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THE «-NUMBER OF JACOBIANS OF CERTAIN MAXIMAL CURVES

VAHID NOUROZI, SAEED TAFAZOLIAN* AND FARHAD RAHMATI

ABSTRACT. In this paper, we compute a formula for the a-number of certain maximal curves given by
+1
the equation y? +y = 2"z over the finite field F,2. The same problem is studied for the maximal

curve corresponding to > ;_, y?/?" = 291 with ¢ = 2°, over the finite field F,2.

1. Introduction

Let C be a geometrically irreducible, projective, and non-singular algebraic curve defined over the
finite field Fy of order ¢. Let C(F;) denotes the set of Fy-rational points of C. In the study of curves
over finite fields, a fundamental problem is on the size of C(F;). The very basic result here is the

Hasse-Weil bound which asserts that
| #C(Fy) — (L +1) |< 29V/7,

where g = ¢(C) is the genus of C.

The curve C is called maximal over Fy if the number of elements of C(IF,) satisfies
H#C(Fy) = L+ 1+ 29V7.
We only consider maximal curves of positive genus and hence ¢ will always be a square, say £ = ¢°.
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In [10], Ihara showed that if a curve C is maximal over F ., then

-1
9= g1:= (]((12)
In [6] authors showed that
—1)2 -1
either g < gg:= L(q4)J or g1 = q(q2)
Riick and Stichtenoth [16] showed that, up to [F 2-isomorphism, there is just one maximal curve over

q(g—1)
2

F,2 of genus , namely the so-called Hermitian curve over F 2 which can be defined by the affine

equation

yq +y= $q+1.
If g is odd, from [5] there is a unique maximal curve X' over F . of genus g = % which can be
defined by the affine equation
(1.1) yl+y=z7z2.

For ¢ even, from [1] there is a unique maximal curve ) over F 2 of genus g = L(QZI)QJ = q(q4_2) which

can be defined by the affine equation

s
(1.2) qu/2t = g9t with ¢ = 2,

t=1
provided that ¢/2 is a Weierstrass non-gap at some point of the curve. It is easy to see that a maximal
curve C is supersingular, since all slopes of its Newton polygon are equal 1/2. This fact implies that
the Jacobin X := Jac(C) has no p-torsion points over F »- A relevant invariant of the p-torsion group
scheme of the Jacobian of the curve is the a-number.

Consider the multiplication by p-morphism [p] : X — X which is a finite flat morphism of degree
p?9. Tt factors as [p] = V o F. Here, F: X — X (P) is the relative Frobenius morphism coming from
the p-power map on the structure sheaf; and the Verschiebung morphism V : X®) — X is the dual of
F'. The kernel of multiplication-by-p on X, is defined by the group of X[p]. The important invariant
is the a-number a(C) of curve C defined by

a(C) = dimg, Hom(ay, X [p]),

where «, is the kernel of the Frobenius endomorphism on the group scheme Spec(k[X]/(XP?)). Another
definition for the a-number is
a(C) = dimg, (Ker(F) N Ker(V)).
A few results on the rank of the Carteir operator (especially a-number) of curves is introduced by

Kodama and Washio [11], Gonzlez [8], Pries and Weir [15], Yui [19] and Montanucci and Speziali [13].
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In this paper, we determine the a-number of certain maximal curves. In the case g = g1, the
a-number of the Hermitian curves is computed by Gross in [9]. Here we compute the a-number of
maximal curves over F . with genus g = g for infinitely many values of g.

In Section 3, we prove that the a-number of the curve X with Equation (1.1) is a(X) = %(p5_1 +
1)(¢ — 1), see Theorem 3.2. In Section 4, we prove that the a-number of the curve ) with Equation

2

(1.2) is {5, see Theorem 4.1. The proofs use directly the action of the Cartier operator on HO(C, QY.

2. The Cartier operator

Let k be an algebraically closed field of characteristic p > 0. Let C be a curve defined over k. The
Cartier operator is a 1/p-linear operator acting on the sheaf Q! := Qé of differential forms on C in
positive characteristic p > 0.

Let K = k(C) be the function field of the curve C of genus g defined over k. A separating variable
for K is an element x € K \ KP?.

Definition 2.1. (The Cartier operator). Let w € Qg k,. There exist fo,..., fp—1 such that w =
(fS+ fle+- -+ fg_lxp_l)d:z:. The Cartier operator € is defined by

C(w) == fp_1dx.
The definition does not depend on the choice of x (see [17, Proposition 1]).

We refer the reader to [17, 2, 3, 18] for the proofs of the following statements.

Proposition 2.2. (Global Properties of €). For all w € Qx/k, and all f € K,
o &(ffw) = f&(w);
e C(w)=0« Jh e K,w=dh;
o $(w)=w<e Jhe K,w=dh/h.

If div(w) is effective then differential w is holomorphic. The set H°(C,!) of holomorphic differ-
entials is a g-dimensional k-vector subspace of Q' such that ¢(H?(C,Q!)) C HO(C,Q). If C is a
curve, then the a-number of C equals the dimension of the kernel of the Cartier operator H°(C,!)
(or equivalently, the dimension of the space of exact holomorphic differentials on C) (see [12, 5.2.8]).

The following theorem is due to Gorenstein; see [4, Theorem 12].

Theorem 2.3. A differential w € Q' is holomorphic if and only if it is of the form (h(z,y)/F,)dx,
where H : h(X,Y) = 0 is a canonical adjoint.

Theorem 2.4. [13] With the above assumptions,
1dx

2p—2
) = G (PP

Ry =
& Fy) Oxp—1oyr—1 F,

for any h € K(X).
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The differential operator V is defined by

an—2
- OxP—1oyr—1’
has the property
(2.1) VO e X'Y) =) Ciprptprp1 XPYP.
i,J 2

3. The a-number of Curve X

12
In this section, we consider the curve X’ is given by the equation y?+y = &5 of genus g(X) = %,

with ¢ = p® and p > 2 over F 2. From Theorem 2.3, one can find a basis for the space H*(X, Q') of

holomorphic differentials on X', namely

o 1
B:{x’yjdz|1§Q+

i+qj < g}

Proposition 3.1. The rank of the Cartier operator € on the curve X equals the number of pairs (i, j)

with q“z + qj < g such that the system of congruences mod p
kq+h—-—k+j=0,
(3.1) (g+1)
(p—1-h)(FH")+i=p—1,

has a solution (h,k) for 0 < h < 2% 0 <k < h.

Proof. By Theorem 2.4, €((z'y’/F,)dx) = (V(FP~'aiy?))/Pdz/F,. So, we apply the differential
operator V to

p—1 h
(3.2) (y? —}—y—x T )P 1;1:1y —ZZP 1 h ko (p—1- h)((q+1))+zykq+h k+j
h=0 k=0

for each i, j such that q+ i+qj<g.
From the Formula (2.1), V(yq—}—y—l—x%)p_lﬂyj # 0 if and only if for some (h, k), with 0 < h < pT
and 0 < k < h, satisfies both the following congruences mod p:

{ kq+h—k+j=0,
(p

(3.3) —1—h)((q+1))+z_ 1

Take (i,7) # (i, jo) in this situation both V(y? 4+ y + x%)p_lxiyj and V(y? +vy + :l:%l)p_lxioyjo
are nonzero. We claim that they are linearly independent over k. To show independence, we prove
that, for each (h,k) with 0 < h <p—1and 0 < k < h there is no (hg, ko) with 0 < hg < p— 1 and
0 < kg < hg such that

kq+h—k+ = kog+ ho — ko + jo,
(3.4) { ( 1 q +7 0q 0 0+ Jo

= m)() +i= (0= 1= ho)(“U5H) + i,
If h = hg, then j # jo by i = ig from the second equation, therefore k # ky. We may assume k > kq.
Then j — jo = (¢ — 1)(k — ko) > q — 1, a contradiction as j — jo < (q ) . Similarly, if k = kg, then
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h # ho by (i,5) # (io,jo). We assume that h > ho. Then i —ig = T (h — hg) > 21, a contradiction

_1)2
asi—iog%. ]

For the rest in this Section, A; := A(X) denotes the matrix representing the p-th power of the
Cartier operator € on the curve X' with respect to the basis B, where ¢ = p®. Now we are able to

compute the a-number of curve X.

Theorem 3.2. If ¢ = p°® for s > 1 and p > 2, then the a-number of the curve X equals

p—1

S P+ 1)(g—-1).

1
Proof. First we prove that, if ¢ = p®,s > 1, then rank(A;) = ]%(ps —1)(p*~t — 1). In this case,

q+lz + ¢j < g and System (3.1) mod p reads

55) { h—k+j=0,

—%—%+¢;p_L

First assume that s = 1, for ¢ = p, we have 2 el 4 pj < g and System (3.5) becomes

in this case p+1z + pj < g that is, (1 5p) 4 kp < M then h > —171—7;:0” thus h > 3p+10 a

contradiction by Proposition 3.1. As a consequence, there is no pair (i, j) for which the above system
admits a solution (h, k). Thus, rank(A;) = 0.

r = + i+ p?j < g, the above argument still works. Therefore, (=1 )2 +1<

Let s =2, so ¢ = p%. Fo
2 1\2
pZTHi +p%j < % and our goal is to determine for which (i,7) there is a solution (h, k) of the

system mod p

Take I,m € Z(T so that

R 1
=mp+p+y—g.
In this situation, i < 24 = -0 g5 +p4+L2-1< w—1)* Then m < @D  Ang
) P21 T 20p741) pPTDT 3 2 = 2(p2+1)" 2(p2+1)
Jj< ( 1) ,s0lp+k—h< @ Then [ < & _21) . From this we can say that 2=— — 1 < [ <
—1)2
2 24_1, and p 1<y < 2 5 E—L In this way, u suitable values for (i,j) are obtained, whence
-1
rank(Aq) = (]?8)
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For s > 3, rank(A;) equals rank(As_1) plus the number of pairs (7, j) with pf{l—l < %li—kqj <

1) such that the syst d
1 ystem mod p

h—k+j5=0,
—%—%4—@'5}9—1,

has a solution. With our usual conventions on I,m, a computation shows that such pairs (i,j) are

obtained for 0 <[ < (4 S+1) from this we have % —-1<I< %, and 0 <m < (’Z 5+1f)
from this we have % —1<m< w. In this case we have
P =D+ 1)p2p° - 1)
8
choices for (h, k). Therefore we get
s—1 S—2(,.2
rank(As) = rank(As_1) + (p D +81)p (p 1).
Now our claim on the rank of A; follows by induction on s. Hence
s _ 1 2 1 s _1 s—1 1
a(X) = (p ; )" e+ D 8)(1? )
= -1 § g p—prt - 1)
-1
- ¥ (Pl 1)~ (4 1)
-1
~ - )<<ps e 1)
-1
- e
O

For the finite feild Fy2 let m be an integer number, such that m divides (¢ 4 1). In this case the

curve y? +y = 2™ is maximal over F 2. From this fact we are led to the following problem.

Problem 3.3. What is the dimension of the space of exact holomorphic differentials of y? +y = ™
where m | (¢ + 1)

4. The a-number of Curve Y

In this section, we consider the curve ) given by the equation > ;_; ye/ 28 = gatl of genus g(Y) =
@, with ¢ = 2° and p = 2 over F,2. With the simple computation, we have dive(z) = ¢/2P; and
diveo(y) = (¢ + 1) Py, so one can find a basis for the space H°(Y, Q') of holomorphic differentials on

Y, namely
(4.1) B = {z'yida | (q+1)¢+%j < 2g—2}.
Theorem 4.1. If ¢ = 2% for s > 1, then the a-number of the curve Y equals
<
16
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Proof. In characteristic two, every 1-form w € H(), Q') can be written as w = (f? + g?z)dz. So we

have
(4.2) C((f* + g*x)dx) = gdx

in characteristic two. By Equation (4.2), a-number of ) is the dimensional vector space of regular
1-forms of the form f2dx. For each even integers i, j, we have €(2y/dz) = 0. So we want to find (7, 5),
where ¢ is an odd number and j is an even number. We know that 0 < ¢ < % and 0 <5 < 292—;2.
Therefore this follows from the fact that

29 — 2
q 1 g

g
17 o 4

there are { choices of i and from the fact that
2g — 2
¢ | _2-2 4
4 2q 4
there are § choices of j. Hence
2
9
aY) = 15
O
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