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ABSTRACT

A model to predict stiffness reduction and stress redistribution due to damage of
laminated polymer composites is presented. The material properties required by the
model are limited to those already available for unidirectional composites. Classical
lmnination theory is generalized for the case of a continuously 'damaging material using
concepts from continuous damage mechanics. The Tsai-Wu failure criteria can be re­
covered as a limiting case.~The damage model is validated \\'ith experimental results for
various laminates built with aramid/epoxy, T300/5208, and T300/914 carbon/epoxy.

A fiber-reinforced polymer matrix composite is inholnogeneous~ but can be modeled as an
anisotropic homogeneous material. The elastic stiffness of such homogeneous material can
be predicted with great success in terms of the properties of the constituent phases (fiber and
Inatrix) using microlnechanics [I]. Since strength properties cannot be accurately predicted.
most designers rely on experimental properties. The strength values are measured as ultimate
failure values in uniaxial tests. Such failures usually occur after significant internal damage
with concomitant reduction in stiffness [2-4]. The evolution ofstiffness from the threshold of
damage to the failure of the material is important [5-7]. Significant stress redistribution is to
be expected among the layers in a laminate and among various loads paths in the structure
if the material undergoes damage. Predictions of ultimate load for laminate composites
based on ply discount or fudge degradation factors (see Section 7.2.2 in [1]) are' usually not
reliable [8].

Several types of modeling have been attempted in an effort to predict the behavior
of the damaged laminate prior to failure. First" approximate methods such as ply dis­
count and adjustable degradation factors have been used with limited success [8]. Second..
micromechanical models have been used to assemble the global response of a single ply
in terms of the damaging behavior of the constituents [9-11]. Such models have not been
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Using the standard coordinate transformation equations [4]~ the constitutive equations in
the global directions for Z = Zk are
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§1. CLi\SSICAL LM1INAnON THEORY WITH DAMAGING LAYERS

First, provision is made to model the stress redistribution in the laminate that occurs
as a result of the reduction in stiffness due to damage. When a laminate is under bending,
the strain distribution is linear through the thickness. Therefore, the material damages
nonuniformly through the thickness of the laminate. As a result, the material properties
vary continuously but linearly through the thickness of each ply. Therefore, the damage­
reduced stiffness matrix in the material directions is defined by a linear function of the
Inaterial property of the top and bottom of the kth layer. as follo\\'s:

extended to deal with laminates because they are computationally intensive, they require a
large number of material parameters, and there is no systematic methodology for finding
the parameters from experimental data. Third, continuous damage mechanics models rely
on a phenomenological description of the damage process and require a smaller number of
parameters [2]. However, existing models require special testing techniques or testing of
nonstandard laminates to determine the additional material parameters. Such test data are
generally not available and not likely to be generated because of the high cost of material
testing and the large number of material systems available in the marketplace. Furthermore,
no standard tests methods (ASTM and/or ISO) exist for such special tests. On the other
hand, standard test methods exist and have been used to evaluate most of the stiffness and
strength values for a unidirectional ply of most commercial systems [12]. Therefore, the
objective of this article is to present a model for damage of laminated composites based
exclusively on available data. To accomplish this objective requires a number ofsimplifying
assumptions such as assuming. that the effects of friction are negligible. Although frictional
effects at the fiber~matrix interphase and laminae interfaces may be present, they are not
considered in this work. This is necessary to avoid the complexity ofa nonconvex problem.
Although many experimental studies show stiffness degradation during fatigue loading [7],
for the sake of simplicity, the proposed model addresses only monotonic loading. Conse­
quently, the model has been validated with monotonic loading only [13-16]. In addition,
the present model, being set in the framework of continuum damage mechanics, deals with
the homogenized response only. Therefore., the model cannot predict the microscopic fea­
tures ofdamage such as craek spacing and periodicity [5-7]. It can only predict the reduction
of stiffness and consequent redistribution of stress among laminae. Finally, the model as­
sumes a t\vo-dimensional plane stress field at the meso-scale (lamina) level.. neglecting
the three-dimensional effects at the crack tip [6]. In summary, all microstructural details
are averaged, using continuous damage mechanics concepts, in an attempt to develop the
siInplest model that still can predict stiffness degradation in an average sense.
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where the tension (J over the layer is
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(3)

The laminate stiffness matrix (Eq. 6.15 in [1]) is obtained by integrating the stress resultants
(Eq. 6.12 in [1]) but using the damaged, plane stress constitutive Eq. (2), obtaining equations
similar to (Eq.6.16 in [1]) butin terms ofdamaged values Q'0, which can be written explicitly
as
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§2. THE DM1~-\GE ~'10DEL

The damage model is described in this section. It accounts for damage initiation, damage
evolution. and failure at the critical values of the damage measures corresponding to each
mode ofdeformation. Using the concepts ofcontinuous damage mechanics [2], the effective
stress can be computed in terms of the apparent stress as

(5)

\\'here the fourth-order tensor 1\'1 is obtained from the second-order integrity tensor as
Mijkl = QikQU. In tum, the integrity tensor .n is given in term of the damage tensor D as
Q = ,JI - D, where I is the second-order identity tensor [17].

In the sequel, the lamina material directions are used as the reference frame. The
damage principal directions are assumed to be coincident \vith the lamina material direc­
tions throughout the damage process. Then. the damage tensor D is characterized by its
eigenvalues and can be represented as a three-component array [D] = [D1.. D2. DJ]T.

Since the dalnage described by D and 1\1 is orthotropic.. initial undamaged transverse
isotropy of the composite can evolve into orthotropy by \\!ay of the damaged stiffness tensor"
cOlnputed as

(6)
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Moreover, each fiber-reinforced composite lamina is characterized by a state ofplane stress.
Although the principal directions of stress do not necessarily coincide with the material
coordinate system within a lamina, the principal directions ofthe damage tensor are assumed
to coincide with the material directions, e.g., fiber, transverse, and thickness directions. This
is consistent with the view that the dominant modes of damage are either parallel or normal
to the fiber direction. Such modes offailureinclude matrix cracking, fiber matrix debonding,
fiber breakage, and delaminations, among others.

In the sequel, contracted notation [1] is used, so that the stress tensor can be represented
in the damage principal frame as a three-component array. Using Eq. (5), the effective stress
and strain components become

Finally, the components of the second-order thermodynamic force tensor Y, dual to the
damage tensor D, can be derived from strain energy of the damaged material as

where E is the damaged stiffness tensor and £ is the second-order damaged-strain tensor.
Since the damage model is based on equivalent strain energy between damaged and un­
damaged configuration. the damaged strain is different from the undamaged one [2]. Using
Eqs. (7) and (8) and taking into account the state of plane stress in the lamina, we get

where C = £-1 is the fourth-order effective elastic compliance, that is, the compliance of
the virgin.. undamaged material.

The existence of a damage surface that separates the undamaged state from the dam­
aged one is supported by experimental evidence in the case of fibrous composites. For
example, acoustic emissions associated \\!ith the nucleation of cracks and defects were used
on unidirectional fiber-reinforced composites [3, 18]. It was shown that only a few acous­
tic pulses can be recorded during the linear portion of the stress-strain curve. Beyond the
linear regime, acoustic emissi.ons start to accelerate and are accompanied" by macroscopic
nonlinearity and stiffness decrease. Based on these observations, it is assumed that there .
exists a surface which separates the elastic domain from the damaging one. The material
behaves elastically without damage until the thermodynamic force Y reaches the damage
surface g.. defined as



§3. MODELING UNIDIRECTIONAL TESTS

Since the principal directions of the damage tensor coincide with the material orien­
tations, the characteristic tensors J and H are diagonal in the material (damage) principal
directions (see Section 2). Therefore" they can be represented in matrix form as

where Yo is a material constant representing the initial damage threshold, J is a fourth­
order symmetric tensor, and H is a second-order symmetric tensor; their components being
material parameters to be determined from experimental data. The damage characteristic
tensors J and H are intermediate material constants that define the damage surface [34].
Determination of numerical values for these material constants from experimental data is
made in the sequel by considering the various tests usually conducted to determine the
strength values of a unidirectional lamina.
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J11 0 0

o J22 0

o 0 J33

(11)

Then, the damage functional g is

Longitudinalulliaxialload

Let us consider a composite lamina subject to uniaxial load in the fiber direction. The
only stress component different from zero is (JI- Then, Eq. (12) becomes

In the absence of friction, the damage-flow function f is convex [2], and the damage
characteristic tensor needs to be positive definite.. or Jii > O. The components of the damage
characteristic tensors are determined in the follo\ving sections for a single fiber-reinforced
lamina by substitution of Eqs. (9) into Eq. (12).

( 13)

and the damage flow f is

( 14)

The previous equation has to be satisfied from the onset of damage up to final failure
of the material. Thus, if FIt and FIe denote the tensile and compressive strengths of the
fiber-reinforced lamina in the fiber direction, the following relations can be written:

( 15)
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The parameters nIt and .ole are the critical values of the integrity component .oI- for
longitudinal tensile and compressive loading conditions, respectively. In Eqs. (15), the term
y* is representative of the value of y at failure. At failure, the components of the integrity
(damage) tensor reach their critical values, and the damage surface represented by Eq. (12)
is forced to match the Tsai-Wu failure criterion. In this way, ultimate failure of a lamina
is as accurate as in the Tsai-Wu criterion. Furthermore, different behavior in tension and
compression as well as stress interaction is taken into account, though for the damage case
the interaction takes place in the thermodynamic force space Y [Eq. (9)]. Then, the right­
hand side ofEqs. (15) can be compared with the right-hand side of the analogous equations
written for the Tsai-Wu failure criterion,

(17)

(18)

(16)

(19)

y* +Yo = 1

11 FIt + III F~ = 1

11 FIe + II1Fre = 1

Dlt = 1 - exp ( ~nl )
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indicating that in Eq. (15)·at failure we have
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Therefore, Eqs. (15) can be solved for the components JII and HI. They will turn out to be
functions of the failure strength FIt, FIe and of the critical values of the integrity OIt, Ole

to be determined as follows.
The magnitudes of damage at failure Dr are estimated from statistical models of the

failure process for each type of loading. If a lamina is subject to tensile stress in the fiber
direction, it is reasonable to assume that the matrix carries only a small portion of the applied
load and no damage is expected in the matrix during loading. The ultimate tensile strength
of the composite lamina can then be accurately predicted by computing the strength of a
bundle of fibers. All the fibers are assumed to remain elastic up to failure and to have the
same stiffness. If a Weibull distribution is assumed for the strength of the fibers [19] and no
significant initial fiber damage is assumed.. the critical damage D1t for longitudinal tensile
loading can be computed as the area fraction of broken fibers in the lamina [20], which
turns out to be a function of the Weibull shape modulus In as

When a fiber-reinforced lamina is compressed. the predominant damage mode appears to
be fiber microbuckling [21-23]. However" the buckling load of the fibers is lo\ver than that
of the perfect system because of fiber misalignment, so much that a small amount of fiber
misalignment could cause a large reduction in the buckling load. For each misalignment
angle «, the composite area fraction with buckled fibers D((X), corresponding to fibers
with misalignment angle greater than (x, can be taken as a measure of damage. If the
fibers are assumed to have no postbuckling strength.. then the applied stress is redistributed
onto the remaining unbuckled fibers, which \\rill be carrying a higher effective stress. The
applied stress, which is lower than the effective stress by the factor (1-D), has a maximum,
which corresponds to the compressive strength of the composite. Therefore., it is possible
to compute the critical damage DIe for longitudinal compressive loading as .



where erf is the error function, A is the standard deviation of the actual Gaussian distribution
of fiber misalignment, and <Xcr is the critical misalignment angle at failure (Eq. 23 in [21]).
The value of A can be obtained experimentally [23] or computed using Eqs. (4.74-4.75) in
[1 ].
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(20)
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Transverse uniaxial load

Let the fiber-reinforced lamina be subjected to a transverse uniaxial load, so that the
only stress component different from zero is <Y2. The expression of the damage surface
(12) can be written in terms of the tensile failure strength of the material in the transverse
direction,

where the parameter 01r is the critical value of the integrity component O 2 for tensile
loading in the transverse direction. Again, the right-hand side ofEq. (20) is set to one by
analogy \vith the Tsai-Wu criterion at failure. Using Eq. (20), the component J22 can be
derived as a function of H2 as

(21)

In order to determine the Iitniting value of the component 0 1 of the integrity tensor~

transyerse tension is assulned to be controlled by brittle fracture of the matrix. As for the
case of longitudinal tension, the brittle loose bundle model is assumed. The material is
enyisioned as a large number of matrix links surrounding the fibers. All the links remain
linearly elastic until rupture and have the same stiffness but random stress values. A sihlple
flat distribution can be assumed for the probability of matrix link failure p(f) = 1/<YO"

in terms of the strength of the strongest matrix link <Yo. Again~ the area fraction of broken
links represents the degree of damage of the lamina and the relevant effective stress can be
computed. The applied stress has a maximum, which corresponds to the transverse tensile
strength of the fiber-reinforced lamina., As can be easily derived, the maximum stress in
the bundle of matrix links turns out to be <Yc = <Yo /4, so that the percentage of links \\,hich
are broken prior to failure is [24]

In-plane shear load

Let us consider the fiber-reinforced lamina subject to a state of in-plane shear, so that
the only stress component different from zero is <Y6. In this case Eq. (12), in terms of the
inplane shear strength of the lamina F6- reduces to

(22)

(23)

D2r = 0.5

J11 J22 2('66 'l

--1- + --1- 'l 'l F; +
0ls 02s QisQ 2s

\\.'here Ois and 02s are the critical values of the integrity component 0 1" O 2 for a state of
in-plane shear stress. Since the shear response of a fiber-reinforced lamina along material



(24)

(29)
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(27)

(26)

(25)

o < r s < 1
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Such restriction is useful while.·searching for the root "s of Eq. (25). For some material
systems it is necessary to increase the values of ks estilnated \\lith Eq. (28) in order to
satisfy Eq. (29). This may be related to a higher value of damaged shear modulus than that
predicted by Eq. (26)" possibly due to residual deformations upon unloading.

principal directions is independent of the sign of the shear stress, the coefficient of the linear
term in Eq. (23) must be zero, leading to the relationship
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so that at failure

Then, the component H2 can be written as a function of the parameter rs , and the same can
be done for the component J22 by means of Eq. (21). Hence, Eq. (23) becomes

in terms of the shear strength and the ultimate engineering shear strain of the lamina, both
of which can be experimentally determined. The shear stress-strain law can be written
as <T6 = G12Y6, where the overbar indicates effective values. An effective value of shear
stiffness G12 corresponds to the virgin undamaged value. Using Eq. (7) we have

Thus., only the critical value of the product of the integrity parameters in shear can be
determined, and not their individual values. This is a consequence of the assumption that
the principal directions of the second-order damage tensor D remain aligned \\lith the
material principal directions over the entire life of the material. Under these conditions, shear
damage is interpreted as a combination of longitudinal and transverse matrix cracks, \\!hich
is supported by.·experimental observations [4, 25]. However, as experimentally observed,
most of the damage is in the form oflongitudinal cracks, so that D2s > DIs and from Eq. (24)
we obtain a restriction on the value of rs :

Finally, with J11 and HI known from (15) and J22 a function ofrs from (21) and (24), Eq. (25)
can be solved to obtain the value of the parameter rs , which is then used to compute J22

and H2.
Experimental evidence reveals a highly nonlinear behavior for a fiber-reinforced lamina

subject to in-plane shear. The damaged shear modulus at failure can be approximated as



,
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Dalnage threshold and evolution law

The damage surface g and damage-flow surface f in Eqs. (12) and (13) expand as a
function of the evolution variable y. This is necessary to J110del the observed behavior of
the material for which additional strain must be present in order for the damage to grow
[26]. Lacking any experimental observation that wouldjustify anisotropic and/or kinematic
evolution, and for the sake of simplicity, we propose to use the following isotropic evolution
model:

an ( 6 )y = -- = Cl exp -a6 C2
(30)

where b > 0 is the evolution parameter. This evolution rule is simple enough to allow us
to obtain all the coefficients (Cl .. C2) from available experimental data. Since the damage
evolution portion n(6) of the Helmholtz free energy must be convex in the kinematic variable
6, its second derivative has to be positive~ leading to a restriction on the possible values of
CI, C2, as follows:

" Cl ( 6 )7t (6) = -- exp - > 0
C2 C2

(31 )

which implies that Cl and C2 must have different signs. Therefore, there are t\\'O evolution
equations in Eq. (30) .. depending on the sign of CI.

The actual values of the evolution parameters are derived by comparison with experi­
mental data. Since it has been experimentally observed that the nonlinearity of the behavior
of fiber-reinforced (PI\1C) laminae is particularly severe in the case of in-plane shear re­
sponse. damage phenomena can be assumed to be very noticeable in this case. The basic
idea is to adjust the evolution parameters to predict the response of a fiber-reinforced lami­
nae subject to in-plane shear stress by means of the proposed constitutive model. Therefore.
the constitutive model \\'as compared \\'ith experimental data for in-plane shear loading
(Figure 1).

The parameters Yo' Cl, and C2 are determined by fitting the experimental shear stress­
strain plot. When this plot is not available, but only the in-plane shear modulus G 12 and
in-plane shear strength F6 are kno\vn, the curve can be reconstructed using

(32)

\\'hich is kno\vn to represent shear experimental data very well [1. 21'l 25, 27-29]. Since
experimental ,'alues of F6 and G 12 are available in the literature.. all the parameters of the
proposed damage evolution model can be completely identified from available data.

§4. Sm~1~<\RY

The procedure used to adjust the model parameters is summarized in this section. The
damage evolution parameters CI, C2 control the damage evolution by Eq. (30). The damage
threshold Yo represents the initial size of the damage surface" Eq. (12). No damage can
occur until the thermodynamic forces Y reach the damage surface. These three paralTIeters
are adjusted ,,,·'ith the shear stress-strain diagram for monotonic loading (e.g.. Figure 1).

,.~ The:'-internal material constants lll"! J"21. HI. H2 • rs • andks are used to write the model
... ,< ·~·~~~tiiisdn:~I~~nei~~form.These are not adjustable ITIodel parameters since their values

.... .,...."'.. "'-'.~'-~. ~~~;~~;.~~-~\ ":. ~~~:, '.' - . . . ':.' .
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§5. MODEL \l~~IDATION

In this section we use available experimental data for unidirectional laminae to find all
the parameters in the damage constitutive equations. Then, we use laminate data to validate
the predictions of the model.

Aralnid/epo.\)·

The experimental data of [13-15] for unidirectional aramidlepoxy is reproduced in
Table 1 and used in this section to fit the model parameters. First the critical damage values
in tension" compression. and shear. were obtained according to Eqs. (18), (19)., and (28),
assuming a \\'~eibull shape modulus 111 = 9. Then. Eqs. (15), (2 I). and (25). are solved for
rS'l lll, l22'l HI, H2 [subject to condition Eq. (29)]. Next, the model is solved incrementally
\~/ith an applied in-plane shear strain to adjust the parameters Yo. Cl ~ and C2. using the shear

Figure 1. £.tperiInental and 1110del results for shear test of araI11ldlepo.\}· unidirectional
lalninQ.

are univocally determined in tenns of the available material constants FIt, FIe, F2t, F2c.
F6, Yu" and the critical dalnage values D1t , DIe, D2t. The later are fixed values in terms of
material constants In and A as described by Eqs. (18), (19), and (22). The Weibull dispersion
of fiber strength 111 and the misalignment angle A are available from the literature [28-3 I]
and \vell-established procedures exit to measure them for new materials [23, 32]. Finally,
the material constants £1, £2, G I2 , and 'V12 are readily available. The only information that
is not readily available is the shear stress-strain plot (e.g., Figure 1), which is necessary to
adjust the damage evolution parameters (Ct, C2, Yo). The plot can be approximated in terms
of G 12 and F6 by Eq. (32), or it can be detennined experimentally using a shear test fixture
such as described in ASTM D5379 [12].
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Table 1
Available experinzental data

Property Aramid-Epoxy T300-914 T300-5208

E1[Pa] 7.34E + 10 I.42E + II I .36E + 11
E2[Pa] 5.50E + 09 IO.3E + 09 9.80E + 09
G 12[Pa] 2.30E + 09 7.20E + 09 5.20E + 09
vl2 0.27 0.27 0.28
FIt [pal 1.14E6 I.83E + 09 I.55E + 09
F1c [Pa] 2.13E + 08 I.09E + 09 I.09E9
F2t [Pa] 2.74E + 07 5.70E + 07 5.90E + 07
F6 [Pa] 4.74E + 07 8.60E + 07 7.50E + 07

stress-strain experimental data, as shown in Figure 1. The resulting model parameters are
reported in Table 2.

Then, \\lith fixed values for all the paralTIeters, the model is used to predict the behavior
ofavailable experimental data from off-axis tests for the same material, as shown in Figure 2.

T300/5208 and T300/914 carbon/epo;ry

The analysis of available experimental data for T300/5208 [13] and T300/914 [16]
allo\\'s us to delTIonstrate the accuracy of the model for predicting the behavior of laminates.

Using experimental data presented in Table I~ and assuming the Weibull paralTIeter
III = 9, it is possible to derive the critical dalTIage values DIe, D1t , D2t using Eqs. (18)"
(19). and (28). The components of the J and H tensors are determine·d solving the systelTI
given by Eqs. (15). (21 ). and (25). Finally. the evolution parameters Cl, C2, Yo are adjusted in
such a \\ray that the lTIodel results match \\~elI the shear eXperilTIental curve. Since the actual
experimental plot is not available, it \vas reconstructed from available experimental data of
F6 and G 12 using Eq. (32). A comparison between the model results and the reconstructed

Table 2
A/odel paral11eters deter111ined lrith available datafroln Table 1

Property Aranrid-Epoxy T300-914 T300-5208

k 0.865 0.5972 0.631s
DeI 0.125161 0.1161 0.1161IT

D~~. 0.110945 0.110945 0.110945
Dfr 0.5 0.5 0.5
J l1 4.65E-14 2.52E-14 1.56E-15
J22 1.38E-I3 1.16E-12 1.23E-13
HI 7.52E-07 O.1297E-7 3.00E-12
H2 -3.25E-07 -0.755E-8 - I .27E-12
r 0.706760603 0.580899 0.421789122s
)/0 0 -0.17 0
C1 0.04 0.17 0.02
C'2 -5.00E + 04 -8.9E + 05 -1.OOE + 06
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