
Economy Informatics vol. 19, no. 1/2019 45

Rust – The Programming Language for Every Industry

Cosmin CARTAS
Department of Economic Informatics and Cybernetics

The Bucharest University of Economic Studies
cosmin.cartas@csie.ase.ro

Programming languages are continuously evolving by focusing on the following criteria: speed
and ease of use. Rust is a system programming language developed by Mozilla Foundation,
which offers features of a high-level language implemented by the principle of zero cost ab-
straction and is very efficient in terms of performance.
It provides a memory safety mechanism without using a garbage collector that could affect the
performance, called borrow checker. Rust is providing out of the box a package manager used
for importing dependencies, building and distribution of a project.
Keywords: Rust, Web, WebAssembly, Electron, Performance
DOI: 10.12948/ei2019.01.05

 Rust Overview
Rust is a system programming language

created by Mozilla Foundation that offers the
feeling of a highly abstracted language and a
safe memory allocation mechanism. It encap-
sulates the most important aspects that needs
to be present in a complete development envi-
ronment. New functionalities are imple-
mented by using the principle of zero cost ab-
straction which implies that if a new feature is
added that solves a complicated use case, it
shouldn’t affect the performance in any way
[1].
Microsoft states that 70% of security flaws
discovered in their systems from every year
are related to memory safety. Rust solves this
issue out of the box due to its borrow checker
mechanism [9].
The borrow checker works by a very simple
principle: if a variable is declared in a specific
context, at the end of the execution of that
context the memory allocated for the variable
will be freed. If a variable is passed to another
function by value, the function will free the

memory allocated at the end of its execution.
This is made possible due to a property of var-
iable bindings, called ownership [7]. A varia-
ble in Rust can be bound to a single context
and the ownership could be passed from an
execution context to another (Fig.1.1). How-
ever, there is a possibility to pass variables to
other functions without reference if the type of
the variable implements the Copy trait without
switching the ownership as well [7] [8].
In the example below we have a simple string
variable that is initialized in the main function
of the program. The second function takes a
string as an argument, concatenates it and re-
turns the new value. When the variable is
passed to borrow_function by value, it will
gain ownership of value. According to Rust’s
principle of memory deallocation, at the end
of the execution of borrow_function value
will be freed. Returning to main function there
is one more line that needs to be executed but
the variable that is trying to access no longer
exists in memory, resulting in a compiling er-
ror.

1

46 Economy Informatics vol. 19, no. 1/2019

Fig. 1. Borrow checker example

Rust’s main focus is safety and all the varia-
bles are immutable by default. By using this
principle, the compiler can tell you if a muta-
tion occurred when it wasn’t intended. This
mechanism is very helpful when a reference is
passed in multiple contexts or accessed across
multiple execution threads. Of course, there is
the option to create a mutable variable by add-
ing the mut keyword in front of it [3].
When choosing a programming language one
of the aspects that should be taken care of
would be interoperability. There might exist
situations where a needed third-party library
is only available for C/C++. Rust makes pos-
sible the integration with any C/C++ library
due to its function foreign interface [7].
Probably one of the greatest features of the
language is the package manager, called
cargo. Having the experience of development
in C++ on a production level project, would
definitely require the use of make and Make-
files. That adds a new layer of complexity to
the process and implies learning a new frame-
work. Rust learnt from this approach and the
language wasn’t released until it had the man-
datory tooling available. The mechanism used
for dependency management is straight for-
ward and only a manifest file is needed to con-
figure the project for any scenario possible [5]
[6].

2 Rust Applied in Different Industries
Being developed by Mozilla Foundation, Rust
has a very strong integration with web tech-
nologies, but it’s not limited to that. This was
made possible due to release of a new standard

called WebAssembly that compiles Rust code
to proprietary bytecode and is ran in a safe and
encapsulated sandbox within the browser [3].
From a high-level architecture most of the
web applications follow the client server bidi-
rectional communication over HTTP proto-
col. Rust could be used on both sides in order
to increase the performance of the application,
by injecting WASM modules directly into the
frontend or by integrating the server with na-
tive modules. There is no doubt that there
might be scenarios where the performance
gain is not significant or not even needed, so
the decision to make this integration should be
taken after a deep analysis was made [4].
Cross platform applications are highly de-
manded lately from a lot of publishers and de-
velopers are continuously looking for alterna-
tives to develop them. The true cross platform
framework that is globally used is Electron
and the idea behind it encapsulates the V8 Ja-
vaScript Engine combined with a WebView
and the web technologies. So, this solution
gives the possibility for the majority of devel-
opers to create an application with their cur-
rent set of skills (for web developers). There
are situations where JavaScript is not fast
enough for the requirements of the application
and the solution would be to integrate it with
a more performant language that could bind to
it. NodeJS API for integration with native
modules is written in C++ but Rust can be
used as well due to its foreign function inter-
face. Some of the scenarios where Rust fits
very well are the following: binary files

Economy Informatics vol. 19, no. 1/2019 47

processing, number operations, collection ma-
nipulation [3].
Discussing about the development process in
the world of Internet of Things and embedded
devices requires a set of features that needs to
be checked, depending on the business case:
interoperability, strong JSON parsing, serial
communication, low runtime requirements
and security [6]. Development in IoT is differ-
ent than the one from enterprise applications

because there are a lot of restrictions related to
power consumption, limited hardware re-
sources and latency and environment condi-
tions. Rust is one of the best candidates for the
scenario described above because of the prin-
ciples based on what it was developed. It is
secure and can run even on bare metal without
the standard library for a specific operating
system with minimal power consumption (Fig
2.1).

Fig 2. Energy Consumption Benchmark on different algorithms [2]

3 References, citations and authors descrip-
tions
In this chapter a more in-depth analysis will
be performed in order to showcase the ability
of Rust to improve the performance of an ap-
plication. For the test we will mainly focus on
the first two categories of applications: web
and cross-platform, written in JavaScript. The
comparison with JavaScript will be done on
multiple aspects: DOM Rendering, working
with numbers and strings on the server and

client side and serialization. The client-side
rust code will run as a WebAssembly module
and for the server side we will perform profil-
ing on a native module written in Rust but also
native code.
This benchmark will showcase a scenario of
creating multiple DOM Elements, add inner
HTML to them and append them to the page.
The tool used for this test is wasm-bindgen
that compiles the Rust library to WebAssem-
bly module.

48 Economy Informatics vol. 19, no. 1/2019

Table 1. DOM Rendering Benchmark
Scenario Rust WASM Module Javascript
Rendering 10 elements 0.454833984375ms 0.391845703125ms
Rendering 100 elements 1.022216796875ms 0.976806640625ms
Rendering 1000 elements 11.962890625ms 6.586181640625ms
Rendering 10000 elements 73.955078125ms 54.496826171875ms
Rendering 100000 elements 798.493896484375ms 586.662109375ms

After analyzing the results, we can notice that
Rust can be even twice slower than JavaScript
for DOM manipulation, but its main purpose
is not for building frontend applications (Ta-
ble 1). One thing that should be taken care of
when choosing Rust as programming lan-
guage for developing on the client side is the
complexity that could be achieved in enter-
prise applications. At this aspect JavaScript
frameworks are more mature and easier to use.

The next scenario that will be tested will be to
compute the result of a simple function that
will return the n-th number from a Fibonacci
sequence. Same implementation was made for
Rust and Javascript with the same tooling
(wasm-bindgen) for converting the library
into a WebAssembly module.

Table 2. Fibonacci Benchmark

Scenario Rust WASM Module Javascript
Fibonacci of 10 0.1023853265ms 0.1534635483ms
Fibonacci of 100 0.2509765625ms 0.427978515625ms
Fibonacci of 1000 0.155029296875ms 0.429931640625ms
Fibonacci of 10000 0.1611328125ms 0.679931640625ms

Fig. 3. Fibonacci Benchmark

The results from Table 2. will show that Rust
is significantly faster especially when passing
a larger number as a parameter for the func-
tion. One downside of this approach will be

the fact that WebAssembly does not support
BigInt as a type yet, even though BigInt is pre-
sent in Rust, so a larger number would print
an irrelevant result. This aspect will be solved

Economy Informatics vol. 19, no. 1/2019 49

in the next test from the server side. This com-
parison will analyze the capability of Rust and
JavaScript to manipulate strings and the

function implemented will take an empty
string and append multiple values to it.

Table 4. String concatenation Benchmark

Scenario Rust WASM Module Javascript
Concatenate 10 values 1,206787109375ms 0,604736328125ms
Concatenate 100 values 1,418212890625ms 0,594970703125ms
Concatenate 1000 values 1,5732421875ms 0,3232421875ms
Concatenate 10000 values 1,865234375ms 0,5361328125ms
Concatenate 100000 values 2,173285642ms 0,7732452923ms

Fig. 4. String concatenation benchmark

The result from this test would point out that
effort put in the JavaScript engine for parsing
the main format used for web applications
(JSON) pays off. From the benchmark could
be noticed that JavaScript could be even 3
times faster than Rust on string manipulation.
For the serialization test was applied a very
common scenario where a specific payload in

JSON format needs to be serialized to a file.
NodeJS comes in advantage here because in
JavaScript objects have the structure of JSON
natively. For serialization in Rust the library
serde was used in order to transform an array
of structs to a JSON string. We will bench-
mark not only Rust and JavaScript but also a
NodeJS module that is written in Rust.

Table 5. JSON Object Serialization

Scenario Rust Node Native Module Javascript
Serialize 10 objects 0,154617ms 0,15623499ms 0,877ms
Serialize 100 objects 0,18937099ms 0,188241ms 1,011ms
Serialize 1000 objects 0,391794ms 0,481081ms 1,478ms
Serialize 10000 objects 2,24886099ms 3,63775399997ms 9,015ms
Serialize 100000 objects 24,165125ms 43,7603159996ms 81,555ms

50 Economy Informatics vol. 19, no. 1/2019

Fig. 5. JSON Serialization to File

The results from the table above are self-ex-
planatory it’s obvious that Rust is from two to
four times faster than Javascript.

4 Conclusions
Rust could bring huge improvements in terms
of performance to an application but there are
cases where the complexity could grow signif-
icantly, so the effort to make the implementa-
tion is not worth it. Before making a decision
to add or rewrite a module of a project using
Rust, an in-depth analysis should be per-
formed to be sure that it will bring any bene-
fits to the solution. One thing that should be
considered is the maturity of the language in a
short period, first release of Rust was done in
2015. It has grown a huge community with a
great evolution, with more and more features
added over the years. The language provides a
lot of tools and libraries for different use-
cases, from native UI development to integra-
tion with any C/C++ library out of the box and
building WASM or WASI modules. Rust will
definitely not replace Javascript in any future,
but it will combine together to improve the as-
pects where Javascript is not giving the best
results. If WASM would be mature enough to

support all data types and create close to zero
time to initialize it will definitely worth the
switch from non-sensitive operations from
server-side to client side in order to reduce
costs and without losing any performance.
The main advantage of using Rust as your de-
velopment programming language is the
memory safety mechanism that it offers. The
compiler will not allow you to do mistakes in
terms of ownership and mutability that leads
to code of a decent quality without the need of
having huge experience with the language.

References
[1] S. Klabnik and C. Nichols, “The Rust

Programming Language”, No Starch
Press, 2019, ISBN 978-1593278281

[2] R. Pereira, M. Couto, F. Ribeiro, R. Rua,
J. Cunha, J. P. Fernandes and J. Saraiva,
“Energy Efficiency across Programming
Languages”, International Conference of
Software Engineering 2017

[3] K. Hoffman, “Programming WebAssem-
bly with Rust”, The Pragmatic Program-
mers, March 2019

[4] M. Rourke, “Learn WebAssembly”, Pakt
Publishing, 2018

Economy Informatics vol. 19, no. 1/2019 51

[5] J. Blandy and J. Orendoff, “Program-
ming Rust: Fast, Safe Systems Develop-
ment”, O’Reilly Media, 2019

[6] J. Hiner, “We Rewrote Our IoT Platform
in Rust and Got Away with It”, Me-
dium.com, July 2019, [Online],
https://medium.com/dwelo-r-d/we-re-
wrote-our-iot-platform-in-rust-and-got-
away-with-it-2c8867c61b67

[7] C. Matzinger, “Data Structures and Algo-
rithms with Rust”, Pakt Publishing, 2019

[8] B. L. Troutwine, “Concurrency with
Rust”, Pakt Publishing, 2018

[9] R. Levick, “Why to choose Rust as your
next programming language”, Open-
source.com, 2019, [Online], https://open-
source.com/article/19/10/choose-rust-pro-
gramming-language

Cosmin Cartas has always been passionate about technology and
interested in learning from others. He is a Full Stack Developer with work
experience demonstrated in different industries as well as a programmer
with experience in developing modern web applications and complex
distributed systems.
Throughout his career he has had several roles such as Java Developer, Web
Developer or Security Engineer. As a Security Engineer, he was
responsible, among other things, for identifying security deficiencies in

software solutions developed in different programming languages such as Java, JavaScript,
Android, C ++ or iOS. More than that, he also worked on developing solutions to address
identified vulnerabilities, DevOps security and threat modeling. He has bachelor degree in
Computer Science and a master's degree in IT&C Security from The Bucharest University of
Economic Studies and is doing now a PhD in Optimization of Distributed Systems.

