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Abstract

The latent order book of Donier et al. (2015) is one of the most promising agent-based models for
market impact. This work extends the minimal model by allowing agents to exhibit mean-reversion, a
commonly observed pattern in real markets. This modification leads to new order book dynamics, which
we explicitly study and analyze. Underlying our analysis is a mean-field assumption that views the order
book through its average density. We show how price impact develops in this new model, providing a
flexible family of solutions that can potentially be calibrated to real data. While no closed-form solution
is provided, we complement our theoretical investigation with extensive numerical results, including a
simulation scheme for the entire order book.
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1 Introduction
In modern financial markets, the concept of liquidity risk reflects the extra-cost incurred by a trader that
is fundamentally due to the scarcity of supply. In the most extreme cases, this can make trading nearly
impossible in the absence of counterparty. One striking example occurred in 2007 during the subprime
mortgage crisis when products such as collateralized debt obligations (CDO), and many others, became
practically unsalable. Another, current example is that it can be impossible to convert certain foreign
currencies to any one of the major currencies.

It is the case, however, that the majority of assets on a given market at a given time are liquid enough to
allow for small-volume trading. Therefore liquidity risk is often insignificant for small-sized traders. However,
the impact of trading becomes significant as the volume grows, as may be the case for large institutional
investors, and must be taken into account as an additional cost of trading.

The notion of price impact is fundamental when it comes to large-volume trading. Without such price
pressure, all trading strategies would be infinitely scalable, since the cost would remain unchanged regardless
of the size of the trader. In addition to mechanical liquidity consumption, price impact can be seen as an
information game. If the market manages to guess a trader’s intend to buy a large quantity of some asset (or
correlated assets), they can be outrun by those traders who know and seek to benefit from that knowledge.

Understanding the determinants of impact is therefore crucial from several perspectives:

• For the economist, modelling impact provides an understanding of how prices change and how they
reflect the asset’s fundamental value. This in turn requires to develop a micro-model for the statistics
of prices;

• for the trader, price impact may represent a large fraction of execution costs. Assessing the impact
of any trading strategy is of utmost importance to asset managers, since too much trading (whether
in volume or in frequency) can deteriorate the performance of a strategy or turn a profitable strategy
into a money-losing one;

• for the regulator, acknowledging the existence of impact means that fair-value accounting using mark-
to-market prices is over-optimistic. A second important consequence is that excessive trading costs
may impede execution and reduce market fluidity. Finally, price impact is an important bridge between
market design and systemic risk prevention. Therefore, a better understanding of impact would also
be helpful from the perspective of market microstructure regulation.

1.1 The Kyle approach
The first price impact model is perhaps due to Kyle (1985). In modern terms, it postulates that impact
is permanent and linear both in time and in the traded volume. A single trade of volume q and sign
ε ∈ {±1} leads to a price move proportional to ε · q. This leads to total price change between times 0 and
t equal to α

∑
s≤t

εsqs, for some constant α. If the market price follows a random walk, then the signs of the

trades (εs) should be uncorrelated. However, real data shows that order signs are correlated and that this
autocorrelation decays very slowly with time. Furthermore, widespread empirical evidence (Bucci et al.,
2019; Tóth et al., 2016, 2011; Torre, Ferrari, 1998; Loeb, 1983) indicates that the impact of trading nearly
follows a square-root law in the volume traded, which can unfortunately not be accommodated within this
model.

1.2 The propagator approach
Kyle’s original proposal is closely related to propagator models, which posit a time-decaying kernel for the
impact of trades (Bouchaud et al., 2004). In these models total impact is the sum of the impact of individual
trades: given a positive, non-increasing kernel G : R+ → R+, the impact at time t of a series of trades
((qs, εs)) is given by yt =

∑
s≤t εsqsG(t − s). This can be stated equivalently in the continuous case by

writing yt =

∫ t

0

dsmsG(t− s), where the trading rate satisfies d(εq) = mds. One may additionally posit that
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Figure 1: A white particle diffusing from the bid side collides and annihilates when it bumps into a black
particle diffusing from the ask side (Bak et al., 1996). The annihilation corresponds to a real transaction
taking place in the order book.

lim
t→∞
G = 0, so that impact vanishes at longer timescales; see Guéant (2013) for a discussion on transient and

permanent impact.
Taranto et al. (2018) provide a comprehensive summary of propagator models. This family has the

advantage of being simple to design and leading to tractable analytical results. Unfortunately, it does not
provide any further explanation about the origin of impact.

1.3 The Donier et al. approach
The complexity of today’s financial markets stems from the many traders who continuously interact with one
another to form prices; the limit order book forms the basis behind this interaction. Recently several order
book models have been proposed that adopt an agent-based approach (Huang et al., 2019; Mastromatteo
et al., 2014). Such an approach goes beyond ad hoc formulations and offers a glimpse into a phenomenon
mostly viewed as a stylized statistical fact, which provides white-box understanding of the price formation
process.

Salient in this category is Donier et al. (2015)’s latent order book model, which argues that the visible
order book is insufficient to reflect true supply and demand. The fundamental reason behind this is the
asymmetry between liquidity providers and liquidity takers, which has become widely accepted ever since
the classical work of Glosten, Milgrom (1985), and is closely related to the notion of adverse selection.
In reality, the visible order book mostly displays the activity of high-frequency participants, whereas the
intentions of low-frequency actors remain concealed up until the time immediately preceding execution.

The authors posit linear density in the neighborhood of the efficient price. In this model, impact is a
consequence of two opposing phenomena:

• liquidity consumption, which increases spread and the cost of trading;

• diffusion, which pushes the prices back towards a mean-reverting equilibrium, and is illustrated in
Figure 1.

The findings of the model have received empirical validation (Donier, Bonart, 2015) on one of the largest
available trading datasets. The authors analyze trading activity on a major Bitcoin exchange, demonstrating
that the salient concavity characteristic of impact remains valid independently of market venue. Even when
individual orders cannot be systematically detected (due to the anonymity enforced on trading venues), even
in the absence of a notion of fundamental value (which makes little sense as of today on the Bitcoin market),
the persistence of impact suggests that a robust self-organizing mechanism is at work. This seems best
explained by an agent-based approach which universally models trader behavior.

1.4 Our contribution
The primary motivation for our work is to enrich the minimal proposal of Donier et al. (2015) with a
conceptually simple yet practically important ingredient. Mean reversion is the assumption that the price
tends to revert back towards its historical average, and is a well-documented phenomenon across many
markets and venues Palwasha et al. (2018); Poterba, Summers (1988); Narayan et al. (2007). From the
practitioner’s perspective, this added ingredient provides an additional degree of freedom in the model,
thereby increasing its expressivity and allowing better calibration on real data.

This paper explicitly analyzes how the mean-reversion of prices in the latent order book model affects
impact, and shows that the latter is negatively related to the speed of price reversion. Thereby this speed
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may be interpreted as another dimension of liquidity, in line with previous price impact models (Huberman,
Stanzl, 2005). A salient feature of our model is that mean-reversion only acts in the medium to long time
range, in accordance with empirical evidence indicating that it is not observed in the short term (Chakraborty,
Kearns, 2011).

We also provide an existence theorem for the average order book density under impact. This mathematical
result also gives for free an existence result for Donier et al. (2015)’s original model. Finally, we complement
our theoretical analysis with a numerical scheme that simulates the entire order book and might be of
independent interest.

2 Model formulation
The original latent order book model of Donier et al. (2015) incorporates two key ingredients:

• drift-diffusion, which models the randommechanical fluctuations in price and occurs at the rateD ≡ σ2

2 ;

• order matching, which reflects the fact that a mutually beneficial agreement has been found whenever
supply and demand are simultaneously nonzero. One generally works in the limit of infinitely reactive
markets in order to simulate clearing of buy and sell orders.

Underlying this approach is an implicit mean-field assumption (Lasry, Lions, 2007) so that one interprets
the order book densities as average densities.

Building on this purely diffusive motion, we allow the agents to adjust their current price further towards
the underlying latent price of the asset. Our proposal maintains the indispensable diffusive behavior and
enhances it with a mean-reverting component. Two additional ingredients, deposition and cancellation, are
alluded to but not analyzed fully by Donier et al. (2015). While not key to our model, we explicitly study
them for completeness in appendix A.

To obtain the new price dynamics we start by writing the microscopic evolution in a non-rigorous way
before transforming it into a partial differential equation.

We write that each agent reassesses its price as follows:

pi,t 7→ pi,t+dt = pi,t + ηi,t − κ · (pi,t −Bt)dt, (1)

where the process (Bt)t represents the reference price, which could either be exogenous (such as a Brownian
motion) or endogenous (such as taking the current market price and plugging it in, leading to a feedback
loop). The noise variables ηi,t ∼ N(0, σdt) are agent-dependent, so that pi,t + ηi,t represents agent i’s best
estimate of the fundamental price. Finally; κ > 0 quantifies the return force towards Bt; its intuitive role is
identical to that of the string constant in Hooke’s law.

Starting from

pi,t =
1

1− κdt
(pi,t+dt − ηi,t + κBtdt)

≈ pi,t+dt − ηi,t + κ(pi,t+dt −Bt)dt,

one performs a second-order expansion:

ϕ(x, t+ dt) =

∫
P(η)

∫
dyδ(x− η + κ(x−Bt)dt− y)

≈ ϕ(x) + (0 + κ(x−Bt))∂xϕ(x, t)dt +
σ2

2
∂xxϕ(x, t)

(2)

so that the density of orders in the book evolves according to the partial differential equation:

∂tϕ(x, t) = κ(x−Bt)∂xϕ(x, t) +
σ2

2
∂xxϕ(x, t),∀y ∈ R,∀t ≥ 0. (3)
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This means that agents reassess their price all the more as they are far from the reference price Bt, the
intensity of reassessment being determined by the parameter κ.

These dynamics would not be complete without a boundary condition. We specifically consider the
initial-time condition

ϕ|t=0 = Ly on R. (4)

This condition, together with diffusion, ensures that the order book far from the current market price
replenishes at the constant rate L, so that ∂yϕ(y, t) −−−−−→

y→±∞
L. We refer the reader to Donier et al. (2015)

for a in-depth presentation of the original model.

3 The shape of the order book
The dynamics (3) of the order book in presence of the reference price Bt are no longer linear. However, we
show below that they become linear after a certain change of reference frame that centers the price.

To do so one performs the change of variable y = x− f(t) where f(t) = κ
∫ t

0
dsBse−κ(t−s). The function

f(t) may be seen as a weighted average of the reference price, since it is nearly equal to 1∫ t
0

dseκs
∫ t

0
eκsdBs.

Here τ ≡ κ−1 defining the half-life averaging memory. The function f satisfies the differential equation
f ′ + κf = κBt. As a result, the translated function φ(y, t) ≡ ϕ(y + f(t), t) satisfies the linear partial
differential equation:

∂tφ(y, t) = κy∂yφ(x, t) +
σ2

2
∂yyφ(y, t). (5)

3.1 Approach by separation of variables
Here one is interested in simple solutions to (5) of the form φ(y, t) = g(y)h(t). This leads to the system{

σ2

2 g
′′(y) + κ · y · g′(y) = c · g(y)

h′(t) = c · h(t)

where c is an a priori arbitrary real constant. However, it turns out that c = 0 is the only acceptable value,
since at large times one does not expect the order book to collapse to 0 or diverge to +∞. This ensures
de facto that h is constant, leading to stationary solutions of the form φst(y) = cg(y) where g satisfies

κyg′(y) + σ2

2 g
′′(y) = 0. A straightforward calculation will yield φst(y) = c0 + c1

∫ y
−∞ dxe−

κx2

σ2 .
Going back to the original reference frame yields

ϕst(x, t) = c0 + c1

∫ x−f(t)

−∞

dy√
2πσ2

e−
κ(y−f(t)2

2σ2 .

This family of stationary solutions is controlled by two parameters:

• c0 = lim
x→−∞

ϕst(x, t), which determines the latent buy volume far from the market price

• c1, which reflects the latent sell volume far from the market price since lim
x→+∞

ϕst(x, t) = c0 + c1.

3.2 Full resolution
The differential equation (3) is nontrivial to tackle directly due to the nonlinearity involving the reference
price.

The initial change of variable y = x− f(t) translated spatial coordinates to follow this reference price.
In this section we consider the change of variable y = eκt(x − f(t)). The additional change in time

scales allows to transform the price dynamics into a simple diffusion process (although at a time-dependent
diffusion rate).
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Figure 2: (a): example of a stationary solution with c0 = 1.5, c1 = −3
√

κ
πσ2 ,

σ2

κ ∈ {2, 5}.
(b): the corresponding order book, where the blue curve represents the bid side and the red curve the ask
side. In the new reference frame the equilibrium price is 0.

That is, by defining ψ(y, t) = ϕ(e−κty + f(t), t) the dynamics take the expression

∂tψ(y, t) =
σ2

2
e2κt∂yyψ(y, t). (6)

We now proceed to show how to solve (6), which is an application of Fourier calculus1.
Applying the Fourier transform to the space variable y and using the fact that F [∂yyψ] = −k2ψ. leads

to the PDE

∂tψ̂(k, t) = −σ
2

2
e2κtk2ψ̂(k, t).

The solution to this last equation can be determined by variation of constants. One readily obtains
ψ̂(k, t) = g(k)e−

Cκ(0,t)σ2k2

2 , where g = F [ψ0] and the initial condition ψ0 = ϕ0 ≡ ϕ(·, t = 0) is continuous
over R. We also define

Cκ(s, t) ≡
∫ t

s

due2κu =
1

2κ
(e2κt − e2κs) (7)

for 0 ≤ s ≤ t.
The final solution is obtained by going back to the space domain. The transform of the product of two

functions is the convolution of their transforms, hence

ψ(y, t) =

∫ +∞

−∞

du√
2πCκ(0, t)σ2

ϕ0(u)e
− (u−y)2

2Cκ(0,t)σ2 .

This solution is well-defined for a wide spectrum of initial conditions (essentially functions with sub-
exponential growth) so long as the integrand remains in L1 for all times t ≥ 0. This includes in particular
linear functions.

The diffusion rate, defined by the variance of the heat kernel, increases exponentially with time. We
conclude by noting that one indeed recovers the usual impact profile when κ→ 0.

1To this end one may first recall the following elementary facts:

• given an integrable function f ∈ L1(R,C), its Fourier transform is defined by F(f) : k 7→
∫ k
−∞ dyf(y)e−iky .

• If f̂ ≡ F (f) ∈ L1(R,C), in particular if f is continuous, its inverse Fourier transform F−1(f̂) : y 7→ 1
2π

∫+∞
∞ dkf(k)e+iky

is well-defined and satisfies F−1(f̂) = f almost surely.
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4 Price impact
Assume that a large trader, such as an institutional investor, executes a large order according to the schedule
(mt)t∈[0,T ]. We will show that that the impacted price satisfies the integral equation

yt =
1

L

∫ t

0

dsmse
κs√

2πσ2Cκ(s, t)
e
− (yt−ys)2

2σ2Cκ(s,t) . (8)

One can first observe that this impact profile generalizes that of Donier et al. (2015), which took the
slightly simpler expression

yt =
1

L

∫ t

0

dsms√
2πσ2(t− s)

e
− (yt−ys)2

2σ2(t−s) . (9)

Further comparisons are provided in sections 4.2 and 4.3.

4.1 Impact profile
Starting from the original dynamics (3), one introduces a metaorder (mt) ∈ C([0, T ]) executed at the market
price xt:

∂tϕ(x, t) = κ(x−Bt)∂xϕ(x, t) +
1

2
σ2∂xxϕ(x, t) +mtδ(x− xt), (10)

where δ denotes the Dirac delta function.
This means that in the new reference frame we have:

∂tψ(y, t) =
σ2

2
e2κt∂yyψ(y, t) +mtδ(e

−κty − xt).

Since the Dirac distribution ξ 7→ δ(ξ) is homogeneous of degree −1 with respect to ξ, we may rewrite
this equation as

∂tψ(y, t) =
σ2

2
e2κt∂yyψ(y, t) +mte

κtδ(y − yt),

where yt ≡ eκt(xt − f(t)) is the reframed market price, i.e. the zero of ψ(·, t) (whose existence and unicity
depend on the initial condition, although they will become clear at the end of this paragraph). One also
observes that the metaorder volume becomes mte

κt instead of mt. This is a natural consequence of our
change of variable which made the new space variable depend on time.

Moving to the Fourier domain in space gives

∂tψ̂(k, t) = −σ
2

2
e2κtk2ψ̂(k, t) +mte

κt−ikyt .

This is solved by variation of constants and gives

ψ̂(k, t) = g(k)e−
σ2Cκ(0,t)k2

2 +

∫ t

0

dsmse
κs−ikys−σ

2k2Cκ(s,t)
2 ,

where g denotes the Fourier transform of the initial condition.
Applying the inverse Fourier transform therefore leads to

ψ(y, t) =
1√

2πCκ(0, t)σ2
(ψ0 ∗ e

− x2

2Cκ(0,t)σ2 )(y) +

∫ t

0

dsmse
κsF−1[e−ikys−

σ2Cκ(s,t)k2

2 ](y).
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For a linear initial condition ψ0(y) = ϕ0(y) = −Ly, this gives

ψ(y, t) = −Ly +

∫ t

0

dsmse
κs√

2πCκ(s, t)σ2
e
− (y−ys)2

2σ2Cκ(s,t) .

, which immediately recovers the desired impact profile of (8).

4.2 Small trading rates
In today’s fragmented markets, the trading activity of any individual agent, although large, is generally an
order of magnitude smaller than the total market activity. It is therefore especially interesting to study the
simple special case of small trading rates.

This regime is defined by ‖m‖ � Lσ and allows to make the approximation of small impacts (yt−ys)2 �
Cκ(s, t). This leads to

yt =
1

L

∫ t

0

dseκs√
2πCκ(s, t)σ2

ms. (11)

Therefore impact becomes linear and falls broadly within the family of propagator models that was
introduced in section 1. One may recall that in Donier et al. (2015)’s original proposal, impact for small
trading rates was given by

y
|(κ=0)
t =

1

L

∫ t

0

ds√
2π(t− s)σ2

ms,

corresponding to the limit κ → 0 in (11)). Now mean-reversion counters this square-root decay kernel,
nuancing the growth of impact. More precisely, one can establish that yt ≤ y|(κ=0)

t and this is a consequence
of the inequality eκs

C(s,t) ≤
1
t−s .

For an additional bit of insight, let us consider another simple regime, that of constant trading rates
mt = m0,∀t ∈ [0, T ].

A straightforward calculation using the change of variable v = e−κ(t−s) confirms concave impact:

yt =
m0

Lσ
√
κπ

∫ 1

e−κt

dv√
1− v2

=
1

Lσ
√
κπ

(π
2
− arcsin(e−κt)

)
.

Since arcsinx ∼
x→1

π
2 −

√
2(1− x), impact at shorter time scales is roughly

yt ∼
t→0

m0

Lσ
√
κπ

√
2t,

and one recovers the original square-root law.
At larger time scales, however, impact converges to a finite nonzero value:

yt→t→+∞
πm0

Lσ
√

2κ
,

in sharp contrast with the divergence of impact in Donier et al. (2015)’s proposal. This is explained in
simple terms by observing that agents continually reassess their price towards the fundamental value, thereby
providing resistance against price increases by means of added liquidity.
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Figure 3: Impact profile in the limit of small trading rates. We recover a linear propagator that leads to
concave impact. The propagator replicates the square-root behavior at shorter times, and converges to a
finite value at larger times.

4.3 Existence and uniqueness results
There is, to the best of our knowledge, no closed-form solution to the impacted price equation (8). Fortu-
nately, we still have the

Theorem 1. Let m : [0, T ]→ R be any continuous execution strategy. Then the impacted price equation (8)
admits a solution y defined over [0,+∞]. Furthermore any solution is infinitely differentiable on its domain.

The proof is given in Appendix B. As a corollary of Theorem 1, one gets for free a similar existence result
for the original proposal of Donier et al. (2015). This is because Cκ(s, t) −−−→

κ→0
t− sand this is sufficient for

the proof to remain valid.

Corollary 1. Let m : [0, T ] → R be any continuous execution strategy. Then the impacted price equation
(9) admits an infinitely differentiable solution defined over [0,+∞].

Possible extensions: does the impacted price admit a unique solution? Intuitively we expect the answer
to be positive in light of the mean-field assumption, which interprets the densities as average densities.

5 Diffusion and mean-reversion
It was seen in section 3 that the market price tracks a re-weighted average f(t) of the reference price Bt,
where the re-weighting occurs over a rolling time window of width τ = κ−1 and the tracking intensity is
determined by κ. This section makes explicit the influence of the microscopic parameters governing the price
dynamics (3), namely the volatility σ and the mean-reversion intensity κ. Their effect will be illustrated
analytically both on the impacted price and market mispricing, a measure of deviance from equilibrium.
Further numerical comparisons are provided in section 6.

5.1 Effect on the impacted price
To get a first intuition on diffusion, we consider the stationary solution of section 3.1. One sees that an
increase in volatility leads to a increase in liquidity near the market price, making the market more robust
to small perturbations, and thereby reducing impact. A similar conclusion can be derived analytically from
(11) in the case of small trading rates. This added robustness is of course expected since the diffusive jumps
(illustrated in Figure 1) act as a smoothing mechanism, and tend to occur more frequently under increased
variance.

The mean-reversion parameter κ has the inverse effect. A higher value increases the drive towards the
market price, as can be seen either (i) analytically by differentiating equation (8) with respect to κ; or (ii)
directly in equation (11) in the special case of small trading rates; or (iii) visually in Figure 8.

Finally, the limit κ→ 0 allows to recover the original impact profile of Donier et al. (2015), for which we
have seen in section 4.2 that yt ≤ y|(κ=0)

t .
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Figure 4: A strongly mean-reverting market is generally less mispriced. This is illustrated by the decay of
variance of the mispricing variable defined in equation (12) with respect to the mean-reversion parameter κ
(displayed here at the time t = 1).

5.2 Effect on mispricing
Mispricing is defined as the difference between Bt and f(t) and quantifies how close the market price is to
the underlying efficient price. Large mispricing values indicate market instability and a potential departure
from equilibrium.

It can be seen through integration by parts (where the Ito component cancels since the integrand is a
deterministic function of time) that

f(t) = κ

∫ t

0

dse−κ(t−s)Bs =

∫ t

0

d(e−κ(t−s))Bs = Bt −
∫ t

0

e−κ(t−s)dBs,

and thus

Bt − f(t) =

∫
e−κ(t−s)dBs. (12)

Therefore mispricing is a centered Gaussian variable with variance ν(κ, t) =
∫ t

0
e−2κ(t−s)ds, which decreases

with κ. Hence the "convergence" of the impacted price to the reference price. This convergence underlines
a notion of market stability in the sense that mean-reversion reduces mispricing.

6 Numerical experiments
This section sheds some numerical light on the predictions of the latent order book model. The dynamics
(3) are simulated using a Crank-Nicolson finite-difference scheme. Figure 5 illustrates the initial (linear) and
resulting (nonlinear) shapes of the order book. Prices are restricted to finite support ranging from −M to
M and covered by a regular grid with step size ∆x. This means that the order book at time t is therefore
represented by a vector Xt in Rd, with d = 2M

∆x + 1. In our simulations we take M = 50 and ∆x = 10−2,
although in a real market ∆x could be the tick size and M could be any sufficiently large value depending
on the asset.

We use the first and second-order differentiation operators given by A = −J +T and B = −2J +T +TT

respectively. Here J denotes the diagonal-1 matrix and T the upper-diagonal 1 matrix, except that the first
and last rows of A and B have been zeroed out to enforce reflective Dirichlet boundary conditions:

ϕ(−M, t) = −L ·M,ϕ(M, t) = L ·M and ∂xϕ(−M, t) = ∂xϕ(M, t) = 0,∀t ≥ 0,

where L is the slope of the initial (linear) order book.
The discretized dynamics of (3) read:
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Figure 5: (a): Initial (linear) shape of the order book ϕ(y, 0) = −Ly, with L = 50.
(b): Starting from this initial condition, 1500 iterations of the Crank-Nicolson scheme are performed and
the final order book shape is shown. The resulting density is in line with the stationary shape predicted in
section (3.1).

Figure 6: The reference price (Bt), the market price simulated by finite difference method and the theoretical
prediction f(t) for D ≡ σ2

2 = 0.5 and (a): κ = 0.1; (b): κ = 0.25; and (c): κ = 1.5. We observe a very close
fit for larger values of κ, in line with the analysis of mispricing conducted in Section (5.2).

(
I − σ2∆T

4(∆x)2
B

)
Xt+1 =

(
I +

σ2∆T

4∆x2
B + κ

∆T

∆X
(U −Bt1)TA)

)
Xt, (13)

where I is the d-identity matrix, 1 is the d-identity vector, and U =


−M

−M + ∆x
...

M −∆x
M

 ∈ Rd is the grid vector.

Iterating this scheme allows to simulate the shape of the order book at any point in time. A finite time
horizon T = 1500 seconds is considered together with a time step ∆T = 1 second. The value of the market
price is then deduced as the point of zero density.

6.1 Mean-reversion and diffusion
The influence of the mean-reversion and volatility parameters κ and σ was explored in Section 5; we illustrate
them further in Figures 6 and 7.
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Figure 7: Evolution of the impacted price for the constant buy meta-order of Figure 9, executed during the
first T = 500 seconds, which shows the mitigating effect of increased volatility on impact. Here κ = 1 and
D ≡ σ2

2 .

Figure 8: Evolution of the market price during and immediately following a buy metaorder executed over
the first T = 500 seconds.
(a): meta-order execution profile
(b): impacted price in the absence of mean-reversion
(c): impacted price with mean reversion (after centering the price around the reference price). The mean-
reverted curve provides a smoother profile where price impact is moderated by the pull towards the reference
price.

6.2 The impacted price
This simulation scheme conveniently allows to incorporate a metaorder. A buy order is achieved by consuming
the corresponding volume from the best available bid. If the buy order volume exceeds the best available
volume, the remaining quantity is consumed from the next best bid, and so on until the entire order has been
satisfied. In addition to Figure (8), we have made available online a short video simulating the execution of
that meta-order 2.

We conclude this section with another interesting simulation, illustrated in Figure 9. It consists in taking
an exogeneous reference price Bt that opposes the direction of the meta-order. For a buy meta-order, this
is achieved by adding a negative-drift component to the standard Brownian motion. This provides the
opportunity to observe clearly the trade-off between mean-reversion and price impact.

2https://www.youtube.com/watch?v=5QAqzERE5-g
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Figure 9: (a): market price in the absence of meta-orders. For sufficiently strong mean reversion (simulated
here with κ = 0.5), the market price closely tracks the reference price (simulated here with an affine Brownian
motion).
(b): market price in presence of the meta-order of Figure 8. One witnesses the trade-off between the positive
push of the meta-order and the negative pull towards the reference price. The meta-order’s effect dominates
for the first 500 seconds, but then its execution is complete and the market price reverts towards negative
territory.
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Discussion
Our work extends the seminal proposal of Donier et al. (2015). While the original dynamics were purely
diffusive, this extension allows a mean-reverting behavior towards the "efficient" price, as is often observed
in real markets. This modification represents one step towards a fully rational agent model, in contrast with
Farmer et al.’s zero-intelligence model.

On the other hand, our model reflects uninformed trading only, so that impact is a temporary statistical
effect due to order flow fluctuations and liquidity imbalance. Underlying this temporary nature is a key
aspect of market structure, namely the difference between short-term and long-term term supply. If a trader
speeds up his buy trades, he depletes the short-term supply and increases the immediate cost for additional
trades. As more time elapses, supply gradually recovers and the price witnesses a mean-reversion to its
initial value.

However, suppose that certain skillful agents can forecast short term price movements accurately. For
instance, if the agent correctly predicted (or was otherwise informed) that the price is about to rise, he
is more likely to buy as an anticipation of this movement. This should result in measurable correlation
between trades and price changes, even if the trades by themselves have absolutely no effect on the prices.
Thereby the information processed by investors leads to permanent price moves reflecting a change in the
asset’s fundamental value. This vision of price impact is purely based on information and is not captured
by the present model, although it would be very desirable to do so. One way towards this is to posit a joint
distribution for the random drift together with trading volume, thereby allowing different meta-orders to
interact in the order book. We leave this extension as a promising direction for future work.

For an adept of the mechanical vision, permanent impact is seen as the accumulation over time of the
mechanical effects. For an adept of the informational vision, mechanical impact is a noise that reflects the
activity of uninformed traders. This distinction gives a double interpretation of impact: on the one hand,
market impact is a friction, and on the other it is the process by which prices adjust to new information.
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Appendix A - Dynamics under deposition and cancellation
The original proposal of Donier et al. (2015) neglected deposition and cancellation of orders in order to derive
the main differential equation (3). We re-integrate these two parameters here for the sake of completeness
and deduce the full dynamics of the latent order book as well as the impacted price.

The differential equation now reads:

∂tϕ(y, t) = −νϕ(y, t) +
σ2

2
∂2
yϕ(y, t) + λsign(y) +mtδ(y − yt). (14)

The cancellation rate ν leads to the notion of memory of the order book, defined as τ = ν−1. For times
much larger than τ , all orders in the book have been cancelled and replaced by new ones, so that its memory
can be considered wiped. This time scale is of crucial importance because concave impact can only hold
in the opposite regime where the metaorder duration satisfies T � τ , so that the order book retains the
information about the metaorder being executed. The reduction to the limit ν → 0 is therefore justified in
that it ensures that execution time is negligible compared to the order book memory. Since deposition must
not exceed cancellation too much in a balanced order book, one should also take the limit λ→ 0.

The differential equation (14) can be solved explicitly using Fourier analysis similarly to Section 3. We let

g(y, s) = e−νs (λsign(y) +msδ(y − ys)) andK(y, t) = e
−νt− y2

2σ2t√
2πσ2t

, so that the solution obtained by convolution
is

ϕ(y, t) = (ϕ0 ? K(·, t)) (y) +

∫ t

0

(g(·, s) ? K(·, t− s)) (y)ds,

where ϕ0 is the initial order book at time t = 0, namely ϕ0(y) = −L · y. This yields

ϕ(y, t) = −Lye−νt +

∫
t

0

dse−ν(t−s)

mse
− (y−ys)2√

2πσ2(t−s)√
2πσ2(t− s)

+ λφ(
y

σ
√
t− s

)

 ,

where φ(x) ≡ P(|Z| ≤ |x|) for Z a standard normal random variable.
Hence the impacted price satisfies the integral equation

yt =
1

L

∫
t

0

ds

mse
νs− (yt−ys)2

2σ2(t−s)√
2πσ2(t− s)

+ λφ(
yt

σ
√
t− s

)

 .

This impact profile comes with the following interpretation:

• The cancellation rate ν leads to a reparametrized trading rate (mse
νs)s instead of (ms)s. In particular,

the analytical approximations derived in section 4.2, including the square-root law, remain valid in
several regimes so long as the small-trading assumption applies to the reparametrized rate as well.

• Impact is a decreasing function of the deposition rate λ. This can be verified analytically up to a first
approximation, or using the numerical scheme of section 6. This is of course expected as deposition
contributes to the replenishment of available liquidity in the order book.

It is also straightforward to modify the numerical scheme (13) in order to include these two parameters,
which can potentially increase the flexibility and expressive power of the model and provide a better fit when
calibrated on real data.
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Appendix B - Proof of Theorem 1
Proof. We work in the vector space E ≡ (C(I,R, ‖·‖∞ of real-valued continuous functions on I ≡ [0, T ]. Fix
m = (mt)0≤t≤T a function of E. For any ε > 0, consider the function Fε : E × E → E defined by

Fε(x, y)(t) =

∫ t−ε

0

dsmse
κs√

2πCκ(s, t)
e−

(xt−ys)2
2Cκ(s,t)

where Cκ(s, t) is as in (7). The volatility is taken as σ2 = 1 here without loss of generality.
The first step is to show that the partial function F0(x, ·) has a fixed point y(x) for any element x ∈ E.

To do so we use Banach’s fixed point theorem and show that for all ε > 0, Fε(x, ·) has a unique fixed point
yε(x). Then we prove that yε(x) converges to a fixed point of F0(x, ·) as ε→ 0.

Given y, ỹ ∈ E and s, t ∈ I with s < t we have:

∣∣∣e− (xt−ỹs)2
2Cκ(s,t) − e−

(xt−ys)2
2Cκ(s,t)

∣∣∣ =
1

Cκ(s, t)

∣∣∣∫ ỹs

ys

du(u− xt)e−
(u−xt)2
2Cκ(s,t)

∣∣∣
≤ M√

Cκ(s, t)
|ys − ỹs|.

(15)

The equality is just the fundamental theorem of calculus applied to the function y 7→ e−
(xt−y)2
2Cκ(s,t) between

the points ys and ỹs. As to the inequality, it follows from the basic fact that xe−x
2 ≤M ≡ e−

1
4

2 for all x ≥ 0.
This leads to

∣∣∣Fε(x, y)(t)− Fε(x, ỹ)(t)
∣∣∣ . ∫ t−ε

0

ds
mse

κs

Cκ(s, t)
|ys − ỹs|

.
1

ε
‖m‖∞

∫ t−ε

0

ds|ys − ỹs|.
(16)

The first line is the triangle inequality, and the second is because s 7→ eκs

Cκ(s,t) is bounded above by 1
ε on

the interval [0, t− ε]. This is the key argument that allows the proof to hold over [0, t− ε], but does not hold
on [0, t], and necessitated the introduction of our ε-restrictions.

It follows that the iterated compositions of Fε satisfy∣∣∣Fnε (x, y)(t)− Fnε (x, ỹ(t)
∣∣∣ ≤ C

ε

∫ t−ε

0

ds
∣∣∣Fn−1
ε (x, y)(t)− Fn−1

ε (x, ỹ(t)
∣∣∣

for some finite real constant, which in turn entails that

‖Fnε (x, y)− Fnε (x, ỹ)‖∞ ≤
1

n!

(
C(T − ε)

ε

)n
‖y − ỹ‖∞.

On the right-hand side we find the general term of an exponential series, which must be less than 1 for
sufficiently large n. Then, for any such value of n, Fnε (x, ·) is a contraction in the Banach space E. This
guarantees that Fε(x, ·) has a unique fixed point yε(x) ∈ E.

Now observe that the family (yε(x))0<ε<T is uniformly bounded with respect to the L∞-norm. It follows
that for any t ∈ I, there exists a sequence εn → 0 such that yεn(x)(t) converges as n → ∞. Denoting its
pointwise limit y0(x)(t), we obtain a measurable and bounded function y0(x).

Since for all t ∈ I,
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∣∣∣yε(x)(t)− F0(x, yε(x))(t)
∣∣∣ =

∣∣∣Fε(x, yε(x))(t)− F0(x, yε(x))(t)
∣∣∣

=
∣∣∣∫ t

t−ε

dsms√
Cκ(s, t)

e−
(x−yε(x)(s))2

2Cκ(s,t)

∣∣∣
. 2‖m‖∞

√
ε,

we obtain by letting ε→ 0 that y0(x) is a fixed point of F0(x, ·). One may observe that y0 is continuous
since it is the integral of a measurable function (and in fact is even infinitely differentiable). This concludes
the first part of the proof.

The second idea is to fix a time step δ and, starting from any function x0 ∈ C([0, δ],R), to iterate on the
above fixed point procedure so as to build a solution to equation (8) of interest. Starting from x0, one builds
the fixed point x1 = y(x0). One then iterates this procedure n = bTδ c times, giving a sequence of functions
(xi)0≤i≤n. Finally, one concatenate these functions together; or, more explicitly, consider the function yδ
defined on [0, T ] by yδ(t) = xk(t− kδ) where k = b tδ c.

By construction, the function yδ satisfies

yδ(t) =

∫ t

0

dsms√
2πCκ(s, t)

e−
(yδ(t−δ)−ys)

2

2Cκ(s,t) .

We obtain the desired solution by letting δ → 0.
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