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Non-alcoholic fatty liver disease (NAFLD) is a consequence of sedentary life style and high fat diets with an estimated prevalence of

about 30% in western countries. It is associated with insulin resistance, obesity, glucose intolerance and drug toxicity. Additionally,

polymorphisms within, e.g., APOC3, PNPLA3, NCAN, TM6SF2 and PPP1R3B, correlate with NAFLD. Several studies have already

investigated later stages of the disease. This study explores the early steatosis stage of NAFLD with the aim of identifying molecular

mechanisms underlying the etiology of NAFLD. We analyzed liver biopsies and serum samples from patients with high- and low-

grade steatosis (also pre-disease states) employing transcriptomics, ELISA-based serum protein analyses and metabolomics. Here,

we provide a detailed description of the various related datasets produced in the course of this study. These datasets may help other

researchers find new clues for the etiology of NAFLD and the mechanisms underlying its progression to more severe disease states.
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Background & Summary
With an estimated prevalence of about 30% in western countries, NAFLD is a major public health issue1.
Sedentary life-style and excessive food consumption correlate with rate at which NAFLD cases appear.
Epidemiologic studies showing a prevalence of the disease that differs between countries as well as
between groups in the same country, appear to reflect an interplay of environmental and genetic factors
in its etiology1. Additionally, polymorphisms in, e.g., APOC3, PNPLA3, NCAN, TM6SF2 and PPP1R3B,
correlate with NAFLD2,3. Over-feeding directly induces insulin resistance4. Causality between steatosis
and the metabolic syndrome of insulin resistance, obesity, and glucose intolerance, is still unresolved5.
While the correlation between steatosis and insulin resistance is established there is debate about
the relationship between steatosis and hepatic insulin resistance6. Samuel et al. showed that activated
PKC-ϵ and JNK can induce insulin resistance via impaired IRS1 and IRS2 tyrosine phosphorylation in rats
fed with high fat diet7. An investigation on the insulin-like growth factor (IGF) axis in the Nurses’ Health
Study8 and another population study of 3863 people9 addressed connections between the IGF axis, insulin
resistance, diabetes risk and NAFLD. IGFBP3 is associated with various cancers and up-regulation of
IGF1 receptor (IGF1R) is considered an early event in hepatocarcinogenesis10. Thus, the IGF axis might
play an important role in a direct development of carcinoma from steatosis without the formerly assumed
intermediary phase of cirrhosis11.

The progression of NAFLD from mild steatosis up to severe steatohepatitis and even liver cirrhosis
and hepatocellular carcinoma, varies widely between individual patients. Insulin resistance, dysregulation
of cytokines as a basis for inflammation, and oxidative stress appear to foster progression to
steatohepatitis12. A two-step progression from simple steatosis to steatohepatitis and fibrosis has been
proposed13, and suggests that after fat accumulation in the liver due to insulin resistance, lipids are
peroxidized with cytokines and Fas ligand induced by excessive ROS. However, this two-step progression
has been questioned5. We found that in fibroblasts derived from steatosis patients AKT/mTOR signaling
was reduced and that the insulin-resistant phenotype is exhibited not only by insulin-metabolizing
central organs, e.g., the liver, but also by skin fibroblasts14. Transcriptome data identified a regulatory
network orchestrated by the transcription factor SREBF1 and linked to a metabolic network of
glycerolipid and fatty acid biosynthesis. The downstream transcriptional targets of SREBF1 which include
the phosphatidic acid phosphatase LPIN1 and LDLR, were also involved.

Moreover, there is the possible involvement of ROS in disease progression. Houstis et al.15

demonstrated that oxidative stress can induce insulin resistance and that anti-oxidants may ameliorate
insulin resistance. Depletion of glutathione can improve insulin sensitivity in mice16. Glutathione is
known as the body’s master antioxidant, protecting cells against damage caused by numerous
reactive intermediates17. Detoxification of these reactive metabolites results in the consumption of
glutathione either via oxidation or conjugation. Maintenance of the intracellular glutathione level is
thereby a critical liver function, which could be impaired following insult/injury or in steatosis and
steatohepatitis.

Several other studies exploring various aspects of NAFLD have been published. A recent publication
by Moylan et al. showed that it is possible to discriminate mild versus severe fibrosis stages of NAFLD
patients via their gene expression profiles18. Another study from Speliotes et al. investigated NAFLD via a
genome-wide association study (GWAS) approach3. Besides the most prominent association of PNPLA3
this study reported several other associations including one at locus 19p13.11 which is in strong linkage
disequilibrium with a recently found steatosis-linked polymorphism in TM6SF2, transmembrane6
superfamily member 2 (refs 19,20) . A knockdown of TM6SF2 in human hepatoma cell lines and in mice
led to an increase in lipid droplet area while overexpression led to a decrease19.

Interestingly, the above mentioned genes associated with NAFLD in GWAS were not detected in a
large-scale GWAS about obesity and insulin biology although the metabolic syndrome connects NAFLD
and obesity21. Feldstein et al. found CK-18 as a non-invasive biomarker for NASH by comparison of
plasma samples from patients with biopsy proven NAFLD22. Du Plessis et al. used analysis results from
subcutaneous and visceral fat and liver biopsies to construct a model which predicts NAFLD liver
histology23. This model involves the genes CCL2, DMRT2, GADD45B, IL1RN, and IL8. In contrast to the
studies of Moylan et al. and Feldstein et al. our study highlights potential means of classifying distinct
grades of Steatosis in NAFLD—the very early stage of the disease. Although it is evident that a complex
interplay of genetic and environmental factors contribute to the development of steatosis, to date there
has not been a systemic study of the disease employing a multi-omic approach- transcriptome,
ELISA-based proteome and metabolome. Therefore, the intention of this study is to provide a more
comprehensive view of steatosis based on transcriptomic, metabolomic and protein biomarker profiles.
Additionally, this should lay down the foundation for follow-up systems biology-based studies.

In the current study we analyzed patient liver biopsies and associated serum samples, from patients
with the insulin resistance phenotype confirmed by the HOMA-IR model24. Here, we describe these
valuable data sets deposited in public repositories, which might support other researchers in identifying
new clues for the etiology of NAFLD and the mechanisms underlying its progression to more severe
disease states.
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Methods
Patient recruitment, sample collection and clinical measurements
All patients participating in this study were recruited in the Multidisciplinary Obesity Research (MORE)
project at the Medical University of Graz, Austria or at the Interdisciplinary Adipositas Center at the
Kantonsspital St Gallen, Switzerland. Patients with morbid obesity who admitted into hospital for
treatment by bariatric surgery (gastric banding, gastric bypass, sleeve gastrectomy) were invited to
participate in the study and to sign the informed consent. The study was approved by the institutional
review board of the Medical University of Graz (reg. IRB00002556 at the Office for Human Research
Protections of the US Departments of Health and Human Services) under license 20–143 ex 08/09. All
experiments were performed in accordance with approved guidelines. Written informed consent was
obtained from all participants. In the course of the bariatric surgery, samples of blood, skin and a liver
biopsy were taken. Out of 18 patients (Table 1), 9 liver biopsies were of high quality enabling their use in
the transcriptome analyses. Serum plasma was available from all the patients. The overall experimental
design of this study is illustrated in Fig. 1. A pathological diagnosis of the liver phenotype, including liver
steatosis grading based on H&E morphology, was performed by an experienced, board certified
pathologist (CL). We simplified Kleiner’s scoring scheme by condensing Steatosis grades 2 (34–66%) and
3 (> 66%) to our ‘high-grade’ while adopting grades 0 (‘none’) and 1 (‘low’)25. This simplification was
made because the inter-patient-variability in this complex heterogeneous disease did not allow a more
detailed grading on the omics levels. Two examples of liver biopsies are shown in Fig. 2a.

Illumina bead chip hybridization and data analysis
Microarray experiments were carried out on the Illumina BeadStation 500 platform (Illumina, San Diego,
CA, USA). Briefly, 500 ng DNase-treated total RNA were used as input for amplification and biotin
labeling reactions (Illumina TotalPrep RNA Amplification Kit, Ambion) prior to hybridization of the
resulting cRNAs onto Illumina HumanHT-12_v4_BeadChips, washing, Cy3-streptavidin staining and
scanning according to the manufacturer’s instructions.

Transciptomics data analysis
Illumina data was processed via R/Bioconductor26 and packages lumi27, limma28 and biomaRt.
Background-corrected log2-transformed data was normalized via quantile normalization from the lumi
package.

ID gender Age BMI %
steatosis

grouping by pathologist steatosis grouping medical centre liver illumina
array rep.1
(GSE46300)

liver illumina
array rep.2
(GSE46300)

serum
NMR data

serum ELISA data

H0004 f 54 47 10% obese, low steatosis Graz (Austria) GSM1128362 GSM1128363 MTBLS174 10.6084/m9.figshare.1333564

H0007 f 33 51 40% obese, high steatosis Graz (Austria) GSM1128364 GSM1128365 MTBLS174 10.6084/m9.figshare.1333564

H0008 m 61 46 40% obese, high steatosis obese, high steatosis Graz (Austria) GSM1128366 GSM1128367 MTBLS174 10.6084/m9.figshare.1333564

H0009 f 48 49 5–10% obese, low steatosis obese, low steatosis Graz (Austria) GSM1128368 GSM1128369 MTBLS174 10.6084/m9.figshare.1333564

H0011 f 58 45 70% obese, high steatosis obese, high steatosis Graz (Austria) GSM1128370 GSM1128371 MTBLS174 10.6084/m9.figshare.1333564

H0012 f 50 35 0 obese, low steatosis obese, low steatosis Graz (Austria) GSM1128372 GSM1128373 no no

H0018 f 35 41 30–40% obese, high steatosis obese, high steatosis Graz (Austria) GSM1128374 GSM1128375 MTBLS174 10.6084/m9.figshare.1333564

H0021 m 49 41 0% no steatosis Graz (Austria) GSM1128376 GSM1128377 MTBLS174 10.6084/m9.figshare.1333564

H0022 m 45 49 40% obese, high steatosis Graz (Austria) GSM1128378 GSM1128379 MTBLS174 10.6084/m9.figshare.1333564

H0024 m 29 44 50% obese, high steatosis Graz (Austria) no no MTBLS174 10.6084/m9.figshare.1333564

H0025 f 53 46 15–20% obese, low steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0026 f 46 39 0% no steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0027 m 44 42 50% obese, high steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0028 f 28 43 20% obese, low steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0029 f 40 39 o5% no steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0030 m 22 45 30% obese, low steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0031 m 22 41 0% no steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0033 f 44 43 40% obese, high steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0034 m 50 42 10% obese, low steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

Table 1. Samples related to data sets in repositories (Data Citations 1–Data Citation 3).
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qRT-PCR
Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to confirm the microarray-
derived data. Reactions were carried out on the ABI PRISM 7900HT Sequence Detection System
(Applied Biosystems). Data analysis was carried out using the ABI PRISM SDS 2.2.1 software (Applied
Biosystems) and Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). GAPDH-normalized,
relative mRNA levels of each gene (high steatosis versus low steatosis) were calculated based on the
2-ΔΔCT Method. Primer sequences for QRT-PCR validation are described in Table 2.

ELISA-based assay for biomarkers
ELISA measurements from plasma samples were carried out using the Ciraplex platform (Aushon
Biosystems, Billerica, MA, US). Commercial assays were purchased and measurements were carried out
according to instructions provided by the manufacturer. The following 29 targets were analyzed either as
single-plex assays or as multiplex assay: hFGFb; hGROa; hLIF;hIFNg; hIL1b; IL4; IL5; hIL6; hIL10;
hIL12p70; hIL13; hTNFa; hI309; hIL8; hIP10; hMCP4; hMIP1a; hMIP1b; hCRP; hLeptin; hPAIactive;
hResistin; hIGFBP1; hIGFBP3; hIGFBP2; hMIF; hApoA1; hCRP; hAcrp30.

NMR sample preparation
Frozen plasma samples were thawed at room temperature and shaken before use. According to standard
methodologies a total of 300 μl of buffer (70 mM Na2HPO4; 20% (v/v) D2O; 6.15 mM NaN3; 6.64 mM
TMSP; pH 7.4) was added to 300 μl of each serum sample. A total of 450 μl of this mixture was
transferred into a 4.25 mm NMR tubes (Bruker BioSpin) for analysis.

liver biopsies serum samples

metabolomics via Nuclear
Magnetic Resonance (NMR) 

transcriptomics via Illumina
BeadChips and RT-PCR 

Protein serum markers
via ELISA assay  

low-grade
steatosis  

high-grade
steatosis  

high-grade
steatosis  

low-grade
steatosis  

high-grade patients
low-grade patients

healthy

Figure 1. Scheme of experiments for multi-omics comparison of steatosis grades. The scheme shows how the

distinct severities of non-alcoholic fatty liver disease (NAFLD) are compared in terms of transcriptomics,

metabolomics and potentially relevant parts of the proteome. Liver biopsies were taken from NAFLD patients

and classified by pathologists as low-grade (5–33% steatosis area) and high-grade (>33% steatosis area). The

transcriptome of liver biopsies were assessed on Illumina HumanHT-12 v4 BeadChips and on RT-PCR. Serum

samples of these NAFLD patients and from healthy persons were taken and investigated at the protein level

employing ELISA assays and at the metabolome level via Nuclear Magnetic Resonance (NMR).
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NMR spectra acquisition and processing
NMR spectra from 18 plasma samples from morbidly obese patients that underwent different type of
bariatric surgery and additionally have developed steatosis were collected (Table 1). 1H-NMR spectra
were acquired using a Bruker spectrometer (Bruker Biospin). Unsupervised and supervised methods were
used in order to identify a disease-related metabolomic profile that might contain a signature of steatosis.

Data Records
Data record 1
The microarray experiments discussed in this publication were carried out on the Illumina BeadStation
500 platform (Illumina, San Diego, CA, USA). The data have been deposited in NCBI's GEO and are
accessible through GEO Series accession number GSE46300 (Data Citation 1).

Data record 2
Metabolomic raw data from Nuclear magnetic resonance (NMR) measurements have been deposited at
the MetaboLights database (http://www.ebi.ac.uk/metabolights) of the European Bioinformatics Institute
(EBI) under MTBLS174 (Data Citation 2).

Figure 2. Histopathological and transcriptome characterization of liver tissue. (a) Liver tissue with only

marginal pathological changes (H9, low-grade steatosis group). The hepatocytes are arranged in one cell thick

plates, separated by sinusoids. They contain only few small isolated fat valuoles (H&E stained section).

Hepatocytes of the intermediate and central lobular areas contain macrovesicular fat (image to the right,

H8, steatosis group, hepatocytes with fatty change are indicated by arrow heads; H&E stained section).

(b) Hierachical clustering of the transcriptomes of patient liver samples. We identified three clusters: high

(>33%) steatosis (cyan), low (5–33%) steatosis (magenta) and heterogeneous clusters of high, low and no

steatosis (grey). (c) Quantitative QRT-PCR confirmation of genes differentially expressed in high versus low

steatotic livers. The columns represent the mean of four biological replicates (high steatosis) versus two

biological replicates (low steatosis). Error bars indicate standard errors of the mean. Array-derived and

RT-PCR-derived columns are depicted in dark grey and red respectively. (d) Heatmap of genes differentially

expressed in high versus low steatotic livers and genes found in literature and in genome-wide association

studies.
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Data record 3
ELISA measurements have been deposited at figshare (http://www.figshare.com) (Data Citation 3).

Technical Validation
Transcriptomic data
Microarray data passed the proprietary Illumina quality controls. All samples were investigated in
duplicates. Fig. 2b shows that—as would be expected—the duplicates cluster together demonstrating the
validity of experiments in terms of whole-genome gene expression. The Pearson correlation coefficients
of all samples versus each other were calculated with the intention to detect outliers. However, all
correlation coefficients were greater than 0.98 and all correlation coefficients of duplicates even greater
than 0.99 so that all samples passed this quality check (Table 3). Genes with significant differential gene
expression were selected for validation via RT-PCR experiments (Fig. 2c). Genes were termed
differentially expressed if the multiple-testing-corrected limma28 P-value was less than 0.05, the ratio was
less than 0.75 or greater than 1.33 and the gene was expressed (detection P-value less than 0.05) in at least
one of both cases. Furthermore, we analysed clusters of genes differentially expressed in high versus low
steatotic livers together with genes found in literature19,23 and genome-wide association studies3 (Fig. 2d).
This analysis confirms high similarity between duplicates and clustering—to some extent but not
fully—according to steatosis grade. Fig. 3a shows a plot of the first two components of the Principal
Component Analysis (PCA) of the microarray data.

Gene Fwd Rev Product size

ACADSB CACCATTGCAAAGCATATCG GCAAGGCACTTACTCCCAAC 117

AGPAT2 GGGGCGTCTTCTTCATCA TTGAGGTTCTCCCTGACCAT 91

ECHS1 AACCTTTGCCACTGATGACC CAAGCAGAGGTGTGAAGCAG 112

IGF1
TGCAGGAGGGACTCTGAAAC

AGCTGCGTGATATTTGAAAGG 111

IGFBP2 CTCCCTGCCAACAGGAACTG
TCTTGCACTGTTTGAGGTTGTACAG

147

IGFBP3 CAACTGTGGCCATGACTGAG CCTGACTTTGCCAGACCTTC 92

INSIG1 CAACACCTGGCATCATCG CTCGGGGAAGAGAGTGACAT 118

KRT18 GAGGTTGGAGCTGCTGAGAC CAAGCTGGCCTTCAGATTTC 99

LIPA CATCTGTGTGAAGCCAAAGC AATCCCTGAGCTGAGTTTGC 112

PLIN2 GCTGAGCACATTGAGTCACG TGGTACACCTTGGATGTTGG 102

Table 2. Primer sequences for QRT-PCR validation of genes differentially expressed between high-grade and

low-grade steatosis.

Table 3. Pearson correlation coefficients of transcriptome data of all samples versus each other.
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Figure 3. Transcriptomic and metabolomic profiles. (a–c) Transcriptomics and metabolomics PCA plots.

Distinct colours are used to aid visualizing patients with distinct levels of steatosis: yellow, patients with o5%

no steatosis; magenta, patients with 5–33%, low level steatosis; cyan, patients with high steatosis >33%, high

steatosis. (a) Unsupervised PCA plot for 18 liver biopsies, Illumina microarray data. (b) Unsupervised PCA

plot for 18 plasma samples, metabolomics data. (c) Supervised discrimination analysis (pls/ca: partial least

squares/canonical analysis) of metabolites in patient plasma samples. The correspondence between numbers in

the plot and sample names in Table 1 is: 1=H0004, 2=H0007, 3=H0008, 4=H0009, 5=H0011, 6=H0018,

7=H0021, 8=H0022, 9=H0024, 10=H0025, 11=H0026, 12=H0027, 13=H0028, 14=H0029, 15=H0030,

16=H0031, 17=H0033, 18=H0034, 19=H0012.
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ELISA-based assay for biomarkers
Samples below and above quantification limit as well as samples with coefficient of variation (cv) greater
than 20% were marked in the measurements table (Data Citation 3). Independent validation of the
ELISA-based measurements was checked by visual inspection of plots comparing disease states.

Metabolomics
Assignment of all metabolites were done manually, signals were assigned on template one-dimensional
NMR profiles by using matching routines of AMIX 7.3.2 (Bruker BioSpin) in combination with the
BBIOREFCODE Version 2-0-0 reference database and published literature when available. Additional
confirmation was done using data provided in our lab -database containing spectra of standard pure
compounds. To assess which metabolites (i.e., NMR peaks) were significantly different between different
sets a univariate paired Wilcoxon test was used. A P-value≤ 0.05 was considered statistically significant
(P-value not corrected for multiple testing).

Robust validation of statistical analysis results was done using a cross-validation technique.
The accuracy of the classification was assessed by means of a single cross-validation scheme. The

original data set was split into a training set (80% of the samples) and a test set (20% of the samples) prior
to any step of statistical analysis. The number of PLS components was chosen on the basis of a 5-fold
cross validation performed on the training set only, and the best model was used to predict the samples in
the test set. The whole procedure was repeated 200 times with a Monte Carlo cross validation scheme,
and the results averaged.

Figure 3b shows a plot of unsupervised discrimination analysis and Fig. 3c shows separation of
steatosis grades in a plot of supervised discrimination analysis (pls/ca: partial least squares/canonical
analysis) of metabolites in patient plasma samples. The clustering of Fig. 3c results from a supervised
PLS/CA based only on the metabolomic NMR profiles. The algorithm takes into account the supervised
information relative to the 3 steatosis groups.

Distribution plots
Figure 4a shows the distribution of percentage parenchymal involvement in steatotic patients derived
from Table 1. The percentage is converted to a scale from zero to one and plotted with the kernel density
function from the R statistical package. Fig. 4b–d display distributions separated into groups of age
above/below median (median= 45), body mass index (BMI) above/below median (median= 43) and
gender. Fig. 4d would suggest a slight tendency for more severe steatosis in males. A similar trend has
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Figure 4. Distribution plots of percentage parenchymal involvement in steatosis. (a) all patients. (b) Kernel

density plot of patients above/below median age (median= 45). (c) Kernel density plot of patients above/below

median BMI (median= 43). (d) Kernel density plot of male/female patients.
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been reported in a NAFLD study on Australian adolescents where 3.1% of males and only 2.2% of females
had moderate to severe steatosis while 7.0% of males and 14.1% of females had mild steatosis29.

Usage Notes
All patients in this study underwent bariatric surgery. This should be taken into account when
generalizing results although these are typical cases of morbid obesity which is connected to the metabolic
syndrome including NAFLD. The sample size of these datasets—in particular the transcriptomics
dataset—poses certain limits onto its usage. Due to its small size it will not enable rigorous analysis of
gender effects. Therefore it would likely need to be combined with other data sources, such as data from
Moylan et al.18 and Du Plessis et al.23.
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