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Refinement of macromolecular atomic models versus experimental maps in

crystallography and cryo-electron microscopy is a critical step in structure

solution. For an appropriate comparison, model maps should mimic the

imperfections in the experimental maps, mainly atomic disorder and limited

resolution, which are often inhomogeneous over the molecular region. In the

suggested method, these model maps are calculated as the sum of atomic

contributions expressed through a specifically designed function describing a

solitary spherical wave. Thanks to this function, atomic contributions are

analytically expressed through their atomic displacement parameter and local

resolution, a value now associated with each atom. Such a full analytic

dependence of inhomogeneous-resolution map values on model parameters

permits the refinement of all of these parameters together.

1. Introduction

Macromolecular atomic models are obtained using maps of

electron or nuclear scattering density distributions in macro-

molecular crystallography, or those of an electrostatic scat-

tering potential in cryo-electron microscopy (cryoEM) and

microcrystal electron diffraction. Information extracted from

these models depends on the accuracy of their parameters.

Owing to the ‘resolution revolution’ in cryoEM (Kühlbrandt,

2014) and to recent progress in structure prediction of the

protein components of macromolecular complexes (Jumper et

al., 2021; Baek et al., 2021), these maps have become especially

important to correct and refine initial atomic models

(Diamond, 1971; Chapman, 1995; Murshudov, 2016; Afonine,

Poon et al., 2018; Urzhumtsev & Lunin, 2019; Yamashita et al.,

2021; Roversi & Tronrud, 2021; Palmer & Aylett, 2022) and to

validate the results (Helliwell, 2022). The experimental maps

are subject to dynamic and static atomic positional disorder

and are available at limited resolution, which often varies from

one macromolecular region to another (Cardone et al., 2013)

(Fig. 1). In order to refine an available model, we define a

respective score function by comparing a map calculated from

the model with the experimental one and minimize it by

varying the model parameters. For an appropriate quantitative

comparison, the model map should mimic imperfections in the

experimental map. If the model map values are expressed

analytically through the model parameters, this could drasti-

cally simplify the map calculation and model optimization.

Since mathematically the problem and its solution are the

same for all methods of structure determination, herein we use

the term ‘density’ for both the electrostatic potential and the

electron-density distributions.Published under a CC BY 4.0 licence
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To mimic the limited resolution and general positional

disorder of the experimental map, we start by calculating the

exact, theoretical density �(r) from the model and obtaining

its Fourier coefficients. In crystallography, these are known as

structure factors. To model the general dynamic and static

positional disorder of atoms (or uncertainties in atomic posi-

tions) these structure factors are multiplied by the Gaussian

function, which is equivalent to blurring the distribution by

convolution with the Gaussian function. The required limited-

resolution map �d(r) is then calculated by the inverse Fourier

transform with the set of structure factors cut at the resolution

D = dhigh. Overall, the procedure requires two Fourier trans-

forms, does not provide simple analytic expressions for the

derivatives of the score function and significantly complicates

obtaining a map of an inhomogeneous resolution, such as

those in cryoEM.

Instead, a map can be calculated as the sum of atomic

contributions of the respective resolution D and the individual

degree of disorder characterized by the atomic displacement

factor B (we call these contributions ‘atomic images’). Both

the resolution cutoff and the positional disorder blur atomic

images, but the resolution cutoff also results in ripples, sphe-

rical shells of locally sign-alternative high density. Several

known approximations to atomic images either model only the

central peak in the image (e.g. Lunin & Urzhumtsev, 1984;

Mooij et al., 2006; see also Sorzano et al., 2015, and references

therein), interpolate the images precalculated with different B

values at a given common resolution D (DiMaio et al., 2015),

or use a step-function approximation to the atomic scattering

function and the integrals of this approximation at a chosen

resolution (Chapman, 1995; Chapman et al., 2013; Sorzano et

al., 2015).

We suggest a method to calculate model maps at every

point, extending the concept of a local resolution (Kucukelbir

et al., 2014; Vilas et al., 2018; Ramı́rez-Aportela et al., 2019)

further and presenting the image of every atom n in the map

with its own resolution Dn, in line with Chapman et al. (2013).

We found an explicit expression for the map values using a

specially designed analytic function for the atomic position rn,

its individual displacement parameter Bn and individual

resolution Dn. This expression allows accurate calculation of

the inhomogeneous resolution map in a single run, without

Fourier transforms. Moreover, it allows simple analytic

expressions for the gradient of the score function (Urzhumt-

seva et al., 2022) that rules the refinement of the model

parameters. Finally, the Dn values can be refined and reported

together with other atomic parameters such as coordinates

and Bn, and then deposited in databases. The inhomogeneous-

resolution maps in cryoEM mean that the suggested method is

tailored to this experimental technique while it can also be

applied to other types of structural studies in biology and

physics.

This article presents the concept of this approach and its

basic proofs addressing the direct problem: how to efficiently

calculate a map given an atomic model with variable para-

meters.

2. Shell decomposition of oscillating functions

2.1. Maps and atomic contributions

The contributions of atoms to the density �(r) are usually

described by spherically symmetric analytic functions �0
nðrÞ,
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Figure 1
Maps of inhomogeneous resolution. (a) A fragment of a cryoEM map
(von Loeffelholz et al., 2018; EMDB 4261) illustrates a decrease of the
local resolution from the molecular center to the periphery. (b) Test
model �-map (equation 15) of an inhomogeneous resolution varying
from 2 Å in the molecular center to 5 Å at the molecular periphery
calculated in a single run by the shell decomposition (middle), and the
maps calculated by the Fourier procedure with the resolution of 5 Å (left)
and 2 Å (right). Red arrows mark the similarity of different parts of the
�-map with the Fourier maps of different resolution. (c) Fragments of the
2 Å resolution maps contoured to show an equal volume (Urzhumtsev et
al., 2014). The map in the middle was calculated by the standard Fourier
procedure. The left-hand map calculated as the sum of the Gaussian
approximation, M = 1, to the atomic images (no ripples included) reveals
the density for some side chains poorly. The right-hand map was
calculated by the shell decomposition (equation 15) with M = 5 and
reproduces the Fourier map correctly. Poor density for the Arg106
residue in the �- and Fourier maps can be attributed to large
displacement parameters of its atoms. This figure was prepared with
PyMol (DeLano, 2002).



their atomic densities; here n is the consecutive atomic

number. A limited-resolution map �d(r) of the density �(r) can

also be seen as the sum of atomic contributions �d
nðrÞ, this time

atomic images, which should reproduce respective map

distortions. While the atomic positional disorder blurs atomic

densities, the resolution cut-off, alongside this, generates

Fourier ripples in the resulting image [Figs. 2(a) and 2(b)]. The

ripples are observed as spherical waves of a slowly decreasing

amplitude; they significantly contribute to the map quite a

distance from the atomic center [Fig. 1(c)]. Thus, substitution

of one type of map distortion by another (Jakobi et al., 2017) is

not fully appropriate. However, both types of distortion can be

described by the same mathematical operation of a convolu-

tion but with different functions.

2.2. Resolution and harmonic disorder

The term ‘resolution’ in structural biology has different

meanings (Urzhumtseva et al., 2013; Afonine, Klaholz et al.,

2018). Traditionally in this field, when an experimental map is

represented by a Fourier series, the resolution cut-off for this

series is defined as the shortest period of the Fourier harmo-

nics included in the calculation, and is considered the map

resolution (e.g. Rupp, 2010); the number of Fourier harmonics

eventually missed is supposed to be negligible. The resolution

effect on the image can be mathematically described by the

convolution

�d
nðr; DÞ ¼ �0

nðrÞ � �
dðr; DÞ ð1Þ

of the atomic density �0
nðrÞ with the spherically symmetric

function

�d
ðr; DÞ ¼

4�

3D3
G

r

D

� �
: ð2Þ

Here � stands for the convolution operation, D is the reso-

lution cut-off in the Fourier space, D = dhigh, and G(x) is the

three-dimensional interference function,

GðxÞ ¼ 3
sin 2�jxjð Þ � 2�jxjð Þ cos 2�jxjð Þ

2�jxjð Þ
3

: ð3Þ

Function G(x) has a large peak in the origin surrounded by a

number of spherically symmetric positive and negative ripples

in space (Fig. 2). Function �d(r; D) may be interpreted as the

D-resolution image of a virtual immobile point atom, the

density of which can be described by the Dirac delta function

�(r).

If an experimental map is obtained by an alternative

method to that of a single Fourier series, its different regions

may reveal patterns typical for maps of a different resolution

[Figs. 1(a) and 1(b)]. Such variation of the local resolution is

usually illustrated by colored maps and is less commonly

available from structural databases.

For the bulk of macromolecular studies, a dynamic and

static disorder of atomic positions, individual for each atom, is

modeled by a convolution of the respective contributions with

a three-dimensional Gaussian function centered in the origin

and that is isotropic (isotropic atomic displacement),

gðr; BÞ ¼
4�

B

� �3=2

exp �
4�2jrj2

B

� �
; r 2 R3: ð4Þ

The Gaussian model describes not only the motion of a

particular atom around its central position but also the

uncertainty of this position, i.e. that between numerous copies

of the same atom over the sample or different parts of a given

sample. An important feature of the Gaussian distribution is

that its convolution with other Gaussian functions does not

change its form but simply modifies the value of its parameter

gðr; bÞ � g r; Bnð Þ ¼ g r; bþ Bnð Þ: ð5Þ

In particular, the density of a Gaussian atom

�nðrÞ ¼ ag r; bð Þ; ð6Þ

with an isotropic positional disorder described by the atomic

displacement parameter Bn can be expressed by

�n r; Bnð Þ ¼ ag r; bþ Bnð Þ: ð7Þ

Since the convolutions are commutative, we can combine the

two principal sources of the image distortion, (1) and (5), in
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Figure 2
Atomic images and Fourier ripples. (a) Electron-density distributions for
an immobile carbon atom and its images affected by disorder and
resolution cutoff. (b) Corresponding scattering functions [Fourier trans-
form of the functions shown in (a)]. (c) Radial part of the interference
function G(x) and (d) this function in the two-dimensional section z = 0.
Approximation to (e) the first negative and ( f ) the first positive ripples of
G(x) by the weighted functions �(x; �, �) according to Table 1. Two-
dimensional section z = 0 is shown.



the most convenient order. The obstacle is an absence of an

analytic expression for a convolution of the interference and

Gaussian functions.

2.3. Shell decomposition of the interference function

To overcome the latter obstacle, we represent the inter-

ference function G(x) (3) by a linear combination

GðxÞ ’
XM

m¼1

�m� x;�m; �mð Þ ð8Þ

of the terms expressed by the function

�ðx;�; �Þ ¼
1

jxj�

�
1

4��

�1=2
(

exp

�
�

4�2ðjxj � �Þ2

�

�

� exp

�
�

4�2ðjxj þ �Þ2

�

�)
ð9Þ

(Fig. 3). The function �(x; �, �) is the uniform distribution at

the spherical surface of the radius �, blurred by the convo-

lution with the Gaussian function g(x, �). It has a convolution

property similar to (5), a ‘disorder transferability’:

� x;�; �ð Þ � g x; �0ð Þ ¼ � x;�; �þ �0ð Þ: ð10Þ

This results in

GðxÞ � g x; �0ð Þ ’
XM

m¼1

�m� x;�m; �m þ �0ð Þ: ð11Þ

To obtain the explicit form of function �(x; � �), we started

from the uniform distribution in a thin spherical shell of radius

� and width �, and then applied the convolution theorem and

took the limit �! 0. The Gaussian function g(x; �) is a limit

case of �(x; �, �) when �! 0. The sum (8), which we call a

shell decomposition, goes beyond the approximation of its

central peak by three-dimensional Gaussian functions

including also the terms with �m > 0. The values of the

parameters �m, �m and �m (Table 1) can be obtained by

minimizing the difference between the two sides in (8) and can

be modified for other desired accuracy or range of x values

(Urzhumtseva et al., 2022).

An important feature of function (9) is that, similar to the

Gaussian function, it conserves its form under rescaling,

�
r

D
;�; �

� �
¼ D3� r;�D; �D2

� 	
: ð12Þ

2.4. Analytic form of an atomic image

Combining (2), (8) and (12) we obtain the image of an

immobile point atom at resolution D as

�d
ðr; DÞ ¼

4�

3

XM

m¼1

�m� r;�mD; �mD2
� 	

: ð13Þ

Similarly, the image of a Gaussian atom (6) in the position rn

and possessing the atomic displacement parameter Bn is

�d
n r; Bn;Dnð Þ ’

4�a

3

XM

m¼1

�m� r� rn;�mDn; bþ Bn þ �mD2
n

� 	
:

ð14Þ

Except for Bn, Dn and the coordinates of the atomic center rn,

all to be refined, the other parameters in (14) are external and

known in advance.

3. Analytic calculation of model maps

In different experimental methods, the contribution �0
nðrÞ of

an immobile atom to the exact density (or equivalently its

scattering function) is often approximated by a weighted sum

of a few Gaussian functions with the coefficients

aðkÞ; bðkÞ; k ¼ 1; . . . ;KGauss tabulated for each type of atom or

ion (e.g. Doyle & Turner, 1968; Agarwal, 1978; Waasmaier &

Kirfel, 1995; Peng, 1999; Grosse-Kunstleve et al., 2004; Brown

et al., 2006). This approximation may vary with the atom

environment and may contain positive Gaussians as well as

negative ones.

Expressions (9) and (14) allow us to present an atomic

model density map, distorted by restricted resolution and

positional disorder, in a closed analytical form as
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Table 1
Coefficients of the shell decomposition (8) of the function G(x) obtained
for |x| � 10, M = 21 [see Fig. 3(b)].

The central peak of G(x) is represented by the sum of the Gaussian function
�1� x; 0; �1ð Þ ¼ �1g x; �1ð Þ and the correcting function �2� x;�2; �2ð Þ. Each
Fourier ripple is represented by one �m� x;�m; �mð Þ term alternating the sign
of �m. The maximal error of the approximation is about 2 � 10�4 of the
maximum of G(x) equal to 1

M � � � M � � � M � � �

1 0.000 10.131 0.693 8 3.492 2.795 0.485 15 6.989 1.670 �0.368
2 0.339 3.216 0.026 9 3.971 2.882 �0.476 16 7.490 1.509 0.356
3 0.873 4.819 �0.797 10 4.471 2.022 0.401 17 7.991 1.369 �0.334
4 1.439 3.622 0.595 11 4.995 1.620 �0.371 18 8.493 1.248 0.326
5 1.979 3.616 �0.599 12 5.504 2.317 0.416 19 8.995 1.146 �0.332
6 2.462 4.143 0.623 13 5.980 2.062 �0.407 20 9.494 1.060 0.333
7 2.953 3.047 �0.534 14 6.490 1.849 0.392 21 9.978 0.811 �0.290

Figure 3
Shell decomposition of the interference function. (a) Radial component
of the function �(x; �, �) with different � and � values indicated on the
plot. (b) Radial component of the difference between the left and right
sides in the decomposition (8) for different numbers M of the terms
included.



�d
ðrÞ¼

4�

3

XNatoms

n¼1

XKGauss

k¼1

aðkÞ
XM

m¼1

�m� r�rn;�mDn; bðkÞþBnþ�mD2
n


 �
;

ð15Þ

with the function � defined in (9), and the values �m, �m and

�m of the shell decomposition (8) of the interference function

universally calculated for the required accuracy (e.g. Table 1).

The parameter Bn manifests the uncertainty in the position of

the nth atom while Dn describes the features of the experi-

mental map in its local environment. These values can be

refined together with the atomic position rn, depending on the

amount of experimental data available. Besides the calcula-

tion of the distorted electron-density map, analytical expres-

sion (15) allows us to obtain simple analytic formulae for the

derivatives of the map values with respect to all variable

parameters. As a consequence, this provides an analytic

expression for the gradient that rules the minimization of the

discrepancy between the experimental and model maps.

When the variation of the resolution may be neglected

either over the whole molecule or locally over a region of

interest, the shell decomposition can be used more efficiently.

First, one calculates numerically the image �d
nðr; 0;DÞ of an

immobile atom of every required type at the given resolution

D as the limited-resolution Fourier transform of the given

atomic scattering function. Then the shell decomposition

�d
nðr; 0;DÞ ’

XM

m¼1

�ðnÞm � r; RðnÞm ;BðnÞm


 �
ð16Þ

is built directly for each of these few oscillating images. This

operation is performed only once, for the chosen resolution D.

For each atom of the model, the only further adjustment

required is increasing the values of the respective parameters

BðnÞm by the atomic Bn. Such an approach can be also used in

situations when the multi-Gaussian approximation to these

functions is poor or when the scattering functions are defined

numerically (e.g. Fox et al., 1989; Brown et al., 2006; Sorzano et

al., 2015; Murshudov, 2016). The number M of terms to

calculate �d(r) is reduced roughly by KGauss times compared

with the general scheme, since the summation over Gaussians

is no longer required. This accelerates the calculations and

may improve iterative refinement procedures due to a smaller

number of parameters. Although such a simplified version of

the shell decomposition seems to be useful at intermediate

stages of model refinement, we expect that the full version

with the refinement of Dn parameters would be important at

the final stages.

To illustrate the efficiency of our approach we used a test

protein model (PDB entry 1zud; Burley et al., 2021) artificially

placed in a unit cell including a single molecule, space group

P1, and for which we calculated synthetic data and an exact

‘diffraction map’ of 2 Å resolution. Then we calculated a series

of �-maps (15) with all Dn equal to 2 Å and with M that varied

from one (the Gaussian peak only) to six. The map calculated,

without taking the ripples into account, M = 1, was inaccurate

in a number of regions whereas inclusion of a few first ripples

by an increase to M = 5 made the differences with the exact

map negligible [Fig. 1(c)]. This proves a need for modeling the

Fourier ripples which are ignored in a number of existing

methods of map calculation.

To illustrate the possibility of reproducing a map of a

prescribed inhomogeneous resolution, we assigned the reso-

lution Dn varying from 2 Å in the model center to 5 Å at its

periphery and calculated a respective model map. The central

image in Fig. 1(b) shows a fragment of the �-map with

respective resolutions and calculated in a single run. Indeed,

this map is the same as the 2 Å resolution Fourier map in the

model center [Fig. 1(b), right] and coincides with the exact 5 Å

resolution Fourier map at the periphery [Fig. 1(b), left]. In

between, where the local resolution is intermediate, the �-

map is different from both control Fourier maps. More

examples of calculating an �-map where its resolution varies

from one molecular region to another are given by

Urzhumtsev et al. (2022). These examples illustrate a solution

of the so-called ‘direct problem’: starting from an atomic

model, calculate a map for comparison with an experimental

map of an inhomogeneous resolution regardless of the way in

which this experimental map has been obtained and the nature

of the technique, under the assumption that the atomic scat-

tering functions are known.

Finally, we validated the capacity of (16) to approximate the

atomic image for different Bn values. For this goal, we calcu-

lated the image of the immobile carbon atom at a resolution of

2 Å and found the coefficients of its shell decomposition. With

M = 12 terms up to the distance r � 8 Å, the relative accuracy

with respect to its value in the atomic center �d
nð0; 0;Dn ¼ 2Þ

was 10�4. For the carbon images with Bn = 10, 20, 30 Å2, these

coefficients approximated the carbon image (16) with an

accuracy close to 5� 10�6 with respect to �d
nð0; Bn;Dn ¼ 2Þ. A

similar accuracy was observed for r � 4 Å with M = 7 terms.

4. Results and perspectives

The method developed for calculation of atomic model maps

has a number of features crucial for an efficient real-space

refinement of atomic models. Such refinement becomes the

key to selecting hypothetical protein models suggested by

structure prediction methods and to building other model

components using various experimental techniques. Our

method is aimed at structural studies using cryoEM however

manipulating inhomogeneous resolution maps is applicable to

other techniques such as X-ray, neutron or electron diffrac-

tion. It is based on the hypothesis that principal map distor-

tions are caused by harmonic disorder of the structure and

limited resolution which may vary over regions of the map.

First, the method does not require any Fourier transforms

as it can reproduce atomic images very accurately (Figs. 1 and

3). Second, this method gives an analytic expression for the

map values and for their derivatives with respect to all atomic

parameters (Urzhumtseva et al., 2022). Third, the method

suggests how to model the heterogeneity of resolution of

experimental maps and describes this effect quantitively by

the values of the Fourier resolution attributed individually to

each atom. Fourth, our method does not only make it trivial to
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calculate, in a single run, a map with the local resolution that

varies from one region to another [Fig. 1(b)], but also to adjust

this resolution on-the-fly, to refine it according to the experi-

mental map in the environment of a given atom, and also to

deposit it. This ‘inverse problem’ of obtaining parameter

values from the given data will be discussed separately.

Above, we considered the basic situation in cryoEM and

crystallography. However, the method can be routinely

extended to more complicated situations. When increasing the

resolution, anisotropic scattering factors or atomic displace-

ment parameters may be required (see, e.g. Merritt, 2012, for a

discussion) that currently the suggested decomposition fails to

address. However, moving to sub-atomic resolution, macro-

molecular studies may require taking the atomic environment

into consideration and use, for example, multipolar models

(Hansen & Coppens, 1978) both for crystallography (Jelsch et

al., 1998) and for cryoEM macromolecular projects (Yonekura

et al., 2015). It has been shown that instead, one may describe

a loss of spherical symmetry in �0
nðrÞ due to density defor-

mation by interatomic scatterers (Afonine et al., 2007) which

allows a routine application of the method described in this

work.

The method considers that the scattering function of a given

atom or ion are known, in particular for charged atoms (e.g.

Marques et al., 2019). Nevertheless, one may dream that, in the

eventual case of a large amount of data, it could be possible to

start from the scattering functions of neutral atoms and then

refine the parameters of these functions against the given map

recovering such modified scattering function experimentally.

Even when the decomposition (8) is illustrated by examples

in cryoEM, it may be applied to oscillating spherically

symmetric functions in other research domains, allowing in

particular the calculation of electrostatic potential maps in

small and macromolecular charge-density studies (Ghermani

et al., 1993; Muzet et al., 2003). It may be applied to situations

when the atomic density cannot be approximated by a sum of

Gaussians, for example, when working with the Coulomb

potential. In this case, we can calculate first its image with a

relatively small B0 value, which makes the result ‘Gauss-

decomposable’. Then the presented method allows us to

obtain images at any resolution and for any B � B0.

The suggested method currently ignores one more source of

map errors typical for crystallography: incompleteness of

datasets (Urzhumtseva et al., 2013). In fact, the effect of even a

small amount of missing data, distributed randomly, is

stronger than expected (Urzhumtsev et al., 2014). This is the

reason why an alternative approach to excluding a test set of

data (Brünger, 1992) has been suggested (Pražnikar & Turk,

2014). Otherwise, the effect of missed and weighted reflections

can be modeled by respective modification of atomic scat-

tering functions when calculating atomic images.

The programs for the suggested decomposition of 3D

oscillating functions (Urzhumtseva et al., 2022) are of a

general interest and their scripts, in Python3 and in Fortran77,

can be obtained upon request from the authors or from the

site https://ibmc.cnrs.fr/en/laboratoire/arn-en/presentation/

structures-software-and-websites/.
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