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THE a-NUMBER OF JACOBIANS OF CERTAIN MAXIMAL CURVES

VAHID NOUROZI, SAEED TAFAZOLIAN∗ AND FARHAD RAHMATI

Abstract. In this paper, we compute a formula for the a-number of certain maximal curves given by

the equation yq + y = x
q+1
2 over the finite field Fq2 . The same problem is studied for the maximal

curve corresponding to
∑s

t=1 y
q/2t = xq+1 with q = 2s, over the finite field Fq2 .

1. Introduction

Let C be a geometrically irreducible, projective, and non-singular algebraic curve defined over the

finite field Fℓ of order ℓ. Let C(Fℓ) denotes the set of Fℓ-rational points of C. In the study of curves

over finite fields, a fundamental problem is on the size of C(Fℓ). The very basic result here is the

Hasse-Weil bound which asserts that

| #C(Fℓ)− (ℓ+ 1) |≤ 2g
√
ℓ,

where g = g(C) is the genus of C.
The curve C is called maximal over Fℓ if the number of elements of C(Fℓ) satisfies

#C(Fℓ) = ℓ+ 1 + 2g
√
ℓ.

We only consider maximal curves of positive genus and hence ℓ will always be a square, say ℓ = q2.
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In [10], Ihara showed that if a curve C is maximal over Fq2 , then

g ≤ g1 :=
q(q − 1)

2
.

In [6] authors showed that

either g ≤ g2 := ⌊(q − 1)2

4
⌋ or g1 =

q(q − 1)

2
.

Rück and Stichtenoth [16] showed that, up to Fq2-isomorphism, there is just one maximal curve over

Fq2 of genus q(q−1)
2 , namely the so-called Hermitian curve over Fq2 which can be defined by the affine

equation

yq + y = xq+1.

If q is odd, from [5] there is a unique maximal curve X over Fq2 of genus g = (q−1)2

4 which can be

defined by the affine equation

(1.1) yq + y = x
q+1
2 .

For q even, from [1] there is a unique maximal curve Y over Fq2 of genus g = ⌊ (q−1)2

4 ⌋ = q(q−2)
4 which

can be defined by the affine equation

(1.2)

s∑
t=1

yq/2
t
= xq+1 with q = 2s,

provided that q/2 is a Weierstrass non-gap at some point of the curve. It is easy to see that a maximal

curve C is supersingular, since all slopes of its Newton polygon are equal 1/2. This fact implies that

the Jacobin X := Jac(C) has no p-torsion points over F̄p. A relevant invariant of the p-torsion group

scheme of the Jacobian of the curve is the a-number.

Consider the multiplication by p-morphism [p] : X → X which is a finite flat morphism of degree

p2g. It factors as [p] = V ◦ F . Here, F : X → X(p) is the relative Frobenius morphism coming from

the p-power map on the structure sheaf; and the Verschiebung morphism V : X(p) → X is the dual of

F . The kernel of multiplication-by-p on X, is defined by the group of X[p]. The important invariant

is the a-number a(C) of curve C defined by

a(C) = dimF̄p
Hom(αp, X[p]),

where αp is the kernel of the Frobenius endomorphism on the group scheme Spec(k[X]/(Xp)). Another

definition for the a-number is

a(C) = dimFp(Ker(F ) ∩Ker(V )).

A few results on the rank of the Carteir operator (especially a-number) of curves is introduced by

Kodama and Washio [11], Gonzlez [8], Pries and Weir [15], Yui [19] and Montanucci and Speziali [13].
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In this paper, we determine the a-number of certain maximal curves. In the case g = g1, the

a-number of the Hermitian curves is computed by Gross in [9]. Here we compute the a-number of

maximal curves over Fq2 with genus g = g2 for infinitely many values of q.

In Section 3, we prove that the a-number of the curve X with Equation (1.1) is a(X ) = p−1
8 (ps−1 +

1)(q − 1), see Theorem 3.2. In Section 4, we prove that the a-number of the curve Y with Equation

(1.2) is q2

16 , see Theorem 4.1. The proofs use directly the action of the Cartier operator on H0(C,Ω1).

2. The Cartier operator

Let k be an algebraically closed field of characteristic p > 0. Let C be a curve defined over k. The

Cartier operator is a 1/p-linear operator acting on the sheaf Ω1 := Ω1
C of differential forms on C in

positive characteristic p > 0.

Let K = k(C) be the function field of the curve C of genus g defined over k. A separating variable

for K is an element x ∈ K \Kp.

Definition 2.1. (The Cartier operator). Let ω ∈ ΩK/Kq
. There exist f0, . . . , fp−1 such that ω =

(fp
0 + fp

1x+ · · ·+ fp
p−1x

p−1)dx. The Cartier operator C is defined by

C(ω) := fp−1dx.

The definition does not depend on the choice of x (see [17, Proposition 1]).

We refer the reader to [17, 2, 3, 18] for the proofs of the following statements.

Proposition 2.2. (Global Properties of C). For all ω ∈ ΩK/Kq
and all f ∈ K,

• C(fpω) = fC(ω);

• C(ω) = 0 ⇔ ∃h ∈ K,ω = dh;

• C(ω) = ω ⇔ ∃h ∈ K,ω = dh/h.

If div(ω) is effective then differential ω is holomorphic. The set H0(C,Ω1) of holomorphic differ-

entials is a g-dimensional k-vector subspace of Ω1 such that C(H0(C,Ω1)) ⊆ H0(C,Ω1). If C is a

curve, then the a-number of C equals the dimension of the kernel of the Cartier operator H0(C,Ω1)

(or equivalently, the dimension of the space of exact holomorphic differentials on C) (see [12, 5.2.8]).

The following theorem is due to Gorenstein; see [4, Theorem 12].

Theorem 2.3. A differential ω ∈ Ω1 is holomorphic if and only if it is of the form (h(x, y)/Fy)dx,

where H : h(X,Y ) = 0 is a canonical adjoint.

Theorem 2.4. [13] With the above assumptions,

C(h
dx

Fy
) = (

∂2p−2

∂xp−1∂yp−1
(F p−1h))

1
p
dx

Fy

for any h ∈ K(X ).
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The differential operator ∇ is defined by

∇ =
∂2p−2

∂xp−1∂yp−1
,

has the property

(2.1) ∇(
∑
i,j

ci,jX
iY j) =

∑
i,j

cip+p−1,jp+p−1X
ipY jp.

3. The a-number of Curve X

In this section, we consider the curve X is given by the equation yq+y = x
q+1
2 of genus g(X ) = (q−1)2

4 ,

with q = ps and p > 2 over Fq2 . From Theorem 2.3, one can find a basis for the space H0(X ,Ω1) of

holomorphic differentials on X , namely

B = {xiyjdx | 1 ≤ q + 1

2
i+ qj ≤ g}.

Proposition 3.1. The rank of the Cartier operator C on the curve X equals the number of pairs (i, j)

with q+1
2 i+ qj ≤ g such that the system of congruences mod p

(3.1)

{
kq + h− k + j ≡ 0,

(p− 1− h)( (q+1)
2 ) + i ≡ p− 1,

has a solution (h, k) for 0 ≤ h ≤ p−1
2 , 0 ≤ k ≤ h.

Proof. By Theorem 2.4, C((xiyj/Fy)dx) = (∇(F p−1xiyj))1/pdx/Fy. So, we apply the differential

operator ∇ to

(3.2) (yq + y − x
q+1
2 )p−1xiyj =

p−1∑
h=0

h∑
k=0

(p−1
h )(hk)(−1)h−kx(p−1−h)(

(q+1)
2

)+iykq+h−k+j

for each i, j such that q+1
2 i+ qj ≤ g.

From the Formula (2.1), ∇(yq+y+x
q+1
2 )p−1xiyj ̸= 0 if and only if for some (h, k), with 0 ≤ h ≤ p−1

2

and 0 ≤ k ≤ h, satisfies both the following congruences mod p:

(3.3)

{
kq + h− k + j ≡ 0,

(p− 1− h)( (q+1)
2 ) + i ≡ p− 1.

Take (i, j) ̸= (i0, j0) in this situation both ∇(yq + y + x
q+1
2 )p−1xiyj and ∇(yq + y + x

q+1
2 )p−1xi0yj0

are nonzero. We claim that they are linearly independent over k. To show independence, we prove

that, for each (h, k) with 0 ≤ h ≤ p − 1 and 0 ≤ k ≤ h there is no (h0, k0) with 0 ≤ h0 ≤ p − 1 and

0 ≤ k0 ≤ h0 such that

(3.4)

{
kq + h− k + j = k0q + h0 − k0 + j0,

(p− 1− h)( (q+1)
2 ) + i = (p− 1− h0)(

(q+1)
2 ) + i0.

If h = h0, then j ̸= j0 by i = i0 from the second equation, therefore k ̸= k0. We may assume k > k0.

Then j − j0 = (q − 1)(k − k0) > q − 1, a contradiction as j − j0 ≤ (q−1)2

4q . Similarly, if k = k0, then
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h ̸= h0 by (i, j) ̸= (i0, j0). We assume that h > h0. Then i− i0 =
q+1
2 (h− h0) >

q+1
2 , a contradiction

as i− i0 ≤ (q−1)2

2(q+1) . □

For the rest in this Section, As := A(X ) denotes the matrix representing the p-th power of the

Cartier operator C on the curve X with respect to the basis B, where q = ps. Now we are able to

compute the a-number of curve X .

Theorem 3.2. If q = ps for s ≥ 1 and p > 2, then the a-number of the curve X equals

p− 1

8
(ps−1 + 1)(q − 1).

Proof. First we prove that, if q = ps, s ≥ 1, then rank(As) =
p+ 1

8
(ps − 1)(ps−1 − 1). In this case,

q+1
2 i+ qj ≤ g and System (3.1) mod p reads

(3.5)

{
h− k + j ≡ 0,

−h
2 − 1

2 + i ≡ p− 1.

First assume that s = 1, for q = p, we have p+1
2 i+ pj ≤ g and System (3.5) becomes{
j = k − h,

i = p+ h
2 − 1

2 ,

in this case p+1
2 i + pj ≤ g that is, h(1−3p)

4 + kp ≤ −p2−3p+2
4 then h ≥ −p2−3p+2

1−3p , thus h ≥ 3p+10
9 a

contradiction by Proposition 3.1. As a consequence, there is no pair (i, j) for which the above system

admits a solution (h, k). Thus, rank(A1) = 0.

Let s = 2, so q = p2. For p2+1
2 i+ p2j ≤ g, the above argument still works. Therefore, (p−1)2

4 + 1 ≤
p2+1
2 i + p2j ≤ (p2−1)2

4 and our goal is to determine for which (i, j) there is a solution (h, k) of the

system mod p {
h− k + j ≡ 0,

−h
2 − 1

2 + i ≡ p− 1.

Take l,m ∈ Z+
0 so that {

j = lp+ k − h,

i = mp+ p+ h
2 − 1

2
.

In this situation, i < 2g
p2+1

= (p2−1)2

2(p2+1)
, so mp + p + h

2 − 1
2 ≤ (p2−1)2

2(p2+1)
. Then m ≤ (p2−1)2

2(p2+1)
. And

j < (p2−1)2

4p2
, so lp + k − h < (p2−1)2

4p2
, Then l < (p2−1)2

4p2
. From this we can say that p2−1

4 − 1 ≤ l ≤
p2−1
4 , and p2−1

2 ≤ m ≤ p2−1
2 . In this way,

(p2 − 1)2

8
suitable values for (i, j) are obtained, whence

rank(A2) =
(p2 − 1)2

8
.
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For s ≥ 3, rank(As) equals rank(As−1) plus the number of pairs (i, j) with (ps−1−1)2

4 +1 ≤ q+1
2 i+qj ≤

(ps−1)2

4 such that the system mod p {
h− k + j ≡ 0,

−h
2 − 1

2 + i ≡ p− 1,

has a solution. With our usual conventions on l,m, a computation shows that such pairs (i, j) are

obtained for 0 ≤ l ≤ (ps−1)2

4ps+1 from this we have ps−2(p2−1)
4 − 1 ≤ l ≤ ps−2(p2−1)

4 , and 0 ≤ m ≤ (ps−1)2

2(ps+1)

from this we have (ps−1−1)(p+1)
2 − 1 ≤ m ≤ (ps−1−1)(p+1)

2 . In this case we have

(ps−1 − 1)(p+ 1)ps−2(p2 − 1)

8

choices for (h, k). Therefore we get

rank(As) = rank(As−1) +
(ps−1 − 1)(p+ 1)ps−2(p2 − 1)

8
.

Now our claim on the rank of As follows by induction on s. Hence

a(X ) =
(ps − 1)2

4
− (p+ 1)(ps − 1)(ps−1 − 1)

8

=
(ps − 1)

8
(ps + p− ps−1 − 1)

=
(ps − 1)

8
(p(ps−1 + 1)− (ps−1 + 1))

=
(ps − 1)

8
((ps−1 + 1)(p− 1))

=
(p− 1)

8
((ps−1 + 1)(q − 1)).

□

For the finite feild Fq2 let m be an integer number, such that m divides (q + 1). In this case the

curve yq + y = xm is maximal over Fq2 . From this fact we are led to the following problem.

Problem 3.3. What is the dimension of the space of exact holomorphic differentials of yq + y = xm

where m | (q + 1)

4. The a-number of Curve Y

In this section, we consider the curve Y given by the equation
∑s

t=1 y
q/2t = xq+1 of genus g(Y) =

q(q−2)
4 , with q = 2s and p = 2 over Fq2 . With the simple computation, we have div∞(x) = q/2P1 and

div∞(y) = (q + 1)P1, so one can find a basis for the space H0(Y,Ω1) of holomorphic differentials on

Y, namely

(4.1) B′ = {xiyjdx | (q + 1)i+
q

2
j ≤ 2g − 2}.

Theorem 4.1. If q = 2s for s ≥ 1, then the a-number of the curve Y equals

q2

16
.
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Proof. In characteristic two, every 1-form ω ∈ H0(Y,Ω1) can be written as ω = (f2 + g2x)dx. So we

have

(4.2) C((f2 + g2x)dx) = gdx

in characteristic two. By Equation (4.2), a-number of Y is the dimensional vector space of regular

1-forms of the form f2dx. For each even integers i, j, we have C(xiyjdx) = 0. So we want to find (i, j),

where i is an odd number and j is an even number. We know that 0 ≤ i ≤ 2g−2
2(q+1) and 0 ≤ j ≤ 2g−2

2q .

Therefore this follows from the fact that

q

4
− 1 <

2g − 2

2(q + 1)
<

q

4

there are q
4 choices of i and from the fact that

q

4
− 1 <

2g − 2

2q
<

q

4

there are q
4 choices of j. Hence

a(Y) =
q2

16
□
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