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Imaging studies in dentistry and maxillofacial pathology have recently concentrated on detecting the inferior alveolar nerve (IAN)
canal. In spite of the minor dimensions of 3D maxillofacial datasets, deep learning-based algorithms have shown encouraging
consequences in this study area. This study describes a mandibular cone-beam CT (CBCT) dataset with 2D and 3D hand
comments. It is huge and freely available. It was possible to utilise this dataset by applying the residual neural network
(TANSegNet), which consumed less GPU memory and computational complexity. As an encoder, IANSegNet uses the
computationally efficient 3D ShuffleNetV2 network to reduce graphics processing unit (GPU) memory usage and improve
efficiency. After that, a decoder with leftover blocks is added to keep the quality high. To address network convergence and
data inequity, Dice’s loss and cross-entropy loss were created. Optimized postprocessing techniques are also recommended for
fine-tuning the coarse segmentation findings that are generated by IANSegNet. The results of the validation show that
IANSegNet outperformed other deep learning models in a variety of criteria.

1. Introduction

Deep learning has recently been used to automate several
sectors [1], and the field is fast expanding [2]. When it
comes to medical applications, deep learning [3] has proven
to be extremely effective [4]. Magnetic resonance imaging
(MRI) and computerized tomography (CT) images, as well
as electroencephalogram (EEGs) [5], can be utilised to forecast
and diagnose diseases using deep learning [6]. In dentistry, it

can be used to automatically diagnose a variety of disorders
[7]. Cone-beam computed tomography (CBCT) images have
been used to classify cystic lesions, and teeth have been used
to estimate age [8]. Third molars are common in the mouths
of most people; however, they can be removed for a variety
of reasons. In oral and maxillofacial operation, the removal
of third molars is a shared process [9].

After the third molar is extracted, symptoms can appear
in anywhere from 30 to 68% of cases, depending on the
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impaction type of the tooth [10]. Impaction patterns of
mandibular third molars vary because they grow in a variety
of locations and directions [11]. Consequently, it is essential
to regulate the mandibular third molar impaction pattern
prior to the procedure to select the most appropriate surgical
technique [12]. Third molar impaction can be defined using
a variety of criteria [13]. After extraction, a variety of issues
can arise in certain impaction patterns [14].

1.1. Problem Statement. Complications may emerge follow-
ing the extraction depending on the impaction pattern
[15]. Damage to the mediocre alveolar nerve [16] is the most
shared complication following the removal of the mandibu-
lar third tooth (IAN) [17]. It is crucial to know what to
expect following an IAN injury because of the varied results
reported [18] on the surgical therapy options [19]. Because
of the recognised relationship between the molar and the
IAN, the risk of IAN injury increases [20].

1.2. Contribution. In this research, IANSegNet is presented
to improve segmentation accuracy and reduce computing
complexity. IANSegNet’s efficiency is initially improved by
using 3D ShuffleNetV2, a new efficient CNN, as an encoder.
We also use the Res-decoder to keep the neural network
from degrading when it is very deep. For the third time,
we have devised a fusion loss function that combines
entropy with Dice to ease meeting concerns and keep too
many negative samples from swamping the good ones. In
addition, we use 3D patches to apply the augmentation during
testing and mirror them. Additional postprocessing tech-
niques are employed to enhance performance, where thresh-
old values are selected by proposed optimization model
(spotted hyena optimizer algorithm (SHA)). By delivering
both the uppermost segmentation accuracy and the lowest
computational difficulty, the suggested method exceeds the
state-of-the-art styles.

2. Related Works

The curved MPR image set was recently developed by Wei
and Wang [21]. One-pixel sampling is used for the MPR
and total regular intensity forecast panoramic picture, and
K-means are used to cluster texture characteristics from
the grey level-gradient cooccurrence matrix of the region
of interest to recover image difference in the IAN canal.
The fourth-order polynomial is used to fit the results of
the final segmentation of the canal margins in 2D line track-
ing. Jaskari et al. [22] trained a complete network using a
dataset of 3D scans with coarse annotations to segment the
mandibular canal for the first time using deep learning.
Using an average diameter of 3.0 millimetres, a volume of
each canal is expected to be created by interpolating 10 control
points in a spline. However, the lack of hand-annotated voxels
and the poor quality of segmentation limit the approach’s
effectiveness in comparison to previous approaches based on
SSM. Cipriano et al. [23] provided publicly available CBCT
(3-dimensional dataset with expertly generated 3D annota-
tions for download). Then, using a freshly trained architecture,
it improved the state-of-the-art mandibular canal segmenta-
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tion accuracy. On the basis of the U-Net, a 3D convolutional
neural network (CNN) is used to segment images in 3D
feature maps that are compressed in the network’s contrac-
tive path using stride 2 convolutions, whereas they are
expanded in the expanding path using stride 2 transposes.
Cipriano et al. [23] describe a unique label propagation
method, based on deep learning, which can transform
sparse 2D labels into 3D voxel-level annotations. This
method can cover the gap between the most contemporary
and advanced methods for 3D segmentation and the
absence of viable annotated data in the maxillofacial field.
Moreover, with the purpose of pushing the state of the art
in 3D IAN segmentation, a novel 3D segmentation CNN
is built that uses positional information to generate the final
3D prediction.

Qi et al. [24] raised the possibility of IAN injury during
the removal of impacted lower third molars. A total of 200
wedged lower third molars were found around the IAN.
Data from CBCT was utilised to divide the four categories
into AR, LE, and AE: apical region of the root, lateral region
of tapering root, and area adjacent to root. Surgeons used a
tooth sectioning technique to extract all of the patient’s
teeth, relocating them down the root’s long axis or arc. IAN’s
postoperative neurosensory impairment was the most signif-
icant outcome variable. X2 testing was performed to exam-
ine the variations in postoperative IAN damage between
the two categories. Using a retrospective evaluation of pano-
ramic and cone-beam computed tomography images of two
hundred mandibular third molars, Tassoker [25] conducted
a study to examine the reliability of a panoramic view to
detect the diversion of the inferior alveolar canal. Data was
analysed to see whether or not there was a correlation
between the panoramic view and cone-beam computed
tomography findings based on the mandibular canal wall
interruption, darkening of roots, canal diversion, and nar-
rowing of the mandibular canal in the panoramic pictures.
On cone-beam computed tomographic images, there was
no canal cortication in 136 cases, which was most strongly
associated with mandibular canal diversion (96 percent)
and least strongly associated with mandibular canal wall
interruption (65 percent). Reexposing twenty-five patients
to cone-beam computed tomography allowed Pandey et al.
[26] to evaluate the accuracy of radiographic signals in a
panoramic perspective. 63.8% were discovered to be in direct
touch with the mandibular canal’s superior border, resulting
in damage to the cortical layer. For teeth with two or more
radiological signals on panoramic view, the canal was either
primarily buccal (61.7 percent) or followed by inferior (23.4
percent) in relation to lower 3rd molar root in cone-beam
computed tomography (CBCT). Cone-beam computed
tomography is always recommended when there are two
or more indicators of mandibular canal injury, they con-
cluded. The affected lower third molar root end and the
inferior alveolar canal were assessed and compared using
panoramic radiography and cone-beam computed tomog-
raphy in a 40-sample study by Nayak et al. [27]. Cone-
beam computed tomography revealed a real association
between 23 of the roots in the panoramic view and darken-
ing and constriction of the canal. Cone-beam computed
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tomography, on the other hand, may often predict a real
association when any of the radiographic signals are pres-
ent, although panoramic radiography cannot. Twenty-
three individuals with totally impacted teeth were studied
for their ability to predict inferior alveolar nerve injury follow-
ing lower 3rd molar extraction using panoramic radiography
and computed tomography. There has been a perfect correla-
tion found between the development of paraesthesia after
mandibular nerve damage and a panoramic view based on
prevision. After impacted lower third molar surgery, the study
panoramic is a first-level diagnostic exam that gives sufficient
information to forecast inferior alveolar canal damage
lesions [28].

3. Proposed System

Patches are initially preprocessed and augmented with data
during training in this study. Second, for IAN segmentation,
we introduce TANSegNet, a powerful residual neural net-
work. Finally, in order to maintain training stability and
minimise the influence of unbalanced data, we suggest a loss
function that combines a Dice with a cross loss. IANSegNet’s
segmentation results can be improved by a simple and effec-
tive postprocessing procedure.

3.1. Dataset. The Affidea facility in Modena, Italy, has pro-
vided us with the 3D CBCT capacities that make up our
dataset. Rehabilitation, cancer detection and treatment, and
advanced diagnostics are only few of Affidea’s specialties. It
has 312 facilities in 15 countries, with a workforce of
approximately 11,000 people.

Cone-beam CT dental scans are included in the collec-
tion. Here’s a download link for the dataset if you would
want to take a look at it. Interslice and interpixel distances
are always the same 0.3 millimetre. Between 1 000 and 5
264, data capacities have already been converted to the
Hounsfield unit (HU). We also made sure that the window
width and centre were properly processed in accordance
with the DICOM protocol during the conversion to HU
(148, 265 312 to 178, 423 463) for the X-, Y-, and Z-axes
of volume. We only had access to a few personal details
about each patient because they had been anonymised, such
as gender, age, and the year of the scan. All scans were per-
formed between 2019 and 2020; 59% of the patients were
female.

The dataset can be used for panoramic views in both 2D
and 3D. It is, however, a 2D model that is used in the sug-
gested study. Figure 1(a) is an axial slice derived from the
CT capacity, and Figure 1(b) is a 2D panoramic image.
The jawbone can be recognised by the red contour known
as the panoramic base curve. Using the CT-panoramic vol-
ume’s perspective, Figure 1(b) provides an orthogonal image
of the curved formed by curve. Figure 1(c) shows an experi-
enced technician’s hand annotation of the IAN, which is
identical to the view in Figure 1(b).

3.2. Data Augmentation and Preprocessing. For CNN train-
ing, normalisation is essential since it speeds up training
and prevents overfitting. For CBCTs, the significance of

CBCT intensity varies among images because of the variety
of modalities, patients, and devices. Since the IAN region is
first cropped, we then compute mean and SD for each
modality just in the IAN region in every patient to normalise
images to a consistent scale. There are many ways that IAN-
SegNet can learn and generalise, such as gamma correction
and random.

3.3. Proposed IANSegNet

3.3.1. Encoder Based on 3D ShuffleNetV2. Semantic seg-
mentation, picture rebuilding, and image classification are
all possible with encoder, a feature extractor. VGGI16
[29] not only had significant achievement classification
but also produced remarkable presentation in medical pic-
ture segmentation, which is an effective practice in deep
learning deep encoders like deeplabV3 [30], deeplabV3+
[31], ResNets [28], or Xception [32] and has recently been
shown to advance the results of semantic segmentation. A
deep encoder is used to segment 3D IAN in this way. Our
encoder uses 3D ShuffleNetV2 [33], an extremely deep but
efficient network, because 3D operations typically take a
long time and utilise a lot of GPU memory. As compared
to other deep networks, the encoder has a smaller number
of floating point operations per second (FLOPS) and
parameters.

For a 3D convolutional layer with no calculation for
nonlinear functions, the FLOPS are calculated as follows:

FLOPS =2 X x X y X 2 X (a4, X B® + 1) gy, (1)

where the output feature maps, depth, height, and width are
denoted by the letters x, y, and z; a,, and a,,,, denote the sum
of input and output channels, correspondingly; and the ker-
nel size is B.

A 3D convolutional layer has a fixed number of param-
eters.

NumParameters = (ain x B3 + l)aout' (2)

More advanced and efficient than ShuffleNetV1, Shuffle-
NetV2 is a descendant of ShuffleNetV1. As a result of the
work presented in this paper, 3D IANSegNet can now use
it as an encoder. Figure 2 shows the encoder’s shuffle com-
ponents (see Figure 3), identifying the most important struc-
tures for minimising the amount of encoder parameters.
Because of the depth-wise separable convolutions performed
on the shuffle unit, ShuffleNetV2 and other networks have
higher FLOPS and parameter gaps. Operations on each of
the input channels are utilised to perform depth-wise sep-
arable convolutions in order to fuse the maps. If the given
input size a;,, a4, y, z, and output size are the same, a
typical convolution requires the parameters R G FPLOPS
and S M.
x107°G,  (3)

R=2xxxXyxzX (@, X B> +) X a4,y

S= (@, X B +1) Xay, x107°. (4)

out



4 BioMed Research International

(a) Axial slice (c) Annotated panoramic view

FiGure 1: CT annotation based on 2D panoramic views.
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FIGURE 2: The proposed IANSegNet architecture.
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Only R' G FPLOPS and S§' M parameters are needed S = (ain x B + 1) + (@ + 1) X agy ¥ 1076, (6)
for depth-separable convolutions, though.
It has a significant impact on efficiency while also con-
n 1) %107, serving GPU memory.
In addition, element-wise actions such as division sum,
(5) depth-wise convolutions, and batch normalisation take a

!
R'=2xxXyxzX (@85, + ayy X B’ +a,,
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FIGURE 4: Depth-wise separable convolutions.

long time. Shuftling unit introduces “channel split” operation,
which divides in order to decrease element-wise operations.
Finally, by utilising “concatenate” instead of summation, it
substantially minimises the element-wise processes. “Channel
shuffle” is used after “concatenate” in order to improve data
transmission between the various channels. Also depicted in
Figure 3 is “channel shuffle,” which occurs when a convolution
layer’s feature maps comprise n channels, and ¢ =d. Trans-
pose and flatten operations are used to transform the channel
dimension of the feature maps into cd. IANSegNet’s encoder
is completed with the last convolutional layer and the shuffle
unit. In order to get a large enough receptive field for segmen-
tation, the encoder’s output size is 1/32 of the unique image’s
size. Figure 4 depicts the convolutions that can be separated by
depth.

Relative architecture-based shallow decoder has been
shown to be sufficient to provide outstanding presentation
in a deep network; hence, this paper uses a shallow decoder
for IAN segmentation. Transposed convolution, as shown in
Figure 2, is used to increase the number of feature maps by
stride 2 and to reduce the sum of feature maps by half.
Concatenating high-resolution feature maps from encoders
in each spatial level is an effective way to compensate for
the loss of information after down sampling (see Figure 2).
A further issue with the deep network is that its accuracy
is prone to saturation. The problem persists since the
encoder-whole decoder’s design is based on a deep neural
network. Thus, the use of residual blocks in decoders helps
to relieve the difficulties of convergence (see Figure 2). A
residual block and skip connection in the last spatial level
is followed by a residual block again. Convolution with four
channels and a stride of one completes the decoder’s output
layer.

It is possible to think about the remaining block as

Outputs = f(Input, t) + Input. (7)

The outstanding value to be erudite by the network is
denoted by f(), and ¢ indicates the weights of a convolution
layer. It is a lot like the identification map’s formulation.

3.4. Fusion Loss Function Based on Cross-Entropy and Dice.
The fundamental problem with the CBCT dataset is that
only 2% of the IAN is accounted for in most situations. In
addition, the loss functions employed to handle the imbal-
anced situation have convergence concerns. Thus, we sug-
gest a loss function that combines Dice and cross-entropy

to produce an effective fusion loss function. As an example
of a data loss function, Dice can be used to lessen the impact
of data imbalances, such as in 3D segmentation. IAN seg-
mentation relies heavily on Dice as a measure. IANSegNet
has introduced a multiclass Dice as a result. IANSegNet out-
put is normalised before Dice loss using the softmax
method. The remaining value to be erudite by the neural
network is denoted by f() in the definition of multiclass
Dice. It is a lot like with the identification map’s formulation

2 Ysls)

CI&T5+ 3 )

LDice ==

TANSegNet’s likelihood of acquiring softmax is s. With a
one-hot encoding, g is the actual truth. The training patch’s
voxel count is indicated by the letter i. In the CBCT data,
class j is one of the C classes.

It is easy to run into convergence problems when your
Dice loss data is so unbalancing. To get Dice’s differentiable
form, 2sg/(s + g), we first need to simplify its formula to 2
g2/(s+ g)2. When s and g are small, a greater gradient will
be obtained, which will lead to unstable training. As a result,
we implement cross-entropy loss in order to counteract this
effect. IANSegNet’s total fusion loss can be calculated by tak-
ing the sum of Dice and cross-entropy into account.

Fusmnloss-——ZZg’log( )|2|Z Zsis 9)

ien jeC jeC Z 5] Z g]

The patch’s size, in this case, is #.

3.5. Postprocessing. Postprocessing methods have been
shown to enhance the presentation of neural networks in
numerous studies. There are a number of examples of
automated methods that use K-means clustering [34]. Con-
sequently, to fine-tune the segmentation outcome, a post-
processing technique is required. Edema can be mistaken
for necrotic and nonenhancing tumour cores, and there are
some false positives for tumour enhancement. Therefore,
the author of [35] devised a postprocessing technique based
on the neural network’s properties and the distribution of
tumours. Increasing the number of tumour core positives
and eliminating false positives is the goal. A two-step seg-
mentation model is developed in this study, and postproces-
sing is used to improve segmentation accuracy.



BioMed Research International

Output: Final predictions (FPre)

. Voxdsmandibular third molars

‘pro

. for Voxelsmandibular third molars
if Tcpru of Voxelsmand:‘bular third molars
.replace_voxel_with_TC (Voxels
. end if

if TC,,, of Voxels
8. remain_voxel_unchanged (Voxels
9. end if

10. end for

11. VoxelS,upancing

12. NumVoxel ypancing
13. if NumV oxel,,pzncing < 150 then
14. for Voxel,,jancin g € Voxelenhming
15. replace_voxel with_TC (Voxel
16. end for

17. end if

18. FPre «<— Pre

19. Return FPre

NN U AW N

mandibular third molars

— extmctvaxe,s_

Input: Predictions of neural networks (Pre), probability maps of neural networks
(ProMap), and the threshold for comparison (T)

«—— extract_voxels_in_mandibular third molars (Pre)
.TC,,, — get_probability in_TC (Voxels,,,,aibular third molars» PTOMap)
€ Voxdsmandibular third molars

> T using SHA optimization then

‘mandibular third molars>

< T using SHA optimization then

‘mandibular third molars> Pre)

nenhancing (Pre)

—— compute_num (Voxels

do
Pre)

enhancing’

do

Pre)

enhancing)

ALGORITHM 1: Postprocessing.

(i) A voxel is more likely to be classified as belonging to
the proper class if the neural network is generally
confident. As a result, the first step differs from Chen
et al. [31] because it is based on the softmax probabil-
ity of the neural network. All the voxels that can be
separated into mandibular third molars are extracted
first because IANSegNet makes it straightforward to
partition the core. For these voxels, we get the likeli-
hood of TCpro (the core region’s probability). When
TCpro is bigger than a threshold T, which is obtained
by using the proposed optimization algorithm called
SHA, where the existing technique [36] choose these
threshold value between 0.1 to 0.3 and based on this
value only, TCpro leads to high computation time
for training the algorithm. In order to minimise the
training time for large data, the threshold value must
be identified by optimization (SHA) technique,
which is explained as follows

3.5.1. Spotted Hyenas® Algorithm. The simulation of spotted
hyenas’ social behaviors is the main concept behind Algo-
rithm 1. Only four steps are followed in this algorithm that
are taken from the spotted hyenas’ behaviors including
encircling, hunting the prey, attacking, and searching behav-
ior. Towards the best search agent for threshold, group of
trusted hyenas is guided in the hunting process, and finally,
the best optimal solution for threshold is saved.

(1) Encircling Prey. Here, the best solution is considered as
either objective or target prey (i.e., threshold value), where
the position and location of other search agents are updated
according to the obtained best search solution. Equations

(10) and (11) provide the mathematical model for this
search agent’s behavior:

Ly=|MxN,(x)-N(x)|, (10)
N(b+1)=ﬁp(x)—6><fh. (11)

At prey point, the distance between hyenas is described

— — —
as Lj, common vectors are depicted as M and O, current
frequency is represented as b, location vector of prey is

described as N »» and, finally, location vector of hyena is used

as N. The next two equations ((12) and (13)) are used to cal-
culate the common vectors, where Equation (14) is used to
find the parameter iterations that are used in Equation (13).

M=2xr§1, (12)

—

O:Z?xrgz—z, (13)

5
7> , (14)
Ma‘XIteration

where Iteration=0, 1,2, -+, MaXyuion. Random  vectors

$=5- <Iteration X

between the range of 0 and 1 are denoted as rd, and rd,,
where the parameter s is linearly minimised from 5 to 0.

(2) Hunting. Equations (15)-(17) are used to describe the
strategy of spotted hyenas’ algorithm (SHA) for hunting
process.
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N, =N, -OxL, (16)
(_jh :K]k +K]k+l+“'+ﬁk+K’ (17)

where initial best spotted hyena’s position is denoted as N,

and other spotted hyena’s position is represented as N R
But, Equation (18) is used to calculate the overall number
of spotted hyenas, which is denoted by the variable K.

K:Countnos(ﬁh,ﬁhﬂ,ﬁhﬂ,"‘,ﬁh"'l_i)- (18)

In the range of 0.5 to 1, the value of random vector lies,

which is denoted as R, and it is used to describe the total
number of solutions and counts for all candidate. For the
number K, the solution for optimal set is represented as

6,,1.

(3) Attacking the Target. Equation (19) is used to attack the
target/prey of spotted hyena.

—

N(b+1)= %. (19)

According to the best search agents’ state, the best solu-

tion is protected by using N (b + 1) and also updates the state
of other spotted hyenas” search agent. The threshold value

can be determined for parameter values from N (b+1).

(4) Search for Prey. 0is responsible if it is greater than or
equal to 1 using Equation (13) to find a suitable solution.
In addition, SHA algorithm uses the other important com-

ponent, i.e., M for research process. As provided in Equation
(12), random weight of the prey is given by the random
value that is presented in this another component. To show
the SHA algorithm’s inconsistent behavior and the effect of

divergence, the vector M>1is preferred over M<1. The
local optimal problem is eliminated in SHA algorithm by
solving the high dimensional issues with less computational
efforts.

(i) Aslong as there are fewer than 150 projected enhanc-
ing mandibular third molar voxels, we replace all of
them with the core. The CBCT dataset’s performance
dictated the selection of the aforementioned cut-oft
points

4. Results and Discussion

An nl-highmem-8 system with an NVIDIA Tesla V100
GPU and PyTorch software [33, 34] were utilised. Fast.ai is

a deep learning framework that makes it possible to use Cov-
idXrayNet thanks to its unique ability to connect several
transformers into a pipeline that manages the least amount
of computations and lossy operations possible.

4.1. Evaluation Metrics. The proposed technique is evaluated
using Dice, sensitivity, and Hausdorff’s distance. Dice and
Hausdorft are two of the measures employed on the CBCT
dataset’s online review platform.

Segmentation results and the ground truth are compared
using Dice to determine how similar they are to one other.

o 2TP )
1 = —
T FP+2TP+EN

Sensitivity, which is utilised to determine the sum of TP,
is provided by

TP
Sensitivity = TPTEN (21)

There were a total of FN, TP, and FP voxels that were
both false negative and false positive in this study.

Hausdorff’s distance is used to quantify the separation
between the segmentation areas’ and the ground truth’s sur-
faces. It is referred to as the

Haus(G, P) = max {su,cpinscyd(e, f), susepin.pd(e, f) }.
(22)

The supremum and infimum of the IAN area are
denoted by su and in, respectively. The points on the surface
represented by e are considered to be part of the ground
truth (G). f represents the segmentation points on the Y
-axis. To calculate the distance between e and f, use P

and d().

4.2. Proposed Performance Evaluation. Here, the suggested
that the model’s segmentation results are contrasted with
those of already established methods like ResNet50,
VGGI16, and UNet (see Figure 5).

Ground truth prevarious processing’s shapes, such as
dense point sets (DP), alpha-shape polygonal meshes
(PM), and voxelized raster volumes (VV), are taken into
account for validation in this case. Here, the model from
[32] is also considered and tested with dataset which is used
in this work.

Table 1 shows that ERV-Net outperforms the most
recent state-of-the-art techniques in terms of Dice. It is dif-
ficult to learn local information in vast patches, which results
in lower Hausdorff distance findings. Our solution, on the
other hand, surpasses ResNet50 in terms of Hausdorft’s dis-
tance, with improvements in the VV and PM regions of
1.12mm and 0.53 mm, respectively. The PM and VV regions
of Dice have also been upgraded by a combined 53% and
60%. VGG16 came in second place when compared to the
proposed model, which was first. When it came to perfor-
mance, they proved that a well-trained network was enough.
Table 1 shows that our approach outperforms the VGG16
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Ground truth ResNet50 VGG16 UNet TANSegNet
FIGURE 5: Postprocessing procedure when practical to proposed and existing forecasts.
TaBLE 1: Presentation analysis with various existing pretrained models.
Dice (%) Hausdorff (mm)
Method DP PM vV DP PM vV
ResNet50 81.48 91.09 85.49 2.63 4.20 6.69
VGGl6 80.13 90.60 86.02 3.66 4.66 6.68
UNet 79.60 90.52 86.05 2.55 4.59 6.67
ERV-Net 82.81 91.21 86.62 2.70 3.88 6.81
Optimized TANSegNet 83.59 92.18 88.70 2.51 3.71 6.60
TaBLE 2: Performance comparison of IANSegNet with diverse loss functions.

Loss Postprocessin Dice (%) Sensitivity (%) Hausdorff (mm)

P 8 DP vV PM DP PM vV DP PM vV
Cross-entropy Yes 79.88 84.60 91.12 82.32 90.66 84.75 2.87 4.46 7.27
Dice Yes 81.21 86.11 90.71 82.25 91.33 84.66 2.88 3.92 6.75
Fusion Yes 83.59 92.18 88.70 85.20 91.39 85.59 2.51 3.71 6.60
Cross-entropy No 75.49 84.18 91.12 81.57 90.66 82.61 3.69 4.46 7.27
Dice No 79.05 85.80 90.71 82.33 91.33 83.33 2.87 3.92 6.80
Fusion No 77.58 85.85 91.21 84.89 91.39 82.77 3.80 3.88 6.90

model. Noteworthy is that the IANSegNet technique delivers
1.6 percent and 2.03 percent Dice improvement, respec-
tively, as well as a 1.95 mm Hausdorff distance improvement
in the PM region. In the DP and VV regions, the suggested
technique outperforms U-Net by 1.54 percent and 1.38 per-
cent, respectively. With the exception of HausdorfPs dis-
tance in the VV region, IANSegNet exceeds theirs in every
other parameter.

4.3. Performance Evaluation on Loss Function. For classifica-
tion, cross-entropy is the most usually employed loss func-
tion. However, it frequently fails when applied to datasets
that are unbalanced. The goal of the Dice loss function is
to maximise the resemblance among neural network seg-
mentation results and the actual data. The lack of cross-
entropy is compensated for by applying the Dice loss to
the imbalanced data. However, when it comes to small struc-
tures, it is susceptible to convergence difficulties. A loss func-
tion that combines the effects of both Dice and cross-
entropy is used to solve this problem. These loss functions
are discussed in this section primarily, and Table 2 offers val-
idation results.

Table 2 demonstrates that when the cross-entropy loss
function is used, none of the measures are at the top. Unbal-
anced data is an issue for cross-entropy loss function, which
has worse DP metrics than other loss functions. Even while

TaBLE 3: Proportional analysis of processing time for evaluated
segmentation methods.

Training time Inference time -1 slice

Pretrained model

(hours) (seconds)
ResNet50 +132 +25
VGGl6 +118 +17
UNet +120 +12
EVR-Net +115 +10
IANSegNet +108 +8

the Dice loss function has a better Dice and Hausdorff dis-
tance, it has a lower sensitivity. Given that sensitivity mea-
sures the number of true positives, JANSegNet finds a
significant number of them. Loss function fusion is more
affected by IAN than are the loss function dice, as can be
observed from the data. To make matters worse, the loss
functions of fusions outperform Dice and cross-entropy.
When Dice and cross-entropy are postprocessed to remove
IAN false positives, the fusion loss function outperforms
both by a considerable margin. The fusion loss function,
which combines the benefits of cross-entropy and Dice,
can be used to address the issue of data imbalance. The pro-
posed fusion loss function beats other loss functions, such as
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Dice or cross-entropy, in terms of performance. Addition-
ally, the processing times for each strategy are exposed in
Table 3.

The training time is less for proposed model, when com-
pared with existing techniques, i.e., IANSegNet consumed
nearly 108 hours, where other models consumed nearly
120 hrs to 130 hrs for training the same samples.

5. Conclusion

For the segmentation of IAN, we provide IANSegNet, a 3D
residual neural network. When developing IANSegNet, we
decided to first use an extremely deep neural network with
a lightweight encoder, which allowed us to reduce the sum
of parameters while still maintaining good performance.
Using three pretrained models, we compared the suggested
method’s performance and efficiency to our own. To address
the issue of degradation caused by the excessive number of
convolutional layers in the encoder-decoder construction,
we proposed a shallow decoder with residual blocks. Exper-
iments have shown that decoders with residual blocks out-
perform those without them in terms of performance.
Using entropy and Dice’s advantages, a fusion loss function
was created. Because of data imbalances or worries about
convergence, using entropy or Dice was ineffective. A new
optimized postprocessing technique took advantage of neu-
ral network probabilities and IAN distribution properties,
greatly improving segmentation accuracy. Data from 3D
CBCT scans was compared to the most up-to-date practices.
IANSegNet was determined to be superior to its competitors
in terms of both performance and computational complex-
ity. We can further reduce the number of network parame-
ters by employing a lightweight decoding algorithm. We
intend to increase the IANSegNet’s receptive field by adding
more layers to improve the network’s performance.
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