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Abstract
In this paper, a structure exploiting algorithm for semidefinite programs
derived from the Kalman-Yakubovich-Popov lemma, where some of the
constraints appear as complicating constraints is presented. A decompo-
sition algorithm is proposed, where the structure of the problem can be
utilized. In a numerical example, where a controller that minimizes the
sum of the H2-norm and the H∞-norm is designed, the algorithm is shown
to be faster than SeDuMi and the special purpose solver KYPD.

Keywords: Optimization, Optimization Algorithms



A Decomposition Algorithm for KYP-SDPs

Rikard Falkeborn and Anders Hansson

Abstract— In this paper, a structure exploiting algorithm for
semidefinite programs derived from the Kalman-Yakubovich-
Popov lemma, where some of the constraints appear as compli-
cating constraints is presented. A decomposition algorithm is
proposed, where the structure of the problem can be utilized. In
a numerical example, where a controller that minimizes the sum
of the H2-norm and the H∞-norm is designed, the algorithm is
shown to be faster than SeDuMi and the special purpose solver
KYPD.

I. INTRODUCTION

Semidefinite programs (SDPs) arise in many applications
in control and signal processing [1]. In many cases, the pro-
grams that need to be solved involve large matrix variables
that can make the computational burden very large. In some
cases, the structure of the problem can be utilized to reduce
the computational demands.

SDPs derived from the Kalman-Yakubovich-Popov lemma
(KYP-SDPs) [2] is one such example, where tailor-made
solvers have been successfully developed, see for example
[3], [4], [5]. In this paper an algorithm for solving KYP-
SDPs where some of the constraints appear as complicating
constraints, i.e. constraints which are such that the optimiza-
tion program would have been much easier to solve, if they
were not present. More specifically, we treat optimization
programs with the following structure

min
xi,Pi

N∑
i=0

〈Ci, Pi〉+ cTi xi

s.t. F0(P0) +M0 + G(x) � 0
Fi(Pi) +Mi0 +Hi(xi) � 0, i = 1, . . . , N

(1)

where Ci, Pi ∈ Sni , and where Sn is the space of symmetric
matrices of dimension n× n. The inner product 〈Ci, Pi〉 is
defined as TraceCiPi. We define the operators

Fi(Pi) =
[
ATi Pi + PiAi PiBi

BTi Pi 0

]
, i = 0, . . . , N,

where Ai ∈ Rni×ni , Bi ∈ Rni×mi ,

Hi(xi) =
pi∑
j=1

Mijxij , i = 1, . . . , N

where Mij ∈ Sni+mi , xi ∈ Rpi , and where xij denotes the
jth component of the vector xi. Let us also define the op-
erators Gi(xi) =

∑pi

j=1 xijM0ij
, and G(x) =

∑N
i=0 Gi(xi)

where x = (x0, x1, . . . , xN ).
We assume, that the pairs (Ai, Bi) are controllable. This

implies that the operators Fi(Pi) have full rank. This can be
relaxed to stabilizability of the pair (Ai, Bi) provided that
the range of Ci is in the controllable subspace of (Ai, Bi),

see [3] for details. We also assume the optimal value of (1)
exists and is finite.

The constraint involving G(x) is a complicating constraint,
since without it, the problem would decompose into several
smaller problems, which all could be solved separately.
Hence, a decomposition algorithm would be suitable to use.
We remark that the algorithm we propose can easily be
generalized to have several complicating constraints.

This type of programs appear for example in robust control
analysis using integral quadratic constraints [6], and linear
system design and analysis [7], [8].

We remark that a standard linear matrix inequality (LMI)

M = M0 +
n∑
k=1

xkMk � 0

is a special case of a KYP-LMI with the size of A being
0 × 0. Hence we can handle a mixture of KYP constraints
and standard LMIs. In fact, as we will see in Section III, in
some cases, where the complicating constraint is a regular
LMI, the ability to solve the regular LMI using a standard
solver and use tailormade solvers for the KYP-constraints
can, as we will see, reduce the computational time.

A. Eliminating variables from KYP-SDPs

We here show how the structure of the KYP-SDP can
be utilized to eliminate dual variables and thus formulate a
smaller problem which can be solved in less time. The details
can be found in [3]. For simplicity, we only show how the
elimination is done for the case with one KYP-constraint, but
a generalization is straightforward. Consider the problem

min
x,P

〈C,P 〉+ cTx

s.t. F(P ) +M0 + G(x) � 0.
(2)

The dual formulation of this problem is [3]

max
Z
〈M0, Z〉

s.t. F∗(Z) + C = 0
G∗(Z) + c = 0

Z =
[
Z11 Z12

ZT12 Z22

]
� 0

(3)

where the adjoint operators F∗(Z) and G∗(Z) are defined
as

F∗(Z) = AZ11 + Z11A
T +BZT12 + Z12B

T

G∗(Z) =

〈M1, Z〉
...

〈Mp, Z〉

 . (4)



By computing a basis for the nullspace of the adjoint operator
F∗(Z), it is possible to reduce the number of variables. In [3]
it is shown how such a basis can be easily found by solving
Lyapunov equations which can be done in an efficient and
numerically stable way [9].

When the reduction of variables is done, the reduced
dual problem can be solved, and when a solution is found,
the original optimal variables can be computed, see [3] for
details.

II. LAGRANGIAN RELAXATION

Optimization programs with complicating constraints have
been extensively studied within the field of optimization
and operations research and is usually tackled with different
decomposition algorithms. We will employ one of these,
Lagrangian relaxation [10] pioneered in [11], [12], and show
how the specific structure of (1) can be used to speed up the
computational time.

A. Forming the Lagrangian decomposes the problem

In order to make the presentation more streamlined, we
derive the algorithm in a slightly more general form than (1).
Consider the problem

min
X

N∑
i=0

〈fi, Xi〉

s.t. g(X) = gc +
N∑
i=0

gi(Xi) � 0 (5a)

hi(Xi) � 0, i = 1, . . . , N, (5b)

where gi and hi are assumed to be symmetric linear matrix
functions of X , and where fi is assumed to be a symmetric
matrix. We let Xi = (Pi, xi) and X = (X0, . . . , XN ).

The Lagrangian function to (5) with respect to the com-
plicating constraint (5a) is [13]

L(X,Z) =
N∑
i=0

〈fi, Xi〉+

〈
Z, gc +

N∑
i=0

gi(Xi)

〉
. (6)

Hence, if we let Si = {Xi : hi(Xi) � 0}, the dual
function to (5) is

h(Z) = min
X0,Xi∈Si

L(X,Z). (7)

For fixed Z, the minimization can be formulated as

min
X0,Xi∈Si

{
〈X0, f0 + g∗0(Z)〉+ 〈Z, gc〉+

N∑
i=1

〈fi, Xi〉+ 〈g∗i (Z), Xi〉

} (8)

where g∗i (Z) denotes the dual of gi(Xi). In order for the
minimal value to be bounded from below when minimizing
L(X,Z) with respect to X0, we have to require that Z fulfills
the constraint

g∗0(Z) + f0 = 0. (9)

For the problem studied in this paper, this corresponds to

F∗0 (Z) + C0 = 0
G∗0 (Z) + c0 = 0,

(10)

where the adjoint operators F∗0 (Z) and G∗0 (Z) are defined
as in (4). After minimizing with respect to X0, we obtain,
since we have required Z to fulfill the constraint (9),

h(Z) = min
X0,Xi∈Si

L(X0, . . . , XN , Z) =

N∑
i=1

min
Xi∈Si

〈fi + g∗i (Z), Xi〉 .
(11)

Hence, for fixed Z, the problem of minimizing the La-
grangian under the constraints (5b) is a separable problem
in Xi = (Pi, xi) for i = 1, . . . , N . In our problem, each
minimization is equal to

min
xi,Pi

〈Ci, Pi〉+ c̄Ti xi

s.t. Fi(Pi) +Mi0 +Hi(xi) � 0,
(12)

where c̄ = ci + G∗i (Z).
We remark that h(Z) is less than or equal to

∑N
i=0 〈fi, Z〉

for Z � 0 which fulfills (9).
One should not solve the separable optimization programs

as they stand, but use a tailor-made solver for KYP-SDPs.
We take the same approach as in [3] and eliminate variables
in the dual problem as described in Section I-A. Note that
the reduction of the dual variables for the ith subproblem
can be reused if we need to solve the same subproblem but
for a different Z. This will be used in Section II-B.1.

The boundedness of the subproblems (12) can be an issue
and is ensured by bounding the optimal value of (12), see
Appendix. This is done in the numerical example we present
in Section III.

B. Updating Z

The dual function h(Z) is a lower bound on the optimal
value of (5). We know that if the problem is convex and
Slaters condition [13] holds, the maximum of the dual
function is equal to the optimal objective value of the
optimization problem. Hence, we want to maximize the dual
function to get a good lower bound on the optimal value.
That is, we want to solve the optimization problem

max
Z

h(Z) = max
Z

min
X

L(X,Z). (13)

A problem is that we do not have an explicit expression for
the dual function in (11) since it depends on Xi.

1) Dual formulation: To be able to compute a lower
bound on the optimal objective function, [14] proposes a
tangential approximation method, first outlined in [15]. We
note that, if we have solved the Lagrangian problem r times
for r different fixed Zk satisfying (9), and then have r



different solutions Xk
i , the functions

h(Zk) +

〈
Z − Zk, gc +

N∑
i=1

gi(Xk
i )

〉
=

N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i )

〉
(14)

are linear supporting functions to h(Z) at Zk. A linear
supporting function to h(Z) at Zk is a linear function which
never lies below h(Z) and contacts it at Zk. We can therefore
use the piecewise linear function

vr(Z) = min
1≤k≤r

N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i )

〉
(15)

as an approximation to h(Z). Instead of maximizing h(Z),
we maximise the approximation vr. By using the epigraph
formulation of (15), an equivalent problem is

max
σ,Z

σ

s.t.
N∑
i=1

〈
fi, X

k
i

〉
+

〈
Z, gc +

N∑
i=1

gi(Xk
i )

〉
≥ σ,

k = 1, . . . , r
f∗0 + g∗0(Z) = 0
Z � 0.

(16)

Since it is not certain that the optimal value of (16) is
bounded, it is necessary to add the constraint

σ < σmax (17)

in order to get a bounded optimal value. Here σmax is chosen
such that σmax is larger than the optimal value of the original
problem. We remark that this value is unknown, and one
should pick a large value of σmax.

In Figure 1, tangential approximation of the concave
function h(Z) is shown.

If h(Zr) = L(Xr
1 , . . . , X

r
N ), we know that we have found

the optimum. If not, we can use the ”new” Zr+1 to solve
the subproblems again and obtain a new Xr+1

i . In practice,
it is not possible to find the exact optimum due to numerics,
and we have to settle for when h(Zr)− L(Xr

1 , . . . , X
r
N ) is

less than ε. This implies that the duality gap is ε or less.
An iterative procedure to solve the original problem (1)

can be outlined as follows, starting from iteration r.
1) Solve the problem (16), and obtain an optimal solution

Zr+1.
2) Solve the Lagrangian subproblems (12) and obtain an

optimal solution
(
Xr+1

0 , . . . , Xr+1
N

)
.

3) If |h(Zr+1)− L(Xr+1
0 , . . . , Xr+1

N )| < ε, terminate.
4) Add a linear constraint like in (16) and return to step 1.
Here we can note that σ is a non-increasing function in

iterations r, but no such guarantees can be given for L [14,
p. 433].
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Fig. 1. Tangential approximation of h (Z).

2) Utilizing the structure of Z: Solving the problem (16)
as it stands is not a good idea. Instead, it is possible
to reformulate the optimization problem as an equivalent
problem with fewer variables. We take same approach as
described in Section I-A. However, note that the computation
of the basis can be reused in all iterations.

3) Primal formulation: It is also possible to formulate
the dual of (16) and solve that problem instead. The dual
problem of (16) is, note that P ki and xki are fixed,

min
y,Q

cT0 y0 + 〈C0, Q〉+
r∑

k=1

N∑
i=1

(
cTi x

k
i +

〈
Ci, P

k
i

〉)
yk

s.t. F0(Q) + G0(y0) +M0

r∑
k=1

yk︸ ︷︷ ︸
=1

+
r∑

k=1

N∑
i=1

Gi(xki )yk � 0

r∑
k=1

yk = 1

yk ≥ 0, k = 1, . . . , r
(18)

where y0 ∈ Rp0 , Q ∈ Sn0 , and where yi ∈ R, i = 1, . . . , r.
The dual variable Z needed in the next iteration can be
returned by primal-dual solvers. In order to avoid the equality
constraint we can eliminate the ”last” variable yr and replace
it with 1 −

∑r−1
k=1 yk. Thus, tailor-made solvers for KYP-

problems [3], [4] can be used to solve the problem.
Note that if a feasible point for iteration r is known, then

a feasible point for r+1 is also known (by letting yr+1 = 0).
Hence, if the underlying solver uses a method which requires
a strictly feasibly point, the first phase where such a point is
found can be skipped. This might save some computational
time.

In the first iterations of the algorithm, it is not certain that
the LMI (18) is feasible since there are only a few xki . This
corresponds to the case where σ is unbounded from above
in (16). A remedy to this is to include the constraint (17)



when formulating the dual of (16). The dual is then

min
y,Q,w

wσmax + cTo y0 + 〈C0, Q〉+

r∑
k=1

N∑
i=1

(
cTi x

k
i +

〈
Ci, P

k
i

〉)
yk

s.t. F0(Q) + G0(y0) +M0

r∑
k=1

yk +
r∑

k=1

N∑
i=1

Gi(xki )yk � 0

r∑
k=1

yk + w = 1

yk ≥ 0, k = 1, . . . , r
w ≥ 0

(19)

which, if w = 0 is the same problem as (18). If w = 0 in the
solution to (19), the problem (18) is feasible. For numerical
reasons, it is better to switch to solving (18) when the optimal
value of w is zero. We remark that for problems where n0 is
small compared to m0, that is, when the number of columns
in A0 is small compared to the number of columns in B0, it
may be beneficial to solve the problem in (19) instead of its
dual (16). We also remark that one should bound the optimal
value of the problem in (19) in the same fashion as we show
in the Appendix.

III. NUMERICAL EXAMPLE

The efficiency of the algorithm is investigated in a nu-
merical example borrowed from [8], see also [7], [16],
and it is compared to the generic solver SeDuMi 1.21,
[17], and the tailor-made solver for KYP-problems, KYPD,
version 1.2 [3]. All solvers were interfaced via YALMIP
version 3, release 20090505, [18].

Using the Youla parametrization [19], the set of all stable
closed-loop plants of a system can be written as

Gcl = T1 + T2QT3 (20)

where Ti are stable and depends on the system matrices
and Q is an arbitrary stable function transfer matrix. The
corresponding controller is then, assuming positive feedback

K = Q(I +GQ)−1. (21)

By restricting Q to lie in a finite-dimensional subspace in
such a way that the parameters enter linearly, i.e. Q =
Q(θ) =

∑n
i=1Qiθi, convex constraints on the closed loop

system result in convex optimization problems where the op-
timum can be easily found by polynomial time methods [13].

In order to formulate constraints on the closed loop system
as LMIs, it is necessary to write (20) in state space form.
It is also necessary that this state space realization has all
θi in the C and D matrix in order for the constraints to be
convex. The realization of (20) is typically obtained using
system Kronecker products [20], [7] and yields a system
of a much higher order than the original plant order. The
resulting closed loop system matrices can then be written as
A, B, C(θ) and D(θ) where C(θ) and D(θ) depends affinely
on the parameters chosen in the parametrization of Q(θ).

Many design specifications can be cast as LMIs. We
can mention for example specifications and constraints on
the H2-norm, H∞-norm, dispassivity constraints and the
location of the closed loop poles. Some of these are in
the form of KYP-SPDs. As an example, we will solve
the joint minimization of the H2-norm and the H∞-norm
of a system [7], [8]. The design problem results in the
optimization problem

min
γ2,X,θ,P

TraceX + γ2

s.t.
[

X C(θ)W
1
2

W
1
2C(θ)T I

]
� 0

(22a)ATP + PA PB 0
BTP 0 0

0 0 0

+

 0 0 C(θ)T

0 −γ2I D(θ)T

C(θ) D(θ) −I

 � 0

(22b)

where X and P are symmetric positive definite matrices, A,
B, C(θ) and D(θ) are the state space matrices of the closed
loop system, W is the controllability gramian of the system,
i.e. W solves

AW +WAT +BBT = 0. (23)

This problem can be transformed to the form (1) where
the complicating constraint is (22a) since without it, tailor-
made solvers for KYP-problems that use the dual formulation
could solve the problem. However, formulating the dual of
the entire problem would create a very large matrix variable
corresponding to the LMI (22a). Hence, using a decomposi-
tion algorithm that alternates between solving the KYP-SDP
in it’s dual form, after eliminating variables and solving the
H2-LMI (22a) in it’s primal form with much fewer variables
than the dual form will lower the computational burden.

To test the algorithm, we create random systems using
rss in Matlab with one input and one output. We chose the
Youla parameter Q(θ) to be

Q(θ) =
nQ∑
i=0

θi

(s+ 0.5)i
(24)

as suggested in [19]. We choose to have nQ = 10 in
all examples. The reason for letting nQ = 10 is seen in
Figure 2, where the normalized objective value is plotted for
10 different systems of state dimension 20 with increasing
nQ. The computations were done using SeDuMi, i.e. no
decomposition was used. We stopped the increase in nQ
when the objective function was not improving more than
0.1% or if SeDuMi ran into numerical problems that were
too severe.

We solve the resulting LMIs using our algorithm, the
tailor-made solver KYPD calling SeDuMi and the generic
solver SeDuMi. All computations were terminated when the
absolute error or the relative error was less than 10−3. We
create 10 different systems for each n, where n is the number
of states, and let n vary. The number nQ was set to 10 for all
computations. The computational times were averaged and
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Fig. 2. Normalized objective values for different sizes of Q(θ).
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Fig. 3. Averaged computational times for the controller synthesis problem
of SISO systems. Note that n denotes the number of states in the original
plant and not the size of the matrices that are involved in the actual
computations.

the averaged times can be seen in Figure 3. We remark that
in practice, n would include both the states of the original
plant as well as states from various weighting filters that
is commonly used in H∞-synthesis. We also remark that
the number n in Figure 3 is the number of states in the
original plant, not the dimension of the A-matrix in (1). As
an example, for n = 20, the A-matrix is has 90 rows and
columns.

In Figure 3 we see that the decomposition algorithm in
this case outperforms both the tailormade solver KYPD and
the generic solver SeDuMi. It can also be seen that the tailor-
made solver for KYP-problems actually performs worse than
the generic solver SeDuMi. This can be explained as follows.
SeDuMi solves an optimization problem where the majority
of variables come from P which is n × n and therefore
yield (n2 + n)/2 variables assuming the order of Q(θ) and

the number of variables in X , which is determined by the
number of outputs, can be neglected. KYPD formulates the
dual problem and eliminates variables. For a constraint of
the type

F(P ) +M0 + G(x) � 0 (25)

the number of remaining dual variables, after the reduction,
is mn + m (m+ 1) /2 where m is the number of rows in
the B matrix. This is usually a lot lower than

(
n2 + n

)
/2.

However, for this numerical example, we also have the
constraint (22a). When we formulate the dual problem of
the numerical example, there will be a dual variable Z2 cor-
responding the LMI (22a). This variable has no special struc-
ture that is used in KYPD, and no variables will be reduced,
adding an extra matrix variable with

(
(n+ p)2 + n+ p

)
/2

scalar variables, where p is the number of outputs to the
system. This is even more variables than the original primal
formulation, and hence KYPD will usually be slower than
SeDuMi for this specific example.

IV. CONCLUSIONS

In this paper, a structure exploiting algorithm for KYP-
SDPs where some of the constraints appear as complicating
constraints is proposed. The structure of the KYP-SDP
is utilized to reduce the computational complexity. The
algorithm is basically the Kelley-Cheney-Goldstein cutting
plane method [11], [12]. The convergence of the method
is established if the technical but important condition that
Zk is bounded holds, see for example [10]. A sufficient
condition for this is that there exist an interior point for the
problem (19) [21, Thm. 4.1.3]. That this is indeed the case for
all possible problems is still an open question. However, our
experience is that we have had no problems with convergence
using the algorithm.

We remark that the worst case complexity of the number of
iterates is proportional to O(1/εm) where m is the dimension
of the dual variable, which is very poor.

In a numerical example, it is shown that it is beneficial to
use the proposed algorithm in some cases. It is advantageous
to use the algorithm in cases where one or more constraints
is associated with a large dual variable that has no specific
structure that can be exploited.
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torial Optimization, M. Jünger and D. Nadded, Eds. Heidelberg:
Springer Verlag, 2001, pp. 112 – 156.

[11] J. Kelley, “The cutting plane method for solving convex programs,”
Journal of the SIAM, vol. 8, no. 4, pp. 703–712, 1960.

[12] E. Cheney and A. Goldstein, “Newton’s method for convex pro-
gramming and Tchebycheff approximation,” Numerische Mathematik,
vol. 1, no. 1, pp. 253–268, 1959.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[14] L. S. Lasdon, Optimization Theory for Large Systems, ser. MacMillan
Series in Operations Research. MacMillan Publishing, 1970.

[15] A. M. Geoffrion, “Primal resource-directive approaches for optimizing
nonlinear decomposable systems,” Operations Research, vol. 18, no. 3,
pp. 375–403, may 1970.

[16] M. Farhoodi and M. Beheshti, “A Case Study of the Multiobjective
H2/H∞ Control via Finite Dimensional Youla Parameterization and
LMI Optimization,” Industrial Electronics Society, 2007. IECON 2007.
33rd Annual Conference of the IEEE, pp. 493–497, 2007.

[17] J. Sturm, “Using SeDuMi 1.02, A Matlab toolbox for optimization
over symmetric cones,” Optimization Methods and Software, vol. 11,
no. 1, pp. 625–653, 1999.
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APPENDIX
BOUNDING xi

Each of the subproblems in (12) are on the form

min
x,P

〈C,P 〉+ cTx

s.t. F(P ) +M0 + G(x) � 0
(26)

One way to make this optimization problem bounded is
to add the constraint

〈C,P 〉+ cTx− fmin ≥ 0 (27)

The dual of (26) with the extra constraint (27) is

max
λ,z

〈Mo, Z〉 − fminλ

s.t. F∗(Z) + C(1 + λ) = 0
G∗(Z) + c(1 + λ) = 0
Z � 0
λ ≤ 0.

(28)

We can eliminate some of the dual variables Z using the
constraint F∗ (Z) + C(1 + λ) = 0 in a very similar way
as was done in [3]. In [3], the number of variables in Z is
reduced by finding a basis for the nullspace of F∗ (Z)+C =
0. The only difference is that we have the term C(1 + λ)
instead of C. Hence the only difference compared to [3] is
that we need to find a solution to the Lyapunov equation

AF0 + F0A
T + C(1 + λ) = 0 (29)

where λ is a variable. A solution to this is F0 = Fc(1 + λ)
where Fc solves the Lyapunov equation

AFc + FcA
T + C = 0. (30)

To see this, just insert F0 in (29) and we get

AF0 + F0A
T + C(1 + λ) =

AFc(1 + λ) + (1 + λ)FcAT + C(1 + λ) =

AFc + FcA
T + C︸ ︷︷ ︸

=0

+λ

AFc + FcA
T + C︸ ︷︷ ︸

=0

 = 0.

(31)

Having this basis we can solve the dual problem using the
reduced dual variables. The reconstruction of P and x is not
affected by this and can be found in the exact same fashion
as in [3].
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