
Computers & Graphics: X 2 (2019) 10 0 011 

Contents lists available at ScienceDirect 

Computers & Graphics: X 

journal homepage: www.elsevier.com/locate/cagx 

Technical Section 

Real-time neural network prediction for handling two-hands mutual 

occlusions 

Dario Pavllo, Mathias Delahaye 

∗, Thibault Porssut, Bruno Herbelin, Ronan Boulic 

École Polytechnique Fédérale de Lausanne, Switzerland 

a r t i c l e i n f o 

Article history: 

Received 31 May 2019 

Revised 8 October 2019 

Accepted 8 October 2019 

Available online 22 October 2019 

CCS Concepts: 

Human-centered computing 

Virtual reality 

Computing methodologies 

Neural networks 

Keywords: 

Virtual reality 

Neural networks 

Machine learning 

Motion capture 

Inverse kinematics 

Finger tracking 

a b s t r a c t 

Hands deserve particular attention in virtual reality (VR) applications because they represent our primary 

means for interacting with the environment. Although marker-based motion capture works adequately 

for full body tracking, it is less reliable for small body parts such as hands and fingers which are often 

occluded when captured optically, thus leading VR professionals to rely on additional systems (e.g. iner- 

tial trackers). We present a machine learning pipeline to track hands and fingers using solely a motion 

capture system based on cameras and active markers. Our finger animation is performed by a predictive 

model based on neural networks trained on a movements dataset acquired from several subjects with a 

complementary capture system. We employ a two-stage pipeline that first resolves occlusions and then 

recovers all joint transformations. We show that our method compares favorably to inverse kinematics by 

inferring automatically the constraints from the data, provides a natural reconstruction of postures, and 

handles occlusions better than three proposed baselines. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Virtual reality (VR) is becoming increasingly popular owing to

 new generation of affordable head-mounted displays (HMD).

owever interactions with the environment can be challenging

ue to the overly simplified avatar representation leading to a

ub-optimal experience. The avatar is often a static mesh, or an

nimated mesh that moves according to predefined algorithms

nd actions. One possible way to achieve a compelling immersive

irtual reality experience is to capture the user’s movements

sing motion capture and map them on a virtual avatar. Start-

ng from the 3D positions of the markers placed on a suit, an

nverse kinematics (IK) solver can recover the state of the avatar

oints. 

Optical motion capture (mocap) technologies can be classified

s active (the user wears markers that emit light) or passive (the

arkers reflect light from another source). The advantage of an

ctive system over a passive one is that each marker can be

agged with a unique ID, which simplifies many tasks owing to
∗ Corresponding author. 
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he fact that there is no confusion among markers. Our work

ocuses on the former category. Alternative technologies are based

n inertial measurement units (IMUs) which, in the 9-axis variant,

an track acceleration and angular rate. They can be very precise

n a short-term context, but suffer from long-term drifts due to

he lack of an absolute positional reference. 

The experience of full-body motion control of an avatar into a

R experience is referred to as embodiment . Important limitations

or a successful embodiment of the avatar are the discontinuities

otentially caused by self-occlusions and the absence of movement

f the hands, both leading to a reduced sense of body ownership

1] . In such scenarios, increasing the number of cameras is not

lways feasible, and does not solve the problem entirely. 

As an alternative to inverse kinematics, we propose a real-time

lgorithm based on machine learning that addresses the issue

f occlusions through a predictive model. In the first part of the

aper ( Section 1.1 ) we discuss the state of the art and analyze

ow our method relates to other approaches. In Section 2 we

escribe the features of the dataset used for training our model.

n Section 3 , we recall three baseline methods for correcting

cclusions and we introduce a more complex model based

n neural networks for handling both occlusions and inverse
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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kinematics. Section 4 describes our experimental methodology

while Section 5 details the context of bimanual tracking. Finally,

we present our results in Section 6 prior to the concluding

discussion. 

1.1. Related work 

Occlusion robustness. The most common approach for correct-

ing occlusions is to use interpolation algorithms. In this regard,

some data-based interpolation techniques have been specifically

designed for human body tracking and skeleton animation [2] .

However, interpolation algorithms require knowledge of both

past and future data, and can therefore be only applied in post-

processing. More recently, denoising neural networks have been

proposed for offline cleaning of motion capture data [3] , producing

results that are comparable to hand-cleaning. 

Aristidou et al. proposed an approach based on Kalman filters

for estimating the positions of occluded markers in real time [4] .

Their method does not require any prior knowledge of the skele-

ton, but assumes that the distance between neighboring markers

is approximately constant. The algorithm builds a skeleton model

by estimating the centers of rotation between any two sets of

points. When an occlusion occurs, the marker position is predicted

using a Kalman filter, which takes velocity into account, as well

as the positions of neighboring markers. Piazza et al. developed a

real-time extrapolation algorithm which assumes that motion can

be either linear, circular, or a combination of both [5] . As before,

it does not rely on a predefined skeleton model. The prediction is

performed through a moving average of the velocity of the marker,

so as to minimize the effect of noise. An interesting optimization

employed in this approach consists in the so-called constraint

matrix (CM), which stores the minimum/maximum pairwise

distances between all markers. At inference, the estimates are

adjusted according to the constraints described in the CM. Both

[4] and [5] focus their work on limbs, and do not address the

particular case of fingers. Finally, a large portion of research in this

field exploits the assumption that an underlying skeleton model is

available, thereby allowing the algorithm to put some constraints

on the solution. Recently Alexanderson et al. addressed the prob-

lem of labeling markers in a passive system for the fingers and

the face [6] . Instead of tracking markers in the temporal domain,

it estimates the most likely assignments using Gaussian Mixture

Models (GMMs). This allows a fast recovery from occlusions and

avoids the so-called ghost markers , i.e. detection of markers that do

not exist. This approach, however, does not address the problem

of predicting the marker positions during occlusions. 

Current real-time machine-learning-based approaches for han-

dling occlusions are restricted to the sub-problem of posture

and gesture recognition [7] . In our case, we do not perform

such classification tasks; our aim is rather to achieve a complete

reconstruction of the hand posture. 

Tracking and reconstruction. A common framework for cap-

turing movement is to perform body or hand reconstruction

through images and depth cameras. These approaches leverage

computer vision and machine learning algorithms [8] and aim at

providing an affordable consumer-ready alternative to complex

motion capture systems. Solutions focusing on hand and finger

movements have made significant progress for tracking isolated

hands in free space. These techniques are designed for the context

of desktop-range interactions using specialized devices – a note-

worthy example is the Leap Motion controller. When mounted

on a head-mounted display (HMD), these types of finger tracking

devices can offer an interesting compromise for immersive VR [9] .

Nevertheless, their field of view is still limited when compared to

the range of motion of the hands, and they present weaknesses

when the hand palm is not facing the head of the user, thereby
esulting in self-occlusions. Previous work has tried to address this

roblem, for instance Tkach et al. fit the hand posture using a com-

ination of sphere meshes [10] while Mueller et al. use a cascade

f convolutional neural networks (CNNs) to first localize the hand

enter and then regress 3D joint locations [11] . They also employ

 synthesized dataset that simulates cluttered environments via a

erged reality approach, allowing the model to generalize better.

hese approaches, however, are still very limited in terms of range

f motion as they are optimized for a user facing the camera. 

As for tracking with motion capture, Han et al. frame the

roblem as a keypoint estimation task, which is tackled with

NNs [12] . While their approach allows using a passive system,

he authors highlight some shortcomings with multiple occlusions.

ther frameworks based on motion capture typically employ some

ort of sensor fusion from multiple data sources. Andrews et al.

ropose a tracking system which uses IMUs and a physics model

o recover from sensor dropout [13] . Our approach is related to

13] in the sense that we combine IMUs with motion capture to

ecord a robust dataset, but differs in the fact that we use only

otion capture at inference. 

Machine learning for inverse kinematics. As an improvement over

xisting techniques, [14,15] proposed a deep learning framework

n which a forward kinematics layer is added to a neural network

o constrain the output to feasible postures. Specifically, Zhou

t al. [14] focuses on hand pose estimation and [15] on full-body

ose estimation. As with the MS Kinect, these techniques rely on

egular cameras and computer vision algorithms. As such, they are

nable to exploit the potential that a full motion capture system

as to offer, in terms of both precision and range of motion. 

A recent survey classifies inverse kinematics techniques into

everal categories, which can be summarized as “traditional”

analytic, Jacobian-based), and “data-driven” – often based on ma-

hine learning, and recently, on deep neural networks [16] . Most

elated work focuses on inverse kinematics in the most general

etting, which consists in defining the desired positions of the end

ffectors and have the model find a configuration that achieves the

esired result. This particular problem has already been tackled

ith machine learning, in an industrial control setting, i.e. robot

rm [17,18] , and in humanoid fingers [19] . 

.2. Contribution 

We propose a compromise between skeleton-less methods (i.e.

ero knowledge) and those with skeletons. Despite being closely

elated to data-driven inverse kinematics, it is more correctly

eferred to as “reconstruction”. We map the captured markers to

he transformations of a virtual hand, but the end effectors do

ot need to be aligned with the corresponding markers – in fact,

arkers and joints belong to two different sets, whose correlation

s exploited by the model. Instead of defining constraints manually

as in IK systems), all the necessary information is automatically

nferred from the data, so as to obtain the most precise and

aturally-looking prediction. Our work focuses on motion capture

ith active markers and proposes a machine-learning-based alter-

ative to analytic IK algorithms, as well as a method for correcting

cclusions. 

In this paper, we show how we acquired a dataset from a

umber of subjects, and devised an efficient two-stage pipeline

hat first corrects occlusions in the motion capture stream, and

hen reconstructs all the transformations of the hand joints. Both

tages are based on neural networks, which are trained on the

forementioned dataset. We evaluate our model at different levels:

econstruction error of occlusions, end-to-end reconstruction error

f joint positions, and computational cost in terms of CPU and

emory usage – crucial factors for real-time applications. The

reliminary version of this approach [20] has been extended as
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Fig. 1. The virtual hand (left) and the mocap glove (right). 
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Fig. 2. Comparison of the pose reconstruction before and after simple calibration. 
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ollows. First, we add a calibration process to increase the fidelity

f the reconstruction of the model. Second, we handle bimanual

cclusions in real time. The system is also re-evaluated with a

roader range of use cases. 

We release our demo and data publicly. 1 

. Data acquisition 

We start by briefly introducing the characteristics of the motion

apture pipeline, and the final goal that our model is expected

o meet. The user wears a pair of gloves equipped with LED

arkers. The positions of these markers are collected by a motion

apture system and passed to the pipeline, which outputs the

ransformations necessary for animating the virtual hands in a VR

nvironment. The mapping is depicted in Fig. 1 . More formally,

he pipeline comprises the following inputs and outputs: 

Inputs: The absolute positions (i.e. 3D points) of the markers.

Given that we employ an active motion capture system, each

marker is tagged with its own unique ID. Some positions

can be missing from the data stream if the correspond-

ing markers are not visible from a minimum number of

cameras, i.e. they are occluded . 

Outputs: The angles of each joint in the hand, as well as the

absolute position and orientation of the latter. 

As mentioned, this mapping is learned from a dataset that we

ave collected for this specific task. The next section shows how

e acquired the data, and how we built our ground truth for the

urposes of training and evaluating the model. 

.1. Devices 

We acquired the data using two devices: 

• PhaseSpace ImpulseX2 motion capture system, based on active

LED markers. Each marker is tagged separately with a unique ID

via a frequency modulation mechanism. This system can track

the entire body by means of a suit equipped with markers. 

• Noitom Perception Neuron, a low-cost hand-tracking device

based on inertial measurement units (IMUs). 

The two were combined on the custom glove shown in Fig. 2

nd used simultaneously for computing the ground truth through

 sensor fusion algorithm, which we describe in Section 2.2 . 

The original PhaseSpace glove, prior to customization, com-

rised 8 markers (denoted as “Original markers” in Fig. 2 ). The po-

itions of some markers are not optimal, especially due to the lack

f a marker at the wrist level, a crucial location for estimating the

rientation of the hand. For this reason, we discarded two markers

n the original glove and decided to add three additional markers
1 https://github.com/dariopavllo/robust-finger-tracking . 
M  
referred to as “Alignment Marker” in Fig. 2 ). The secondary sys-

em (Perception Neuron) served the role of collecting the mapping

etween marker positions and joint positions/angles. It consists

f a flexible glove with several 9-axis IMUs placed on top of

ngers. Due to its nature, this system is immune to occlusions

ut presents the issue of drifting over time. This is an intrinsic

roblem of inertial tracking; it cannot be corrected without an

bsolute reference. Additionally, although the IMUs can in theory

etect all degrees of freedom, their particular finger reconstruction

lgorithm can sense only one axis: the finger flexion-extension. As

 consequence, finger spread/crossing cannot be detected. 

We solved these issues by combining the readings from the

erception Neuron with the ones from the PhaseSpace, in a process

nown as sensor fusion . The details are explained in Section 2.2 .

ccordingly, we also moved the Perception Neuron’s sensors to our

ustom PhaseSpace glove ( Fig. 2 ). The IMUs were used only during

he dataset recording phase, and they were removed afterwards. 

.2. Sensor fusion 

The PhaseSpace motion capture system provides us with ab-

olute tracking, whereas the Perception Neuron offers relative

racking. As the data streams between these sources are very dif-

erent, it is crucial to devise a sensor fusion algorithm that yields

lausible results. From a high-level perspective, the algorithm is

ivided into a series of steps. 

Setup. Each marker is assigned to one of the joints of a hand

emplate – the rigged 3D model in Fig. 2 – with the possibility

f specifying an offset relative to the joint (i.e. in object space).

he offsets are static and must be known in advance because they

epend on where the markers have been physically placed on the

love. Three extra markers visible on Fig. 2 are tagged as alignment

arkers as they are used for estimating the location of the hand

n space. Our choice was to form a triangle on the back of the

and, namely the markers corresponding to the wrist, the base of

he index, and the base of the pinky. 

Estimation of hand position/orientation. We compute an optimal

igid motion transformation – which comprises only a rotation and

 translation – from the hand template in local space to the hand

n world space. More formally, we denote the positions of the

oints in the hand template ( Fig. 2 ) as U , and the positions of the

arkers as V . The algorithm takes the two lists of points U and V

which have the same number of points and the same dimension)

s input, and returns a transformation T such that: 

 (u ) = uR + t (1)

here R is a rotation matrix and t is an offset. We assume that all

ectors are in row-major order. This transformation minimizes the

ean squared error (MSE) between the source positions and the

arget positions, defined as: 

SE (U , V ) = 

1 

N 

N ∑ 

i =1 

∥∥V i − T (U i ) 
∥∥2 

(2)

https://github.com/dariopavllo/robust-finger-tracking
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Fig. 3. Illustration of the hand calibration pose. 

Fig. 4. Illustration of the simple calibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Finger alignment post-processing. 
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Fortunately, there exists a closed-form solution for this prob-

lem, which is also very efficient. It is based on the singular

value decomposition (SVD), and can be computed using Kabsch’s

algorithm [21] . In our case, the transformation is calculated using

only the alignment markers (i.e. the 3 markers on the back of the

hand). 

Joints calibration. An additional calibration stage is necessary to

make the proposed approach more robust to hand variety ( Fig. 4 ).

The user has to adopt an occlusion-free flat pose corresponding

to the default pose of the animated avatar with the identity

transformation for all the joints ( Fig. 3 ). While performing this

pose, we record all the predicted joint transformations and store

their inverse as the (constant) calibration offset transformation. By

construction, combining each joint prediction with its calibration

offset produces the desired identity transformation for that pose

( Fig. 4 ). This calibration offset is then applied systematically to

the prediction at run-time to partially handle the variety of user

hands. It is completed with the post-processing stage described

below. 

Post-processing. In Fig. 5 (b), one can notice a gap between the

fingertips and their associated markers. This is caused by inaccura-

cies of the Perception Neuron. We mitigate this issue by applying

an artificial rotation to every finger, so that, after the transfor-

mation, every finger points in the direction of the corresponding

marker. Specifically, we denote with p 0 the position of the base of

the finger (metacarpophalangeal joint), with p 3 the position of the

fingertip (returned by the Perception Neuron), and with p m 

the

position of the marker (returned by the PhaseSpace). We are not

interested in modifying intermediate joints as they have no asso-

ciated marker. However, of course, the position p 3 depends on the

orientation of p 2 and p 1 (the intermediate joints, see Fig. 5 ). Ide-

ally, we would want p 3 = p m 

, and this is what a traditional inverse

kinematics (IK) solver achieves. However, this constraint is too

strong since it would force unnatural postures in certain cases. On

the other hand, our aim is just to apply a small correction to the

data already obtained from the Perception Neuron, and therefore a

simple rotation is sufficient. The approach adopted in [20] limited

our ability to reproduce a contact between the thumb and other

finger tips. Fig. 5 (d) illustrates the principle of the proposed

approach to reduced such a gap. We first compute the position

of the last finger mid-segment p m 

′ = (p 3 + p 2 ) / 2 to better reflect

the marker location. Then we rotate the finger by the shortest-arc

quaternion rotation from vector p m 

′ − p 0 to vector p m 

− p 0 . At

this point, all the limitations of the Perception Neuron have been
vercome: all possible gestures/postures can be detected, including

he most problematic ones (e.g. finger spread and finger crossing). 

. Machine learning model 

.1. Pipeline 

We adopt a two-stage model: the first step (marker predictor)

redicts the positions of the occluded markers, and the second

tep infers the angles of all joints from the output of the first step,

ssuming that there are no occlusions. We train the two models

eparately, and not in an end-to-end fashion, as our approach for

nforcing temporal consistency (described in Section 3.2 ) is not

ifferentiable. Having two stages presents some advantages from

 flexibility standpoint. If occlusion correction is not required by a

articular task, the joint predictor could be used out of the box as

f it were an IK solver. Moreover, a potential developer could use

ifferent algorithms for each system: the occlusion manager could

e based on neural networks, linear models, or anything else, and

t would not affect the behavior of the second model. Similarly, the

arker prediction model could be used solely for the purpose of

andling occlusions, and a traditional IK solver could be added on

op of it – note however that this requires a 1–1 correspondence

etween markers and joints, which is not a requirement of our

ystem. We show a block diagram of our full pipeline in Fig. 6 . 
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AVATAR 3D MODEL
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(array of positions)

Finger joints rotations
(array of rotation matrix)

Autoencoder
NN
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NN

Extract Markers
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H
and global position

(rotation m
atrix +

 position)

Fingers local
markers positions
(array of positions)

Fingers local
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(array of positions)

Calibration

Fingers joints rotations
(array of rotation m

atrix)

Rotations
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Correct Base
Joint Rotation

External
trigger

(Triggered once)

Fig. 6. Conceptual full prediction pipeline. 

3

 

r  

m

 

m  

a  

a  

W

 

 

 

b  

n  

d  

b

3

 

o

 

t  

d  

 

i  

m  

a  

c  

d

 

o  

c  

t  

w  

t  

p  

a  

f  

t  

t  

a

Y

∑

w  

a  

s  

a  

s  

t  

t  

I  

o  

b

L  

=  

w  

p  

i  

c  

c  

W

∇  

W  

w  

r

 

F  

a  

X  

w  

F  

a  

r  

a

3

 

t  

[  

d

 

p  

l  

n  

f  

n  

s

 

 

.2. Marker predictor 

Before presenting our model based on neural networks, we

ecall the three simple baselines that are evaluated against our

ethod. 

It is worth mentioning an important property that this step

ust implement: temporal consistency . The model should enforce

 “smoothness” condition between subsequent frames, so as to

void discontinuities (sudden jumps in the joint transformations).

e can identify two types of discontinuities: 

Discontinuity on occlusion: when a marker is visible at time t

and becomes occluded at time t + 1 . 

Re-entry discontinuity: when a marker that was previously

occluded at time t becomes available again at time t + 1 . 

While discontinuities on occlusions can be corrected explicitly

y enforcing temporal consistency in the model, re-entry disconti-

uities cannot be solved without having future knowledge of the

ata. In a real-time system like ours, this means that they must

e smoothed manually as a post-processing step. 

.2.1. Baselines 

We now introduce the three aforementioned baselines, in order

f increasing complexity: 

Last known position. The simplest baseline consists in keeping

he last known position of an occluded marker. With regard to

iscontinuities on occlusions, this method is temporally consistent.

Moving average. Inspired by Piazza et al. [5] , we take velocity

nto account. We keep a moving average of the velocities of each

arker over the last k frames (we use k = 20 , i.e. one third of

 second) to minimize the effect of noise. When a marker is oc-

luded, this baseline simply moves the marker along the trajectory

efined by the average velocity. 

Affine combination model. Finally, we propose an improvement

ver the previous baselines. Another simple (yet effective) method

onsists in expressing an occluded marker as an affine combina-

ion of the other available markers, i.e. a linear combination with

eights that sum up to 1. The computation is performed using
he data from the previous frame, where the occlusion was not

resent. In order to enforce the affine property, it is sufficient to

dd a homogeneous coordinate to each point, and fix it to 1. More

ormally, we denote with X i ( i = 1 .N) the set of all known posi-

ions ( X is a N × 4 matrix), Y j ( j = 1 .M) the set of occluded points

hat must be predicted (the result Y would be a M × 4 matrix),

nd W the weight matrix of size M × N . It must follow that: 

 = WX (3) 

N 
 

i =1 

W j,i = 1 ∀ j (4) 

here X i = [ X ix , X iy , X iz , 1] and Y j = [ Y jx , Y jy , Y jz , 1] . We are again

ssuming a row-major vector notation. This problem can be

olved using exactly 4 non-coplanar markers. If more markers are

vailable, the problem is underdetermined, as there are infinite

olutions to the linear system. Therefore, we apply L2 regulariza-

ion, which means that among all possible solutions, we choose

he one that minimizes the squared norm of the weight vector.

n other words, the predicted position should depend on all the

ther markers, each of which has a small weight; this leads to a

etter robustness to noise. We minimize the loss function: 

 (W ) = 

M ∑ 

j=1 

(‖ Y j − W j X ‖ 

2 + λ‖ W j ‖ 

2 ) (5)

 ‖ Y − WX ‖ 

2 
F + λ‖ W ‖ 

2 
F (6)

here ‖ M ‖ F denotes the Frobenius norm of M , and λ is a small

ositive regularization constant ( λ = 10 −8 is suitable in our case;

n general, one should choose the smallest value that does not

ause numerical precision issues). Fortunately, the function is

onvex and there exists a closed-form solution for its minimum.

e derive the gradient with respect to W and equal it to zero: 

L (W ) = −2 (Y − WX ) X 

T + 2 λW = 0 (7)

Solving for W we obtain: 

 = YX 

T (XX 

T + λ I N ) 
−1 (8)

here I N is the N × N identity matrix. This approach is closely

elated to ridge regression [22] . 

As before, discontinuities on occlusions are avoided by design.

urthermore, this baseline is intrinsically invariant to translations

nd rotations. Since Y j is expressed as an affine combination of all

 i , any rigid transformation applied to X would be applied to Y as

ell, i.e. f (T (X )) = T ( f (X )) (where T is a rigid transformation).

rom a practical standpoint, if the hand is kept in a static posture

nd moved around the capture space, the occluded markers is

econstructed perfectly. We also found this baseline to perform rel-

tively well on gestures that do not involve complex movements. 

.2.2. Marker regressor 

In theory, neural networks (NNs) can approximate any func-

ion (provided that a sufficient number of neurons is available)

23] but, in practice, the result is strongly dependent on how the

ata is pre-processed. 

Similarly to the affine combination model, we want our

rediction to be spatially invariant, in the sense that any trans-

ation/rotation transformation applied on the input points should

ot affect the output of the neural network. Therefore, we en-

orce, for this step, a pre/post-processing scheme that allows the

etwork to learn a proper mapping thanks to the reduced search

pace. These are named: 

Marker position extraction in hand referential (registration): The

rotation and translation of the hand in space are removed.
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Fig. 7. An autoencoder with three hidden layers. In a scenario where a and c are 

available, and b is occluded, we disconnect the inputs corresponding to b , and we 

get the prediction of b in the output. Here, only 3 markers are depicted; in practice, 

we would have 9 markers. 

Table 1 

Full list of layers in the marker regressor. 

Type Shape 

Input 9 × 3 

Flatten 27 neurons 

Fully connected + ReLU 200 neurons 

Fully connected + ReLU 150 neurons 

Fully connected + ReLU 200 neurons 

Fully connected + Linear 27 neurons 

Reshape (output) 9 × 3 
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This can be achieved by aligning the hand to the standard

template, which is centered on the world origin and is

oriented toward a predefined axis. The alignment can again

be performed by finding the lowest-error rigid motion

transformation. This process can be regarded as the inverse

operation of the hand position estimation presented earlier:

instead of moving the hand template towards the markers,

here the markers are moved towards the hand template.

The only difference is that here we use all available markers,

and not only the 3 alignment markers (since they may be

occluded). The hand template is kept in neutral pose (see

Fig. 2 ), and therefore this step is dependent on the hand

posture, but this does not represent a problem as the goal

of this step is to perform spatial normalization. 

Reconstruction of the markers positions (de-registration): The

inverse transformation is applied to the predicted points,

that is, the markers are put back to their original positions

in world space. 

With regard to how occlusions are handled, it is important to

note that neural networks cannot operate on missing data. Hence,

a special architecture and/or training procedure is required. A

thorough approach consists in building an ensemble of different

models [24] , one for each possible set of available markers, and

train them independently from each other. It is clear that this

method presents a severe limitation: the number of models to

train increases exponentially as more markers are added, not to

mention the tremendous computational (and memory) cost both

at training and inference. 

Instead, we employ a single feed-forward neural network con-

figured as an autoencoder , i.e. a topology that maps the identity

function x −→ x , as depicted in Fig. 7 . The network comprises 3 N

input neurons and 3 N output neurons, where N is the total num-

ber of markers (9 in our case). Each group of 3 neurons encodes

the XYZ positions of a particular marker, after the pre-processing

step described above. 

The structure of the neural network is shown in Table 1 .

All layers except the last one use ReLU (Rectified Linear Unit)

activation functions [25] , defined as y = max (0 , x ) , as they have

been shown to yield the best results in a wide range of tasks
26,27] . The output layer uses a linear activation function, thereby

llowing an unbounded output range. All hyperparameters were

hosen to minimize the reconstruction error on the validation set,

lso taking into account performance and latency constraints. We

lso experimented with varying numbers of layers and discovered

hat more layers lead to overfitting on this specific task (regardless

f regularization). 

Our mechanism for handling occlusions is closely related to

ropout [28] , a training technique traditionally used to avoid

verfitting the training set. Dropout works as follows: during

raining, at each iteration, a random fraction of neurons are dis-

onnected (which is equivalent to setting their output values to 0).

t inference, all neurons are used. We apply a procedure similar

o Dropout on the input layer. The model is trained using a data

ugmentation procedure: the dataset is generated in real time by

etting a random number of points (groups of 3 neurons) to 0

rom frames containing exclusively all visible markers, according to

he distribution observed in Fig. 13 (with a number of occlusions

etween 1 and 4). The exact distribution is not crucial, but it

elps with improving the error in realistic cases. It is worth noting

hat the pre/post-processing scheme still applies to this approach.

he inputs must be disconnected after the positions are registered

i.e. are transformed into object space). The prediction algorithm

s trivial: all available (non-occluded) points are registered and

assed as inputs to the neural network, whereas the inputs corre-

ponding to missing values are set to 0; the relevant outputs (i.e.

he ones corresponding to the occluded markers) are extracted

nd de-registered. 

Autoencoders learn a compressed representation of the data

29] , instead of just copying the input to the output. In our

articular case, the bottleneck layer learns a positional embedding ,

.e. a vector that encodes a particular posture. Our representation

s overcomplete, meaning that the number of neurons in the

ottleneck is greater than the number of input neurons. However,

ur training procedure acts as a regularizer, effectively forcing

he model to learn a sparse representation that is suitable for

econstructing missing values. ReLU activations also contribute to

parsity [26] . 

Discontinuities. Unlike the affine model discussed earlier, the

eed-forward neural network approach tends to suffer from dis-

ontinuities because it does not enforce temporal consistency

xplicitly. Since a feed-forward model does not contain any state

nformation, it simply finds a solution that minimizes the error

n the average case, without being able to take into account any

revious context. From the user’s point of view, this results in

 bad experience. Other neural network architectures, such as

ecurrent neural networks (RNNs), can exploit past information.

owever, even with them, handling missing values is a non-trivial

ask that could still result in discontinuities. Our preliminary

xperiments showed that this is indeed the case. Hence, we stick

ith feed-forward networks due to their lower computational cost

nd ease of training, and we adopt special measures to correct

iscontinuities. When a marker becomes occluded, we compute

n offset term and we apply it to all subsequent outputs, until

he occlusion is resolved. More specifically, given an occlusion at

ime t , we perform a prediction with the data from the previous

rame t − 1 (where the real position was known). Afterwards, we

alculate an offset that cancels out the discontinuity; this offset

s retained as state information and is modified only if another

cclusion happens, or if the occlusion is resolved. The offset is

pplied to the output of the marker predictor network before

he points are de-registered. To calculate the offset, we simply

ompute the difference between the predicted position and the

ctual position in local space. We also explicitly correct re-entry

iscontinuities using the same technique; the only difference is

hat the offset is decayed to zero over time (using a linear decay
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Fig. 8. Handling of discontinuities. (a) At t − 1 no marker is occluded. (b) At t the 

index marker is occluded. The NN predicts its hypothetical position at t − 1 (green), 

which results in a small discontinuity from the true position (red). (c) From t on- 

wards, the discontinuity is explicitly canceled by moving the marker by the offset 

vector (black arrow). For re-entry discontinuities, the process is reapplied in the 

opposite direction, but the offset vector is progressively shrunk to remove the bias. 

Fig. 9. Degrees of freedom of the hand joints (26 in total). 

Table 2 

Full list of layers in the joint regressor. 

Type Shape/Notes 

Input 9 × 3 

Flatten 27 neurons 

Fully connected + ReLU 200 neurons 

Dropout p = . 1 

Fully connected + ReLU 200 neurons 

Dropout p = . 1 

Fully connected + ReLU 200 neurons 

Fully connected + Linear (output) 26 neurons 
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Fig. 10. Left: a person wearing the recording equipment (Phase-Space glove and 

Perception Neuron). Right: a person testing the application in a VR environment 

with an Oculus HMD. 
unction) in order to remove the bias. We observed that a decay

peed of 25 cm/s offers a good compromise between reactivity and

moothness. Fig. 8 depicts this process. 

.2.3. Joint regressor 

The joint regressor predicts the angles of the fingers, given the

arker positions as input. It solves a task similar to that of an IK

olver, but instead of using a calibrated skeleton, it adapts to the

ser hand, according to a dataset of realistic motions. Furthermore,

t does not need to handle missing values, as they are assumed

o be predicted by the previous stage of the pipeline. We adopt a

ense neural network for this task, which takes the marker posi-

ions as inputs ( 9 × 3 = 27 neurons), and predicts the Euler angles

f all relevant joints, for a total of 26 Euler angles. The use of

uler angles instead of other representations, such as exponential

aps [30] or quaternions, is motivated by the observation that

ur fingers have limited degrees of freedom. We need to predict

nly certain angles, thereby obtaining a smaller neural network.

ig. 9 shows the degrees of freedom that are modeled, while

able 2 shows the structure of the neural network. As before,

ll layers except the last one use ReLU activation functions [25] .

oreover, we used Dropout [28] in the intermediate layers (with
 probability of 0.1, meaning that 10% of neurons are randomly

ropped at each training iteration) to avoid overfitting. This proved

ffective in improving the validation error. 

During both training and inference, the inputs are registered

all rotations/translations are removed). Additionally, we found the

ame post-processing technique employed in the sensor fusion

i.e. artificial joint rotation, Section 2.2 ) to be effective. 

.3. Training 

For both models, we optimize the mean squared error (MSE)

oss using the Adam optimizer [31] with an initial learning rate η
 0.001. The learning rate is automatically adjusted once the error

eaches a plateau; more specifically, it is halved if the error has

ot improved over the last 5 epochs. The model is trained only on

imulated occlusions, as they are the only ones for which a reliable

round truth can be obtained, and with a batch size of 32 samples.

. Experimental protocol 

.1. Left hand dataset 

The dataset was recorded from four subjects (three males and

ne female, age range 22–30), all right-handed, and with different

and sizes. Every subject underwent eight recording sessions of

pproximately 60–80 s each, and the Perception Neuron was cali-

rated before each session (with a quick follow-up check) ( Fig. 10 ).

his approach ensures that IMU drifts do not degrade the dataset

ccuracy. As for the movements, the subjects were left free to ex-

cute any movement, but were also instructed to perform at least

ome key gestures. In order to evaluate the model, the dataset

as partitioned into a training set (2 subjects), a validation set (1

ubject), and a test set (1 subject). The validation set was used

or tuning the hyperparameters and testing different architectures,

hereas the test set was used only for the final evaluation. 

.2. Two hands dataset 

A second dataset was recorded from five subjects (four men

nd one female, age range 24–42), all right-handed with different

and sizes. Each subject spent 100 s wearing the two gloves but

his time without the perception neuron system as it was no

onger required. The subjects had to achieve three tasks (both

ands finger crossing, palms in contact, fingers in contact) and



8 D. Pavllo, M. Delahaye and T. Porssut et al. / Computers & Graphics: X 2 (2019) 10 0 011 

Fig. 11. A subject wearing the two gloves during the recording phase of the dataset. 
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Fig. 13. Probability of N occlusions at once (Left)/Occlusion duration histogram 

(Right). 
were free to move the rest of the time. This dataset was used in

order to compute the rate of occlusions per hand in comparison

with a system with only one hand ( Fig. 11 ). 

5. Mirroring 

The reconstruction of the right hand pose exploits the model

trained for the left hand. For this we simply transpose the behav-

ior of the left hand pipeline to the right hand, using the natural

plan of symmetry of our skeleton to flip the markers coordinates

according to this plan ( Fig. 12 ). The new pipeline handling both

hands is a composition based on the pipeline describe in Section 3 .

Then the set of mirrored coordinates is given as an input to the

pipeline with the neural network for the prediction of the markers

positions. The neural network trained on the left hand dataset

now sees an input matching a left hand and predict the occlusions

for this virtual left hand. 

These data are stored in the hand model object in order to be

accessed for the hand pose estimation and for the next step. The

next step consists in filling these predicted markers to the neural

network trained on the left hand to predict the joints rotations of

each finger, and as above, it sees a left hand. 

As for the marker position prediction, the output is also stored

in the hand model object, and are forwarded to the 3D model for

its animation. 

This design allows us to train only once the neural network

with the dataset of one hand, and using it as many times required

for the number of hand required in the simulation. Also we were
able to use four hand in our simulation environment. 

Fig. 12. Main steps of the pipeline used to transform raw markers position from 

VRPN to the position of the avatar’s body. Refer to Fig. 6 for details of the left hand 

model. 

F

(

. Results 

.1. Datasets 

.1.1. Left hand dataset 

The training set consists of ≈ 30 min of data recorded at 60

PS. In theory, the PhaseSpace system can record at up to 480

PS, but we limited the sample rate to 60 FPS to avoid collecting

oo many redundant samples. Fig. 13 reveals some insights: most

cclusions involve a small number of markers, that is, the proba-

ility that multiple markers are occluded at once is low. Moreover,

he duration of an occlusion follows a heavy-tailed distribution

90% of occlusions last less than 0.36 s). 

.1.2. Two hands dataset 

This dataset is used to compute the number of occlusion occur-

ing with two hands instead of one hand. We used the same frame

ate for this comparison. As we can see in Fig. 14 , the probability

o have more than one or two occluded markers is higher than in

he single hand case. The occlusion duration is likely to be longer
ig. 14. Probability of N occlusions at once (Left)/Occlusion duration histogram 

Right). Plots represent the same as in Fig. 13 . 
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Table 3 

Evaluation of the error on the marker neural network (error units = centimeters, 

lower = better). Legend: LK last known position, MA moving average, AC affine com- 

binations, NN neural network. 

# Occlusion duration (seconds) 

Method Occlusions 0.1 0.2 0.5 1.0 2.0 

LK Any 1.54 2.58 4.43 5.15 8.06 

MA Any 2.23 4.28 9.99 20.19 44.28 

AC 1 0.97 1.54 2.42 2.92 3.67 

2 1.06 1.69 2.61 3.47 4.12 

3 1.22 1.96 2.95 3.65 4.52 

4 1.66 2.68 4.06 5.34 5.45 

NN 1 0.56 0.84 1.19 1.46 2.09 

2 0.60 0.91 1.33 1.57 2.08 

3 0.68 1.03 1.48 1.81 2.32 

4 0.79 1.20 1.78 2.14 2.72 

Table 4 

Evaluation of the error on the final joint positions (error units = centimeters, 

lower = better). Legend: IK inverse kinematics, FT fine-tuned, NN neural networks. 

# Occlusion duration (seconds) 

Method Occlusions 0.1 0.2 0.5 1.0 2.0 

IK 0 1.87 (no occlusions) 

IK FT 0 1.08 (no occlusions) 

NN 0 0.07 (no occlusions) 

1 0.11 0.14 0.17 0.19 0.29 

2 0.17 0.23 0.29 0.35 0.41 

3 0.26 0.36 0.48 0.57 0.79 

4 0.38 0.55 0.79 0.89 1.32 
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Fig. 15. (a) Comparison between the baselines and our method for the marker pre- 

dictor error. The moving average baseline is not included because of its excessive 

error. (b) End-to-end error: our approach at varying conditions versus an IK base- 

line. 

d  

W  

i  

t

 

M  

a  

a

e  

fi

fl  

s  

(  

fi  

d  

t  

n  

r  

c  

a

6

6

 

U  

C  

t  

(

6

 

a  

s  

m

7

7

 

i  

s  

t  

p  

a

7

 

t  
oo. This can be explained by the fact that interacting hands may

emporarily hide each other. 

.2. Reconstruction error 

.2.1. Marker predictor error 

Table 3 and Fig. 15 (a) reveal the error of the first stage of

he pipeline – the marker prediction model. We compare the

hree baselines with our neural network approach, and we report

tatistics over varying occlusion durations and number of markers

ccluded simultaneously. For each trial, we report the average

uclidean distance between the predicted position and the ground

ruth on the last frame before the occlusion is resolved, and only

or the occluded markers. For instance, in the scenario “2 markers

fter 100 ms”, we occlude two random markers at once and mea-

ure their error after 100 ms. The errors are evaluated across the

ntire test set and repeated 5 times with different random seeds

o smooth out their variance. 

Our evaluation methodology addresses both short-term occlu-

ions (100 ms, 200 ms, 500 ms) and long-term occlusions (1 s and

 s). Each method is tested on a number of occlusions between

 and 4, except for the first two baselines ( last known position

nd moving average ), which are independent of this parameter.

e observe that the moving average baseline exhibits the worst

erformance, which is caused by the markers drifting away on

ong-term occlusions. The affine combination model is better

han the simplest baseline (last known position) except when

any markers are occluded at once. Finally, our neural network

pproach consistently outperforms all the other methods. 

.2.2. End-to-end error 

In Table 4 and Fig. 15 (b), we report the error relative to the

oint positions by running the entire pipeline. As in the previous

ection, we measure the average Euclidean distance between

he predicted joint positions and the ground truth. The averages

re computed only over the finger joints, i.e. p , p , and p (as
1 2 3 
escribed in Section 2.2 ). All errors are relative to the test set.

e do not report angle errors because they would not be easily

nterpretable – errors in the first joints would accumulate along

he kinematic chain. 

We compare our work to an IK library, “Final IK” by Root-

otion. We fine-tuned the IK configuration to the best of our

bility: we use a Cyclic Coordinate Descent (CCD) solver, with

n angle constraint (3 degrees of freedom, max. 45 ◦ for flexion–

xtension/abduction–adduction, and 20 ◦ for twist) on the root

nger joints, and a hinge constraint (1 degree of freedom –

exion-extension – from −90 ◦ to 10 ◦) on middle joints. We

how that our approach achieves a significantly lower error

0.07 cm) than inverse kinematics (1.87 cm unconstrained, 1.08 cm

ne-tuned) when there are no occlusions. This suggests that a

ata-driven approach is better at modeling the angle distribu-

ions/constraints than a handcrafted setup, thus producing a more

aturally-looking reconstruction. For the occlusion scenario, we

eport only the statistics associated with our method, as IK solvers

annot handle occlusions (some IK approaches such as [32] enable

 reduced set of markers, but not a dynamically-changing one). 

.3. Performance 

.3.1. One hand 

Our reference implementation is written in C# and runs on

nity Engine. Running the entire pipeline on an Intel Core i5-4460

PU requires less than 1.2 ms ( ≈ 833 frames per second). Addi-

ionally, the two neural networks have minimal memory footprint

300 kB each). 

.3.2. Both hands 

With an Intel Core i9-9900K, the full pipeline takes 2.2 ms on

verage, based on a simulation of 5 minutes ( ≈ 455 frames per

econd), against 1.2 ms for a single hand with this pipeline on this

achine. 

. Interacting with both hands 

.1. New possibilities 

Having both hands in VR gives the user a more natural way to

nteract with elements of the virtual world. It allows us to perform

imultaneous actions, like changing gears while driving, but also

o achieve more complex tasks like handling large objects. The

rovided video illustrates the actions of opening a drawer to grab

n object, fingers crossing and shaking hands. 

.2. Limitations 

The autoencoder for the markers positions might not be trained

o handle every position. Indeed, some complex positions might
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Fig. 16. Examples of failure cases. 

Fig. 17. An illustration of the gap between the two fingers. 
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induce each time at least one occlusion thus excluding these

frames from the training dataset. 

As both hands are tracked, this may increase the number of

mutual occlusions. In the limit case of too many simultaneous

occlusions, the pipeline might also fail and give results like in

Fig. 16 (a). In that regard, we expect that training a new neural

network handling both hands simultaneously could help to predict

their correct relative position in contexts where one hand is

hidden by the other one. 

It also has to be noted that, the thumb having a more complex

structure than the other fingers, the post-processing we devel-

oped by simply applying a rotation on the base joint should be

improved for that finger. We also noticed that, depending on the

environment (number of cameras, reflectives surfaces, etc.), the

PhaseSpace might give wrong positions instead of empty ones.

This might occurs with fast motion ( Fig. 16 (b)). 

Another limitation pertain to the quality of self-contacts

as a small gap may remain visible in some cases despite the

post-processing stage Fig. 17 . 
Finally, we may produce a collision in the reconstruction of

he model: a finger of the left hand can penetrate the finger of

he right hand due to the fact that the system doesn’t check for

ollision. 

. Discussion and future work 

To sum up, we present a hand-tracking pipeline to animate

irtual hands using raw 3D marker positions. In particular, we

ddress the issue of occlusions by proposing an approach based

n neural networks, and compare it to three baselines. Finally,

e propose a method for mapping markers to joint angles, which

oes not require the laborious process of setting up an IK solver. 

Our system provides a natural reconstruction of the hands in

ost real-case scenarios, which we demonstrate by comparing

he reconstruction error with that of a traditional solver based

n inverse kinematics. Our data-driven approach does not require

efining a set of rules or constraints, as these are learned auto-

atically from data. Occlusions are corrected with good accuracy

n most cases, and with minimal latency. From an interaction

erspective, our finger animation is suitable for object grasping

nd manipulation, but we observe that we behavior of the thumb

which falls short on pinching gestures – could be improved by

sing a 3D hand model that resembles the glove more closely.

he reader is referred to the supplementary material for a video

f our results. We do not employ physical simulation or collision

etection, nor do we enforce kinematic constraints when objects

re touched, i.e. the good fit between hands and objects comes

rom the reconstruction alone. 

With regard to related work on this subject, previous methods

ave mainly addressed passive motion capture and limb recon-

truction. Out of the few occlusion-handling solutions targeted at

ctive-marker technologies, we investigated [4] , which has already

een employed in some studies [33] . However, this method re-

uires at least three markers for each segment, which follows from

he assumption that the distance between neighboring markers is

pproximately constant. Given that our hand model comprises at

ost two markers per finger (tip, and optionally, base), we suggest

hat a data-driven approach is more suited to this task because

t adapts better to the specific domain that should be addressed

hand and fingers reconstruction with only 1 or 2 markers per

nger, in our case). This also explains why, in our setting, analytic

nverse kinematics perform significantly worse: in the absence

f intermediate markers, the algorithm has no knowledge of the

riors that constitute a good-looking posture. 

Finally, we discuss some limitations of our method and some

ossible future developments. One drawback that limits the

ractical applications of our model is the requirement for an

ctive-technology motion capture system for training. On the other

and, an active system presents the undoubtful advantage of being

ble to track multiple hands (and, possibly, multiple people) with

reater precision than its passive counterpart. For instance, Han

t al. [12] involve a delicate clustering step to address left/right

and confusion with passive markers. Nonetheless, if a robust

agging layer were integrated into the pipeline, such as the one

roposed by Alexanderson et al. [6] , our method would seamlessly

dapt to passive systems. Another disadvantage of our approach

ies in the feed-forward neural network architecture, which does

ot model an internal state. This does not only concern discon-

inuities – which are corrected manually in our case – but also

ow predictions are computed. Our model performs deterministic

redictions, in the sense that equivalent postures (same input

ith different outputs) are averaged so as to minimize the recon-

truction error. Although we observed that this does not happen

requently, it might be undesirable in some cases. Recurrent

eural networks can produce an output that is conditioned on the
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revious frames, and they can potentially handle discontinuities

ithout manual corrections, although it is not trivial to enforce

emporal consistency on occlusions while keeping the target

unction differentiable. In the future, we would like to experiment

ith convolutional, long short-term memory (LSTM), and gated

ecurrent unit (GRU) architectures. We would also like to add

eamless support for passive motion capture systems, perhaps as

 pluggable encoder. 

With the current architecture, we have a single-hand neural

etwork that is exploited independently for each hand. It means

hat each hand position is reconstructed only with its own mark-

rs positions regardless the relative position of the second hand,

eading to possible collisions. In the future, we would like to

xtend the architecture with a second neural network trained with

 dataset of two interacting hands. Another important point to

ddress in future work is to improve the enforcement of consis-

ent self-contact as this feature has been shown to be critical for

upporting the avatar body ownership [1] . 
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