
MERLIN:
an Intelligent Tool for Creating Domain Models

Monique Snoeck✉[0000-0002-3824-3214]

KU Leuven, Research Center on Information Systems Engineering,
monique.snoeck@kuleuven.be

Abstract. The complexity of modelling languages and the lack of intelligent
tool support add unnecessary difficulties to the process of modelling, a process
that is in itself already demanding, given the challenges associated to capturing
user requirements and abstracting these in the correct way. In the past, the
MERODE method has been developed to address the problem of UML's com-
plexity and lack of formalization. In this paper, we demonstrate how the formal-
ization of a multi-view modelling approach entails the possibility to create
smart and user-friendly modelling support.

Keywords: conceptual modelling, modelling tool, UML, model-driven engi-
neering, consistency checking.

1 Modelling difficulties
Model-driven engineering (MDE) aims to create software from models. One of the

key assumptions behind MDE is that models can be made sufficiently complete and
correct to generate code from them. While the "general purpose" character of UML
makes it widely applicable, it is also its weakness. The UML contains a large number
of constructs, making it difficult to use. And when those models are intended to gen-
erate code from them, the problem is exacerbated as generating code from a UML
model is only possible if the models are sufficiently detailed, which requires a thor-
ough knowledge of the UML. UML is not the only language facing a too large com-
plexity. Several authors have already pointed out that many modelling languages
(including the UML) are too “noisy” with various concepts, which inevitably results
in creating erroneous models [1, 2]. Also modelling tools are complex, and pose addi-
tional challenges to modelers [3], even though good tool support had been proved to
lower the likelihood of model quality problems [4].

The MERODE modelling method [5] targets conceptual modelling and addresses
these challenges by offering a UML-based modelling approach that allows creating
models that conceptual in nature (as opposed to technical designs), yet are sufficiently
precise and complete to generate code from them with no more than three clicks. In
addition, intelligent tool support has been developed to support the modeller in the
best possible way while modelling. The goal of this demo is to demonstrate the fea-
tures of the MERLIN modelling environment, including multi-view support and intel-
ligent model consistency checking. The modelling environment is freely available
since January 2020 at http://www.merlin-academic.com.

http://www.merlin-academic.com/

2

2 Simplification of the Modelling Language
To ease the use of UML for conceptual modelling, the MERODE method uses a

minimal set of concepts from UML required to capture domain models. Three views
are supported: structural modelling by means of a UML class diagram, behavioural
modelling by means of state charts, and interaction modelling, using a matrix-
technique. The three views are directly supported by MERLIN.

In MERODE, the Class diagram only uses the concepts of class, binary association
and inheritance associations. More complex concepts such as AssociationClass, com-
position and aggregation are deliberately not used so as to ease the modellers' task.
Moreover, MERODE requires each binary association to be of a one-to-many or of
one-to-one type, expressing existence dependency of one object type on the other.
Transformation rules from a "classical" UML diagram to such an existence-
dependency only class diagram are provided by the method. The following example
illustrates the inherent difficulties associated to UML, and how such transformation
process results in more precise models, while using a limited number of concepts.

Fig. 1 identifies three object types1 (customer, order and salesperson) and two as-
sociations: an order is placed by a customer, and is managed by a salesperson. Be-
cause both associations are graphically identical, they fail to capture the inherently
different semantics of the underlying domain rules: Whereas the customer of an order
remains the same for the whole duration of the order, the salesperson managing the
order may change over time. In other words, the association end is placed by labelled
with a "1" next to customer is not modifiable or frozen, whereas the association end is
managed by labelled with a "1" (next to salesperson) is modifiable. Fig. 1 is not incor-
rect but is incomplete as it does not allow to discern between frozen and modifiable
association ends labelled with multiplicity "1". Depending on the transformation
rules, both association ends would either be implemented as modifiable or as frozen,
as there is no way to make a distinction based on the UML diagram. In order to obtain
a model that captures this difference and can be correctly and automatically trans-
formed to code, we need to express these different semantics by means of different
modelling constructs.

Fig. 1. Example class diagram

In this case, the MERODE rules dictate to reify the association between order and
salesperson as show in Fig. 2 , thus identifying the concept of 'SalesPersonDuty' as a
separate business concept. Reification is also advocated for many-to-many associa-
tions, shared aggregation and for composition associations not expressing existence
dependency from the part on the whole.

1 In the remainder of this book we will follow the convention that object types are

written in SMALLCAPS and that association names will be underlined.

3

State charts allow modelling a domain object's behaviour. The UML bases its
statechart notation on Harel Statecharts, offering a rich pallet of concepts, including
parallellism and decomposition. MERODE however uses only the basic notions: start,
intermediate and end states, and requires each class to have just one statechart defin-
ing its behaviour.

Fig. 2. Class diagram with reified association

Likewise, interaction modelling is simplified. In the UML, object interaction as-
pects are modelled by means of sequence charts and collaboration diagrams, thus
forcing a conceptual modeller into premature commitments. In contrast, MERODE
follows an event-driven approach that raises events to the same level of importance as
objects, and recognizes them as a fundamental part of the structure of experience. In
particular, "business events" are captured as the phenomena of interest at the interface
between the real world and the information system [6]. An event-object interaction
table, inspired from the "CRUD" matrix2, allows defining the interaction between
business events and business objects and using the events as triggers for state transi-
tions in the state charts.

3 Intelligent Tool Support
Modelling typically requires describing the same socio-technical system from dif-

ferent perspectives (data, behaviour, authorisations, etc.). Some aspects may however
be modelled in more than one scheme, e.g. a business object type appearing in a class
diagram and as data object in a BPMN diagram. While many modelling tools focus
on one particular diagram, the modelling environment of MERODE allows viewing
two models side-by-side, see Fig. 3.

Obviously, some kind of consistency checking between different views is required
to ensure the quality of the model [7, 8]. This consistency checking can vary from a
simple syntactic correspondence to a full semantic match between diagrams. In the
past, continuing efforts have been made to provide UML with the needed formal un-
derpinning [9, 10, 11, 12, 13, 14]. Nevertheless, these efforts have not entailed an
agreed-upon set of consolidated rules, as a result of which authors define their own set
of rules [8]. However, to achieve true consistency, the integration of different views is
needed. Recently, the integration between the data and business process perspective is
also gaining ground as exemplified by artefact centric approaches [15, 16, 17].

In MERODE, the concept of existence dependency is based on the notion of "life"
of an object, and this induces a natural sequencing of creating and ending of objects
[14]. A MERODE class diagram is therefore -in spite of its appearance- not a pure

2 captures how processes create, read, update or delete data.

4

Fig. 3. Viewing the class diagram and state charts side by side.

data model, but also defines a default behavioural model. This facilitates consistency
checking with other diagrams intended to capture the behavioural aspects of the do-
main. In contrast with existing tools like Enterprise Architect, Visual Paragdim, etc.
that treat the class diagram in a totally independent way from the behavioural models,
MERODE defines consistency between the static model and the behavioural model
[5] In particular, MERODE sustains three modes of consistency checking [18]:

• Consistency by construction, is the most powerful, and means that the tool "auto-
completes" model elements based on consistency rules. Fig. 3, right, shows the de-
fault statechart that is automatically generated for each class, including the genera-
tion of default creating and ending events.

• Consistency by analysis means that an algorithm is used to detect all potential in-
consistencies in the model. The modeller can thus construct the model without car-
ing about temporary incompleteness or contradicting elements. Upon request, a
verification algorithm can be run against the models to spot errors and/or incom-
pleteness in the various views. Such verification could be done manually as well,
but obviously automated support substantially eases model verification, and is like-
ly to ensure more thorough verification as well. Assume for example, that in an
OrderManagement model, the modeller created a state chart like in Fig. 4. Running
a model checker will then result in a report mentioning the problems of non-
determinism and backward inaccessible state shown in Fig. 5.

Fig. 4. Erroneous state chart

• Consistency by monitoring, allows checking new specification against correctness
rules when entered in the tool. This allows to maintain the correctness of a model,
but it should be used with parsimony as a too stringent verification procedure will
turn the input of new model elements into a frustrating activity.

The major advantage of this consistency checking is that this saves a lot of input
effort while improving the completeness of the model in one go. Moreover, the auto-

5

complete functionality avoids the input of inconsistent specifications by completing
the entered specifications with their consistent consequences. The result is a much
more user-friendly environment. Fig. 6 shows how model settings in MERLIN allow
the user switching on autocomplete functionality, the first of which leads to the auto-
matic creation of creating and ending business events and methods when adding a
business object type to the class diagram.

Fig. 5. Sample model checking report

Fig. 6. Autocomplete functionality in MERLIN

4 Conclusion
The MERLIN modelling environment demonstrates how the formal underpinning

of a modelling method, and the formal definition of consistency rules allows offering
intelligent and user-friendly modelling support for creating domain models. Besides
the benefit for the modeler in terms of modelling effort, the quality of the resulting
models entails easy code generation. In the case of MERLIN, the files can be export-
ed to an xml-format allowing the generation of full functional code with a single
click. This contributes to model quality too as the generated application is enriched
with didactic features helping the modeller to assess the quality of the model [19].

For the purpose of conceptual modelling, MERLIN offers more easy modelling
compared to existing tools such as Visual Paradigm and Enterprise Architect: less
input is required to achieve a model fit for code-generation, and more consistence
checks are offered. On the downside, MERLIN offers a very limited set of modelling
constructs, as result of which design choices (such as e.g. navigability of associations,
sequence charts) are set by default or part of transformation process. In the future, we
plan an XMI-export so that high-level MERLIN-models could be imported in com-
mercial tools to detail the models further.

6

References
1. Erickson, J., & Siau, K. (2007). Can UML Be Simplified? Practitioner Use of UML in sepa-

rate domains. In Proceedings of the 12th Workshop on Exploring Modeling Methods for Sys-
tems Analysis and Design (EMMSAD'07), held in conjunctiun with the 19th Conference on
Advanced Information Systems (CAiSE'07),Trondheim, Norway (pp.87-96).

2. Wilmont, I., Hengeveld, S., Barendsen, E., & Hoppenbrouwers, S. (2013). Cognitive mecha-
nisms of conceptual modelling. In W. Ng, V. Storey, & J. Trujillo (Eds.), Conceptual model-
ing (Vol. 8217); (pp. 74e87). Springer Berlin Heidelberg.

3. Siau, K., & Loo, P.-P. (2006). Identifying difficulties in learning uml. Information Systems
Management, 23(3), 43-51.

4. Recker, J., et al. How Good is BPMN Really? (2006) Insights from Theory and Practice. in
14th European Conference on Information Systems. 2006. Goeteborg, Sweden: Association
for Information Systems.

5. Snoeck, M. (2014) Enterprise Information Systems Engineering: the MERODE approach,
Springer

6. Jackson, M. (1995) "The World and the Machine," 1995 17th International Conference on
Software Engineering, Seattle, Washington, USA, 1995, pp. 283-283.

7. Paige, R., Ostroff, J. (2002) "The Single Model Principle", in Journal of Object Technology,
vol. 1, no. 5, November-December 2002, pp. 63-81.

8. Torrea, D., Labiche, Y., Genero, M., Elaasar M. (2018) A systematic identification of con-
sistency rules for UML diagrams, Journal of Systems and Software, Vol.1 44, pp. 121-142

9. pUML, The precise UML group, http://www.cs.york.ac.uk/puml/
10. Evans, A., France, R. Lano, K., Rumpe, B., (1998) Developping the UML as a Formal Model-

ling Notation, in UML'98 Beyond the notation; International Workshop Mulhouse France, P-
A. Muller, J; Bézivin (eds.),

11. Bruel, J.M., Lilius, J., Moreira A., France R.B, Defining Precise Semantics for UML, ECOOP
2000 Workshop Reaer, LNCS 1964, Springer 2000, pp.113-122.

12. Cheung, K.S., Chow, K.O., Cheung, T.Y. (1998) Consistency analysis on lifecycle model and
interaction model, in Proceedings of the International Conference on Object Oriented Infor-
mation Systems, 9-11 September, Paris

13. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L. (2005) Consistency Problems in UML-
Based Software Development. In: Jardim Nunes N., Selic B., Rodrigues da Silva A., Toval
Alvarez A. (eds) UML Modeling Languages and Applications. UML 2004. Lecture Notes in
Computer Science, vol 3297. Springer, Berlin, Heidelberg

14. Snoeck, M., Dedene, G., Existence Dependency: The key to semantic integrity between struc-
tural and behavioral aspects of object types. IEEE Transactions on Software Engineering,
24(24), 233-251.

15. Dumas, M. (2011) On the Convergence of Data and Process Engineering. In: Eder J., Bieli-
kova M., Tjoa A.M. (eds) Advances in Databases and Information Systems. ADBIS 2011.
Lecture Notes in Computer Science, vol 6909. Springer, Berlin, Heidelberg

16. Calvanese, D., Montali, M., Patrizi, F., and Rivkin A. (2018). “Modelling and In-Database
Management of Relational, Data-Aware Processes.” ArXiv:1810.08062 [Cs], October.
http://arxiv.org/abs/1810.08062.

17. Künzle, V., Reichert, M. (2011) PHILharmonicFlows: towards a framework for object‐aware
process management, Journal of Software Maintenance and Evolution: Research and Practice,
23(4) pp. 205-244

18. Snoeck, M., Michiels, C., Dedene, G. (2003). Consistency by construction: The case of
MERODE. In: Lecture Notes in Computer Science: vol. 2814, (105-117).

19. Sedrakyan, G., Snoeck, M., Poelmans, S. (2014). Assessing the effectiveness of feedback
enabled simulation in teaching conceptual modeling. Computers and Education, 78, 367-382.

http://arxiv.org/abs/1810.08062

	1 Modelling difficulties
	2 Simplification of the Modelling Language
	3 Intelligent Tool Support
	4 Conclusion
	References

