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Game, Set, and Graph 

In the twentieth century the Theory of Games was transformed.  It began as an 

amusing pastime, and ended as a major branch of mathematical research and a 

key paradigm of economic theory. Here it will be argued that the transformation 

was the result of the work of mathematicians, such as Ernst Zermelo, John von 

Neumann and Dénes Kőnig, who also contributed to two other areas of 

mathematics that were emerging at the same time: the Theory of Sets and the 

Theory of Graphs. 

Keywords: game theory, set theory, graph theory. 

Introduction 

The theme of this paper is the interaction between three areas of mathematical 

research, Game Theory, Set Theory and Graph Theory. All three flourished in the 

twentieth century. Although their origins varied considerably, the three disciplines 

were forged by mathematicians whose interests spanned several areas of 

mathematics, and we shall explain how these links were central to the 

development of the disciplines and led to significant advances.   

 

Paris 1900 

The second International Congress of Mathematicians (ICM) took place in Paris 

in August 1900.  It is now mainly remembered for the talk delivered by David 

Hilbert, which began with a rhetorical question: ‘Who among us would not be 

glad to lift the veil behind which the future lies hidden and to cast a glance at the 

next advances of our science...’ (Hilbert 1901; English translation by Winston 

Newson 1902).  Hilbert went on to discuss 23 problems, covering many fields of 

mathematics, the solution of which, he believed, would lead to significant 

advances in the subject. Work on the problems did indeed have a profound 

influence on the development of mathematics in the twentieth century (Gray 

2000).     

Hilbert’s first problem concerned the foundations of mathematics.  In the latter 

part of the nineteenth century Cantor and Dedekind had given formal definitions of ℝ, 

the system of real numbers, also known as the continuum.  Cantor had also given a 
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good definition of the cardinal number of a set, which was particularly significant 

because it clarified the notion of infinity.  He had shown that some infinite subsets of ℝ, 

such as the set ℚ of rational numbers, had a smaller cardinal number than ℝ itself, and 

he had conjectured that no other kinds of infinity could occur among the subsets of ℝ.  

This was to become known as the continuum hypothesis (CH).  

Hilbert remarked that ‘it would follow at once that the continuum has the next 

cardinal number beyond that of the countable set’, and he speculated about how this 

result might be proved.   He referred to another statement of Cantor, concerning the 

ordering of the continuum.  The standard ordering of the real numbers has the property 

that a subset which has a lower bound need not have a least member: for example, the 

set of strictly positive real numbers has the lower bound 0, but it has no least member.  

On the other hand, the set of strictly positive integers does have a least member, 1, and 

this set is said to be well-ordered, because the property holds quite generally. ‘The 

question now arises’ said Hilbert, ‘whether the totality of all numbers [the continuum] 

may not be arranged in another manner’ so that the well-ordering property holds for it 

too. Cantor believed that this was so, but he had not been able to prove it.  This question 

was to lead, indirectly, to a significant contribution to the Theory of Games.  

 

Heidelberg 1904 

The next International Congress of Mathematicians took place in Heidelberg in 1904. 

Work on several of Hilbert’s problems was in progress, and a Hungarian 

mathematician, Gyula (Julius) Kőnig startled the congress by announcing that the 

continuum cannot be well-ordered (Ebbinghaus 2007). Furthermore, the Continuum 

Hypothesis is false! This announcement created a sensation, although several of those 

present were unconvinced – and, unfortunately, Kőnig was wrong.   

The flaw in Kőnig’s argument was quickly spotted: he had relied on a theorem 

of Bernstein which specifically did not hold under the conditions needed. Luckily, some 

ephemeral evidence of how the error was spotted has survived (Ebbinghaus 2007). One 

of those present in Heidelberg was a young German mathematician, Ernst Zermelo, who 

had been working in Göttingen where Hilbert was a professor, He had already published 

a paper on cardinal numbers, and had doubtless worked on the continuum hypothesis.  

A few weeks after the ICM he sent a postcard to his friend Max Dehn, explaining that 

he had been unable to check Bernstein’s paper at the time, but, on his return to 
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Göttingen, he had found a copy and verified that Kőnig was mistaken. He foresaw that 

‘some fine polemic will still unfold in the [Mathematische] Annalen’. In fact, Zermelo 

succeeded in proving the antithesis of Kőnig’s result, which was equally startling: every 

set can be well-ordered (Zermelo 1904; English translation in van Heijenoort 1967).   

  As he had expected, Zermelo’s proof of the well-ordering theorem did not put an 

end to controversy in the mathematical community. One reason was that he relied on a 

property of sets that he called the Auswahlaxiom; also known as the Axiom of Choice 

(AC).  The AC asserts that given any collection of non-empty sets, it is possible to 

construct a set that contains one member of each of them.  Some mathematicians 

regarded this as ‘obvious’, while others were sceptical because it seemed to have 

consequences that were highly counter-intuitive.  The publication of some 

correspondence in the Bulletin of the French Mathematical Society put the debate into 

sharp focus (Hadamard 1905).  

 

The work of Zermelo 

One result of the controversy was that Zermelo himself set out to examine the 

foundations of set theory.  Cantor had expressed his arguments in the prevailing literary 

style, and the subject was still only in its infancy.  So Zermelo hoped to establish a more 

mathematical treatment, as (for example) Peano had done with his axioms for the 

system of natural numbers. In 1908 he published two important papers.  First, he gave a 

new proof of his well-ordering theorem, in which he tried to avoid reliance on the 

Axiom of Choice (Zermelo 1908a). He also produced the first attempt to formulate 

explicitly a collection of axioms on which set theory could be based (Zermelo 1908b).  

This work was prompted partly by the ongoing controversy about the status of the AC 

and CH, but also by the fact that several difficulties in the naïve approach to the subject 

had been discovered. These difficulties led to self-contradictory statements about such 

things as the ‘set of all sets which are not members of themselves’. They were 

euphemistically classified as ‘paradoxes’ or ‘antinomies’, and Zermelo proposed to 

avoid them by imposing some restrictions on the notions of ‘set’ and ‘membership’.  

  Thus it was that the foundations of set theory became very controversial in the 

first decade of the twentieth century.  Zermelo’s work was at the heart of the 

controversy, as he himself had foreseen in his postcard to Dehn back in 1904.  It is 

possible that he found the continuing excitement rather tiresome, because, when he was 
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invited to address the fifth ICM in Cambridge (England) in 1912, he chose a relatively 

safe subject for his talk. It was ‘Über eine Anwendung der Mengenlehre auf die Theorie 

Schachspeils’ (‘On an Application of Set Theory to the Theory of the Game of Chess’).      

         The talk was published in German in the Proceedings of the ICM (Zermelo 1913).  

Much later, when the subject that we now know as the Theory of Games had been 

established, it was often referred to in historical accounts of that subject.  In 2001 Ulrich 

Schwalbe and Paul Walker published an English translation, with a careful analysis of 

what Zermelo had actually written and the various interpretations that had been 

suggested (Schwalbe and Walker 2001).  Some of the earlier interpretations were  

flawed, and we shall not expand on them here, focussing instead on the part played by 

Zermelo’s paper in later developments.    

         It must be stressed that Zermelo’s main aim was to express some questions in the 

formal language of his Mengenlehre, and to apply some basic ideas from the newly-

formulated theory of infinite sets.  Although this approach to writing a mathematical 

paper is now almost universal, at that time it was quite unusual: sets, functions, 

relations, and the associated terminology, were not the common currency of 

mathematical discourse.   Zermelo did not discuss chess in the form that the game is 

usually played; specifically, he did not consider the rules which require the game to be 

ended as a draw in certain circumstances. He set out to clarify the notion of a winning 

position, by which he meant a position in which one player (usually White) can force a 

win in a finite number of moves, whatever the other player (Black) does. This is the 

situation studied in ‘Chess Problems’, where the solver is given an instruction such as 

‘White to move and mate in three’. Later in this paper we shall describe what Zermelo 

did in a way that illuminates its relationship with subsequent work; but, given the 

misleading accounts of his paper that have appeared, it is as well to begin by stating 

what he did not do.  

First, Zermelo did not attempt to determine the strategy which White should 

employ in order to win.  He was concerned only with the definition of a winning 

position, not the method by which the win could be achieved. Consequently, he was not 

responsible for what is now often referred to by game-theorists as ‘Zermelo’s 

Algorithm’ or ‘backwards induction’.  Furthermore, his arguments about an upper 

bound for the number of moves required to force a win were incomplete, as we shall 

explain when we return to this point.   



5 

 

It must also be noted that Zermelo did not refer to the extensive literature on 

games of all kinds which was already in existence. In the 17th century the analysis of 

games of chance had led to the establishment of probability theory as a branch of 

mathematics. As we shall see, probability was to become a basic tool in the analysis of 

games of strategy, but Zermelo himself made no use of it.  The notion of a winning 

position had also been recognised by several authors, including Charles Babbage 

(1864), who discussed the design of an automaton to play the game he called Tit-tat-to 

(Noughts-and-crosses).  More relevant to Zermelo’s purpose, but also not mentioned by 

him, were the papers of Bouton (1901) and Moore (1910) on the game of Nim.  In such 

simple games it is possible to define precisely what is meant by a winning position, and 

to specify a winning strategy—a stark contrast with the situation in Chess. 

  

The Kőnigs and the Theory of Graphs 

Gyula Kőnig had to admit that his claims about well-ordering and the CH were wrong, 

but he continued to work on the foundations of mathematics. Today, he is best known 

for his elegant proof (Kőnig 1906) of a fundamental theorem due to Cantor, Schröder 

and Bernstein. In modern terminology, this says that if there are injections 𝑆 → 𝑇 and 

𝑇 → 𝑆 then there is a bijection 𝑆 ↔ 𝑇.  Equivalently, let #𝑆 denote the cardinal number 

of the set S; then the statements #𝑆 ≤ #𝑇 and #𝑇 ≤ #𝑆 imply that #𝑆 = #𝑇.  Kőnig’s 

proof of this fact is significant because it uses the methods of what we now call the 

Theory of Graphs. 

       Formally, a graph is an abstract object defined by a set of vertices and a set of 

edges. The fact that the vertices and edges can be represented pictorially by points and 

lines often helps us to understand arguments about graphs, and that is why Kőnig’s 

proof of the Cantor-Schröder-Bernstein theorem is often quoted.  In Figure 1 the 

members of the (possibly infinite) sets 𝑆 and 𝑇 are represented by points.  
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Figure 1. Injections 𝑆 → 𝑇 and 𝑇 → 𝑆.  

 

           In the top diagram, an injection  𝑆 → 𝑇 is represented by drawing a grey line 

from each point in 𝑆 to the corresponding point in 𝑇. Note that every point in 𝑆 is at the 

end of a grey line, while each point in 𝑇 may be at the end of either one grey line or no 

grey line.   Similarly, an injection 𝑇 → 𝑆 can be represented by drawing a black line 

from each point in 𝑇 to the corresponding point in 𝑆. When we merge the two diagrams 

(Figure 2) every point now belongs to a unique path, comprising grey lines and black 

lines alternately.   

 

 

Figure 2. Merging the two injections.  

 

These paths can be of four kinds only: 

(1) semi-infinite with an end in 𝑆 (for example, the points labelled a); 

(2) semi-infinite with an end in 𝑇 (for example, the points labelled b); 

(3) finite, with no ends (for example, the points labelled c): 

(4) doubly-infinite (for example the points labelled d). 

In each case it is easy to construct a bijection between the 𝑆-points and the 𝑇-points in 

the path.  For example, in case (1) the grey lines define a bijection.   Combining these 

bijections we obtain a bijection 𝑆 ↔ 𝑇.   
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      Significant results about graphs had been published in the nineteenth century, and 

many of the original papers have been described and translated into English by Biggs, 

Lloyd and Wilson (1976). However, when Gyula Kőnig wrote his paper in 1906, the 

Theory of Graphs was not an established field of mathematical research. The fact that it 

eventually became so was largely the result of the work of Gyula’s son, Dénes.    

            Dénes Kőnig was born in Budapest on 21 September 1884.  His mathematical 

abilities were soon apparent, and he published his first paper in 1899. He attended the 

University of Budapest, and then moved to Göttingen, where he encountered graph-

theoretical notions in various contexts.  For example, he would have heard about the 

paper of Julius Petersen (1891), in which graph terminology was applied to problems of 

invariant theory, following Gordan and Hilbert.  In this paper Petersen also proved a 

fundamental theorem on the factorization of graphs, which was a precursor of Kőnig’s 

later results on this subject.  Dénes attended Hermann Minkowski’s course on topology, 

and he may have been present on the famous occasion when the lecturer attempted 

(unsuccessfully) to give an impromptu solution of the Four Colour Problem.  On his 

return to Budapest his interest was maintained, and in 1911 he wrote two papers on the 

topology of graphs and surfaces (Kőnig 1911).   

          Dénes Kőnig’s interest in graphs was clearly reinforced by his father’s work on 

Set Theory, especially the proof of the Cantor-Schröder-Bernstein Theorem.  Shortly 

after Gyula’s death, Dénes completed and published a book that his father had written 

on the foundations of Set Theory and the philosophical background to it (Konig 1914). 

In that year he also gave an address at a conference on mathematical philosophy in 

Paris, in which he discussed some problems about correspondences between infinite 

sets. The outbreak of the Great War delayed publication of the conference proceedings, 

and the talk was not published until many years later, in French (Kőnig 1923). 

However, in 1916 a version appeared in both Hungarian and German (Kőnig 1916).  

This paper contained an important result about finite graphs, obtained as a special case 

of a more general problem about infinite graphs. 

            In his 1916 paper Kőnig considered what we now refer to as edge-colourings of 

a graph. Here colours are assigned to the edges in such a way that no two edges ending 

at the same vertex have the same colour. An obvious lower bound on the number of 

colours required is given by 𝐷,  the largest degree of a vertex, where the degree is the 

number of edges which have that vertex as an end.  Petersen (1898) had given an 
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example of a graph in which all vertices have degree three, but there is no edge-

colouring with three colours. However, Kőnig was able to prove that the lower bound 

𝐷 can always be achieved if the graph has a very simple property.  

           A graph is bipartite if its vertex-set can be split into two parts in such a way that 

every edge has an end in both parts.  Kőnig proved that, in a finite bipartite graph with 

maximum degree 𝐷, an edge-colouring with 𝐷 colours is always possible.  His proof 

used the principle of induction, and it was based on a construction reminiscent of his 

father’s proof of the Cantor-Schröder-Bernstein theorem.  The key idea was to consider 

an alternating path, consisting of edges that have two colours alternately, and to switch 

the colours on that path. This simple idea has many applications, and it became known 

as the Hungarian method. In fact, it was suggested by a technique used by A.B. Kempe 

in his early work on the map-colouring problem, as Kőnig himself wrote later (Kőnig 

1936, 172).  

 

Equilibrium in games of strategy   

Dénes Kőnig remained in Budapest throughout the Great War of 1914-18 and its 

aftermath, teaching at the Technische Hochschule. This was a period of great 

uncertainty and unrest in Hungary, but Dénes continued his mathematical work, and he 

remained in contact with foreign mathematicians.  For example, in the Foreword to his 

father’s book (Kőnig 1914) he thanked Felix Hausdorff for his help, and 1915 he wrote 

to Georg Frobenius about a graph-theoretical proof of a theorem.  (The latter contact 

had unpleasant consequences, which Dénes later explained, at some length, in his book 

(Kőnig 1936, note on page 240)).   

             In Budapest, a new star was rising.  John von Neumann was born into a wealthy 

family of bankers in 1903 and was enrolled as a student of mathematics at the 

University of Budapest in 1921. At the same time, he studied chemistry in Berlin and 

Zurich, returning to Budapest only to take his examinations in mathematics.  He was 

soon recognised as a gifted mathematician, and in the 1920s he published several papers 

on the foundations of set theory, in which (among other things) he modified and 

extended the axiom-system of Zermelo (von Neumann 1923, 1925). He also contributed 

to several other branches of mathematics, including quantum theory, functional 

analysis, and game theory. 
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              In game theory, he proved a fundamental theorem about games with two 

players, X and Y, whose interests are directly opposed. A simple model of this situation 

assumes that each player has a finite number of strategies available, and when X uses 

strategy 𝑟 and Y uses strategy 𝑠 there is a number 𝑚(𝑟, 𝑠) representing the payoff to X. 

The corresponding payoff to Y is −𝑚(𝑟, 𝑠).   This is what we now call a finite, two-

person, zero-sum game, and it is the setting for the remarkable minimax theorem first 

proved by von Neumann in 1926.   

            In fact, the underlying idea was noticed in the early years of the eighteenth 

century and was referred to in an appendix to the 1713 edition of Pierre de Montmort’s 

Essai d’analyse sur les jeux de hazard (Kuhn 1968).  The subject was Le Her, a card 

game which can be represented as a two-person zero-sum game with two strategies for 

each player. There was much debate about how the players should behave when the 

game is played repeatedly, because one player could gain an advantage if it became 

clear that the other player was always using one of the two available strategies. An 

English aristocrat named Waldegrave suggested that each player should adopt a mixed 

strategy, alternating between the two strategies randomly, but according to a rule that 

determined their relative frequency.  For example, if one strategy was to be played in 

70% of the games and the other in 30%, the player could have a bag containing 7 red 

balls and 3 blue balls, and draw one to determine the strategy for each game.  

Waldegrave was able to show that, in the game of Le Her, a mixed strategy was 

preferable to either of the pure strategies.   

              Waldegrave’s suggestion was almost forgotten, but not quite. Over a century 

later it was mentioned in Isaac Todhunter’s massive History of the Mathematical 

Theory of Probability (1865). However, Todhunter’s account (on pages 106-110 of his 

book), was mainly concerned with details of the game, and he did not highlight the 

crucial idea of a mixed strategy.  There would be another long wait before the idea 

finally emerged in a recognizably modern form.  

            Émile Borel was one of the leading French mathematicians of the first half of 

the 20th century, and he was among those who had expressed doubts about Zermelo’s 

use of the Axiom of Choice (Hadamard 1905). He had interests in many areas of 

mathematics, but his major focus was the theory of probability and its applications. He 

may well have read Montmort’s Essai or Todhunter’s History, but we have no evidence 

of this. We do know that in the 1920s he began to develop a theory of strategic games, 
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in which the concept of a mixed strategy was central. His papers on this subject (Borel 

1921, 1924, 1927) developed the theory in the case where both players have the same 

set of strategies, so that the payoffs satisfy the condition 𝑚(𝑠, 𝑟)  =  −𝑚(𝑟, 𝑠). In 

modern terms, this means that the matrix of payoffs is skew-symmetric, and Borel was 

able to use the properties of such matrices to show that, when the number of strategies is 

small, the optimal mixed strategies for the two players have a remarkable property.  

              To explain the general problem, suppose that X and Y both adopt mixed 

strategies, with respective frequencies given by the probability vectors 𝒑 =  (𝑝𝑟) and 

𝒒 =  (𝑞𝑠).  Then the pair of strategies (𝑟, 𝑠) will occur with probability 𝑝𝑟𝑞𝑠, and the 

expectation of the payoff to X will be  

𝐸(𝒑, 𝒒) =  ∑ 𝑚(𝑟, 𝑠)
𝑟,𝑠

𝑝𝑟𝑞𝑠.  

How should X choose 𝒑 in order to guarantee the best possible payoff, given that Y 

may choose any mixed strategy 𝒒?  For any given choice of 𝒑 there is a minimum value 

𝑋(𝒑) of 𝐸(𝒑, 𝒒), taken over all possible choices of 𝒒, and X is guaranteed to gain this 

amount whatever Y does. So the best strategy for X is to choose 𝒑 so that 𝑋(𝒑) is 

maximised.  In other words, X should maximise the minimum expected payoff.  

              Now consider the problem from Y’s point of view. Since we are considering a 

zero-sum game, the payoffs to Y are the negatives of those to X.  In simple terms, this 

means that Y loses what X gains. So Y should choose 𝒒 so that the maximum loss, the 

maximum value 𝑌(𝒒) of 𝐸(𝒑, 𝒒), taken over all possible choices of 𝒑, is minimised.  

The minimax theorem of von Neumann asserts that, when X and Y act in this way, the 

outcome is the same.   The max-min strategy for X and the min-max strategy for Y are 

both optimal from their respective viewpoints, and both are satisfied that they can do no 

better, even though they act independently.  The implication is that there are 

competitive situations in which an equilibrium exists.   Of course, life (although finite) 

is not a two-person zero-sum game, so we must be careful not to place too much faith in 

this beautiful mathematical theorem. 

            Borel had verified that an equilibrium exists in a few special cases, as mentioned 

above, but he had not found a general proof. Indeed, he was uncertain as to whether a 

proof was possible.  The first general proof was presented by von Neumann in a talk to 

the Göttingen Mathematical Society on 7 December 1926. The origins of von 

Neumann’s interest in this problem are unknown. He was certainly familiar with 

Zermelo’s work on set theory and his paper on chess, but that work did not involve any 
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probabilistic notions. It is possible that he had read Montmort or Todhunter, but it is 

more likely that he learned of Borel’s work on mixed strategies during one of his visits 

to Göttingen.  He certainly knew of Borel, since (we are told) he had mastered the 

eminent Frenchman’s Théorie des Fonctions at the age of 12 (Baumol and Goldberg 

1968, 294).  Von Neumann was also in contact with Dénes Kőnig in Budapest (see 

below), so that could equally well have been his source.   

         Von Neumann sent Borel a brief outline of his proof, which Borel communicated 

for publication in the Comptes Rendus (von Neumann 1928a). In this paper von 

Neumann acknowledged Borel’s contributions and stated that he had been working 

independently on a more general version of the same problem.  He said that he had 

obtained an affirmative answer to the main question, and indeed his proof of the 

minimax theorem was soon published in full (von Neumann 1928b).  Borel and von 

Neumann appear to have developed a mutual coolness about their respective 

contributions, as described by Leonard (1992) for example.  Borel failed to mention von 

Neumann’s proof in some of his later publications, while von Neumann (1953) was 

dismissive of Borel’s papers.  

  

The infinity lemma and its application to chess 

In the 1920s, while John von Neumann was travelling around Europe, Dénes Kőnig 

remained in Budapest.  He would surely have known that the proofs of some of the 

results of his 1916 paper on edge-colourings did not extend to infinite graphs. For 

example, he had proved that if a finite bipartite graph has maximum degree 𝐷, then it 

has an edge-colouring with 𝐷 colours. But the induction argument he had used for the 

finite case did not extend to the infinite case.  Eventually, with the aid of a young 

Hungarian mathematician, Istvan Valko, a new approach was discovered, and was 

published in a joint paper (Kőnig and Valko 1926).  Here a simple but powerful new 

idea was applied to several problems in the theory of infinite sets. Many details of this 

work have been described by Franchella (1997).  

           Soon afterwards there appeared a paper (Kőnig 1927) in which the fundamental 

idea was presented as a result about infinite graphs.  We now know it as the Infinity 

Lemma. In 1936 it would feature in Kőnig’s famous book on the Theory of Graphs, 

about which we shall have more to say later. The presentation in the book is similar to 
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that in the 1927 paper, but rather more discursive, and we shall base our story upon it. 

In the book the Infinity Lemma is stated in the following way (Kőnig 1936, 81). 

Let 𝑉1, 𝑉2, 𝑉3,   .  .  .   be a countably infinite sequence of finite, non-empty, 

pairwise disjoint sets, and consider their union as the vertex-set of a graph. If the 

graph has the property that, for  𝑖 = 1, 2, 3,   .  .  . ,  every vertex in 𝑉𝑖+1 is joined 

by an edge to some vertex in 𝑉𝑖, then there is an infinite path  𝑥1𝑥2𝑥3  .  . . ,   

with 𝑥𝑖 in 𝑉𝑖. 

This apparently simple result does indeed require proof, and Kőnig’s 1927 proof is still 

the canonical one that appears in recent texts on the Theory of Graphs, for example 

(Diestel 1997, 190). If just one of the sets 𝑉𝑖 is infinite, the conclusion is false, as we 

shall see below (Figure 4). 

           The Infinity Lemma turns out to be useful in many cases where results about 

finite sets have to be extended to the infinite case. It can also be applied to a problem 

discussed by Zermelo in his 1913 paper on chess. Zermelo had described the game of 

chess along the following lines (but not exactly in these terms).  Define a position to be 

an allocation of pieces to the squares of the board which can occur in a legal game of 

chess. For technical reasons it is necessary to add information about such things as 

whose turn to move it is, and the situation regarding the promotion of pawns and 

castling. These additions do not affect the fact that the set of all positions is finite.  A W-

move is an ordered pair (𝑓, 𝑔) of positions where 𝑓 is a position in which it is White’s 

turn, and 𝑔 is the result of one legal move by White.  A B-move is defined similarly. 

Given any set 𝑆 of positions with Black to move, let 𝑆∗ be the set of all positions 𝑦 such 

that (𝑥, 𝑦) is a B-move for some 𝑥 in 𝑆.  

           Zermelo defined 𝑓 to be a winning position for White if there is a sequence of 

non-empty sets 𝑆1, 𝑆2,  𝑆3, …  satisfying three conditions. In the terminology defined 

above (which is a paraphrase of Kőnig’s version of Zermelo’s original) they are as 

follows (Figure 3). 

(1)  𝑆1 comprises a single element 𝑔 and (𝑓, 𝑔) is a W-move. 

(2)  For 𝑖 = 1, 2, … , and each position 𝑦 in 𝑆𝑖
∗, there is a W-move (𝑦, 𝑧) with 𝑧 

in 𝑆𝑖+1. 

(3)  The sequence is finite and results in a win for White:  that is, there is an 

integer 𝑁 such that 𝑆𝑁 contains only positions in which White has won by 

checkmate.  



13 

 

 

 

 

Figure 3. Illustrating Zermelo’s definition. 

 

In Condition 1, the assumption that the set 𝑆1 contains only one position, so that 

White’s opening move (𝑓, 𝑔) is the unique ‘key’ to winning (as is usually the case in 

chess problems) is not strictly necessary. Condition 2 says that whatever Black does, 

White has a reply that will eventually result in a win.  Condition 3 says that Black 

cannot prolong the game indefinitely, a necessary condition since Zermelo’s framework 

allowed infinite sequences of moves. Note that this condition implies that 𝑆𝑁
∗  is empty, 

but not conversely, because of the possibility of stalemate.  

Zermelo’s objective was to formulate a precise definition. He did not develop 

any theory based on it, and he did not suggest rules for constructing a winning strategy.  

However, regarding Condition 3, he did claim that if such a number 𝑁 exists, then it can 

be chosen to be not greater than 𝑁0, the total number of possible positions.  His 

argument was that if more than 𝑁0 moves have been made, then some position 𝑝 must 

have been repeated. Since White has a strategy which wins after the last occurrence of 

𝑝, White could have won after the first occurrence of 𝑝 by using that strategy. This 

argument assumes that when a position is repeated for a second time, Black will play in 

the same way as before, which is clearly not the case.  Kőnig (1927, and 1936, 116) 

credits John von Neumann for drawing his attention to the relevance of the Infinity 

Lemma, so the two men must have been in contact around 1926, when von Neumann 

was working on the minimax theorem.  

The application of the Infinity Lemma to Zermelo’s formulation of chess is 

straightforward.  Take the sets 𝑉 to be the sets 𝑆 and 𝑆∗, linked by edges as in Figure 3; 

by definition, these sets are finite. If all these sets were non-empty, the Infinity Lemma 

would guarantee an infinite path, and Black could prolong the game indefinitely.  If that 
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is not so, one of the sets must be empty, and there is a number 𝑁, as required. Kőnig 

communicated this result to Zermelo, who responded with a revised proof of his claim 

that 𝑁 ≤  𝑁0, and this was published as an Addendum to the 1927 paper. 

In Kőnig’s more general formulation of a game, the set of all possible positions 

is not assumed to be finite. But for each position he allows only finitely many possible 

moves, and he gives an example to show why this is the critical condition (Kőnig 1936, 

115). His example is illustrated in Figure 4, using our terminology. Suppose that, after 

White’s opening move (𝑓, 𝑔), Black has available a countably infinite set of moves 

(𝑔, ℎ𝑗), 𝑗 = 1, 2, 3, …  .  Suppose also that the rules of the game allow the set 𝑆2 to be 

defined so that, for each position ℎ𝑗 , there is a W-move (ℎ𝑗 , 𝑠2𝑗),  where 𝑠21 is a 

‘checkmate’ position and 𝑠2𝑗 (𝑗 > 1) admits only one possible B-move (𝑠2𝑗, 𝑠2,𝑗−1
∗ ).  

The sets  𝑆𝑖 = {𝑠𝑖1, 𝑠𝑖2, . . .  } and  𝑆𝑖
∗ = {𝑠𝑖1

∗ , 𝑠𝑖2
∗ , . . .   } for 𝑖 > 2 are defined similarly. The 

W-moves are of the form  (𝑠𝑖𝑗
∗ , 𝑠𝑖+1,𝑗), the B-moves are of the form (𝑠𝑖𝑗, 𝑠𝑖,𝑗−1

∗ ), and 

the positions  𝑠21, 𝑠31, . ..   are checkmates by White.    

 

Figure 4. Kőnig’s example: Black has infinitely many choices for the first move.  

 

In this game White is certain to win after a finite number of moves, but there is no upper 

bound on the number of moves required. If Black chooses ℎ𝑗  on the first move, then the 

game will end after 𝑗 moves by White. 

     

  

Conclusion 

Ernst Zermelo’s work on the foundations of Set Theory led, almost incidentally, to his 

attempt to formulate a mathematical basis for the game of chess, and he later returned to 

this topic in the light of the Infinity Lemma. The Kőnigs, Gyula amd Dénes, developed 
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graph-theoretical ideas in order to prove results about infinite sets, and Dénes applied 

these ideas to Game Theory.  John von Neumann expanded Zermelo’s foundation for 

Set Theory and, for reasons unknown to us, went on to prove the Minimax Theorem for 

two-person zero-sum games. These links benefitted the development of the three 

disciplines, and extended the scope of Mathematics generally. In the first decades of the 

twentieth century there were many opportunities for the exchange of information by 

word-of-mouth, and some of the contacts that facilitated this process have left no trace. 

        The work covered in this article was the first slim volume in an ever-increasing 

library of mathematical books. Kőnig’s book (1936) was the first in which the Theory 

of Graphs was treated as a subject in its own right.  It contains several sections on 

games of various kinds, and the  theory of infinite sets is prominent, including the 

Infinity Lemma and its applications, along the lines described above.  There are now 

many books on the Theory of Graphs, and the Lemma has found many new 

applications. For example, it is frequently employed as a ‘compactness argument’ in the 

branch of combinatorics that we call Ramsey Theory (Diestel 1997).    John von 

Neumann’s proof of the Minimax Theorem for two-person zero-sum games was to have 

a profound effect on the study of games of strategy.  In the 1930s von Neumann began 

to collaborate with the economist Oskar Morgenstern, and the result was their famous 

book, Theory of Games and Economic Behavior (von Neumann and Morgenstern 1944).  

The central idea of equilibrium has since been extended to a much wider class of games, 

and it is a key paradigm of modern economic theory.  
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