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Abstract

Seed dormancy enables plant seeds to time germination until
environmental conditions become favorable for seedling survival.
This trait has high adaptive value and is of great agricultural
relevance. The endosperm is a reproductive tissue formed after
fertilization that in addition to support embryo growth has major
roles in establishing seed dormancy. Many genes adopt parent-
of-origin specific expression patterns in the endosperm, a phe-
nomenon that has been termed genomic imprinting. Imprinted
genes are targeted by epigenetic mechanisms acting before and
after fertilization. Recent studies revealed that imprinted genes
are involved in establishing seed dormancy, highlighting a new
mechanism of parental control over this adaptive trait. Here, we
review the regulatory mechanisms establishing genomic
imprinting and their effect on seed dormancy.
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Introduction
Seed dormancy is defined as the inability of a viable seed
to germinate under favorable conditions [1,2]. This trait
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prevents seed germination under short periods of
favorable conditions within unfavorable seasons and is
therefore of high adaptive value and great agricultural
relevance [3,4]. Seed dormancy is established during
seed maturation, in which seeds obtain dehydration
tolerance and longevity through the accumulation of
seed storage proteins and abscisic acid (ABA), the major
hormone connected with seed dormancy establishment
[5,6]. After seed maturation is completed, seed
dormancy is gradually released by after-ripening (dry
storage conditions) or stratification (incubation under
cold and moist conditions) [7,8]. The regulation of the
balance between establishment and release of seed
dormancy is critically important to maximize the adap-
tive capacity of plants and is thus a major factor con-
trolling yield. Low dormancy may cause precocious
germination of seeds on the maternal plant (vivipary, or
pre-harvest sprouting), resulting in reduced seed quality
and storage capacity [8]. Conversely, high dormancy may
lead to non-uniform germination, which in an agricul-
tural context is problematic by its negative effect on
harvesting schedules [9].

Seeds of flowering plants are composed of three major
tissues; the embryo, the endosperm and the seed coat.
While the seed coat is a sporophytic tissue derived from
the maternal integuments, the embryo and the endo-
sperm are formed in the process of double fertilization,
whereby one of the two sperm cells fertilizes the haploid
egg cell, giving rise to the diploid embryo and the other
sperm cell fertilizes the predominantly diploid central
cell, giving rise to the triploid endosperm [10]. The
endosperm has critical roles in supporting embryo and
seed coat growth, dormancy establishment and germi-
nation [11—13]. These functions are in part governed by
epigenetically modified genes with parental-specific
expression in the endosperm [14—16]. Here, we
discuss our current understanding of how parental-
specific gene expression is established and overview
recently discovered epigenetic mechanisms that control
seed dormancy in a parental-specific manner.

Establishment of genomic imprinting in the
endosperm through epigenetic

mechanisms in the gametes

Parental-specific gene expression patterns after fertil-
ization are a consequence of epigenetic mechanisms
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acting before fertilization during male and female
gametogenesis (Figure 1) [17,18]. The resulting
asymmetric epigenetic modifications are referred to as
imprints [19] that cause alleles to be either maternally
active and paternally silenced (referred to as maternally
expressed genes (MEGs)), or paternally active and
maternally silenced (referred to a paternally expressed
genes (PEGs)). Below we discuss the currently known
main mechanisms establishing imprinted gene
expression.

Establishment of MEGs

Methylation of DNA at the C-5 position of cytosine is a
typical silencing mark that in plants occurs in three
different sequence contexts; CG, CHG, and CHH,
whereby H corresponds to A, T'or G [20]. Removal of 5-
methylcytosine via base excision repair-dependent DNA
demethylation is mediated by DEMETER-like DNA
glycosylases [21]. The name-giving DNA glycosylase
DEMETER (DME) is active in the central cell of the
female gametophyte but not in sperm cells [22], result-
ing in maternally-biased gene expression due to local
hypomethylation of the maternal alleles of MEGs in
the endosperm [23,24]. Importantly, DME activates
two genes encoding components of the central cell
and endosperm-specific FERTILIZATTON INDEPEN-
DENT SEED (FIS)-Polycomb Repressive Complex 2

Figure 1

(PRC2), FIS2 and MEDEA (MEA) [25,26]. The FIS-
PRC2 establishes trimethylation marks on lysine 27 of
histone H3 (H3K27me3) on the maternal alleles of PEGs
[17], causing their repression (details are described
below). Demethylation of H3K27me3 is mediated by
Jumonji-type (JM]) histone demethylases that act
antagonistically to the PRC2 [27]. Recent work revealed
that the JM] histone demethylases RELATIVE OF
EARLY FLOWERING 6 (REF6) and EARLY FLOW-
ERING 6 (ELF6) control seed dormancy by activating
the maternal alleles of MEGs [28—30].

Suppression of the paternal alleles of MEGs is mediated
by the methyltransferase MET1 that maintains methyl-
ation in CG context during replication. Loss of paternal
METT1 function is sufficient to activate the paternal al-
leles of MEGs and thus abolishes their maternally-biased
expression [16]. In addition to MET1-mediated CGm,
also the RNA-directed DNA methylation (RADM)
pathway in the vegetative and sperm cells is important to
suppress paternal alleles of MEGs; a process which likely
involves cell-to-cell movement of small interfering RINAs
(siRNAs) [31,32]. In this pathway, the activity of DME
and REPRESSOR OF SILENCING 1 (ROS1) in the
pollen vegetative cell leads to excision of methylated
cytosines on transposable elements (TEs), causing acti-
vation of TE expression and production of small
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Model depicting how parental-specific gene expression is established. To establish MEGs, DME and REF6/ELF6 activate maternal alleles by removing
DNA methylation and H3K27me3, respectively, in the central cell, while the paternal alleles are silenced by DNA methylation established by MET1 and the
non-canonical RdADM pathway in the sperm cell. To establish PEGs, FIS2-PRC2, SUVH family proteins and CMT3 silence maternal alleles by applying
endosperm-specific triple repressive marks (H3K27me3, H3K9me2, and CHGm) in the central cell, while the sperm cell-specific histone variant H3.10 is
incorporated into the paternal genome and inhibits deposition of H3K27me3. The amino acid divergence at lysine27 in H3.10 prevents PRC2 targeting
and keeps the paternal alleles active. Activating and repressing epigenetic factors establishing asymmetric epigenetic marks before fertilization are shown

in orange and green letters, respectively.
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interfering RNAs (siRNAs) that move from the vegeta-
tive cell to the sperm cells to establish CHHm on target
regions [33,34]. These siRNAs preferentially accumulate
at MEG loci in sperm cells [33].

Establishment of PEGs

In addition to the function of DME to directly activate
genes encoding PRC2 components in the central cell,
the removal of DNA methylation by DME contributes
to the spread of the PRC2Z-mediated deposition of
H3K27me3 since DNA methylation and H3K27me3 are
mutually antagonistic [23,35,36]. Maternal-specific
H3K27me3 was found to associate with paternally-
biased expression [23], which was extended by recent
work revealing that in addition to H3K27me3, the
presence of dimethylation on lysine 9 of histone H3
(H3K9me2) and CHGm on the maternal alleles are
hallmarks for stable paternally-biased expression
[14,23,37]. Loss of the PRC2 component FERTIL-
IZATION INDEPENDENT ENDOSPERM (FIE)
causes depletion of CHGm in the endosperm, indicating
that the establishment of CHGm on PEGs depends on
FIS-PRC2 activity [14]. In vegetative tissues, CHGm is
established by the chromo-methyltransferase CMT3
that acts in a feedback loop with SU(VAR)3—9 homol-
ogous proteins (SUVHSs) catalyzing H3K9me2 [38,39].
Nevertheless, by which mechanism CMT3 and SUVHs
are recruited to PEGs in the endosperm remains to
be established.

The active status of the paternal alleles of PEGs is
connected to an epigenetic resetting mechanism acting
in sperm, causing removal of H3K27me3. One key
component of this epigenetic resetting is the sperm cell-
specific histone variant H3.10 that is replaces the his-
tone variants H3.1 and H3.3. H3.10 is highly divergent
around lysine 27 and therefore not targeted by PRC2
[40]. This, together with the activity of H3K27me3
demethylases in sperm, causes removal of H3K27me3 at
most positions of the sperm genome [41]. After fertil-
ization, the MADS-box transcription factor PHERES1
(PHET1) binds and activates the paternal PEG alleles,
likely preventing them to be silenced by PRC2 activity
after fertilization [42]. Whether or not resetting of
H3K27me3 is required to allow PHE1 to activate its
targets remains to be shown.

Genomic imprinting controlling seed
dormancy

As outlined above, stable paternally-biased expression is
more strongly associated with the presence of triple
repressive marks H3K27me3, H3K9me2, and CHGm
(referred to as H3K27me3/H3K9me2/CHGm) on the
maternal alleles compared to single H3K27me3 [14],
suggesting that there are molecular mechanisms distin-
guishing both patterns of epigenetic marks. Indeed, it
was found that different combinations of epigenetic
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marks determine the activity status of the maternal al-
leles in the developing endosperm of Arabidopsis. While
maternal alleles marked by triple repressive marks tend
to remain silenced during endosperm development, al-
leles marked by H3K27me3 alone are likely to become
activated and play important roles in controlling seed
dormancy [28]. In the following, we will discuss the
regulation of genes marked by parental-specific epige-
netic modifications in the endosperm and their role in
controlling seed dormancy in a parental-specific manner
(Figure 2).

Genes with single H3K27me3 on maternal alleles
control seed dormancy

Many genes marked by single H3K27me3 were found to
be induced during germination and to be enriched for
functions related to ethylene responses [28]. Ethylene
is known to accelerate germination through -cell-
loosening [13], suggesting that removal of H3K27me3
has a functional role in promoting germination by acti-
vating ethylene responses. In support of this notion,
mutants in the H3K27me3 demethylases REF6/ELF6
exhibit increased seed dormancy and decreased
expression of many genes marked by single H3K27me3
[28,29]. Interestingly, genes with single H3K27me3
show maternally-biased expression patterns in dormant,
but not in non-dormant seeds [28,30], which is
connected with the accumulation of CHHm on the
paternal alleles [43]. Cold-induced CHHm is mediated
by the non-canonical RADM pathway [44] and cold
sensitivity correlates with cold-induced ARGONAUTE
6 (AGO6) accumulation [43]. This data suggests that
maternal-specific control of seed dormancy is mediated
by two distinct epigenetic mechanisms; the removal of
H3K27me3 causing activation of maternal alleles and
the cold-induced silencing of the maternal alleles by
CHHm establishment. Thus, parental-specific epige-
netic marks can give rise to parental-specific expression
patterns not just after fertilization, but also at later
stages of seed development to exert parental-specific
effects on seed development (Figure 2).

The time when REF6/ELF6 act inthe central cell and
endosperm to remove H3KZ27me3 remains to be
resolved. The REF6 targets CYP70741 and CYP70743
encode cytochrome P450 monooxygenases that induce
germination through catabolizing abscisic acid (ABA)
[29,45]. Both genes are significantly downregulated in
the 7¢f6 mutant endosperm during germination [28] and
CYP70743 shows maternally-biased expression in the
developing endosperm [23,24]. However, both genes
have no detectable H3K27me3 on the maternal alleles in
4 DAP endosperm [23], indicating that REF6 acts before
4 DAP, possibly in the central cell before fertilization.
Similarly, two MEGs with known roles in seed dormancy,
CYSTEINE PROTEASE!L (CPI) and ALLANTOINASE
(ALN) [30,43] have no detectable H3K27me3 on the
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Model depicting how different combinations of epigenetic modifications on parental alleles affect gene expression in the endosperm and control seed
dormancy. Genes whose maternal alleles are suppressed by FIS-PRC2-mediated H3K27me3 encode ethylene-pathway genes that are necessary to
induce germination. The paternal alleles of those genes are likely suppressed by CHHm established by the non-canonical RdADM pathway. Cold stress-
inducible AGO6 may also target maternal alleles and apply cold stress-responsive CHHm by the non-canonical RdADM pathway. REF6 binds to the
CTCTGYTY motif (Y = C or T) to activate the target genes. In dormant seeds, the maternal alleles are activated by the H3K27me3 demethylase REF6 and
the genes show maternally biased expression patterns. In non-dormant seeds, the genes are biallelically expressed, likely because the RdADM pathway is
specifically active under dormancy-inducing conditions. FIS-PRC2, SUVH family proteins and CMT3 establish H3K27me3, H3K9me2, and CHGm,
respectively, on maternal alleles of PEGs. Because CHGm on the REF6-binding site inhibits binding activity of REF6, the maternal alleles are contin-
uously silenced, and the genes show paternally biased gene expression patterns throughout endosperm development including germination. ABI3, an
important transcription factor establishing seed dormancy belongs to this category. Genes with single H3K9me2 on the maternal alleles are fully silenced
throughout development. These maternal-specific epigenetic modifications are detected in developing endosperm at 4 DAP; the epigenetic status before
4 DAP remains to be explored.

maternal alleles in 4 DAP endosperm [23]. Like
CYP70741 and CYP70743, both genes are downregulated
in r¢f6 mutant endosperm during germination [28],
suggesting their REF6-mediated activation occurs before
4 DAP. A possible role of REF6 in the central cell of the
female gametophyte is also supported by genetic data
showing that maternal homo- and heterozygous r¢f6
mutants have increased seed dormancy [28]. Never-
theless, since REF6 targets marked by H3K27me3 are
detected at 4 DAP indicates that there are at least two
different timepoints of REF6 action; one before

fertilization and one at later stages of endosperm
development. Further analyses are required to determine
the time of REF6 action and to understand the differ-
ence between early and late REF6 targets.

Genes with triple H3K27me3/H3K9me2/CHGm
repressive marks remain stably imprinted

In contrast to genes with single H3K27me3 that become
activated during germination by REF6/ELF6 activity,
the presence of triple repressive marks H3K27me3/
H3K9me2/CHGm likely prevents REF6/ELF6 to target
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and activate those genes [28], consistent with the
known role of CHGm to prevent binding activity of
REF6 [46]. In support of this view, loss of H3K9me2 and
CHGm in mutants of SUVH4, SUVH5, and SUVHG6
(suvh456) causes upregulation of genes with triple
repressive marks in the endosperm during germination.
Among those upregulated genes is the critical dormancy
regulator ABA INSENSITIVE 3 (ABI3) [28,47], which is
likely responsible for increased dormancy in s«v4456 and
suvh45 mutants [28,48]. Together, this data suggests that
there is an endosperm-specific double control layer
established by H3K27me3/H3K9me2/CHGm that pre-
vents gene activation during germination. The maternal
alleles of genes containing triple modifications will
remain repressed during germination; in contrast, genes
marked by single H3K27me3 can become activated
during germination and have important roles in con-
trolling this process (Figure 2). This mechanism ensures
maternal control over seed dormancy and thus contrib-
utes to maximize reproductive success. The key dif-
ference between genes that become activated by REF6/
ELF6 and those that do not is the presence of
H3K9me2/CHGm on H3K27me3 marked alleles,
pointing at a key role of SUVH456 and CM'T3 in con-
trolling seed dormancy. Furthermore, it is also worth
noting that a small ratio of genes with triple marks is
activated during germination, suggesting an unknown
molecular mechanism removing this epigenetic repres-
sion. Nevertheless, genome-wide epigenetic profiles of
the endosperm during germination are required to fully
understand the dynamics of epigenetic modifications
and their consequences on seed dormancy.

Conclusions and future perspectives

Seed dormancy is a critical trait for both wild plants and
agricultural crops, and epigenetic regulators take a
central position in establishing and releasing seed
dormancy [49,50]. Epigenetic effects regulating seed
dormancy take place in the endosperm, a unique seed
tissue with parental-specific gene expression patterns
throughout its development [16,30]. This contrasts
with the largely biallelic expression in the embryo [51],
suggesting that the central cell/endosperm is the crit-
ical place where maternally determined dormancy
control is established. The endosperm differs from
other tissues by the co-occurrence of repressive epige-
netic modifications, H3K27me3 and H3K9me2/CHGm
that in sporophytic tissues generally do not co-occur
[14], raising the questions of the underlying mecha-
nism leading to the establishment of this particular
epigenetic signature. Since seed dormancy is regulated
by environmental conditions [2], another important
open question is whether and how parental-specific
epigenetic modifications and genomic imprinting are
affected by different environmental conditions. Future
research unveiling these relationships will provide
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exiting new insights into dormancy control and its un-
derlying epigenetic mechanisms.
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