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Automatic extraction channel of space debris based on wide-
field surveillance system
Ping Jiang 1,2, Chengzhi Liu1,2,3✉, Wenbo Yang1,2, Zhe Kang1,2, Cunbo Fan1,2 and Zhenwei Li1,2

In the past few years, the increasing amount of space debris has triggered the demand for distributed surveillance systems. Long
exposure time can effectively improve the target detection capability of the wide-area surveillance system. Problems that also
cause difficulties in space-target detection include large amounts of data, countless star points, and discontinuous or nonlinear
targets. In response to these problems, this paper proposes a high-precision space-target detection and tracking pipeline that aims
to automatically detect debris data in space. First, a guided filter is used to effectively remove the stars and noise, then Hough
transform is used to detect space debris, and finally Kalman filter is applied to track the space debris target. All experimental images
are from Jilin Observatory, and the telescope is in star-tracking mode. Our method is practical and effective. The results show that
the proposed automatic extraction channel of space debris can accurately detect and track space targets in a complex background.
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INTRODUCTION
Since mankind launched the first satellite in 1957, a new era of
space exploration has ushered in. However, more and more space
activities have also brought a lot of space debris, including failed
spaceflights as large as several meters in diameter, rocket
wreckage, and projectiles in space missions, as small as a few
centimeters and a few millimeters of solid rocket combustion and
spacecraft in orbit collision disintegration of the debris1,2, and
such pose serious threats to human space activities and the
normal operation of satellites. Therefore, it is necessary to monitor
the movement and orbit information of space debris to achieve
effective prediction of its activities and avoid accidents. And
space-target detection and tracking technology is the focus of our
study3,4.
In many wide-field surveillance systems, detecting and tracking

dim space targets from optical images has always been a problem.
Owing to the long distance between the space target and the
CMOS sensor, the target on the focal plane is characterized by
weak intensity and small area and is often easily submerged by
background and noise5,6. Therefore, many methods have been
proposed to solve the problem of dim-target detection in images,
such as the template matching method7,8, morphological algo-
rithm9,10 and neural network11. Reed12 proposed 3D matched
filtering to detect small moving targets with strong background
clutter. This method has an excellent detection effect when the
target has the same moving speed. However, the detection
performance of targets with unknown speeds decreases sharply.
Bai13 et al. used mathematical morphological operators to
eliminate noise and background changes and finally merged
them into a median image to obtain the position of the object.
Blostein14,15 et al proposed a multistage hypothesis testing
method, this algorithm first introduced a tree structure to
represent the trajectory of the target, which can detect multiple
targets at the same time. In order to reduce missed alarms, the
establishment of multiple candidate trajectory starting points may
lead to an exponential increase in subsequent branches, which
seriously affects the performance of the algorithm.

METHODS
Image-processing channel
The astronomical image data used in the paper was collected by
CMOS telescope. The specific parameters of the telescope are
listed in Table 1. The time interval between exposures of the
CMOS telescope camera is relatively short, and therefore it can be
observed at a high frame rate. This camera has a relatively large
field of view and a long detection range, and thus the captured
astronomical images are relatively complex. These images were
taken on the ground in star-tracking mode, in which the telescope
was mounted on a turntable to counteract the speed of Earth’s
rotation. Space objects appear as streaks, and stars appear as
points in the image. Figure 1 shows the space exploration
telescope components of the Changchun observatory. We have
multiple telescopes that can cover a larger search area. Figure 2
shows the original astronomical image obtained by using this
device.
The sequence image taken by the large field-based photo-

electric telescope is a superposition of stars, space targets, and
noise. It can be modeled as follows:

f ðx; y; nÞ ¼ Oðx; y; nÞ þ Sðx; y; nÞ þ Bðx; y; nÞ þ Nðx; y; nÞ (1)

where (x, y) represents the pixel coordinates in the star map. n
represents the image frame number. f(x, y, n) represents the gray
value of the image. O(x, y, n) represents the target gray value of
the image. S(x, y, n) represents the star gray value of the image. B
(x, y, n) represents the image background gray value. N(x, y, n)
represents the noise gray value of the image, which may include
atmospheric noise, space radiation, image generation noise, flicker
noise, salt and pepper noise, multiplicative noise, and dark
current16,17.
Based on the above principles, we proposed schematic diagram

of the debris information extraction algorithm is shown in Fig. 3. It
is divided into three stages. The first step is to denoise the image
and eliminate uneven background such as skylight. We obtain the
median value of the multi-frame sequence star image to estimate
the background intensity of the star image. Subsequently, we
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introduce guided filtering algorithms to further remove stars and
isolated noise and then perform binary quantization. The second
stage is space debris detection. First, binarization is applied to
further process the image to reduce the amount of image data.
Then apply Hough transform to detect space debris. The third part
is space debris tracking. Kalman filter is applied for tracking to
feedback debris information at all times.

Image preprocessing
We first perform median filtering. The algorithm determines the
gray level of the center pixel by sorting the pixels in the
neighborhood. The median filter processing result will be largely
affected by the set filter window size18,19. Small filter window can
better protect the details of the original image, but the noise
suppression capability will be limited. Large filter window can
enhance the noise suppression capability, but the details of the
original image will become blurred. We have improved the
median filter algorithm to minimize the impact of the filter
window size setting on the image processing results.
First, 5 × 5 median filter is applied to process the original image,

and the result of the processing is called the roughly denoised
image. Calculate the average value of the rough noise-reduction
image, the next step is to subtract the corresponding pixels of the
original image from the average value, and the difference can be
used as a threshold to judge the contaminated pixels in the
image. The improved median filter only processes pixels that are
considered to be contaminated by impulse noise by setting a
threshold. Reducing the number of pixels processed by the filter
window also reduces the influence of the filter window size

setting on the image processing result. The contaminated pixels
are processed with a median filter with size of 5 × 5, and the pixels
that are not contaminated with noise remain unchanged, and the
final improved median filter processing result is obtained. As
shown in Fig. 4b, the median image was then analyzed for
background estimation.
In order to detect the dim target in the image, we need to

accurately estimate the uneven background. In astronomical
images, we treat all pixels except the target as the background.
The background analog-to-digital unit (ADU) value is the sum of
photons from the sky plus the effects of various noises20–22. When
processing the actual star map background, we take the median
value of five consecutive star maps as the sky background. As
shown in Fig. 4c, our algorithm accurately obtains most of the
background, and the algorithm has the advantage of a small
amount of calculation. We subtract the background image from
the median filtered image to get an image containing space
debris, isolated noise and stars, as shown in Fig. 4d, the image
contains brighter stars and noise points, so in the next step we
continue to eliminate these factors for the extraction target.
Guided filtering is an image smoothing filter based on a local

linear model. The basic idea of the algorithm is to assume a linear
relationship between each pixel in the image and its neighboring
pixels, and obtain a linear model of each image, so as to obtain a
basic image similar to the original image gradient23. In our
extraction channel, the background suppressed image g is used as
the input image, and g is also used as a guide image. When g is
used as an input image and a guide image at the same time, the
output of the guide filter can ensure the edge information of the
space target. Its mathematical model is:

qi ¼ akgi þ bk 8i 2 wk (2)

in the formula 2, ak and bk are the linear coefficients in window wk,
g is the guide picture, wk is the window with radius h, and the
constraint equations of ak and bk in window wk can be expressed
as:

Eðak ; bkÞ ¼
X

i2wk

ððakgi þ bk � piÞ2 þ εa2kÞ (3)

in which ε is the regularization parameter, used to prevent the
coefficient ak from being too large. p represents the input picture.
The coefficients ak and bk are respectively:

ak ¼
1
wj j
P

i2wk
pigi � pkuk

σ2
k þ ε

(4)

bk ¼ pk � akuk (5)

in the formula, uk is the mean value in the window wk, σ2
k is the

variance value in the window wk, pk represents the mean value of
the input image p in the window wk, and |w| represents the
number of pixels in the window wk. As shown in Fig. 4e, we have
obtained an image containing space debris and a very small
number of noise points (which basically does not affect the
extraction of debris).
It can be seen from the above formula that if the regularization

parameter is set to a fixed value, the size of the filter window h will
affect the quality of the star map. We select a star map with a large
starlight background and noise to illustrate. Figure 5 shows the
result of processing with multiple window sizes. When a smaller
window is used (h= 0.1H, H represents the height of the image),
there will be residual isolated noise and brighter stars, as shown in
Fig. 5b. But h also cannot be too large, and the debris target (h=
0.6H) will be lost, as shown in Fig. 5d. In the experiment of this
article, h= 0.3H is used, and the regularization parameter ε is set
to 0.04, which has a good effect.

Table 1. Parameters of the telescope.

Parameter Value

Aperture of telescope 280mm

Size of frame 4096 × 4096

Pixel size 9 × 9 µm

Field of view 6.5° × 6.5°

Weight 1.2 kg

Read Noise 3.7e−

Exposure time 2 s

Frame rate 0.5 Hz

Focal length 324mm

Fig. 1 Space probe telescope components. This image was
obtained by Changchun Observatory.
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Space debris detection
After the first stage of processing, we obtain candidate space
targets through denoising algorithms and background suppres-
sion algorithms. We carry out the binarization process, which can
reduces the amount of data, but also improve the precision of the
Hough transform.
Binarization applies the maximum between-class variance

method, which is the best algorithm for threshold selection. The
threshold is the value with the largest variance between the
target and background images. We use the Hough transform to
process the image. This process converts the detection problem
of a given curve in the original image into a problem of finding a
peak in the parameter space. If fringes exist in the image, we
map them to the parameter space and detect the peak value in
it, as shown in the Fig. 6b. The Hough transform algorithm can
detect the striped target in the image, so the starting point and
ending point of the debris target can be obtained24.
When the line of common points in the image space is

perpendicular to the x-axis, the slope is infinite, and the
intersection point cannot be found in the Hough space. Therefore,
the polar coordinates can be used. Similar to rectangular
coordinates, the Hough transform in polar coordinates also
transforms points in the image space into the parameter space.
At this time, the obtained ρ and θ are the polar coordinate
parameters of the straight line. For a straight line passing through
any point (x, y) in the image space. Its polar coordinate space

expression is:

ρ ¼ x � cos θþ y � sin θ (6)

in the formula 6, ρ is the vertical distance from the straight line to
the origin, and θ represents the direction of the straight line. Once
ρ and θ are determined, further analysis finds the endpoints and
center of each line segment.
Figure 6c shows the curve distribution of the parameter space

in the polar coordinate. The two space targets in the image have
the most intersection points in the parameter space. Therefore,
the points of collinear lines in the image space are mapped to the
intersection points of the sine curves in the parameter space.

Space debris tracking
When the space-debris target was detected in the first few frames
of the images, we used the Kalman filter for follow-up tracking. Its
small calculation amount and real-time calculation are more
suitable for tracking space debris with a large field of view and a
large amount of data. This method is an optimal linear recursive
filtering method based on the minimum mean-square error, based
on the state and the observation equations25. According to the
movement characteristics of the debris in the large field of view
optical observation system, it can be assumed that its movement
approximately conforms to a uniform linear movement in
adjacent frames. The initial position of the target is given by the
detection result of the Hough transform, and the target speed can
be given by the first two frames. The filter in the correction stage

Fig. 3 Structure diagram of space debris extraction channel. The flow chart completely describes the idea of the algorithm in the article.

Fig. 2 Magnifying regions of the target and star. b, c and d is the target of space debris. e is the star point. a Original image. b–e Truncated
enlarged parts.
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corrects the predicted value obtained in the prediction stage to
obtain a new predicted value closer to the true value.
Prediction:

x
Λ0

n ¼ A x
Λ
n�1 þ Bun

p0n ¼ Apn�1AT þ Q
(7)

Correction:

kn ¼ p0nH
T ðHp0nHT þ RÞ�1

x
Λ
n ¼ x

Λ0

n þ KnZ
Λ

n

pn ¼ ðI � KnHÞP0n
(8)

in which x
Λ
n and x

Λ
n�1 represent the true value, x

Λ0
n represents the

Kalman estimated value; pn is the Kalman error covariance matrix;
P0n is the Kalman estimation error covariance matrix; kn is the
Kalman gain matrix; Z

Λ

n
is the measured value; A represents State

transition matrix; B represents the input control matrix; p
represents the error matrix; Q represents the predictive noise
covariance matrix; R represents the observation noise covariance
matrix; H represents the observation matrix. Figure 7b shows the
Kalman tracking graph. It can be seen from the figure that the
algorithm can track the detected debris targets well without

losing the weaker targets. Figure 7c shows the algorithm tracking
trajectory graph, and there is no target loss.

Experiment
In this part, we will conduct some experiments to verify the
performance of the algorithm. The images used in the experi-
ments are all obtained by the large field of view telescope in the
star-tracking mode. The background stars in the image are dense,
and it is necessary to accurately extract the streak target, and the
image size is 4096 × 4096 pixels. For ease of understanding and
clarity, some of the experimental images have been reduced. In
this summary, the pseudocode of debris extraction channel and
the detection effect of real astronomical images are illustrated.

Procedure
As shown in Table 2, in this section we give the pseudo-program
of the detection algorithm.

Real astronomical image detection experiment
The real astronomical image used in this experiment to explain
the detection and tracking effect of the method. In order to fully

Fig. 4 The experimental results of algorithm image processing. Image processing channels: a original image. b Median filtered image.
c Background estimation image. d Background-subtracted image. e Guided filter denoising image.
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Fig. 5 Top: the original image using different h-values for guided filter. Bottom: magnified part of the space debris target. In our
implementation we set h= 0.3 H. Please zoom in to check details. a Original image. b h= 0.1 H. c h= 0.3 H. d h= 0.6 H.

Fig. 6 Hough transform detection result and parameter space curve. a Image before target detection. b Hough transform detection image
c Parameter space map.

Fig. 7 Tracking image and multi-frame trajectory image. a Original star map. b Kalman tracking image. c Kalman tracking trajectory
diagram. The two objects in the figure are moving in opposite directions.
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test the algorithm proposed in this paper, the targets are named
T1 and T2 as shown in the figure, and the space target detection
results are shown. The red circles display the detected targets.
Figure 8 shows the experimental results, b-1 to b-4 are the
detection and tracking of the target T1, and c-1 to c-4 display the
experimental result of the target T2.
It can be seen from the detection results that the algorithm

detects the target in four consecutive frames of images, the
algorithm can continuously track target with high precision, which
shows the practicability and stability of the algorithm. Figure 9
shows the estimation and tracking of the centroid coordinates of

continuous multi-frame images of our algorithm. We can see that
the algorithm has a better tracking effect. This shows the excellent
detection performance and real-time tracking capability of the
debris extraction channel.
To further demonstrate the performance of the proposed space

debris extraction approach, we apply the multistage hypothesis
testing algorithm (MHT)14, new top-hat algorithm (NTH)26,
improved maximum value projection algorithm (IMVP)27 and our
extraction channel to extract space debris from the same actual
star image, and analyze the probability of debris extraction, false
alarm rate and time-consuming process. The evaluation results of

Table 2. The pseudocode of the our detection method is channel 1.

Channel 1. Automated space debris extraction channel

Input: Raw star map sequence I.

1. Raw star map sequence.

Parameter: Improved median filter window is set to 5×5 window size. We set the guide filtering window is 0.3 h.

Initialization: After median filtering is H, Multi-frame median processing g, The guided filter eliminates star points is K

2. Space debris detection and tracking

Parameter: The output of the Hough transform is x
^
n�1 , Kalman estimatex

^0
n, Estimate error covariance matrix P0n, Error covariance matrix Pn.

Initialization:pn�1 ! p0n , p
0
n ! kn , Z

^
n ! x

^
n

With x
^
n�1 and Pn�1 ,solve for x

^
n
and P0n in Eq. 7

With H and R, solve for Kn with Eq. 8

Return x
^0
n and Pn

Output: Real-time target tracking and location information

Fig. 8 Experimental effect image. (frames 1–4). a The first frame of star map target detection results. b and c are the T1 and T2 targets in the
red box clearly displayed. b-1–b-4 and c-1–c-4 display the continuous frame image tracking results of the target T1 and T2.
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the images are given in Table 3. In order to compare the fairness
of the results, the selected comparison methods are all carried out
using standard published parameters. In the MHT method,
detection is performed on all space target trajectories in the star
map. However, with the increase of noise and the number of
targets, the trajectory of targets increases sharply, resulting in a
large amount of computational cost. In the wide-area monitoring
system, the NTH detection result is affected by structural
elements, which seriously affects the performance of the
algorithm. The IMVP algorithm can detect moving targets well

and track their trajectories accurately, but the algorithm comes at
the cost of computation.
Our algorithm has low false alarm rate and simple calculation.

The channel was evaluated for 200 real images. Figure 10 shows
the detection results of four images with different backgrounds.
The images from a-1 to a-3 and b-1 to b-3 have more stars and
noise, the images from c-1 to c-3 have less noise, and the images
from d-1 to d-3 are not only composed of a large number of the
stars and noise are also disturbed by clouds. Our algorithm has
obtained better detection and tracking effects in these types of
images. Figure 11 shows the debris trajectory diagrams of Fig. 10a,
b. The target trajectory is circled in red. The proposed debris
extraction channel can extract space debris very well and takes
less time.

RESULTS
The space target information automatic extraction pipeline is
research in this paper. The algorithm is suitable for the detection
of space stripe targets with complex background. The median

Fig. 9 Debris target trajectory tracking curves of experimental statistics. a-1 represents the multi-frame true trajectory of the T1 target and
the trajectory curve detected by the algorithm. a-2 represents the target multi-frame centroid position error of T1. b-1 represents the multi-
frame true trajectory of the T2 target and the trajectory curve detected by the algorithm. b-2 represents the target multi-frame centroid
position error of T2.

Table 3. Statistical results of real space target detection.

Method Detection probability False alarm rate Running time

MHT 87.7% 17.2% 36.94 s

NTH 90.6% 69.1% 6.8 s

IMVP 91.4% 15.9% 10.54 s

OURS 96.2% 8.4% 4.32 s

P. Jiang et al.
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value of multiple frames of images is taken to suppress the
influence of the background, and guided filtering is introduced
to eliminate isolated noise points and stars. The Hough
transform and Kalman filter were used for target detection

and tracking. We conducted tests on the original star map. The
test results show that our space debris extraction channel can
not only effectively detect debris targets, but also accurately
track debris information.

Fig. 10 Detection results of different astronomical images. We selected four types of astronomical images with different backgrounds for
debris detection and tracking.
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DISCUSSION
In our approach, the multi-frame median method is used to
suppress the influence of the background, and guided filtering is
introduced to eliminate isolated noise points and stars. Hough
transform is used to detect space debris, and finally Kalman filter is
applied to track the space debris target. We propose a channel to
detect the presence of space debris without the need to use
auxiliary space targets and orbital data. We did not obtain
information in advance to help the target detection algorithm.
Furthermore, the focus of our work is not only the debris detection
technology itself, but the space target information extraction that
combines space debris detection and astronomical positioning.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All image data in the article are raw data, not obtained from public databases, if
necessary, all data in the article can be obtained from the corresponding author upon
reasonable request.
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