/x̃i} ∼.
HO Q ′{m̃i/x̃i} since this is true for any R̃j , thusP′ andQ ′ are still in the relation.Weapply the sameapproach

to the contents SP and SQ of themessages: SP{m̃i/x̃i}{R̃j/ỹj} ∼HO SQ {m̃i/x̃i}{R̃j/ỹj} for arbitrary R̃j , thus SP{m̃i/x̃i} ∼.
HO SQ {m̃i/x̃i},

thus SP and SQ are in the relation. In the case of an input a(x), P′ andQ ′ may have an additional free variable x. In this case, by

definition of ∼HO we have P′{m̃i/x̃i}{R̃j/ỹj}{R/x} ∼HO Q ′{m̃i/x̃i}{R̃j/ỹj}{R/x} for any closed R, and we also conclude by Lemma

4.13 that P′{m̃i/x̃i} ∼.
HO Q ′{m̃i/x̃i}, thus P′ and Q ′ are still in the relation.

The final case is for when P ≡ x ‖ P′. By hypothesis, we have P{m̃i/x̃i} ∼.
HO Q{m̃i/x̃i} and we know that x = xi for some i.

We thus have P{m̃i/x̃i} = mi ‖ P′{m̃i/x̃i} ∼.
HO Q{m̃i/x̃i}. Let {y1, . . . , yn} be the free guarded variables of P{m̃i/x̃i} andQ{m̃i/x̃i},

and let R1, . . . , Rn be closed processes. By Lemma 4.13, we have P{m̃i/x̃i}{R̃j/ỹj} ∼HO Q{m̃i/x̃i}{R̃j/ỹj}. As the Rj are closed,

by Lemma 2.5(1), we have P{m̃i/x̃i}{R̃j/ỹj} mi−→ P′{m̃i/x̃i}{R̃j/ỹj}. We have Q{m̃i/x̃i}{R̃j/̃yj} mi−→ Q ′{m̃i/x̃i}{R̃j/ỹj} by definition of

∼HO, and by Lemma 2.5(2) we have Q{m̃i/x̃i} mi−→ Q ′{m̃i/x̃i}. Asmi is fresh in relation to P and Q , it means that x is free in Q ,

thus that Q ≡ x ‖ Q ′. Moreover, as we showed this for arbitrary Rj , by Lemma 4.13, we have P′{m̃i/x̃i} ∼.
HO Q ′{m̃i/x̃i}. We

thus conclude by noting that we have (P′,Q ′) in the relation.

To conclude, we remark that if P ∼.
HO Q then (P,Q) is in the relation defined above (with no variable substituted), thus

P ∼o
IO Q .

We next show that ∼o
IO is a ∼.

HO-bisimulation. Suppose (P1,Q1) ∈ ∼o
IO, and let a be a fresh name, fv(P1) ∪ fv(Q1) =

{x1, . . . , xn}. We consider the pair of closed processes P = a(x1). · · · . a(xn). P1 and Q = a(x1). · · · . a(xn).Q1. By Lemma

4.9, we still have P ∼o
IO Q . We proceed by case on the transition P

α−→ P′. The case α = b〈R〉 is immediate, as it means that

n = 0 (P1 and Q1 were already closed), and we conclude by Q = Q1

b〈S〉−−→ Q ′ with P′ ∼o
IO Q ′ and R ∼o

IO S. Similarly, in the

case of a τ transition, we also have P = P1 and Q = Q1 and we conclude by Lemma 4.12. We now turn to the input case, i.e.,

P
b(x)−−→ P′. By ∼o

IO, we have Q
b(x)−−→ Q ′ and P′ ∼o

IO Q ′. We conclude by Lemma 4.10 that P′{R/x} ∼o
IO Q ′{R/x} for any closed

process R. �

We now move to the relationship between ∼HO, ∼o
NOR, and ∼CON . We begin by establishing a few properties of normal

bisimulation.

Lemma 4.15. If m. P1 ‖ P ∼o
NOR m.Q1 ‖ Q, for some fresh m, then we have P1 ∼o

NOR Q1 and P ∼o
NOR Q .

Proof. We show that for any countable set of fresh namesm1, . . ., the relation

S =
∞⋃
j=1

⎧⎨
⎩(P, Q) : P ‖ ∏

k∈1,...,j

mk . Pk ∼o
NOR Q ‖ ∏

k∈1,...,j

mk.Qk

⎫⎬
⎭

is a ∼o
NOR-bisimulation.

208 I. Lanese et al. / Information and Computation 209 (2011) 198–226

Suppose (P,Q) ∈ S and that P
α−→ P′; we need to show a matching action from Q . We have different cases depending

on the shape of α. We consider only the case α = a〈P′′〉, the others being simpler. By Act1 we have

P ‖ ∏
k∈1,...,j

mk. Pk
a〈P′′〉−−−→ P′ ‖ ∏

k∈1,...,j

mk . Pk .

Since P ‖ ∏k∈1,...,j mk . Pk ∼o
NOR Q ‖ ∏k∈1,...,j mk .Qk , there should exist a Q∗ such that

Q ‖ ∏
k∈1,...,j

mk.Qk

a〈Q ′′〉−−−→ Q∗ ,

with P′ ‖ ∏k∈1,...,j mk . Pk ‖ m′′. P′′ ∼o
NOR Q∗ ‖ m′′.Q ′′. Asm1, . . . ,mj are fresh, they do not occur in P, thus a〈P′′〉 does not

mention them. For the same reason, there cannot be any communication between
∏

k∈1,...,j mk .Qk and Q ; so, we infer that

the only possible transition is

Q ‖ ∏
k∈1,...,j

mk.Qk

a〈Q ′′〉−−−→ Q∗ = Q ′ ‖ ∏
k∈1,...,j

mk .Qk,

applying rule Act1 to Q
a〈Q ′′〉−−−→ Q ′. Since P′ ‖ ∏k∈1,...,j mk . Pk ‖ m′′. P′′ ∼o

NOR Q ′ ‖ ∏k∈1,...,j mk .Qk ‖ m′′.Q ′′, we have

(P′,Q ′) ∈ S as needed.

We now show that if P ‖ ∏k∈1,...,j mk . Pk ∼o
NOR Q ‖ ∏k∈1,...,j mk .Qk then P1 ∼o

NOR Q1. To this end, we first detail a

procedure for consuming ∼o
NOR-bisimilar processes.

Given a process P, let o(P) denote the number of output actions in P. Let m(P) = #(P) + o(P) be the measure that

considers both the (syntactical) size of P and the number of output actions in it. Consider now two∼o
NOR-bisimilar processes

P and Q . The procedure consists in consuming one of them by performing its actions completely; the other process can

match these actions (as it is ∼o
NOR-bisimilar) and will be consumed as well. We will show that m(P) decreases at each step

of the bisimulation game; at the end, we will obtain processes Pn and Qn withm(Pn) = m(Qn) = 0.

To illustrate the procedure, suppose, w.l.o.g., process P has the following shape:

P ≡ ∏
h∈1,...,t

xh ‖ ∏
i∈1,...,k

ai(xi). Pi ‖ ∏
j∈1,...,l

bj〈Pj〉

where we have t top-level variables, k input actions, and l output actions. We use ai and bj for channels in input and output

actions, respectively. The first step is to remove top-level variables; this relies on the fact ∼o
NOR is an open bisimilarity. One

thus obtains processes P1 and Q1 with only input and output actions, and both m(P1) < m(P) and m(Q1) < m(Q) hold.

As a second step, the procedure exercises every output action in P1. By definition of ∼o
NOR, Q1 should be able to match

those actions. Call the resulting processes P2 and Q2. Recall that when an output a〈Pj〉 is consumed in the bisimulation

game, process mj . Pj is added in parallel. Thus since #(a〈P〉j) = #(mj . Pj) and the number of outputs decreases, measure m

decreases as well. More precisely, one has that

P2 ≡ ∏
i∈1,...,k

ai(xi). Pi ‖ ∏
j∈1,...,l

mj . Pj

wheremj stands for a freshname. Then, onehas to consider thek+l input actions ineachprocess; their consumptionproceeds

as expected. One obtains processes P3 and Q3 that are bisimilar, with strictly decreasing measures for both processes. The

procedure concludes by iterating the above steps on P3 and Q3. In fact, we have shown that at each step measure m strictly

decreases; this guarantees that eventually one will reach processes Pn and Qn, withm(Pn) = m(Qn) = 0 as desired.

Consider now the following∼o
NOR-bisimilar processes: P ‖ ∏k∈1,...,j mk . Pk andQ ‖ ∏k∈1,...,j mk .Qk . Using the procedure

above over P until it becomes 0, we obtain
∏

k∈1,...,j mk . Pk ∼o
NOR

∏
k∈1,...,j mk .Qk . This is because fresh namesm1, . . . ,mj do

not occur in P and Q , and hence they do not intervene in P’s consumption, so the bisimilar process must still mention them

and cannot mention anything else. Similarly, we can consume
∏

k′∈2,...,j mk′ . Pk′ (i.e., all the components excepting m1. P1)

which is match by the consumption of the corresponding
∏

k′∈2,...,j mk′ .Qk′ . We thus end up withm1. P1 ∼o
NOR m1.Q1, and

we observe that the only possible action on each side is the input on m1, which can be trivially matched by the other. We

then infer that (P1,Q1) ∈ S1, as desired. �

Lemma 4.16. ∼.
HO implies ∼.

CON.

Proof. We only need to prove that ∼HO implies ∼CON by definition of open extension. We suppose (P,Q) ∈ ∼HO and

P
α−→ P′; we need to show a matching action from Q . We proceed by case analysis on the form α can take. The only

interesting case is when α is a higher-order output; the remaining clauses are the same in both relations. By definition of

I. Lanese et al. / Information and Computation 209 (2011) 198–226 209

∼HO, if P
a〈P′′〉−−−→ P′ then Q

a〈Q ′′〉−−−→ Q ′, with both P′′ ∼HO Q ′′ and P′ ∼HO Q ′. We need to show that, for every S such that

fv(S) = {x}, S{P′′
/x} ‖ P′ ∼HO S{Q ′′

/x} ‖ Q ′; this follows from P′′ ∼HO Q ′′ and P′ ∼HO Q ′ and the fact that ∼HO is both a

congruence and preserved by substitutions. �

Lemma 4.17. ∼CON implies ∼NOR.

Proof. Straightforward by showing an appropriate bisimulation. The result is immediate by noticing that (i) both relations

are τ -bisimulations, and that (ii) the input and output clauses of ∼NOR are instances of those of ∼CON . In the output case,

by selecting a process S = m. x (with m fresh) one obtains the desired form for the clause. The input clause is similar, and

follows from the definition of closed bisimulation, which holds for every closed process R; in particular, it also holds for

R = m (withm fresh) as required by the clause of ∼NOR. �

Lemma 4.18. ∼.
NOR implies ∼o

NOR.

Proof. Remember that ∼.
NOR is the extension of ∼NOR to open processes (see Definition 4.6). Notice that since ∼NOR is an

input normal bisimulation (Definition 4.2(2)), we can easily show that

P ∼.
NOR Q iff P

{
m1/x1, . . . ,mn/xn

} ∼NOR Q
{
m1/x1, . . . ,mn/xn

}
where {x1, . . . , xn} = fv(P) ∪ fv(Q) andm1, . . . ,mn are fresh names. We now show that ∼.

NOR is an open normal bisimu-

lation.

We first suppose P ∼.
NOR Q and P

α−→ P′; we need to find a matching transition Q
α−→ Q ′. We perform a case analysis on

the shape α can take. The τ and output cases are immediate by using Lemma 2.5(1 and 3). We now detail the case in which

α = a(x). If P
a(x)−−→ P′ then by Lemma 2.5(1)

P
{
m1/x1, . . . ,mn/xn

} a(x)−−→ P′ {m1/x1, . . . ,mn/xn
}
.

In turn, by definition of ∼NOR, such an action guarantees that there exists a Q ′ that matches that input action, i.e.,

Q
{
m1/x1, . . . ,mn/xn

} a(x)−−→ Q ′ {m1/x1, . . . ,mn/xn
}

with (for some freshm)

P′ {m1/x1, . . . ,mn/xn
} {m/x} ∼NOR Q ′ {m1/x1, . . . ,mn/xn

} {m/x}.
By Lemma 2.5(3), we have Q

a(x)−−→ Q ′, and we conclude by the equivalence above that P′ ∼.
NOR Q ′.

The last thing to consider are those variables in evaluation context in the open processes. This is straightforward by noting

that by definition of ∼.
NOR, all such variables have been closed with a trigger. So, suppose P ∼.

NOR Q and

P
{
m1/x1, . . . ,mn/x

} ≡ m1 ‖ P′ {m1/x1, . . . ,mn/xn
}

wherem1 is fresh. We need to show that Q has a similar structure, i.e., that Q ≡ x ‖ Q ′, with P′ ∼.
NOR Q ′. P can perform an

outputactiononm1, thusevolving toP
′{m1/x1, . . . ,mn/xn}. Bydefinitionof∼.

NOR,Q canmatch this action, andevolves to some

process Q∗, with m′. 0 ‖ P′{m1/x1, . . . ,mn/xn} ∼.
NOR m′. 0 ‖ Q∗, where m′ is a fresh name (obtained from the definition of

∼.
NOR foroutput actions). The inputonm′ canbe trivially consumedonboth sides, andonehasP′{m1/x1, . . . ,mn/xn} ∼.

NOR Q∗.
At this point, since m1 is a fresh name, we know that Q involves a variable in evaluation context. Furthermore, since there

is a correspondence between P′ and Q∗, they should involve substitutions in the very same fresh names. More precisely, we

have that there should be a Q ′ such that

Q ≡ m1 ‖ Q ′ {m1/x1, . . . ,mn/xn
} = m1 ‖ Q∗

as desired. �

Lemma 4.19. ∼o
NOR implies ∼o

IO.

Proof. The only difference between the bisimilarities is their output clause: they are both open bisimulations. We analyze

directly the case for output action. Suppose P ∼o
NOR Q and P

a〈P′′〉−−−→ P′; we need to show a matching action from Q . By

definition of ∼o
NOR, if P

a〈P′′〉−−−→ P′ then also Q
a〈Q ′′〉−−−→ Q ′, with m. P′′ ‖ P′ ∼o

NOR m.Q ′′ ‖ Q ′. Using this and Lemma 4.15 we

conclude that P′′ ∼o
NOR Q ′′ and P′ ∼o

NOR Q ′. �

Lemma 4.20. In HOcore, relations ∼HO, ∼o
NOR and ∼CON coincide on closed processes.

210 I. Lanese et al. / Information and Computation 209 (2011) 198–226

Proof. This is an immediate consequence of previous results. In fact, we have proved (on open processes) the following

implications:

1. ∼o
IO implies ∼.

HO (Lemma 4.14).

2. ∼.
HO implies ∼.

CON (Lemma 4.16);

3. ∼.
CON implies ∼.

NOR (Lemma 4.17);

4. ∼.
NOR implies ∼o

NOR (Lemma 4.18);

5. ∼o
NOR implies ∼o

IO (Lemma 4.19). �

We thus infer that∼HO and∼CON are congruence relations. Direct proofs of these results proceed by exhibiting an appro-

priate bisimulation and are usually hard (a sensible aspect being proving congruence for parallel composition). Congruence

of higher-order bisimilarity is usually proved by appealing to, and adapting, Howe’s method for the λ-calculus [24]. This is
the approach followed in, e.g., [25–27]; very recent uses of Howe’s method are reported in [28,29] for higher-order process

calculi with passivation constructs.

We then extend the result to all complete combinations of the HOcore bisimulation clauses (Definitions 4.1 and 4.2).

Theorem 4.21. All complete combinations of the HOcore bisimulation clauses coincide, and are decidable.

Proof. In Lemma 4.20, we have proved that the least demanding combination (∼o
IO) coincides with the most demanding

ones (∼.
HO and ∼.

CON). Decidability then follows from Lemma 4.11. �

We find this “collapsing” of bisimilarities in HOcore significant; the only similar result we are aware of is by Cao [11],

who showed that strong context bisimulation and strong normal bisimulation coincide in higher-order π-calculus.

5. Barbed congruence and asynchronous equivalences

We now show that the labeled bisimilarities of Section 4 coincide with barbed congruence, the form of contextual equiv-

alence used in concurrency to justify bisimulation-like relations. Below we use reduction-closed barbed congruence [6,30],

as this makes some technical details simpler; however the results also hold for ordinary barbed congruence as defined in

[31]. It is worth recalling that themain difference between reduction-closed barbed congruence and the barbed congruence

of [31] is quantification over contexts (see (2) in Definition 5.1 below). More importantly, we consider the asynchronous

version of barbed congruence, where barbs are only produced by output messages; we call barbed congruence synchronous

when inputs contribute too, as in, e.g., [31]. We use the asynchronous version for two reasons. First, asynchronous barbed

congruence is aweaker relation,whichmakes the results stronger (they imply the corresponding results for the synchronous

relation). Second, asynchronous barbed congruence is more natural in HOcore because it is an asynchronous calculus — it

has no output prefix.

Note also that the labeled bisimilarities of Section 4 have been defined in the synchronous style. In an asynchronous

labeled bisimilarity (see, e.g., [32]) the input clause is weakened so as to allow, in certain conditions, an input action to be

matched also by a τ -action. For instance, input normal bisimulation (Definition 4.2(2)) would become:

• if P
a(x)−−→ P′ then, for some fresh namem,

1. either Q
a(x)−−→ Q ′ and P′{m/x} R Q ′{m/x};

2. or Q
τ−→ Q ′ and P′{m/x} R Q ′ ‖ a〈m〉.

We now define asynchronous barbed congruence. We write P ↓a (resp. P ↓a) if P can perform an output (resp. input)

transition at a.

Definition 5.1 (Asynchronous barbed congruence). �, is the largest symmetric relation on closed processes that is

1. a τ -bisimulation (Definition 4.1(1));

2. context-closed (i.e., P � Q implies C[P] � C[Q], for all closed contexts C[·]);
3. barb preserving (i.e., if P � Q and P ↓a, then also Q ↓a).

In synchronous barbed congruence, input barbs P ↓a are also observable.

Lemma 5.2. Asynchronous barbed congruence coincides with normal bisimilarity.

Proof. We first show that∼NOR implies�, and then its converse, which is harder. The relation∼NOR satisfies the conditions

inDefinition5.1 as follows. First, both relations are τ -bisimulations so condition (1) above trivially holds. Second, the context-

I. Lanese et al. / Information and Computation 209 (2011) 198–226 211

closure condition follows from the fact that ∼NOR is a congruence. Finally, the barb-preserving condition is seen to hold by

definition of ∼NOR: having P ∼NOR Q implies that an output action of P on a has to be matched by an output action of Q on

a; hence, we have that if P ↓a, then also Q ↓a.

Now the converse. We show that relation � satisfies the three conditions for ∼NOR in Definition 4.3. Suppose P � Q and

P
α−→ P′; we have to show a matching transition Q

α−→ Q ′. We proceed by a case analysis on the form α can take.

Case α = τ . Since by definition � is a τ -bisimulation, then there is a Q ′ such that Q
τ−→ Q ′ and P′ � Q ′ and we are done.

Case α = a〈P′′〉. We have P
a〈P′′〉−−−→ P′: it can be shown that � is an output normal bisimulation by showing a suitable

context. Let Ca
o[·] be the context

Ca
o[·] = [·] ‖ a(x). (m. x ‖ n ‖ n. 0)

where m, n are fresh names. We then have Ca
o[P] τ−→ P1 with P1 ↓n. Indeed, we have P1 ≡ P′ ‖ m. P′′ ‖ n ‖ n. 0. By

definition of�, we have also Ca
o[Q] τ−→ Q1 and necessarily, Q1 ↓n. Since n is a fresh name, we infer that Q also has an output

on a, such that Q
a〈Q ′′〉−−−→ Q ′ and hence Q1 ≡ Q ′ ‖ m.Q ′′ ‖ n ‖ n. 0. Note that (P1,Q1) is in �. They can consume the

actions on n; since it is a fresh name, only the corresponding τ action of Q1 can match it. As a result, both processes evolve

to processes P′ ‖ m. P′′ and Q ′ ‖ m.Q ′′ that are still in �. We then conclude that � is an output normal bisimulation.

Case α = a(x). We have P
a(x)−−→ P′. Again, to show that � is an input normal bisimulation, we define a suitable context.

Here, the asynchronous nature of HOcore (more precisely, the lack of output prefixes, which prevents the control of output

actions bymodifying their continuation) and the input clause for∼NOR it induces (reported above) result in a more involved

definition of these contexts. Notice that simply defining a context with an output action on a so as to force synchronization

with the input action does notwork here: process P itself could contain other output actions on a that could synchronizewith

the input we are interested in, and as output actions have no continuation, it is not possible to put a fresh barb indicating

it has been consumed. We overcome this difficulty by (i) renaming every output in P, so as to avoid the possibility of τ
actions (including those coming from synchronizations on channels different from a), (ii) consuming the input action on a

(by placing the renamed process in a suitable context) and then (iii) restoring the initial outputs.

We define a context for (i) above, i.e., to rename every output in a process so as to prevent τ actions.We start by denoting

by out(P) themultiset of names in output subject position in a process P. Further, let σ denote an injective relation between

each occurrence of name in out(P) and a fresh name. Let C[·] be the context

C[·] = [·] ‖ ∏
(bi,ci)∈σ

bi(x). ci〈x〉

which uniquely renames every output bi〈Si〉 as ci〈Si〉. (We shall use ci (i ∈ 1, . . ., n) to denote the fresh names for the

renamed outputs.) Consider now processes C[P] and C[Q]: since the renaming is on fresh channels, it can be ensured

that the τ action due to the renaming of one output on one process is matched by the other process with a τ action that

corresponds to the renaming of the same output. At the end, after a series of n τ actions, C[P] and C[Q] become processes

P1 and Q1 that have no τ actions arising from their subprocesses and that are in �. At this point it is then possible to use a

context for (ii), to capture the input action on a in P1. Let C
a
i [·] be the context

Ca
i [·] = [·] ‖ a〈m〉

where m is a fresh name. We then have

Ca
i [P1] τ−→ c1〈S1〉 ‖ · · · ‖ cn〈Sn〉 ‖ Pa{m/x} ‖ P′′ = P2

which, by definition of �, implies that also it must be the case that, for some process Q2, C
a
i [Q1] τ−→ Q2. In fact, since there

is a synchronization at a, it implies that Q1 must have at least one input action on a. More precisely, we have

Q2 ≡ c1〈S1〉 ‖ · · · ‖ cn〈Sn〉 ‖ Qa{m/x} ‖ Q ′′.
We notice that P2 and Q2 are still in �; it remains however to perform (iii), i.e., to revert the renaming made by C[·]. To do

so, we proceed analogously as before and define the context

C′[·] = [·] ‖ ∏
(ci,bi)∈σ−1

ci(x). bi〈x〉.

We have that each of C′[P2] and C′[Q2] produces n τ steps that exactly revert the renaming done by context C[·] above and

lead to P3 and Q3, respectively. This renaming occur in lockstep (and no other τ action may be performed by Q2), as each

one removes a barb on a fresh name, thus the other process has to remove the same barb by doing the renaming. Hence, P3

212 I. Lanese et al. / Information and Computation 209 (2011) 198–226

and Q3 have the same output actions as the initial P and Q , and since � is a τ -bisimulation we have P3 � Q3. To conclude,

we remark that Ca
i [P] τ−→ P3 in one step. Indeed, we have

Ca
i [P] ≡ T ‖ a(x). Pa ‖ P′′ ‖ a〈m〉 τ−→ P3 = P′{m/x}

where T stands for all the output actions in P (on which the renaming took place). By doing and undoing the renaming on

every output, we were able to infer that Q has an analogous structure

Ca
i [Q] ≡ T ′ ‖ a(x).Qa ‖ Q ′′ ‖ a〈m〉 τ−→ Q3

where T ′ stands for all the output actions in Q . Let Q ′ = T ′ ‖ Qa ‖ Q ′′, we then have Q
a(x)−−→ Q ′ and Q3 = Q ′{m/x}. To

summarize, we have P
a(x)−−→ P′, Q a(x)−−→ Q ′, and P′{m/x} � Q ′{m/x} with m fresh. Hence we conclude that � is an input

normal bisimulation. �

Remark 5.3. The proof relies on the fact that HOcore has no operators of choice and restriction. In fact, choicewould prevent

the renaming to be reversible, and restrictionwouldprevent the renamingusing a context as somenamesmaybehidden. The

higher-order aspect of HOcore does not really play a role. The proof could indeed be adapted to CCS-like, or π-calculus-like,

languages in which the same operators are missing.

Corollary 5.4. In HOcore asynchronous and synchronous barbed congruence coincide, and they also coincide with all complete

combinations of the HOcore bisimulation clauses of Theorem 4.21.

Further, Corollary 5.4 can be extended to include the asynchronous versions of the labeled bisimilarities in Section 4

(precisely, the complete asynchronous combinations of the HOcore bisimulation clauses; that is, complete combinations that

make use of an asynchronous input clause as outlined before Definition 5.1). This holds because: (i) all proofs of Section

4 can be easily adapted to the corresponding asynchronous labeled bisimilarities; (ii) using standard reasoning for barbed

congruences, one can show that asynchronous normal bisimilarity coincides with asynchronous barbed congruence; (iii)

via Corollary 5.4 one can then relate the asynchronous labeled bisimilarities to the synchronous ones.

6. Axiomatization and complexity

We have shown in the previous section that the main forms of bisimilarity for higher-order process calculi coincide in

HOcore. We therefore simply call bisimilarity such a relation, and write it as ∼. Here we present a sound and complete

axiomatization of bisimilarity. We do so by adapting to a higher-order setting results by Moller and Milner on unique

decomposition of processes [16,33], and by Hirschkoff and Pous on an axiomatization for a fragment of (finite) CCS [17]. We

then exploit this axiomatization to derive complexity bounds for bisimilarity checking.

6.1. Axiomatization

Lemma 6.1. P ∼ Q implies #(P) = #(Q).

Proof. Suppose, for a contradiction, that there exist P,Q such that P ∼ Q with #(P) < #(Q) and choose a P with aminimal

size. If Q has no transition enabled, then it must be 0, thus #(Q) = 0, which is impossible as #(Q) > #(P) ≥ 0.

We thus have Q
α−→ Q ′, hence there is a P′ such that P

α−→ P′ with P′ ∼ Q ′. We consider two cases, depending on the

shape of α (we do not consider τ actions, as such an action implies both an input and an output).

If α is an input action, we have Q
a(x)−−→ Q ′, and since P ∼ Q , then also P

a(x)−−→ P′. We then have that #(P′) = #(P) − 1

and #(Q ′) = #(Q) − 1, so it follows that #(P′) < #(Q ′). Further, one has #(P′) < #(P), which contradicts the minimality

hypothesis.

Now suppose α is an output action: we have Q
a〈Q ′′〉−−−→ Q ′, and by definition of∼, also that P

a〈P′′〉−−−→ P′ with both P′ ∼ Q ′
and P′′ ∼ Q ′′. By the definition of size, we have that #(P′) = #(P)− (1+#(P′′)) and #(Q ′) = #(Q)− (1+#(Q ′′)). Notice
that P′′, Q ′′ are strict subterms of P and Q , respectively. If their size is not the same, we have a contradiction. Otherwise, we

have #(P′) < #(Q ′) and also #(P′) < #(P), which is also a contradiction. �

Following [16,33] we prove a result of unique prime decomposition of processes.

Definition 6.2 (Prime decomposition). A process P is prime if P �∼ 0 and P ∼ P1 ‖ P2 imply P1 ∼ 0 or P2 ∼ 0. When

P ∼ ∏n
i=1 Pi where each Pi is prime, we call

∏n
i=1 Pi a prime decomposition of P.

Proposition 6.3 (Cancellation). For all P, Q , and R, if P ‖ R ∼ Q ‖ R then also P ∼ Q.

I. Lanese et al. / Information and Computation 209 (2011) 198–226 213

Proof. The proof, which proceeds by induction on #(P) + #(Q) + #(R), is a simple adaptation of the one in [16]. We detail

it below. We simultaneously prove the following by induction on #(P) + #(Q) + #(R):

1. if P ‖ R ∼ Q ‖ R then P ∼ Q ;

2. if R
α−→ R′ and P ‖ R ∼ Q ‖ R′, then Q

α−→ Q ′ for some P ∼ Q ′.

Note that every reduction P
α−→ P′ decreases the size of P if α is not a τ -transition.

1. Assume that P ‖ R ∼ Q ‖ R and suppose that P
α−→ P′, for some input or output action α (we do not consider

τ -transitions as we rely on the fact that∼o
IO characterizes barbed congruence). We then have P ‖ R

α−→ P′ ‖ R, which

can be matched by either:

(a) Q
α−→ Q ′ and P′ ‖ R ∼ Q ′ ‖ R; or

(b) R
α−→ R′ and P′ ‖ R ∼ Q ‖ R′.

For case (1a), by induction hypothesis (1)we have P′ ∼ Q ′. For case (1b), by induction hypothesis (2)we haveQ
α−→ Q ′

and P′ ∼ Q ′.
The last case to consider is for when P contains a variable. If R also contains a variable, then it may be removed from

both sides from R andwe conclude by induction hypothesis (1). If there is no variable in R, then it occurs in both P and

Q and we also conclude by induction hypothesis (1).

The case when starting from Q is symmetric, thus we have P ∼ Q .

2. Assume that R
α−→ R′ and P ‖ R ∼ Q ‖ R′. We thus have P ‖ R

α−→ P ‖ R′, and there exists some S such that

Q ‖ R′ α−→ S with P ‖ R′ ∼ S. As before, we distinguish the source of the action. We either have:

(a) Q
α−→ Q ′ and P ‖ R′ ∼ Q ′ ‖ R′; or

(b) R′ α−→ R′′ and P ‖ R′ ∼ Q ‖ R′′.
For case (2a), we have P ∼ Q ′ by induction hypothesis (1).

For case (2b), we apply induction hypothesis (2) and thus we have Q
α−→ Q ′ with P ∼ Q ′. �

Proposition6.4 (Uniquedecomposition). Anyprocess P admits a primedecomposition
∏n

i=1 Pi which is uniqueup to bisimilarity

and permutation of indices (i.e., given two prime decompositions
∏n

i=1 Pi and
∏m

j=1 Qj, then n = m and there is a permutation σ

of {1, . . . , n} such that Pi ∼ Qσ(i) for each i ∈ {1, . . . , n}).
Proof. The proof is also similar to the one in [16]. We also detail this proof.

We proceed by induction on#(P). Assume there are two prime decompositions, P ∼ ∏n
i=1 Pi and P ∼ Q = ∏m

j=1 Qj . First,

if some Pk ∼ Ql (w.l.o.g assume that P1 ∼ Q1), thenwehave the following twoprimedecompositions for P: P ∼ P1 ‖ ∏n
i=2 Pi

andP ∼ P1 ‖ ∏m
j=2 Qj . By Proposition6.3,wehave

∏n
i=2 Pi ∼ ∏m

j=2 Qj . As these areprimedecompositionof a smaller process,

by induction they are also unique (up to bisimilarity and permutation of indices). Thus the two decompositions
∏n

i=1 Pi and∏m
j=1 Qj are also identical up to bisimilarity and permutation of indices.

We now assume, for a contraction, that for every i, j we have Pi �∼ Qj . If either n = 1 or m = 1, then (by definition of a

prime process) n = m = 1 and P1 ∼ Q1, a contradiction.

We thus assume that n,m ≥ 2 and that (w.l.o.g.) that #(P1) ≤ #(Pi) and #(P1) ≤ #(Qj) for every i and j. As P1 is not

empty, it contains either a variable or can do an input or output action.

In the case it contains a variable, then we must have P1 ∼ x (the only prime process that contains a variable is one that

is equivalent to a variable). As P ∼ ∏m
j=1 Qj , then one of the Qj must be equivalent to x, which is a contradiction.

Let us now consider the case where P1 does an input or output action α: P1
α−→ R. We necessarily have #(R) < #(P1) ≤

#(P), thus R has a unique prime decomposition, whichwewrite
∏l

k=1 Rk . We thus have P
α−→ P′ with unique decomposition

(as #(P′) < #(P)) P′ ∼ ∏l
k=1 Rk ‖ ∏n

i=2 Pi. Since P ∼ Q , we thus have Q
α−→ Q ′ ∼ P′, thus for some Qj (w.l.o.g. Q1), we

have Q1
α−→ T and Q ′ = T ‖ ∏m

j=2 Qj . As the decomposition P′ ∼ Q ′ is unique, and as m ≥ 2, there is some process Q2 and

it must be equivalent to some process in
∏l

k=1 Rk ‖ ∏n
i=2 Pi. It cannot be one of the Rk as #(Rk) < #(P1) ≤ #(Q2) (and their

size have to match by Lemma 6.1), so it must be one of P2, . . . , Pn, a contradiction. �

Both the key law for the axiomatization and the following results are inspired by similar ones by Hirschkoff and Pous

[17] for pure CCS. Using their terminology, we call distribution law, briefly (DIS), the axiom schema below (recall that
∏k

1 Q

denotes the parallel composition of k copies of Q).

a(x).

⎛
⎝P ‖

k−1∏
1

a(x). P

⎞
⎠ =

k∏
1

a(x). P (DIS)

214 I. Lanese et al. / Information and Computation 209 (2011) 198–226

We then call extended structural congruence, written ≡E , the extension of the structural congruence relation (≡, Defini-

tion 2.2) with the axiom schema (DIS). We write P � Q when there are processes P′ and Q ′ such that P ≡ P′, Q ′ ≡ Q and

Q ′ is obtained from P′ by rewriting a subterm of P′ using law (DIS) from left to right. Below we prove that ≡E provides an

algebraic characterization of ∼ in HOcore. Establishing the soundness of ≡E is easy; below we discuss completeness.

Definition 6.5. A process P is in normal form if it cannot be further simplified in the system ≡E by using �.

Any process P has a normal form that is unique up to ≡, and which will be denoted by n(P). Below A and B range over

normal forms, and a process is said to be non-trivial if its size is not 0.

Lemma 6.6. If P � Q, then P ∼ Q. Also, for any P, P ∼ n(P).

Proof. The proof proceeds by showing that (� ∪ (�)−1 ∪ ≡) is a bisimulation (as ∼o
IO, for instance). �

Lemma 6.7. If a(x). P ∼ Q ‖ Q ′ with Q ,Q ′ �∼ 0, then a(x). P ∼ ∏k
1 a(x). A, where k > 1 and a(x). A is in normal form.

Proof. By Lemma 6.6, a(x). P ∼ n(Q ‖ Q ′). Furthermore, by Proposition 6.4, we have that

n(Q ‖ Q ′) ≡∏
i≤k

ai(xi). Ai ‖∏
j≤l

bj〈Bj〉 ‖ ∏
h≤m

xh,

where the processes ai(xi). Ai and bj〈Bj〉 and xh are in normal form and prime. Since the prefix a(x) must be triggered to

answer any challenge from the right-hand side, we have ai = a, and xi = x (this can be obtained via α-conversion, but we

can suppose that ai(xi). Ai was already α-converted to the correct form), and we have l = 0 andm = 0 (there are no output

nor top-level variables in the prime decomposition). As there are at least two processes that are not 0, we have k > 1. To

summarize:

a(x). P ∼∏
i≤k

a(x). Ai.

After an input action on the right-hand side, we derive

P ∼ Ai ‖∏
l �=i

a(x). Al

for every i ≤ k. In particular, when i �= j, we have

P ∼ Ai ‖ a(x). Aj ‖ ∏
l/∈{i,j}

a(x). Al P ∼ Aj ‖ a(x). Ai ‖ ∏
l/∈{i,j}

a(x). Al

and, by Proposition 6.3, Ai ‖ a(x). Aj ∼ Aj ‖ a(x). Ai. Since a(x). Ai is prime and it has larger size than Ai (and any of its

components), it should correspond in the prime decomposition to a(x). Aj , i.e., a(x). Ai ∼ a(x). Aj . As this was shown for

every i �= j, we thus have a(x). P ∼ ∏k
1 a(x). A1 with k > 1 and a(x). A1 in normal form. �

Lemma 6.8. For A, B in normal form, if A ∼ B then A ≡ B.

Proof. We show, simultaneously, the following two properties:

1. if A is a prefixed process in normal form, then A is prime;

2. for any B in normal form, A ∼ B implies A ≡ B.

We proceed by induction on n, for all A with #(A) = n. The case n = 0 is immediate as the only process of this size is 0.

Suppose that the property holds for all i < n, with n ≥ 1. In the reasoning below, we exploit the characterization of ∼ as

∼o
IO.

1. Process A is of the form a(x). A′. Suppose, as a contradiction, that A is not prime. Then we have A ∼ P1 ‖ P2 with

P1 and P2 non-trivial. By Lemma 6.7, then A ∼ 	1 ka(x). B with k > 1 and a(x). B in normal form. By consuming

the prefix on the left-hand side, we have A′ ∼ B ‖ 	
k−1
1 a(x). B. It follows by induction (using property (2)) that

A′ ≡ B ‖ 	
k−1
1 a(x). B, and hence also A ≡ a(x). (B ‖ 	

k−1
1 a(x). B). This is impossible, as A is in normal form.

2. Suppose A ∼ B. We proceed by case analysis on the structure of A.
• Case A = x. We have that B should be the same variable, so A ≡ B trivially.
• Case A = a〈P〉. We have that B = a〈P′〉 with P ∼ P′ by definition of ∼o

IO. By the induction hypothesis, P ≡ P′, thus
a〈P〉 ≡ a〈P′〉.

I. Lanese et al. / Information and Computation 209 (2011) 198–226 215

• Case A = a(x). A′. We show by contradiction that B = a(x). B′. Assume B = Q ‖ Q ′, then by Lemma 6.7, A is a

parallel composition of at least two processes. But according to the first property, as A is prefixed, it is prime, a

contradiction. We thus have B = a(x). B′ with A′ ∼o
IO B′. By induction this entails A′ ≡ B′ and A ≡ B.

• Case A = ∏i≤k Pi with k > 1 where no Pi has a parallel composition at top-level. We reason on the possible shape

of the Pi.

If there exists j such that Pj = x then alsoB ≡ x ‖ B′. The thesis then followsby inductionhypothesis on
∏

i≤k,i �=j Pi

and B′.
If Pi is an output, Bmust contain an output on the same channel. The thesis then follows by applying the induction

hypothesis twice, to the arguments and to the other parallel components.

The last case is when A ≡ ∏i≤k ai(xi). Ai with k > 1. We know by the induction hypothesis (property (1)) that

each component ai(xi). Ai is prime. Similarly, it must be B ≡ ∏i≤l bi(xi). Bi with bi(xi). Bi prime for all i ≤ l. By

Proposition 6.4 (unique decomposition), we infer k = l and ai(xi). Ai ∼ bi(xi). Bi (up to a permutation of indices).

Thus ai = bi and Ai ∼ Bi; then by induction Ai ≡ Bi for all i, which finally implies A ≡ B. �

The theorem below follows from Lemmas 6.6 and 6.8.

Theorem 6.9. For any processes P and Q, we have P ∼ Q iff n(P) ≡ n(Q).

Corollary 6.10. ≡E is a sound and complete axiomatization of bisimilarity in HOcore.

6.2. Complexity of bisimilarity checking

To analyze the complexity of deciding whether two processes are bisimilar, one could apply the technique from [15], and

derive that bisimilarity is decidable in time which is linear in the size of the LTS for ∼o
IO (which avoids τ transitions). This

LTS is however exponential in the size of the process. A more efficient solution exploits the axiomatization above: one can

first normalize processes and then reduce bisimilarity to syntactic equivalence of the obtained normal forms.

For simplicity, we assume a process P is represented as an ordered tree (but we will transform it into a DAG during

normalization). In the following, let us denote with t[m1, . . . ,mk] the ordered tree with root labeled t and with (ordered)

descendants m1, . . . ,mk . We write t[] for a tree labeled t and without descendants (i.e., a leaf).

Definition 6.11 (Tree representation). Let P be a HOcore process. Its associated ordered tree representation is labeled and

defined inductively by

• Tree(0) = 0[]
• Tree(x) = db(x)[]
• Tree(a〈Q〉) = ā[Tree(Q)]
• Tree(a(x).Q) = a[Tree(Q)]
• Tree(

∏n
i=1 Pi) = ∏n

i=1[Tree(P1), . . . , Tree(Pn)]
wheredb is a function assigningDeBruijn indices [34] to variables. Parallel composition isn-ary, thuswe can assumewithout

loss of generality that children of parallel composition nodes are not parallel composition nodes (i.e., we can always flatten

them).

We now describe the normalization steps by characterizing them as reductions as well as pseudocode descriptions. The

first step dealswith parallel composition nodes: it removes all unnecessary 0 nodes, and relabels the nodeswhen the parallel

composition has only one or no descendants.

Normalization Step 1. Let �N1 be a transformation rule over trees associated to HOcore processes defined by:

1.
∏0

i=1[] �N1 0[]
2.
∏1

i=1[Tree(P1)] �N1 T if Tree(P1) �N1 T

3.
∏n

i=1[Tree(P1), . . . , Tree(Pn)] �N1
∏m

i=1[Tσ(1), . . . , Tσ(m)], if Tree(Pi) �N1 Ti for each i, where m < n is the

number of trees in T1, . . . , Tn that are different from 0[], and where σ is a bijective function from {1, . . . ,m} to

{i | i ∈ {1, . . . , n} ∧ Ti �= 0[]}.
After this first step, the tree is traversed bottom-up, applying the following two normalization steps.

Normalization Step 2. Let �N2 be a transformation rule over trees associated to HOcore processes, defined as follows. If

the node is a parallel composition, sort all the children lexicographically. If n children are equal, leave just one and make n

references to it.

216 I. Lanese et al. / Information and Computation 209 (2011) 198–226

Normalization Step 1 NS1(n)

Require: A tree node n

1: if n. type = ’par’ then

2: if n. numChildren = 0 then

3: n. type = ’zero’
4: else if n. numChildren = 1 then

5: aux = n. children[1]
6: n = ∗(n. children[1])
7: delete(aux)
8: NS1(n)
9: else

10: j = 1

11: for i = 1 to n. numChildren do

12: NS1(∗(n. children[i]))
13: if ∗(n. children[i]). type �= ’zero’ then

14: n. children[j] = n. children[i]
15: j = j + 1

16: else

17: delete(n. children[i])
18: end if

19: end for

20: n. numChildren = j − 1

21: end if

22: else

23: for i = 1 to n. numChildren do

24: NS1(∗(n. children[i]))
25: end for

26: end if

The last normalization step applies DIS from left to right if possible:

Normalization Step 3. Let �N3 be a transformation rule over trees associated to HOcore processes, defined by:

a

⎡
⎣ k+1∏

i=1

[Tree(P), Tree(a(x). P), . . . , Tree(a(x). P)]
⎤
⎦�N3

k+1∏
j=1

[Tree(a(x). P), . . . , Tree(a(x). P)]

where Tree(a(x). P) appears k times in the left-hand side, and k + 1 times in the right-hand side.

We now present the pseudocode for the three normalization steps. We use a rather standard pointer-based implemen-

tation of trees, with the following notational conventions. A node of a tree is a record with four attributes (or fields). Given

a node n, we use n. attr to refer to the attribute attr of n. Each node has an attribute type, which represents the type

of node; possible values are zero (for a nil process node); par (for a parallel composition node); inp and out (for nodes

for input and output actions, respectively); and var (for nodes associated to variables). Each node n has also an attribute

children, an array of pointers to the children of node n. Hence, n. children[i] stands for the pointer to the ith children of n.

We use ∗ for dereferencing. Furthermore, we assume an operation delete for node deletion (freeing the allocated memory).

The length of children is stored as attribute numChildren. Nodes may also have an attribute info, containing the subject

name for input and output nodes and the De Bruijn indices for variable nodes. When we use assignment n1 = n2 on record

types we assume that all the fields are copied.

Consider the pseudocode for Normalization Step 1. The step performs a visit of the tree rooted at n applying the normal-

ization rules. Item (1) of the normalization step is represented by lines 2–3, while item (2) is represented by lines 4–7. Item

(3) is represented by lines 10–21.

In the pseudocode for Normalization Step 2 we assume auxiliary operations comp for comparing the subtrees rooted at

two nodes, sortChildren for lexicographic ordering of children of a node (e.g., usingMergeSort) and deleteRec for deleting

a subtree.

The pseudocode for Normalization Step 3 exploits an auxiliary operation too. Operation subtree(p1, p2, c) takes as

arguments two pointers to nodes p1 and p2 and a name c. It checks whether p2 points to an input node with label c and with

I. Lanese et al. / Information and Computation 209 (2011) 198–226 217

Normalization Step 2 NS2(n)

Require: A tree node n

1: for i = 1 to n. numChildren do

2: NS2(∗(n. children[i]))
3: end for

4: if n. type = ’par’ then

5: sortChildren(n)
6: for i = 1 to n. numChildren − 1 do

7: if comp(∗(n. children[i]), ∗(n. children[i + 1])) = true then

8: deleteRec(n. children[i + 1])
9: n. children[i + 1] = n. children[i]

10: end if

11: end for

12: end if

Normalization Step 3 NS3(n)

Require: A tree node n

1: for i = 1 to n. numChildren do

2: NS3(∗(n. children[i]))
3: end for

4: if n. type = ’inp’ then

5: s = ∗(n. children[1])
6: if s. type =′ par′ then
7: c = n. name
8: ok =false

9: if subtree(s. children[1], s. children[2], c) then
10: small = 1, big = 2, ok =true

11: else if subtree(s. children[s. numChildren], s. children[1], c) then
12: small = s. numChildren, big = 1, ok =true

13: end if

14: for i = 2 to n. numChildren − 1 do

15: if s. children[big] �= s. children[i] then
16: ok =false

17: end if

18: end for

19: if ok =true then

20: n = s

21: delete(s)
22: aux = n. children[small]
23: n. children[small] = n. children[big]
24: deleteRec(∗(n. children[big]). children[1])
25: ∗(n. children[big]). children[1] = aux

26: end if

27: end if

28: end if

a subtree equal to p1. The De Bruijn indices in p1 must differ by 1 w.r.t. the corresponding ones of p2 for the comparison to

succeed. This is required to take into account the additional input prefix in front of p2.

In Normalization Step 3, lines 9–18 check whether node n is the root of a subtree to which the axiom schema DIS can be

applied. There are two possibilities to consider, since the subtree P can be either the first child in the parallel composition

or the last one (remember that children of the parallel composition have been sorted by Normalization Step 2). If variable

ok is true then the axiom schema can be applied, and variables small and big point to the child containing P and to one of

the other children, respectively (all the other children correspond to the same node). Lines 20-25 apply the axiom schema

if needed. Line 23 makes all the children point to the same node, the one indexed by big, by changing the only different

pointer, the one indexed by small. Then the child of this node is deleted together with its subtree, and replaced by pointing

to the node that was pointed by small, which is pointed now by aux. This is needed to have the correct De Bruijn indices. In

fact, De Bruijn indices of the child indexed by small already have the values needed for the final term.

We relate now normalization and bisimilarity.

218 I. Lanese et al. / Information and Computation 209 (2011) 198–226

Lemma 6.12. Let TP, TQ be two tree representations of processes P and Q (as in Definition 6.11), normalized according to

normalization Steps 1 and 2. Then P ≡ Q iff TP = TQ .

Proof. Immediate from Definitions 2.2 and 6.11, and from Normalization Steps 1 and 2. In particular, �N1 corresponds to

the elimination of all occurrences of 0 in parallel, and �N2 corresponds to the choice of a representative process, up to

associativity and commutativity. �

Lemma 6.13. Let P,Q be processes and TP, TQ their tree representations normalized according to Normalization Steps 1, 2 and

3. Then P ∼ Q iff TP = TQ .

Proof. Immediate using Lemmas 6.12 and 6.6 (P � Q implies P ∼ Q). �

We now give a lemma on the cost of sorting the tree representation of a process. Given a process P, we define the size of

its tree representation TP to be the number of nodes of the tree, and denote it as size(P).

Lemma 6.14. Consider n HOcore processes P1, . . . , Pn and their tree representations TP1 , . . . , TPn . Their sorting has complexity

O(t log n), where t = ∑i∈1,...,n size(Pi).

Proof. Let us assume MergeSort as sorting algorithm. MergeSort sorts a list of elements by (i) splitting the list to be

sorted in two; (ii) recursing on both sublists; and (iii) merging the sorted sublists. A merge function starts by compar-

ing the first element of each list and then copies the smallest one to the new list. Comparing two elements Pi, Pj costs
min (size(Pi), size(Pj)). As each TPi is considered once (when it is copied to the new list) the cost of merging two lists is the

sum of the size of their elements (the actual copying of an element has constant cost since it is just a pointer operation).

Let us call a slice of MergeSort the juxtaposition of every recursive call at the same depth. In this way, e.g., the first slice

considers the lists when recursion depth is equal to 1: the first two recursive calls, each one having half of the original list. In

general, at every slice one finds a partition of the list in 2d sublists, where d is the recursion depth. Each recursive call in every

slice is going to merge two sublists, with a complexity of the sum of the sizes of these sublists. Summing everything, we get

a cost of t = ∑i∈1,...,n size(Pi) at each recursion depth. Therefore, as there are log n different depths, the total complexity is

O(t log n). �

Theorem 6.15. Consider two HOcore processes P and Q. P ∼ Q can be decided in time O(n2 logm) where

n = max (size(P), size(Q)) (i.e., the maximum number of nodes in the tree representations of P and Q) and m is the max-

imum branching factor in them (i.e., the maximum number of components in a parallel composition).

Proof. Bisimilarity check proceeds as follows: first normalize the tree representations of the two processes, then check them

for syntactic equality.

Normalization Step 1 can be performed in time O(n), as can be seen from the corresponding pseudocode. Normalization

Step 2 performs a visit of the tree, sorting and removing duplicates from the children of parallel composition nodes. By

Lemma 6.14 sorting can be done in O(n logm) for each parallel composition node. Removing duplicates requires just O(n)
time. Normalization Step 3 visits the tree too, possibly reconfiguring input nodes. The check for applicability requires one

comparison (O(n)) and the check that all the other components coincide (simply check that the subtrees have been merged

by Normalization Step 2: O(n)). Applying�N3 simply entails collapsing the trees (O(n)). Other nodes require no operations.

Thus the normalization for a single node can be done in O(n logm), and the whole normalization can be done in

O(n2 logm). �

7. Bisimilarity is undecidable with four static restrictions

If the restriction operator is added toHOcore, as in Plain CHOCSor higher-orderπ-calculus, then recursion canbe encoded

[4,6] and most of the results in Sections 4–6 would break. In particular, higher-order and context bisimilarities are different

and both undecidable [3,20].

We discuss here the addition of a limited form of restriction, which we call static restriction. These restrictions may

not appear inside output messages: in any output a〈P〉, P is restriction-free. This limitation is important: it prevents for

instance the above-mentioned encoding of recursion frombeingwritten. Static restrictions could also be defined as top-level

restrictions since, by means of standard structural congruence laws (or similar laws allowing to swap input and restriction),

any static restriction can be pulled out at the top-level. Thus the processes would take the form νa1 , . . . , νan P, where νai
indicates the restriction on the name ai, and where restriction cannot appear inside P itself. The operational semantics – LTS

and bisimilarities – are extended as expected. For instance, one would have bounded outputs as actions, as well as rules

StRes
P

α−→ P′ z �∈ fn(α)

νzP
α−→ νzP′

I. Lanese et al. / Information and Computation 209 (2011) 198–226 219

Table 3

Encoding of PCP.

Letters [[a1, P]]u = [[a2, P]]l = a〈P〉
[[a2, P]]u = [[a1, P]]l = a(x). (x ‖ P)

Strings [[ai · s, P]]w = [[ai, [[s, P]]w]]w
[[ε, P]]w = P (ε is the empty word)

Creators Ck = up(x). low(y). (up〈[[uk, x]]u〉 ‖ low〈[[lk, y]]l〉)
Starters Sk = up〈[[uk, b]]u〉 ‖ low〈[[lk, b. success]]l〉
Executor E = up(x). low(y). (x ‖ y)
System Pj = νup νlow νa νb (Sj ‖ !

∏
k Ck ‖ E)

StOpen
P

νṽ a〈R〉−−−−→ P′ z ∈ fn(R) \ ṽ

νzP
ν z̃v a〈R〉−−−−→ P′

defining static restriction and extrusion of restricted names, respectively. Note that there is no need to define how a bounded

output interacts with input as every τ transition takes place under the restrictions. Also, structural congruence (Definition

2.2) would be extended with the axioms for restriction νz νwP ≡ νw νzP and νz0 ≡ 0. (In contrast, notice that we do not

require the axiom: νz(P ‖ Q) ≡ P ‖ (νzQ), where z does not occur in P.) We sometimes write νa1, . . . , an to stand for

νa1, . . . , νan.
We show that four static restrictions are enough tomake undecidable any bisimilarity that has littlemore than a clause for

τ -actions. For this, we reduce the Post correspondence problem (PCP) [18,19] to the bisimilarity of some processes. We call

complete τ -bisimilarity any complete combination of the HOcore bisimulation clauses (as defined in Section 4) that includes

the clause for τ actions (Definition 4.1(1)); the bisimilarity can even be asynchronous (Section 5).

Definition 7.1 (PCP). An instance of PCP consists of an alphabet A containing at least two symbols, and a finite list T1, . . . , Tn
of tiles, where each tile is a pair of words over A. We use Ti = (ui, li) to denote a tile Ti with upper word ui and lower

word li. A solution to this instance is a non-empty sequence of indices i1, . . . , ik , 1 ≤ ij ≤ n (j ∈ 1, . . . , k), such that

ui1 , . . . , uik = li1 , · · · , lik . The decision problem is then to determine whether such a solution exists or not.

Having (static) restrictions, we can refine the notation for non-nested replications (Definition 3.2) and define it in the

unguarded case:

!P � νc (Qc ‖ c〈Qc〉)
where Qc = c(x). (x ‖ c〈x〉 ‖ P) and P is a HOcore process (i.e., it is restriction-free). It is easy to see that !P

τ−→ !P ‖ P.

Now, !0 is a purely divergent process, as it can only make τ -transitions, indefinitely; it is written using only one static

restriction. Given an instance of PCP we build a set of processes P1, . . . , Pn, one for each tile T1, . . . , Tn, and show that, for

each i, Pi is bisimilar to !0 iff the instance of PCP has no solution ending with Ti. Thus PCP is solvable iff there exists j such

that Pj is not bisimilar to !0.

The processes P1, . . . , Pn execute in two distinct phases: first they build a possible solution of PCP, then they non-

deterministically stop building the solution and execute it. If the chosen composition is a solution then a signal on a free

channel success is sent, thus performing a visible action, which breaks bisimilarity with !0.

The precise encoding of PCP into HOcore is shown in Table 3, and described below.We consider an alphabet of two letters,

a1 and a2. The upper and lowerwords of a tile are treated as separate strings, which are encoded letter by letter. The encoding

of a letter is then a process whose continuation encodes the rest of the string, and varies depending on whether the letter

occurs in the upper or in the lower word. We use a single channel to encode both letters: for the upper word, a1 is encoded

as a〈P〉 and a2 as a(x). (x ‖ P), where P is the continuation and x does not occur in P; for the lower word the encodings are

switched. In Table 3, [[ai, P]]w denotes the encoding of the letter ai with continuation P, with w = u if the encoding is on

the upper word,w = l otherwise. Hence, given a string s = ai · s′, its encoding [[s, P]]w is [[ai, [[s′, P]]w]]w , i.e., the first letter
with the encoding of the rest as continuation. Notice that the encoding of an ai in the upper word can synchronize only with

the encoding of ai for the lower word.

Thewhole system Pj is composed by a (replicated) creator Ck for each tile Tk , a starter Sj that launches the building of a tile

composition endingwith (uj, lj), and an executor E. The startermakes the computation begin; creators non-deterministically

add their tile to the beginning of the composition. Also non-deterministically, the executor blocks the building of the com-

position and starts its execution. This proceeds if no difference is found: if both strings end at the same character, then

synchronization on channel b can be performed, which in turn, makes action success visible. Notice that without synchro-

nizing on b, action success could be visible even in the case in which one of the strings is a prefix of the other one.

The encoding of replication requires another restriction, thus Pj has five restrictions. However, names low and a are used

in different phases; thus choosing low = a does not create interferences, and four restrictions are enough.

Theorem 7.2. Given an instance of PCP and one of its tiles Tj, there is a solution of the instance of PCP ending with Tj iff Pj is not

bisimilar to !0 according to any complete τ -bisimilarity.

220 I. Lanese et al. / Information and Computation 209 (2011) 198–226

Proof. We start by proving the left to right implication. Note that !0 has a unique possible computation, that is infinite and

includes only τ actions. Let Ti1 , . . . , Tim be a solution of the instance of the PCP problem such that Tim = Tj . Then Pj can

perform the computation described below, which contains the action success, thus it is not bisimilar to !0. The computation

is as follows:

1. Pj
τ−→∗

νup, a, b. Sj ‖ ∏h=1,...,m−1 Cih ‖ ∏ C ‖ !
∏

k Ck ‖ E = P′
1, by replication unfolding (the

∏
C is the parallel

composition of the creators that have been replicated and will not be used);

2. P′
1

τ−→∗
νup, a, b. up〈[[u, b]]u〉 ‖ a〈[[l, b. success]]l〉 ‖ ∏ C ‖ !

∏
k Ck ‖ E = P′

2, where (u, l) is the solution of the

instance of the PCP problem, by making the starter Sj interact with the creators Cim−1
, . . ., Ci1 ;

3. P′
2

τ−→ τ−→ νup, a, b.
∏

C ‖ !
∏

k Ck ‖ [[u, b]]u ‖ [[l, b. success]]l = P′
3, by making the starter interact with the executor

(note that as every creator starts by an input on up, none of them my be triggered by messages on a);

4. P′
3

τ−→∗
νup, a, b.

∏
C ‖ !

∏
k Ck ‖ b ‖ b. success = P′

4, by executing the encodings of the two strings, exploiting the

fact that they are equal;

5. P′
4

τ−→ νup, a, b.
∏

C ‖ !
∏

k Ck ‖ success = P′
5, by synchronizing on b;

6. P′
5

success−−−−→ νup, a, b.
∏

C ‖ !
∏

k Ck .

For the other implication, first notice that all the computations of Pj are infinite since one can always unfold recursion,

and action success is the only possible visible action. Thus the only possibility for having Pj not bisimilar to !0 is that Pj has a

computation executing success. The only computations that may produce success are structured as follows: they build two

strings by concatenating the tiles, and then they execute them. One can prove by induction on the minimum length of the

strings that if the two strings are different then either their execution gets stuck, or synchronization at b is not possible (this

last case occurs if one of the strings is a prefix of the other). Thus, the two strings must be equal and they are the solution of

the instance of the PCP problem. �

Corollary 7.3. Barbed congruence and any complete τ -bisimilarity are undecidable in HOcore with four static restrictions.

Theorem 7.2 actually shows that even asynchronous barbed bisimilarity (defined as the largest τ -bisimilarity that is

output-barb preserving, and used in the definition of ordinary – as opposed to reduction-closed – barbed congruence) is

undecidable. The corollary above then follows from the fact that all the relations there mentioned are at least as demanding

as asynchronous barbed bisimilarity.

8. Other extensions

We now examine the impact on decidability of bisimilarity of some extensions of HOcore. We omit the details, including

precise statements of the results.

Abstractions. An abstraction is an expression of the form (x)P; it is a parametrized process. An abstraction has a functional

type. Applying an abstraction (x)P of type T → ♦ (where ♦ is the type of all processes) to an argument W of type T yields

the process P{W/x}. The argument W can itself be an abstraction; therefore the order of an abstraction, that is, the level of

arrow nesting in its type, can be arbitrarily high. The order can also be ω, if there are recursive types. By setting bounds on

the order of the types of abstractions, one can define a hierarchy of subcalculi of the higher-order π-calculus [6]; and when

this bound is ω, one obtains a calculus capable of representing the π-calculus (for this all operators of the higher-order

π-calculus are needed, including full restriction).

Allowing thecommunicationof abstractions, as in theHigher-Orderπ-calculus, one thenalsoneeds toadd in thegrammar

for processes an application construct of the form P1〈P2〉, as a destructor for abstractions. Extensions in the LTS would be as

follows. Suppose, as in [21], that beta-conversion � is the least precongruence on HOcore processes generated by the rule

(x)P1〈P2〉 � P1{P2/x}.
The LTS could be then extended with a rule

Beta
P � P′

1 P′
1

α−→ Q

P
α−→ Q

Notice thatwith these additions, the characterization of bisimilarity as IO bisimilarity still holds. For a HOcore extendedwith

abstractions andapplications,∼o
IO is still a congruence and is preservedby substitutions (by straightforwardextensions of the

proofs of Lemmas 4.9 and 4.10). Note that, however, abstraction applicationmay increase the size of processes. If abstractions

are of finite type (i.e., their order is smaller thanω) then only a finite number of such applications is possible, and decidability

of bisimilarity is preserved. Decidability fails if the order is ω, intuitively because in this case it is possible to simulate the

λ-calculus.

I. Lanese et al. / Information and Computation 209 (2011) 198–226 221

Output prefix. If we add an output prefix construct a〈P〉.Q toHOcore, then the proof of the characterization as IO bisimilarity

breaks and, with it, the proof of decidability. Decidability proofs can however be adjusted by appealing to results on unique

decomposition of processes and axiomatization (along the lines of Section 6).

Choice. Decidability remains with the addition of a choice operator to HOcore. The proofs require little modifications. The

addition of both choice and output prefix is harder. It might be possible to extend the decidability proof for output prefix

mentioned above so to accommodate also choice, but the details become much more complex.

Recursion. We do not know whether decidability is maintained by the addition of recursion (or similar operators such as

replication).

9. Concluding remarks

Process calculi are usually Turing complete and have an undecidable bisimilarity (and barbed congruence). Subcalculi

have been studiedwhere bisimilarity becomes decidable but then one loses Turing completeness. Examples are BPA and BPP

(see, e.g., [35]) and CCSwithout restriction and relabeling [36]. In this paperwe have identified a Turing complete formalism,

HOcore, for which bisimilarity is decidable. We do not know other concurrency formalisms where the same happens. Other

peculiarities of HOcore are:

1. it is higher-order, and contextual bisimilarities (barbed congruence) coincide with higher-order bisimilarity (as well

as with others, such as context and normal bisimilarities); and

2. it is asynchronous (in that there is no continuation underneath an output), yet asynchronous and synchronous bisim-

ilarities coincide.

We do not know other non-trivial formalisms in which properties (1) or (2) hold (of course (1) makes sense only on higher-

order models).

We have also given an axiomatization for bisimilarity. From this we have derived polynomial upper bounds to the decid-

ability of bisimilarity. The axiomatization also intuitively explains why results such as decidability, and the collapse of many

forms of bisimilarity, are possible even though HOcore is Turing complete: the bisimilarity relation is very discriminating.

Wehaveused encodings ofMinskymachines andof the Post correspondenceproblem (PCP) for our undecidability results.

The encodings are tailored to analyze different problems: undecidability of termination, and undecidability of bisimilarity

with static restrictions. The PCP encoding is always divergent, and therefore cannot be used to reason about termination. On

the other hand, the encoding of Minsky machines would require at least one restriction for each instruction of the machine,

and therefore would have given us a (much) worse result for static restrictions. We find both encodings interesting: they

show different ways to exploit higher-order communications for modeling.

We have shown that bisimilarity becomes undecidable with the addition of four static restrictions.We do not knowwhat

happenswith one, two, or three static restrictions.We also do not knowwhether the results presentedwould holdwhen one

abstracts from τ -actions and moves to weak equivalences. The problem seems much harder; it reminds us of the situation

for BPA and BPP, where strong bisimilarity is decidable but the decidability of weak bisimilarity is a long-standing open

problem [35].

Related work. Recent progresses to the behavioral theory of higher-order processes are related to the results of this paper.

Some of them, such as environmental bisimulations [22] and the bisimilarities for calculi with passivation constructs [28,

29], have been already mentioned. Koutavas and Hennessy [37] have proposed a first-order behavioral theory for higher-

order processes, based on the combination of the principles of environmental bisimulations and the improvements to

normal bisimilarity proposed by Jeffrey and Rathke [10]. At the heart of the proposed theory is a novel treatment of name

extrusions, which is formalized as an LTS inwhich configurations not only contain a process and the current knowledge of its

environment, but also information on the names that have been extruded by it. As a consequence, the labels of such an LTS

have a very simple structure. This is the simplest presentation of an LTS for a higher-order process calculus we are aware of.

The weak bisimilarity derived from the proposed LTS is shown to be a congruence, fully abstract with respect to contextual

equivalence, and to have a logic characterization using a propositional Hennessy–Milner logic. These results are shown to

scale up to (higher-order) languages with distribution, such as the one introduced in [38], for which practical translations

into first-order calculi do not exist.

As mentioned in Section 1, in expressiveness studies for higher-order process calculi the usual yardstick for comparison

is given by first-order languages such as the π-calculus. A representative work is [21], where a hierarchy of HOπ fragments

(obtained by varying the degree of the abstractions allowed) is shown to match the expressiveness of a hierarchy of first-

order calculi with only internal mobility. In the same vein is [39], which, inspired by the encoding given in [2], presents an

encoding of the π-calculus into Homer, a higher-order process calculus with locations [26]. Such an encoding is exploited

in [40] as a way of characterizing finite-control fragments of Homer in which barbed bisimilarity is decidable.

222 I. Lanese et al. / Information and Computation 209 (2011) 198–226

The encoding of Turing complete models (such as Minsky and Random Access Machines, RAMs [41]) is a common proof

technique for carrying out expressiveness studies. Our encoding of Minsky machines into HOcore resembles in structure

those in [42,43], where RAMs are used to investigate the expressive power of restriction and replication in name-passing

calculi, and those in [44], where the impact of restriction andmovement on the expressiveness of Ambient calculi is studied.

All these encodings share the same guiding principle: representing counting as the nesting of suitable components. Those

components are restricted names in CCS [42,43], recursive definitions in π-calculus [42], ambients themselves in Ambient

calculus [44], and higher-order messages in our case. Note that by combining our encoding with the one of higher-order π
intoπ-calculus in [6], we obtain an encoding very similar to the one in [42]. Reductions from the PCP to prove undecidability

results have been used in other settings. For instance, suitable reductions are used in [45] to show the undecidability of

equivalences in timed concurrent constraint languages, and in [46] to show undecidability of the model checking problem

for the Ambient calculus without restriction but with replication.

A number of expressiveness and decidability results for variants/extensions of HOcore that complement the results here

presented have been reported in [47–49]. In an attempt to understand the source of expressive power in HOcore, [48] studies

the fragment ofHOcore inwhichnestedhigher-order output actions are disallowed.Hence, the encoding ofMinskymachines

in Section 3 is not expressible in such a fragment. The focus of [48] is in the (un)decidability of termination (i.e., the absence

of divergent computation) and convergence (i.e., the existence of a non-diverging computation) in the mentioned fragment.

The main result in [48] is that, in contrast to HOcore, in the fragment without nested higher-order outputs termination

becomes decidable, while convergence remains undecidable (as in HOcore). While the latter result is shown by means of a

non-deterministic encoding of Minskymachines, the former result is obtained by appealing to the theory of well-structured

transition systems, following the approach in [43]. This result is then strengthened in [47, Chapter 5] where it is shown that

when the fragment of HOcore considered in [48] is extended with a passivation operator (as in Homer and the Kell calculus

[50]) full Turing completeness (as in HOcore) is recovered, and hence termination is undecidable. Finally, [47,49, Chapter

6] studies the expressiveness of (a)synchronous and polyadic communication in the context of strictly higher-order process

calculi (roughly, variants of HOcore with restriction). Three main results are obtained. First, similarly to first-order calculi,

synchronous process passing is shown to be encodable into asynchronous process passing. Then, it is shown that the absence

of name passing leads to a hierarchy of higher-order process calculi based on the arity allowed in polyadic communication,

thus revealing a striking point of contrast with respect to first-order calculi. Finally, the passing of abstractions is shown to

be more expressive than process passing alone.

Acknowledgments

This research was initiated by some remarks and email exchange with Naoki Kobayashi. The authors also benefited from

exchanges with Jesús Aranda, Cinzia Di Giusto, Maurizio Gabbrielli, Antonín Kučera, Sergueï Lenglet, Nobuko Yoshida, and

Gianluigi Zavattaro, from feedback of the readers of the Moca and Concurrency mailing lists, and from the comments and

remarks of the anonymous referees.

Appendix A. Proof of Lemma 3.4

This appendix is devoted to the proof of correctness of the encoding of Minskymachines into HOcore. In what followswe

assume a Minsky machine N with instructions (1 : I1), . . . , (n : In) and with registers r0 = m0 and r1 = m1. The encoding

of a configuration (i,m0,m1) of N is denoted [[(i,m0,m1)N]]M. We use −→j to stand for a sequence of j reductions.

Lemma (Soundness). Let (i,m0,m1) be a configuration of a Minsky machine N.

If (i,m0,m1) −→M (i′,m′
0,m

′
1) then there exist a finite j and a process P such that [[(i,m0,m1)N]]M −→j P and P =

[[(i′,m′
0,m

′
1)N]]M.

Proof. Weproceed by case analysis on the instruction performed by theMinskymachine. Hence, we distinguish three cases

corresponding to the behaviors associated to rules M-Jmp, M-Dec, andM-Inc.

CaseM-Jmp. We have aMinsky configuration (i,m0,m1)withm0 = 0 and (i : DECJ(r0, k)). By Definition 3.3, its encoding

in HOcore is as follows:

[[(i,m0,m1)N]]M = pi ‖ [[r0 = 0]]M ‖ [[r1 = m1]]M ‖
[[(i : DECJ(r0, k))]]M ‖ ∏

l=1,...,n,l �=i

[[(l : Il)]]M

We begin by noting that the program counter pi is consumed by the encoding of the instruction i. The content of the

instruction is thus exposed, and we then have

[[(i,m0,m1)N]]M −→ [[r0 = 0]]M ‖ d̂ec0 ‖ ack. (z0. pk + n0. pi+1) ‖ S = P1

I. Lanese et al. / Information and Computation 209 (2011) 198–226 223

where S = [[r1 = m1]]M ‖ ∏n
l=1[[(l : Il)]]M stands for the rest of the system. The only transition possible at this point is the

behavior selection on dec0, which yields the following:

P1 −→ r00 ‖ ẑ0 ‖ REG0 ‖ ack. (z0. pk + n0. pi+1) ‖ S = P2

Now there is a synchronization between r00 and REG0 for reconstructing the register (with an extra step to unfold the

recursion again)

P2 −→−→ ẑ0 ‖ ack ‖
(
inc0. r

S
0 〈(| 0 |)0〉 + dec0.

(
r00 ‖ ẑ0

))
‖ REG0 ‖

ack. (z0. pk + n0. pi+1) ‖ S = P3

Once the register has been re-created, register and instruction can now synchronize on ack:

P3 −→ ẑ0 ‖
(
inc0. r

S
0 〈(| 0 |)0〉 + dec0.

(
r00 ‖ ẑ0

))
‖ REG0 ‖

z0. pk + n0. pi+1 ‖ S = P4

At this point, the only possible transition is the behavior selection on z0, which indicates that the content of r0 was indeed

zero:

P4 −→
(
inc0. r

S
0 〈(| 0 |)0〉 + dec0.

(
r00 ‖ ẑ0

))
‖ REG0 ‖ pk ‖ S = P5

Using the definitions of [[·]]M and S, and some reordering, we note that P5 can be equivalently written as

P5 = pk ‖ [[r0 = 0]]M ‖ [[r1 = m1]]M ‖
n∏

l=1

[[(l : Il)]]M

which, in turn, corresponds to the encoding of [[(k, 0,m1)N]]M, as desired.

CaseM-Dec. Wehave aMinsky configuration (i,m0,m1)withm0 = c (for some c > 0) and (i : DECJ(r0, k)). By Definition

3.3, its encoding in HOcore is as follows:

[[(i,m0,m1)N]]M = pi ‖ [[r0 = c]]M ‖ [[r1 = m1]]M ‖
[[(i : DECJ(r0, k))]]M ‖ ∏

l=1,...,n,l �=i

[[(l : Il)]]M

We begin by noting that the program counter pi is consumed by the encoding of the instruction i. The content of the

instruction is thus exposed, and we then have

[[(i,m0,m1)N]]M −→ [[r0 = c]]M ‖ d̂ec0 ‖ ack. (z0. pk + n0. pi+1) ‖ S = P1

where S = [[r1 = m1]]M ‖ ∏n
l=1[[(l : Il)]]M stands for the rest of the system. The only transition possible at this point is the

behavior selection on dec0, which yields the following:

P1 −→ (| c − 1 |)0 ‖ REG0 ‖ ack. (z0. pk + n0. pi+1) ‖ S = P2

It is worth recalling that (| c − 1 |)0 = rS0 〈(| c − 2 |)0〉 ‖ n̂0. Considering this, now there is a synchronization between rS0
and REG0 for decrementing the value of the register (with an extra step to unfold the recursion again)

P2 −→−→ n̂0 ‖ ack ‖
(
inc0. r

S
0 〈(| c − 1 |)0〉 + dec0. (| c − 2 |)0

)
‖ REG0 ‖

ack. (z0. pk + n0. pi+1) ‖ S = P3

Once the register has been re-created, register and instruction can now synchronize on ack:

224 I. Lanese et al. / Information and Computation 209 (2011) 198–226

P3 −→ n̂0 ‖
(
inc0. r

S
0 〈(| c − 1 |)0〉 + dec0. (| c − 2 |)0

)
‖ REG0 ‖

z0. pk + n0. pi+1 ‖ S = P4

At this point, the only possible transition is the behavior selection on n0, which indicates that the content of r0 was greater

than zero:

P4 −→
(
inc0. r

S
0 〈(| c − 1 |)0〉 + dec0. (| c − 2 |)0

)
‖ REG0 ‖ pi+1 ‖ S = P5

Using the definitions of [[·]]M and S, and some reordering, we note that P5 can be equivalently written as

P5 = pi+1 ‖ [[r0 = c − 1]]M ‖ [[r1 = m1]]M ‖
n∏

l=1

[[(l : Il)]]M

which, in turn, corresponds to the encoding of [[(i + 1, c − 1,m1)N]]M, as desired.

Case M-Inc. We have a Minsky configuration (i,m0,m1) with (i : INC(r0)). Its encoding in HOcore is as follows:

[[(i,m0,m1)N]]M = pi ‖ [[r0 = m0]]M ‖ [[r1 = m1]]M ‖
[[(i : INC(r0))]]M ‖ ∏

l=1,...,n,l �=i

[[(l : Il)]]M

We begin by noting that the program counter pi is consumed by the encoding of the instruction i:

[[(i,m0,m1)N]]M −→ [[r0 = m0]]M ‖ înc0 ‖ ack. pi+1 ‖ S = P1

where S = [[r1 = m1]]M ‖ ∏n
l=1[[(l : Il)]]M stands for the rest of the system. The only transition possible at this point is the

behavior selection on inc0. After such a selection we have

P1 −→ rS0 〈(| m0 |)0〉 ‖ REG0 ‖ ack. pi+1 ‖ S = P2

Now there is a synchronization between rS0 and REG0 for incrementing the value of the register

P2 −→−→ ack ‖
(
inc0.

(
rS0 〈rS0 〈(| m0 |)0〉 ‖ n̂0〉

)
+ dec0. ((| m0 |)0)

)
‖ REG0 ‖

ack. pi+1 ‖ S = P3

Once the register has been re-created, a synchronization on ack is possible

P3 −→
(
inc0. (r

S
0 〈rS0 〈(| m0 |)0〉 ‖ n̂0〉

)
+ dec0. ((| m0 |)0)) ‖ REG0 ‖

pi+1 ‖ S = P4

Using the definition of (| · |)j we note that P4 actually corresponds to

P4 =
(
inc0. (r

S
0 〈(| m0 + 1 |)0〉 + dec0. ((| m0 |)0))

)
‖ REG0 ‖ pi+1 ‖ S

which in turn can be written as

P4 = pi+1 ‖ [[r0 = m0 + 1]]M ‖ [[r1 = m1]]M ‖
n∏

l=1

[[(l : Il)]]M

which corresponds to the encoding of [[(i + 1,m0 + 1,m1)N]]M, as desired. �

Lemma (Completeness). Let (i,m0,m1) be a configuration of a Minsky machine N.

If [[(i,m0,m1)N]]M −→ P1 then

I. Lanese et al. / Information and Computation 209 (2011) 198–226 225

• if P1 contain încj (j ∈ {0, 1}) then the only computation possible is P1 −→4 PJ;

• if P1 contain d̂ecj (j ∈ {0, 1}) then the only computation possible is P1 −→5 PJ .

In both cases, we have Pj = [[(i′,m′
0,m

′
1)N]]M and (i,m0,m1) −→M (i′,m′

0,m
′
1).

Proof. Consider the reduction [[(i,m0,m1)N]]M −→ P1. An analysis of the structure of process [[(i,m0,m1)N]]M reveals

that, in all cases, the only possibility for the first step corresponds to the consumption of the program counter pi, releasing

either încj or d̂ecj (j ∈ {0, 1}). This implies that there exists an instruction labeled with i, that can be executed from the

configuration (i,m0,m1).Weproceed by a case analysis on the possible instruction, considering also the fact that the register

on which the instruction acts can hold a value equal or greater than zero. In all cases, it can be shown that computation

evolves deterministically, until reaching a process in which a new program counter (that is, some pi′) appears. The program

counter pi′ is inside a process that corresponds to [[(i′,m′
0,m

′
1)N]]M, where (i,m0,m1) −→M (i′,m′

0,m
′
1). The analysis

follows the same lines as the one reported for the proof of the soundness lemma above, and we omit it. �

Lemma. Let N be a Minsky machine. We have that N �M if and only if [[N]]M �.

Proof. Straightforward from the soundness and completeness lemmas given above. �

References

[1] B. Thomsen, A calculus of higher order communicating systems, in: Proceedings of POPL’89, ACM Press, 1989, pp. 143–154.
[2] B. Thomsen, Plain CHOCS: a second generation calculus for higher order processes, Acta Inform. 30 (1) (1993) 1–59.

[3] D. Sangiorgi, ExpressingMobility in Process Algebras: First-order and Higher-order Paradigms, Ph.D. thesis CST-99-93, University of Edinburgh, Department
of Computer Science, 1992.

[4] B. Thomsen, Calculi for Higher Order Communicating Systems, Ph.D. thesis, Imperial College, 1990.
[5] X. Xu, On the Bisimulation Theory and Axiomatization of Higher-order Process Calculi, Ph.D. thesis, Shanghai Jiao Tong University, 2007.

[6] D. Sangiorgi, D. Walker, The π-Calculus: A Theory of Mobile Processes, Cambridge University Press, 2001.

[7] I. Phillips, M.G. Vigliotti, Symmetric electoral systems for ambient calculi, Inform. Comput. 206 (1) (2008) 34–72.
[8] D. Gorla, On the relative expressive power of calculi for mobility, Electr. Notes Theor. Comput. Sci. 249 (2009) 269–286.

[9] M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, 1967.
[10] A. Jeffrey, J. Rathke, Contextual equivalence for higher-order pi-calculus revisited, Log. Methods Comput. Sci. 1 (1) (2005) 1–22.

[11] Z. Cao, More on bisimulations for higher order pi-calculus, in: Proceedings of FoSSaCS’06, LNCS, vol. 3921, Springer, 2006, pp. 63–78.
[12] D. Sangiorgi, The lazy lambda calculus in a concurrency scenario, Inform. Comput. 111 (1) (1994) 120–153.

[13] P. Jančar, Undecidability of bisimilarity for Petri nets and some related problems, Theor. Comput. Sci. 148 (2) (1995) 281–301.

[14] P. Schnoebelen, Bisimulation and other undecidable equivalences for lossy channel systems, in: Proceedings of TACS’01, LNCS, vol. 2215, Springer, 2001, pp.
385–399.

[15] A. Dovier, C. Piazza, A. Policriti, An efficient algorithm for computing bisimulation equivalence, Theor. Comput. Sci. 311 (1–3) (2004) 221–256.
[16] R. Milner, F. Moller, Unique decomposition of processes, Theor. Comput. Sci. 107 (2) (1993) 357–363.

[17] D. Hirschkoff, D. Pous, A distribution law for CCS and a new congruence result for the π-calculus, Log. Methods Comput. Sci. 4 (2) (2008).
[18] E.L. Post, A variant of a recursively unsolvable problem, Bull. Am. Math. Soc. 52 (1946) 264–268.

[19] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Company, 2005.

[20] D. Sangiorgi, Bisimulation for higher-order process calculi, Inform. Comput. 131 (2) (1996) 141–178.
[21] D. Sangiorgi, π-Calculus, internal mobility and agent-passing calculi, Theor. Comput. Sci. 167 (2) (1996) 235–274.

[22] D. Sangiorgi, N. Kobayashi, E. Sumii, Environmental bisimulations for higher-order languages, in: Proceedings of LICS’07, IEEE Computer Society, 2007, pp.
293–302.

[23] R. Milner, Communication and Concurrency, International Series in Computer Science, Prentice-Hall, 1989.
[24] D.J. Howe, Proving congruence of bisimulation in functional programming languages, Inform. Comput. 124 (2) (1996) 103–112.

[25] M. Baldamus, T. Frauenstein, Congruence Proofs for Weak Bisimulation Equivalences on Higher Order Process Calculi, Technical Report, Berlin University of

Technology, 1995.
[26] M. Bundgaard, J.C. Godskesen, T. Hildebrandt, Bisimulation Congruences for Homer – A Calculus of Higher Order Mobile Embedded Resources, Technical

Report TR-2004-52, IT University of Copenhagen, 2004.
[27] J.C. Godskesen, T.T. Hildebrandt, Extending howe’s method to early bisimulations for typed mobile embedded resources with local names, in: Proceedings

of FSTTCS, Lecture Notes in Computer Science, vol. 3821, Springer, 2005, pp. 140–151.
[28] S. Lenglet, A. Schmitt, J.B. Stefani, Normal bisimulations in calculi with passivation, in: Proceedings of FOSSACS, Lecture Notes in Computer Science, vol.

5504, Springer, 2009, pp. 257–271.
[29] S. Lenglet, A. Schmitt, J.B. Stefani, Howe’s method for calculi with passivation, in: Proceedings of CONCUR, Lecture Notes in Computer Science, vol. 5710,

Springer, 2009, pp. 448–462.

[30] K. Honda, N. Yoshida, On reduction-based process semantics, Theor. Comput. Sci. 151 (2) (1995) 437–486.
[31] R. Milner, D. Sangiorgi, Barbed bisimulation, in: Proceedings of 19th ICALP, LNCS, vol. 623, Springer-Verlag, 1992, pp. 685–695.

[32] R.M. Amadio, I. Castellani, D. Sangiorgi, On bisimulations for the asynchronous pi-calculus, Theor. Comput. Sci. 195 (2) (1998) 291–324.
[33] F. Moller, Axioms for Concurrency, Ph.D. thesis CST-59-89, University of Edinburgh, Department of Computer Science, 1989.

[34] N.G. De Bruijn, Lambda calculus notation with nameless dummies: A tool for automatic formula manipulation, with application to the Church-Rosser
theorem, Indagat. Math. 34 (1972) 381–392.

[35] A. Kučera, P. Jančar, Equivalence-checking on infinite-state systems: techniques and results, TPLP 6 (3) (2006) 227–264.

[36] S. Christensen, Y. Hirshfeld, F. Moller, Decidable subsets of CCS, Comput. J. 37 (4) (1994) 233–242.
[37] V. Koutavas, M. Hennessy, First-order Reasoning for Higher-order Concurrency, Technical Report, Trinity College Dublin, February 2010.

[38] J.L. Vivas, M. Dam, From higher-order pi-calculus to pi-calculus in the presence of static operators, in: Proceedings of CONCUR, Lecture Notes in Computer
Science, vol. 1466, Springer, 1998, pp. 115–130.

[39] M.Bundgaard, J.C.Godskesen, T.Hildebrandt,OnEncoding thePi-calculus inHigher-orderCalculi, TechnicalReportTR-2008-106, ITUniversityofCopenhagen,
2008.

[40] M. Bundgaard, J.C. Godskesen, B. Haagensen, H. Hüttel, Decidable fragments of a higher order calculus with locations, Electr. Notes Theor. Comput. Sci. 242

(1) (2009) 113–138.

226 I. Lanese et al. / Information and Computation 209 (2011) 198–226

[41] J.C. Shepherdson, H.E. Sturgis, Computability of recursive functions, J. ACM 10 (2) (1963) 217–255.
[42] N. Busi, M. Gabbrielli, G. Zavattaro, Replication vs. recursive definitions in channel based calculi, in: Proceedings of ICALP, LNCS, vol. 2719, Springer, 2003,

pp. 133–144.
[43] N. Busi, M. Gabbrielli, G. Zavattaro, On the expressive power of recursion, replication and iteration in process calculi, Math. Struct. Comput. Sci. 19 (6) (2009)

1191–1222.

[44] N. Busi, G. Zavattaro, On the expressive power of movement and restriction in pure mobile ambients, Theor. Comput. Sci. 322 (3) (2004) 477–515.
[45] M. Nielsen, C. Palamidessi, F.D. Valencia, On the expressive power of temporal concurrent constraint programming languages, in: Proceedings of PPDP, ACM,

2002, pp. 156–167.
[46] W. Charatonik, J.M. Talbot, The decidability of model checking mobile ambients, in: Proceedings of CSL, LNCS, vol. 2142, Springer, 2001, pp. 339–354.

[47] J.A. Pérez, Higher-Order Concurrency: Expressiveness and Decidability Results, Ph.D. thesis, University of Bologna, 2010.
[48] C. Di Giusto, J.A. Pérez, G. Zavattaro, On the expressiveness of forwarding in higher-order communication, in: Proceedings of ICTAC, LectureNotes in Computer

Science, vol. 5684, Springer, 2009, pp. 155–169.

[49] I. Lanese, J.A. Pérez, D. Sangiorgi, A. Schmitt, On the expressiveness of polyadic and synchronous communication in higher-order process calculi, in: Pro-
ceedings of ICALP’10, Lecture Notes in Computer Science, vol. 6199, Springer, 2010, pp. 442–453.

[50] A. Schmitt, J.B. Stefani, The kell calculus: a family of higher-order distributed process calculi, in: Global Computing, Lecture Notes in Computer Science, vol.
3267, Springer, 2005, pp. 146–178.

	On the expressiveness and decidability of higher-order process calculi
	Introduction
	The calculus
	HOcore is Turing complete
	Minsky machines
	Encoding Minsky machines into HOcore

	Bisimilarity in HOcore
	Barbed congruence and asynchronous equivalences
	Axiomatization and complexity
	Axiomatization
	Complexity of bisimilarity checking

	Bisimilarity is undecidable with four static restrictions
	Other extensions
	Concluding remarks
	Proof of Lemma 3.4
	References

