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METHODOLOGY

Systematic comparison of monoclonal 
versus polyclonal antibodies for mapping 
histone modifications by ChIP‑seq
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Abstract 

Background:  The robustness of ChIP-seq datasets is highly dependent upon the antibodies used. Currently, poly-
clonal antibodies are the standard despite several limitations: They are non-renewable, vary in performance between 
lots and need to be validated with each new lot. In contrast, monoclonal antibody lots are renewable and provide 
consistent performance. To increase ChIP-seq standardization, we investigated whether monoclonal antibodies 
could replace polyclonal antibodies. We compared monoclonal antibodies that target five key histone modifica-
tions (H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) to their polyclonal counterparts in both human and 
mouse cells.

Results:  Overall performance was highly similar for four monoclonal/polyclonal pairs, including when we used two 
distinct lots of the same monoclonal antibody. In contrast, the binding patterns for H3K27ac differed substantially 
between polyclonal and monoclonal antibodies. However, this was most likely due to the distinct immunogen used 
rather than the clonality of the antibody.

Conclusions:  Altogether, we found that monoclonal antibodies as a class perform equivalently to polyclonal 
antibodies for the detection of histone post-translational modifications in both human and mouse. Accordingly, we 
recommend the use of monoclonal antibodies in ChIP-seq experiments.
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Background
Chromatin immunoprecipitation followed by sequencing 
(ChIP-seq) is one of the key technologies for investigat-
ing the genomic localization of DNA-associated proteins. 
The ChIP-seq approach can be performed in two major 
ways: native ChIP (where the original genomic localiza-
tion of DNA-associated proteins is maintained without 
cross-linking) and cross-linked ChIP. Here, we focused 
on the cross-linked ChIP-seq approach, as most of the 
public datasets relevant to our samples were produced by 

this method. In this technique, the DNA-associated pro-
teins are cross-linked to the DNA. After DNA shearing, 
a specific antibody is used to enrich the targeted protein 
by immunoprecipitation, which also enriches the specific 
DNA it is bound to because it is cross-linked to it. Finally, 
the DNA fragments that precipitated with the enriched 
protein are sequenced. Hence, the results of each experi-
ment are highly dependent upon the quality of the anti-
body that is used.

Polyclonal antibodies have been used as the standard 
antibody reagent for ChIP-seq by many laboratories and 
consortia [1–3]. Problematically, however, each poly-
clonal antibody lot is a limited resource, as each is raised 
from a different immunized animal. Each polyclonal anti-
body batch consists of a highly complex population of 
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individual antibody molecules, representing the unique 
response of the source animal’s immune system. Some 
of these component antibody molecules will specifically 
target the epitope in question, but other molecules in this 
population may enrich for other off-target epitopes. Dif-
ferent antibody lots raised to the same target epitope will 
thus naturally differ in performance [4, 5], and each must 
be validated before use. Critically, once exhausted, a pol-
yclonal antibody lot cannot be reproduced [6].

To overcome these limitations, many scientists have 
advocated for the use of monoclonal antibodies [7–9]. 
Monoclonal antibodies are harvested from purified cell 
lines derived from a single immune cell, which brings 
distinct advantages: First, lots consist of a single antibody 
species that specifically targets the desired epitope; sec-
ond, monoclonal lots are uniform in performance; and 
third, lots are renewable resources as long as the cell line 
is maintained. Approaches that attempt to overcome the 
limitations of polyclonal antibodies include the devel-
opment and optimization of recombinant antibodies 
[10], development of recombinant antibodies that pro-
vide “antigen clasping” [11], the generation of specific 
monoclonal antibodies followed by evaluation of their 
performance [12–14] and the comparison of multiple 
antibodies targeting repressive histone modifications 
[15].

However, despite the advantages of monoclonal anti-
bodies and the progress toward other approaches, cita-
tion data aggregated in the CiteAB database [16] indicate 
that polyclonal antibodies are used in published research 

more frequently than monoclonal antibodies (54% of 
citations vs. 46% [17]); similarly, in a study conducted as 
part of the NIH modENCODE [18] and Roadmap Refer-
ence Epigenome [2] projects, about 74% (181 out of 246) 
of the histone modification antibodies surveyed were 
polyclonal [5].

To systematically investigate whether monoclonal anti-
bodies can substitute for polyclonal antibodies in ChIP-
seq procedures while retaining equivalent performance, 
we designed and carried out a direct side-by-side com-
parison. We compared a set of five monoclonal anti-
bodies targeting key histone modifications (H3K4me1, 
H3K4me3, H3K9me3, H3K27ac and H3K27me3) to their 
polyclonal counterparts, using the same antibodies and 
lots that had been previously validated by the ENCODE 
project [1] (Table 1). To ensure that all samples and anti-
bodies were handled in a precisely controlled manner, 
all work was performed employing automated ChIP-seq 
protocols implemented on a standard laboratory liquid 
handling system.

As a class, we found that the performance of mono-
clonal antibodies targeting histone post-translational 
modifications in ChIP-seq assays matched the perfor-
mance of polyclonal antibodies. Given that monoclonal 
antibodies represent a renewable resource and eliminate 
the lot-to-lot variability that is expected with polyclonal 
antibodies, the replacement of polyclonal antibodies 
with monoclonal antibodies for use in ChIP-seq and 
similar affinity-based methods has significant benefits. 
Employing monoclonal antibodies will result in increased 

Table 1  Antibodies used in the study

Epitope Antibody type Commercial company Catalog number Lot IDs Validation data

H3K4me1 Monoclonal CST (Cell Signaling Technology) 5326 1, 2 http://www.encodeproject.org/antibodies/ENCAB-
650MWL/

H3K4me1 Polyclonal Active Motif 39297 1714002 Additional file 1: Figure S7

H3K4me3 Monoclonal CST 9751 1, 6, 8, 9 http://www.encodeproject.org/antibodies/ENCAB-
902NZL/

H3K4me3 Polyclonal Millipore 17-614 DAM1644057 http://www.encodeproject.org/antibodies/ENCAB-
000BLE/

H3K9me3 Monoclonal CST 13969 2

H3K9me3 Polyclonal Abcam ab8898 GR131093-3 http://www.encodeproject.org/antibodies/ENCA-
B369JSU/

H3K27ac Monoclonal CST 8173 1, 3 http://www.encodeproject.org/antibodies/
ENCAB502OHI/

H3K27ac Monoclonal Active Motif 39685 Lot 35813005 http://www.histoneantibodies.com/FinalArrayData/
H3K27ac/

H3K27ac Polyclonal Active Motif 39133 31610003 http://www.encodeproject.org/antibodies/
ENCAB000AQN/

H3K27me3 Monoclonal CST 9733 8, 10 http://www.encodeproject.org/antibodies/ENCA-
B155VEG/

H3K27me3 Polyclonal Millipore 07-449 2064519 http://www.encodeproject.org/antibodies/ENCA-
B036YAO/

http://www.encodeproject.org/antibodies/ENCAB650MWL/
http://www.encodeproject.org/antibodies/ENCAB650MWL/
http://www.encodeproject.org/antibodies/ENCAB902NZL/
http://www.encodeproject.org/antibodies/ENCAB902NZL/
http://www.encodeproject.org/antibodies/ENCAB000BLE/
http://www.encodeproject.org/antibodies/ENCAB000BLE/
http://www.encodeproject.org/antibodies/ENCAB369JSU/
http://www.encodeproject.org/antibodies/ENCAB369JSU/
http://www.encodeproject.org/antibodies/ENCAB502OHI/
http://www.encodeproject.org/antibodies/ENCAB502OHI/
http://www.histoneantibodies.com/FinalArrayData/H3K27ac/
http://www.histoneantibodies.com/FinalArrayData/H3K27ac/
http://www.encodeproject.org/antibodies/ENCAB000AQN/
http://www.encodeproject.org/antibodies/ENCAB000AQN/
http://www.encodeproject.org/antibodies/ENCAB155VEG/
http://www.encodeproject.org/antibodies/ENCAB155VEG/
http://www.encodeproject.org/antibodies/ENCAB036YAO/
http://www.encodeproject.org/antibodies/ENCAB036YAO/
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reproducibility and robustness and will substantially 
improve standardization of results among datasets.

Results
We designed an experimental system for rigorously 
comparing the performance of monoclonal and poly-
clonal antibodies in ChIP-seq and applied it to antibod-
ies targeting five key histone modifications (H3K4me1, 
H3K4me3, H3K9me3, H3K27ac and H3K27me3) 
(Table  1). These epitopes provide a rigorous test set of 
antibodies as they represent open and closed chroma-
tin environments, have distinct localization patterns as 
described in Table  2 and are commonly used in studies 
of genomic organization of DNA-associated proteins. We 
performed ChIP-seq with these antibodies in the human 
erythroleukemic cell line K562, the human lympho-
blastoid cell line GM12878 and mouse embryonic stem 
(mES) cells. To control for experimental variability, we 
implemented a fully automated ChIP-seq process [19] 
that ensures precise liquid handling, maximizes repro-
ducibility and controls for human error. We performed 
two to four technical replicates for each antibody tested 
to control for experimental variability and sequenced 
the libraries using Illumina paired-end reads. To provide 
evidence for consistency between monoclonal lots, in a 
subset of the samples, we repeated the ChIP-seq with a 
distinct antibody lot. We then further computationally 
normalized our datasets to account for possible techni-
cal variability introduced by fragmentation and differing 
read depths. Finally, we analyzed our data to compare 
the performance of monoclonal and polyclonal antibod-
ies focusing on the specificity and the number of peaks 
identified, as well as the overall pattern of reads localized 
across the genome.

Normalization of ChIP‑seq datasets
Before analyzing our data, we computationally normal-
ized the aligned reads to isolate the effects of each anti-
body from two possible issues that could confound the 
comparison: (1) A higher number of reads increase the 
power to distinguish peaks from background noise [20]; 

(2) chromatin DNA has been shown to shear into dif-
ferent size fragments in regions of open versus closed 
chromatin, and genomic regions originating from open 
chromatin are more likely to shear into small fragments 
[21]. The combination of this shearing bias and a nar-
row size selection can lead to an artifactual enrichment 
of reads in areas of open chromatin leading to pile ups of 
reads that mimic peaks.

The effects of fragment length bias are therefore pro-
tocol specific and dependent upon both the fragmenta-
tion method and size selection. To quantify the effect of 
fragmentation on the localization of reads in our pro-
tocol, we examined our WCE control data. First, we 
defined the regions as open or closed chromatin based on 
ENCODE mappings derived from the combined annota-
tions of ChromHMM [22] and Segway [23]. This mapping 
approach annotates the K562 genome according to seven 
canonical types: transcription start sites, promoter flank-
ing regions, enhancers, weak enhancers, CTCF-enriched 
elements, transcribed regions and repressed regions. 
According to this mapping approach, the majority of the 
annotated K562 genome (84%) is in repressed regions 
(closed chromatin), while only ~1% of the K562 annotated 
genome is in transcription start sites (open chromatin).

Next, to assess the regional bias of the fragmentation of 
the cross-linked DNA, we quantified insert sizes of frag-
ments falling into open and closed chromatin, expecting 
the insert size to be equivalent to the size of the DNA 
fragment originating in the immunoprecipitation step. 
To explore the effects of fragment length variation in 
our system, we examined reads with insert sizes between 
70 and 700 bases, and the size range of inserts typically 
found on an Illumina flow cell. We observed that the 
percentage of reads localizing to transcription start sites 
(TSS) was inversely correlated with the length of the 
insert size (R2 = 0.80) with a 2.6-fold higher percentage 
of reads localizing to TSS in read pairs with shorter (70–
120  bp) versus longer (650–700  bp) insert sizes. Reads 
localizing to repressed regions were positively correlated 
with insert size (R2 = 0.70) though the difference in cov-
erage is only 5% (Additional file 1: Figure S1).

Table 2  Datasets summary

Antibody Number of replicates Region targeted

Mono Poly

H3K27ac 6 (2 in K562; 2 in GM12878; and 2 in mES) 2 (in K562) Transcription start sites, enhancers

H3K27me3 8 (4 in K562; 2 in GM12878; 2 in mES) 3 (in K562) Repressed regions

H3K4me1 7 (3 in K562; 2 in GM12878; 2 in mES) 2 (in K562) Enhancers

H3K4me3 14 (6 in K562; 4 in GM12878; 4 in mES) 4 (in K562) Transcription start sites

H3K9me3 7 (3 in K562; 2 in GM12878; 2 in mES) 2 (in K562) Repressed regions
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While we have optimized our shearing process to pro-
vide high reproducibility of the fragmentation process 
(Methods), we recognized the possibility that fragmenta-
tion performance could vary among samples since each 
sample is sheared independently. To account for potential 
differences in fragmentation, we randomly selected align-
ments so that each aligned read set for a given histone 
modification had the same number of reads and frag-
ment size distribution (Additional file  2: Table  S1). As 
the insert size is equal to the length of the DNA fragment 
in the original pool, this normalization method approxi-
mates experiments that have both the same fragmenta-
tion and read depth.

Comparison of peaks between ChIP‑seq datasets
We investigated the relative performance of the antibod-
ies in terms of sensitivity, specificity and the number and 
distribution of peaks. Initial visualization of the data in a 
genome browser revealed a high degree of similarity in 
read coverage between monoclonal and polyclonal anti-
bodies (Fig. 1; Additional file 1: Figure S2).

The best performing antibodies in ChIP-seq are those 
that provide the highest enrichment for DNA fragments 
associated with the target protein. However, measuring 
antibody enrichment is challenged by the absence of a 
set of known genomic patterns for histone modifications 
to serve as a baseline. For example, a greater portion of 
reads localizing to observed peaks could be indicative of 
either higher sensitivity of the antibody for its epitope or 
the addition of false peaks resulting from a higher degree 
of non-specific binding. For this reason, we evaluated 
antibody performance using several different approaches.

We first sought to compare the locations of the peaks 
called in data from each antibody type. The ability to 
call peaks is a function of both antibody specificity and 
read depth. Thus, the analysis of peak localization ideally 
requires the unambiguous localization of peaks. To con-
trol for replicate-specific variability and provide deeper 
read coverage, we merged the data from the techni-
cal replicates to create a larger set of reads. This deeper 
dataset allowed us to assess the depth of sequencing cov-
erage beyond which additional sequencing would not 
improve peak call accuracy. We randomly downsampled 
each dataset to twenty different read depths and called 
peaks using the HOMER version 4.7 peak caller [24] on 
the downsampled read sets, using the default parameters 
for histone marks. At each sequencing depth, we deter-
mined the number of bases of the genome that were 
identified as being in a peak. The number of genome 
bases identified as being in peaks increased and then 
reached saturation with increasing read depth for each of 
the H3K27ac, H3K4me1 and H3K4me3 datasets (Fig. 2a) 

but did not appear to reach saturation for H3K27me3 or 
H3K9me3 (Additional file 1: Figure S3). Each of the anti-
bodies, monoclonal and polyclonal followed the same 
pattern of saturation as its counterpart, indicating that 
regardless of antibody type the datasets required approx-
imately the same depth of sequencing and that the dif-
ferences between them cannot be overcome by deeper 
sequencing.

Next, we focused our analysis of peaks on the histone 
modifications associated with open chromatin (H3K27ac, 
H3K4me1 and H3K4me4), as in these datasets we were 
able to call peaks at a saturated read depth. For each of 
these histone modifications, more genomic bases were 
identified as being in peaks in the datasets for polyclonal 
antibodies than for monoclonal (Table  3). However, 
regions found in peaks for both types of datasets (Fig. 2, 
Venn diagrams, purple) demonstrated a higher asso-
ciation with canonical ENCODE regions than ones that 
are found only in the polyclonal or only in the mono-
clonal datasets. Using the canonical ENCODE regions 
as a proxy for the true regions, we found that the poly-
clonal antibodies showed an increase in sensitivity at the 
expense of specificity. Nonetheless, the differences in 
both metrics were small, and data generated with both 
the monoclonal and polyclonal antibodies showed a high 
degree of consistency in determining which genomic 
bases were within peaks. Of the total genome bases that 
were identified by either antibody type as being in peaks, 
77% (H3K27ac), 56% (H3K4me1) and 90% (H3K4me3) 
were identified by both types.

Enrichment in peaks
To further assess the specificity of binding, we used the 
peaks called in the merged datasets for each of the three 
antibodies associated with open chromatin to calculate 
a SPOT score [25] on each of the technical replicates. 
We found that the SPOT scores were slightly higher for 
the polyclonal antibody in H3K4me1 (p  <  0.01, average 
of 18% monoclonal vs. 24% for the polyclonal) and in 
H3K4me3 (p < 0.01, 27% monoclonal vs. 32% polyclonal) 
but did not differ significantly for H3K27ac (p > 0.05, 54% 
monoclonal vs. 55% polyclonal). To assess the specific-
ity in the marks associated with closed chromatin, we 
used the reference peaks called by ENCODE in K562 for 
H3K27me3 (ENCFF001SZF) and H3K9me3 (ENCFF-
001SZN) and calculated the percentage of reads in each 
dataset falling into these peaks. We found that in both 
cases the SPOT scores were nearly identical (36 and 38% 
in monoclonal (p < 0.05 due to low variance) and poly-
clonal in H3K27me3 and 42 and 40% (p > 0.05) in mon-
oclonal and polyclonal in H3K27me3) indicating a high 
concurrence of read coverage.
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Specificity of binding
Next, we assessed all of the reads mapped to the genome 
to determine whether they were mapped to their 
expected regions. Figure  3 and Additional file  1: Figure 

S4 show the number of reads that mapped to each of 
the seven ENCODE canonical regions for each anti-
body. While results between the monoclonal and poly-
clonal antibodies for each epitope were similar, a greater 
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Fig. 1  Read coverage across the genome. Images of tiled data files (TDFs) generated by the IGV browser [34, 35] displaying the density tracks of 
reads aligned across the genome. The tracks show the correspondence in read coverage in monoclonal and polyclonal antibodies over representa-
tive genomic loci. a Chromosome 7: 44,829,782–44,930,648 (about 100 kb), shows the read coverage of histone modifications associated with 
“active chromatin” (H3K4me1, H3K4me3 and H3K27ac). The correspondence of read coverage of datasets for two major histone modifications 
associated with repression: b H3K27me3 [chromosome 22:19,492,023–19,849,594 (about 350 kb)] and c H3K9me3 [chromosome 19: 51,746,058–
53,362,194 (about 1.6 Mb)]
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percentage of reads mapped to their expected region 
of the genome (Table  4) for the polyclonal antibody to 
H3K4me3 (34% polyclonal mapping to transcription start 
sites vs. 24% monoclonal, p < 0.01). Due to the low vari-
ability between technical replicates in our system, small 
differences also reached statistical significance for the 
antibodies H3K27me3 (86% monoclonal, 87% polyclonal, 
p < 0.05) and H3K9me3 (85% monoclonal and 86% poly-
clonal, p < 0.05). We note that this approach—evaluating 
the percentage of reads mapped to ENCODE canonical 
genomic regions—does not provide a fully orthogonal 
validation of the specificity of the antibodies as the anno-
tations were themselves created from ChIP-seq data.

Whole genome read coverage
We next investigated the distribution of ChIP-seq reads 
across the genome. To provide a basis for this quantita-
tive evaluation, we defined non-overlapping bins of 2000 
base pairs across the genome and counted the reads fall-
ing into each bin. We first compared the correlations in 
technical replicates in the samples normalized by insert 
size versus those normalized by random sampling. Corre-
lations were highly similar, indicating that fragmentation 
and size selection were well controlled in these samples 
and did not introduce a significant source of bias (Fig. 4; 
Additional file 1: Figure S5).

For all antibodies except H3K27ac, the correlations 
between monoclonal and polyclonal antibodies were similar 

to those observed between technical replicates using the 
same antibody (Fig. 4; Additional file 1: Figure S5).

Next, we examined the differences between the 
H3K27ac monoclonal and polyclonal samples more 
closely. The H3K27ac modification is present both at 
enhancer regions and at transcription start site regions 
[26], so we compared the number of reads aligning in 
each type of region. Interestingly, we found that in data-
sets derived from the polyclonal H3K27ac antibody a 
higher number of reads fell into enhancer site regions 
relative to transcription start site regions when compared 
to the datasets derived from the monoclonal H3K27ac 
antibody (Fig. 5a).

One possible explanation for this observation is that the 
polyclonal reagent, as it is a mix of individual antibody 
molecules, contains antibodies to multiple epitopes, one 
of which is enhancer specific and increases the antibody’s 
binding in this region. To examine this possibility, we per-
formed ChIP-seq comparing three H3K27ac antibodies: 
the monoclonal and polyclonal mentioned above, which 
were produced by Cell Signaling Technology (CST) and 
Active Motif, respectively, and a second monoclonal anti-
body obtained from Active Motif. We repeated this ChIP-
seq experiment with the CST monoclonal and polyclonal 
antibody using HeLa cells and obtained the same pattern 
(Fig. 5b). However, when we compared the Active Motif 
polyclonal antibody to the Active Motif monoclonal anti-
body, the effect was not present. Instead, the ChIP-seq 
results from the monoclonal Active Motif antibody more 
closely resembled the polyclonal data (Fig. 5b).

We were not able to obtain the sequences of the poly
peptide immunogens that were used to raise these 
antibodies as the vendors consider these proprietary. 
However, the Active Motif antibodies were raised by two 
different immunogens having an overlapping amino acid 
sequence (disclosed by Active Motif ’s technical support 
to assist with understanding of the data generated for this 
project). These immunogens likely differed from the one 
used by Cell Signaling Technology.

Replication of monoclonal antibodies across lots
To confirm the reproducibility of the monoclonal anti-
bodies between lots, we compared the performance of 

(See figure on previous page.) 
Fig. 2  a Saturation curve showing the number of bases called as being in peaks as a function of sequencing depth. The final dataset of the merged 
technical replicates was randomly downsampled to 20 different read depths, and peaks were called in each dataset using HOMER. b Distribution 
of the canonical ENCODE regions of the genomic bases identified as being in peaks. Note that distribution of bases called in both the monoclonal 
and polyclonal antibody differs from the distribution of bases called by only one antibody with fewer bases in their expected regions. c Left bases of 
the genome that were designated as peaks were identified as being in the expected canonical ENCODE region versus other regions. Only genomic 
bases annotated in the ENCODE segmentation tracks for K562 are included in this calculation. Right Venn diagrams displaying the overlap of peak 
calls in the monoclonal and polyclonal antibodies. The bases of the genome are identified as being in peaks by the monoclonal (red), polyclonal 
(blue) or both (purple) antibodies

Table 3  Sensitivity and specificity data for histone modifi-
cations associated with open chromatin

Sensitivity and specificity of monoclonal and polyclonal antibodies. Specificity 
is calculated as the percentage of the genomic bases that are identified as 
peaks that are within the expected canonical genomic region, as annotated by 
ENCODE. Sensitivity is calculated at the percentage of bases within the expected 
genomic region that are identified as being within peaks. Only genomic bases 
annotated in the ENCODE segmentation tracks for K562 are included in this 
calculation

Specificity Sensitivity

Mono (%) Poly (%) Mono (%) Poly (%)

H3K27ac 89 85 68 69

H3K4me1 38 36 54 59

H3K4me3 91 90 86 87
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two different lots of the monoclonal antibody targeting 
H3K4me3 in K562, GM12878 and mouse ES cells. For 
each of these lots, we generated two technical replicates 
and data were normalized by insert size. We quanti-
fied the genome-wide performance of the antibody by 

dividing the genomes into 2000-bp bins and count-
ing the reads that aligned to each bin. We found that 
the correlations between replicates from the same lot 
were indistinguishable from the correlations across lots 
(Fig. 6).

0 20 40 60 80 100

WCE

H3K27ac Mono Rep 1
H3K27ac Mono Rep 2

H3K27ac Poly Rep 1
H3K27ac Poly Rep 2

H3K27me3 Mono Rep 1
H3K27me3 Mono Rep 2
H3K27me3 Mono Rep 3
H3K27me3 Mono Rep 4

H3K27me3 Poly Rep 1
H3K27me3 Poly Rep 2
H3K27me3 Poly Rep 3

H3K4me1 Mono Rep 1
H3K4me1 Mono Rep 2
H3K4me1 Mono Rep 3

H3K4me1 Poly Rep 1
H3K4me1 Poly Rep 2

H3K4me3 Mono Rep 1
H3K4me3 Mono Rep 2
H3K4me3 Mono Rep 3
H3K4me3 Mono Rep 4

H3K4me3 Poly Rep 1
H3K4me3 Poly Rep 2
H3K4me3 Poly Rep 3
H3K4me3 Poly Rep 4

H3K9me3 Mono Rep 1
H3K9me3 Mono Rep 2
H3K9me3 Mono Rep 3

H3K9me3 Poly Rep 1
H3K9me3 Poly Rep 2

% Reads Mapping to Cannonical Genome Regions

CTCF PF TSS T E WE R

Fig. 3  Reads in peaks mapping to canonical chromatin regions of the genome as defined by the ENCODE mappings. This plot displays the percent-
age of reads that map to each canonical genome region. The canonical genome regions were defined by the combined ENCODE mapping and are 
abbreviated as follows: CTCF-enriched elements (CTCF), promoter flanking regions (PF), transcription start sites (TSS), transcribed regions (T), enhanc-
ers (E), weak enhancers (WE) and repressed regions (R). Only reads that were located at regions identified as peaks were used for this plot. For each 
peak dataset the reads were normalized by insert size
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Performance of monoclonal antibodies in other cell types
To investigate the performance of the monoclonal anti-
bodies in other cell types, we carried out ChIP-seq in two 
additional cell lines, an EBV-transformed human lymph-
oblastoid cell line (GM12878; Methods) and mouse 
embryonic stem cells. The data demonstrate the perfor-
mance of these monoclonal antibodies both in a second 
species and in primary cells that have been shown to have 
an “open” epigenomic organization.

Next, we compared the performance of the monoclo-
nal and polyclonal antibodies in ChIP-seq using pub-
licly available datasets from the ENCODE consortium 
from both human [1] and mouse [27]. We aligned our 
data and the ENCODE datasets to the human (hg19) 
and mouse  (mm9) reference genomes (Methods). Initial 
inspection of the data in a genome browser demonstrated 
that in these cells as well, there is a high degree of similar-
ity in read coverage between monoclonal and polyclonal 
antibodies (Additional file 1: Figure S2), even though the 
polyclonal ChIP-seq datasets were generated by other 
groups, using different biological samples (GM12878), or 
even distinct mouse ES cell lines (we used the V6.5 cell 
line (Methods), while the public data were derived from 
ES-Bruce4 or ES-E14 cell lines [27]).

Next, we calculated the SPOT scores for each of the 
datasets relative to the peaks called by the ENCODE or 
Mouse ENCODE consortium. As each experiment was 
performed with at least two replicates, we were able to 
perform a t test to test for statistical differences between 
our data and the ENCODE data. In the GM12878, only 
the antibodies to H3K4me3 differed in quality. The data 
from the monoclonal antibodies had substantially higher 
SPOT scores than either of the ENCODE datasets, indi-
cating better performance. Among the mouse datasets, 
the monoclonal antibody for H3K9me3 (p  <  0.01) and 
H3K4me1 (p  <  0.05) performed worse than the poly-
clonal antibody. All other antibodies performed similarly 
(Table 5).

Experimental quality control
To ensure that our ChIP-seq results were representa-
tive of the quality of the antibody rather than differences 
in the performance of the libraries or experiments, one 
replicate of the H3K27me3 polyclonal antibody was 
removed as it did not pass our quality control and dif-
fered substantially from the other three technical rep-
licates (Additional file  1: Figure S6). Specifically, the 
number of reads falling into regions of transcription start 
sites was systematically higher in this replicate than in 
other replicates. A monoclonal replicate of the H3K4me1 
and a monoclonal replicate of H3K9me1 failed to yield an 
adequate number of reads to be used in analysis. These 
samples were rerun in duplicate, and each was replaced 
with two replicates.

Discussion
Our goal in designing this study was to improve current 
ChIP-seq procedures by increasing the reproducibil-
ity between experiments within the community, as well 
as to enhance the usage of reagents that have long-term 
accessibility. Specifically, we explored whether mono-
clonal antibodies could properly replace the polyclonal 

Table 4  Comparison of  the percentage of  reads in  their 
expected ENCODE canonical regions (as defined in Table 2) 
between ChIP-seq datasets derived obtained by monoclo-
nal and polyclonal antibodies

Enrichment versus WCE is defined as the percentage of reads in that region type 
in the sample divided by the percentage of reads in that region type in the WCE 
control

Percent reads in  
expected regions (%)

Enrichment 
over WCE

H3K27ac

MonoRep1 60.5 15.2

MonoRep2 56.1 14.1

PolyRep1 56.8 14.2

PolyRep2 56.3 14.1

H3K27me3

MonoRep1 86.1 1.1

MonoRep2 86.1 1.1

MonoRep3 86.2 1.1

MonoRep4 86.2 1.1

PolyRep1 86.6 1.1

PolyRep2 86.3 1.1

PolyRep3 87.1 1.1

H3K4me1

MonoRep1 7.2 4.2

MonoRep2 9.6 5.6

MonoRep3 8.2 4.8

PolyRep1 9.9 5.8

PolyRep2 9.9 5.7

H3K4me3

MonoRep1 26.5 11.7

MonoRep2 29.4 13.0

MonoRep3 29.2 12.9

MonoRep4 28.2 12.4

PolyRep1 35.6 15.7

PolyRep2 34.4 15.2

PolyRep3 33.6 14.8

PolyRep4 32.4 14.3

H3K9me3

MonoRep1 84.9 1.1

MonoRep2 84.7 1.1

MonoRep3 84.8 1.1

PolyRep1 86.0 1.1

PolyRep2 85.4 1.1
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antibodies routinely used in ChIP-seq for detection of 
histone post-translational modifications.

Our experimental design allowed us to directly com-
pare performance of monoclonal and polyclonal anti-
bodies in ChIP-seq assays. First, we used standardized 
automation for all laboratory processes. This virtually 
eliminated variation arising from human handling and 
ensured that all samples were handled as identically as 
possible. Second, all sequence data for this study were 
generated as paired-end reads, since paired-end data 
provide the only definitive means to assess the lengths 
of DNA fragments that were sequenced. Accordingly, we 
were able to leverage the paired-end data to normalize 
alignments to eliminate fragmentation and size selection 
biases as confounding factors. We observed a high degree 
concordance between results from data normalized by 
insert size and from data normalized for read cover-
age depth by random downsampling. Thus, differences 

in fragmentation and size selection did not appear to be 
confounders in this work.

Our analysis demonstrated that the insert length of 
paired-end reads correlated with the genomic regions 
from which the fragments originated, consistent with 
earlier reports [21]. We therefore strongly recommend 
optimizing fragmentation and size selection protocols 
to include the full range of genomic fragment sizes to 
avoid bias, as well as using paired-end reads for ChIP-
seq experiments to account for variation in fragment 
size among samples and to allow accounting for ampli-
fication-based duplicates in the sequencing libraries. In 
future studies, it would be useful to evaluate whether 
insert size normalization can provide a cost-effective 
alternative to using WCE controls, particularly in experi-
ments whose primary focus is to measure changes in 
protein binding under different conditions rather than an 
exhaustive mapping of binding locations.

Fig. 4  Correlation between monoclonal and polyclonal antibodies across the genome. Scatter plots (Loglog) presenting counts of reads per bin 
in non-overlapping 2000-bp windows tiled throughout the genome in replicates of the monoclonal antibody (left; gray), the polyclonal antibody 
(right; gray) and polyclonal versus monoclonal (center; blue). The H3K27me3 data (a), show that the reproducibility is nearly indistinguishable from 
the reproducibility of data derived from technical replicates using the same antibody, while the H3K27ac data (b) show divergence between poly-
clonal and monoclonal antibodies



Page 11 of 16Busby et al. Epigenetics & Chromatin  (2016) 9:49 

Among the five antibodies tested, the polyclonal anti-
bodies to H3K4me3 and H3K27me3 appeared to offer 
slightly higher sensitivity, while the monoclonal antibody 
to H3K27ac appeared to offer higher specificity. How-
ever, the differences in H3K27ac are more likely result 
from the specific immunogen against which the anti-
body was raised rather than the clonality of the antibody. 
Because higher sensitivity was not seen in the other poly-
clonal antibodies, our results demonstrate that the use of 
monoclonal antibodies for ChIP-seq did not present any 
systematic disadvantage relative to polyclonal antibodies, 
and has the clear advantage of superior reproducibility. 
This conclusion is supported by high correlation in both 
genome-wide and region-specific read counts between 
monoclonal and polyclonal antibodies, as well as the high 
degree of overlap in peak locations in multiple cell types 
and two distinct species.

Overall, our data are consistent with a model suggested 
by Peach and colleagues [28] in which some antibodies 

are better described as indicators of canonical regions 
of the genome rather than as markers of specific modi-
fications. For instance, in our comparison of H3K27ac 
antibodies, the monoclonal and polyclonal antibodies 
displayed significant differences in their relative ratios of 
reads localized to putative enhancers versus transcrip-
tion start sites. If we assume that the targeted acetylated 
H3K27 is the same molecule in each region, then the abil-
ity of the antibodies to identify H3K27ac was affected 
not just by the presence of the target but also by its local 
environment. This finding is expected as characteristics 
of the environment, such as neighboring post-transla-
tional modifications, have been demonstrated to detect-
ably affect epitope recognition [4]. The binding pattern 
of a single antibody should thus be thought of as a col-
lection of component parts that describe more than just 
the binary presence or absence of a modification. This 
inherent complexity is further complicated by the fact 
that researchers often do not know the precise nature of 

Fig. 5  Variability in H3K27ac patterns is dependent on the immunogen. a Scatter plots where each point represents the count of reads align-
ing to a non-overlapping, variably sized region as annotated in the chromatin regions determined by ENCODE mapping of the genome. Values 
are summed for the replicates of monoclonal and polyclonal H3K27ac antibodies. The red line (on the left and right plots) represents slope = 1. b 
H3K27ac antibodies in HeLa cells. R2 is indicated for all points, TSS and enhancer regions
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the immunogen that was used to raise a specific antibody 
because the antibody’s producer holds this information 
as proprietary.

Thus, ChIP-seq datasets targeting the same epitope but 
using different antibodies cannot be considered directly 
comparable without substantial experimental validation. 
Standardizing on monoclonal antibodies would not only 

eliminate the batch-to-batch variability that is expected in 
polyclonal antibodies but would also increase the value of 
ChIP-seq datasets by allowing for more reliable reuse of 
existing datasets. Further, it would simplify the interpreta-
tion of ChIP-seq data by removing the added complexity 
that is introduced by using a polyclonal antibody that tar-
gets an unknown number of epitopes on the antigen.

Fig. 6  Correlation between two monoclonal lots across the genome. Scatter plots (Loglog) presenting counts of reads per bin in non-overlapping 
2000-bp windows tiled throughout the genome comparing either technical or lot replicates from ChIP-seq done with H3K4me3 monoclonal anti-
body in K562, GM12878 and mES
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The relative portion of reads aligned to different canon-
ical regions of the genome was also affected by experi-
mental variability. By examining the relative proportion 
of reads mapping to canonical regions of the genome, 
we were able to easily identify an outlier replicate in our 
H3K27me3 data that would have passed less rigorous 
quality standards. This finding demonstrates not only 
that replicates are imperative in any ChIP-seq experi-
ment, but also that performing this simple analysis can 
provide valuable information for quality control.

Conclusions
Use of monoclonal antibodies for ChIP-seq experiments 
to identify histone post-translational modifications pro-
vides a key improvement over polyclonal ones.

Methods
Chromatin immunoprecipitation (ChIP)
ChIP comprises the basic steps of cross-linking DNA to 
protein, shearing DNA and enriching of the protein of 
interest, along with DNA to which is it cross-linked, by 
immunoprecipitation. Washes and mixes were conducted 
using the Bravo liquid handling platform (Agilent model 
16050-102, “Bravo”). For the compositions of the buffers 
used, see [29]; for the specific protocol for the Bravo, see 
[19].

Table  1 describes the antibodies used in this study. 
The polyclonal antibodies, including these specific lots, 
were previously assessed for accuracy by the ENCODE 
consortium.

Cross‑linking and DNA shearing
K562 myelogenous leukemia cells (ATCC CCL-243), 
GM12878 lymphoblastoid cells [Coriell; Cellosaurus 
GM12878 (CVCL_7526)] and mouse ES cell line V6.5 
[Cellosaurus v6.5 (CVCL_C865)] were cross-linked with 
formaldehyde as previously described [29]. Fixed cell 
pellets (20 million cells each) were resuspended in lysis 
buffer and ChIP dilution buffer and incubated on ice to 
lyse the cells. Samples were then split across a 96-well 
plate (approximately 1–2  million cells per well). DNA 
shearing was conducted using a Covaris sonifier (model 

Table 5  SPOT score for  ChIP-seq datasets from  GM12878 
(A) and mouse ES cells (B)

Epitope Dataset SPOT score (%)

(A) SPOT scores for GM12878 monoclonal and polyclonal datasets

H3K27ac Monoclonal Rep 1 37.42

Monoclonal Rep 2 38.86

Polyclonal ENCFF000ASP 45.34

Polyclonal ENCFF000ASU 19.41

H3K27me3 Monoclonal Rep 1 45.67

Monoclonal Rep 2 47.53

Polyclonal ENCFF000ASV 40.92

Polyclonal ENCFF000ASW 48.89

Polyclonal ENCFF000ASZ 24.35

H3K4me1 Monoclonal Rep 1 27.84

Monoclonal Rep 2 25.66

Polyclonal ENCFF000ASM 45.47

Polyclonal ENCFF000ATK 33.47

H3K4me3 Monoclonal Lot 8 Rep 1 65.41

Monoclonal Lot 8 Rep 2 67.41

Monoclonal Lot 9 Rep 1 62.18

Monoclonal Lot 9 Rep 2 58.64

Polyclonal ENCFF000ASR 27.53

Polyclonal ENCFF000AUB 16.47

H3K9me3 Monoclonal K9me3 Rep 1 25.24

Monoclonal K9me3 Rep 2 24.76

Polyclonal ENCFF000AUK 25.50

Polyclonal ENCFF000AUO 28.59

(B) SPOT scores for mouse ES cells monoclonal and polyclonal datasets

H2K27ac Monoclonal Rep1 11

Monoclonal Rep2 11

Polyclonal Mouse ENCODE Bruce4 Rep 1 16

Polyclonal Mouse ENCODE Bruce4 Rep 2 14

Polyclonal Mouse ENCODE E14 Rep 1 6

Polyclonal Mouse ENCODE E14 Rep 2 16

H3K27me3 Monoclonal Lot 1 Rep1 3

Monoclonal Lot 1 Rep2 3

Polyclonal Mouse ENCODE Bruce4 Rep 1 4

Polyclonal Mouse ENCODE Bruce4 Rep 2 4

H3K4me1 Monoclonal Rep 1 16

Monoclonal Rep 2 15

Polyclonal Mouse ENCODE Bruce4 30

Polyclonal Mouse ENCODE E14 Rep 1 24

Polyclonal Mouse ENCODE E14 Rep 2 27

H3K4me3 Monoclonal Lot 8 Rep 1 33

Monoclonal Lot 8 Rep 2 27

Monoclonal Lot 9 Rep 1 30

Monoclonal Lot 9 Rep 2 27

Polyclonal Mouse ENCODE Bruce4 Rep 1 36

Polyclonal Mouse ENCODE Bruce4 Rep 2 37

Polyclonal Mouse ENCODE E14 Rep 1 42

Polyclonal Mouse ENCODE E14 Rep 2 39

Table 5  continued

Epitope Dataset SPOT score (%)

H3K9me3 Monoclonal Rep1 3

Monoclonal Rep2 3

Polyclonal Mouse ENCODE Bruce4 Rep 1 11

Polyclonal Mouse ENCODE Bruce4 Rep 2 12

SPOT score is calculated as the percent of reads that overlap with peaks. For 
each antibody, peak calls generated by the Mouse ENCODE for the Bruce4 ES cell 
line (polyclonal antibody) were used to define the peak coordinates



Page 14 of 16Busby et al. Epigenetics & Chromatin  (2016) 9:49 

E220) at 4  °C for 6 cycles of 1  min, with these parame-
ters DF-10%, PIP-175W, CPB-200. After sonication, the 
cell lysates were diluted 1:10 with ChIP dilution buffer. 
Roughly 50 μL of the cell lysate was set aside for use as 
the whole cell extract (WCE) control.

Bead preparation
Immunoprecipitation was performed using magnetic beads 
coupled to antibodies by Protein A or Protein G linkers. The 
beads were prepared as follows: Equal quantities of Protein 
A and Protein G Dynabeads (Invitrogen, 100-02D and 100-
07D, respectively) were mixed, separated into 50 μL aliquots 
in a well plate and washed twice with blocking buffer. The 
beads and antibodies (5 μL of polyclonal or 1 μL monoclo-
nal antibody per ChIP reaction), mixed and suspended in 
blocking buffer, were incubated in a cold room (4 °C) on a 
rotator for at least 2 h to allow conjugation.

Immunoprecipitation of target protein and DNA purification
Washed bead-antibody conjugates were added to the chro-
matin lysate from approximately 1–2 million cells and incu-
bated overnight. At this point, the WCE was added to the 
sample plate. Samples were washed six times with RIPA 
buffer, twice with RIPA buffer supplemented with 500 mM 
NaCl, twice with LiCl buffer, twice with TE and then eluted 
in ChIP elution buffer to unlink and purify the DNA.

Library construction
The library construction phase of ChIP-seq comprises 
DNA end-repair, A-base addition, adaptor ligation and 
enrichment. Solid-phase reversible immobilization 
(SPRI) cleanup was performed on the reverse-cross-
linked DNA before library construction and after each of 
its four steps to remove proteins and other molecules.

SPRI cleanup protocol
SPRI cleanup steps were conducted using the Bravo, fol-
lowing protocols described by [19]. All enzymes used in 
library construction were obtained from New England 
Biolabs. The initial and final SPRI cleanups for the reverse-
cross-linked DNA were performed as follows: SPRI beads 
(Agencourt AMPure XP) were added to the unlinked 
DNA samples. The beads were washed on a 96-well bar 
magnet (ThermoFisher, Catalog Number: 12027) with 
70% ethanol and air-dried. The DNA was eluted in 10 mM 
Tris–HCl buffer. Intermediate SPRI cleanups in the 
library construction process were conducted in the same 
manner. The SPRI beads in the reaction were reused to 
capture the DNA via addition of a 20% PEG solution.

End‑repair and A‑base addition
DNA end-repair was performed by adding T4 PNK 
enzyme and T4 polymerase to each well, followed by 

incubation at 12  °C for 15 min and at 25  °C for another 
15  min. Following SPRI cleanup, A-base addition was 
performed by adding Klenow 3′ →  5′ exonuclease and 
incubation at 37 °C for 30 min.

Adapter ligation
Adapter ligation was performed by adding DNA ligase 
and PE indexed oligonucleotide adapters to samples fol-
lowed by incubation at 25  °C for 15 min. After the sub-
sequent SPRI cleanup, eluted DNA was separated from 
the SPRI beads using a 96-well bar magnet for PCR 
enrichment.

Enrichment
DNA samples were PCR amplified at 95 °C for 2 min; 16 
cycles of: 95 °C for 30 s, 55 °C for 30 s, 72 °C for 60 s; and 
72 °C for 10 min.

Data collection and analysis
DNA fragments were processed by 2 × 25 base, paired-
end or 2  ×  37 base, paired-end sequencing (Illumina 
HiSeq 2500 or NextSeq 500, respectively).

To assess reproducibility, we designed an analysis pipe-
line consisting of the following steps: alignment, normali-
zation, pairwise correlation and clustering, peak calling 
and analysis. Reads were aligned by the Broad Genomics 
Platform with BWA (v5.9) using default parameters [30].

To allow for meaningful comparisons between dif-
ferent samples, duplicate reads were removed from the 
alignment data (BAM file) using the Picard tools soft-
ware package. Downsampling was performed using C++ 
scripts built using the BamTools API [31]. Scripts are 
available on GitHub (https://github.com/mbusby/).

Downsampling normalization by insert size was per-
formed as follows: We first counted how many read 
pairs are present for each insert size for each of a set 
of aligned files. We then selected the lowest read count 
for each insert size from among the set of alignments. 
For example, if four alignments for a given antibody 
have one, two, three and four million reads with an 
insert size of 100, all four alignments would be ran-
domly sampled so that the four normalized alignments 
each have about one million reads with an insert size of 
100. This was performed for each insert size present in 
all of the alignments in the group to yield final bam files 
with about the same numbers of reads and insert size 
distributions. This approach therefore allows for identi-
cal insert size distributions while maximizing the num-
ber of reads included in the output files. All samples 
for each histone modification were sampled as a group. 
The K562 WCE control and the HeLa samples were not 
downsampled. The merged datasets used in peak call-
ing were created by merging the technical replicates 

https://github.com/mbusby/
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downsampled by insert size. To create balanced data-
sets, in cases where one antibody had more replicates 
than its counterpart an equal number of replicates were 
used for the monoclonal and polyclonal datasets. Repli-
cates were chosen based on the order of their replicate 
number.

Peaks were called using HOMER (v.4.7) [24] with the 
WCE used as a control under the default settings for 
paired-end reads using “histone” as the peak type.

We used the BEDTools coverage tool, version 2.25 
[32], to count the number of reads mapping to genomic 
regions and the intersect tool to count the genomic reads 
that overlapped between antibody types. The combined 
Segway and ChromHMM annotations were downloaded 
from [33]. Further analyses were performed in MAT-
LAB. Scripts are available on GitHub (http://github.com/
mbusby/).
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