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A classical result of Paley and Marcinkiewicz asserts that the Haar system ℎ = (ℎ𝑘)𝑘≥0 on [0, 1] forms an unconditional basis of
𝐿
𝑝
(0, 1) provided 1 < 𝑝 < ∞.That is, ifP𝐽 denotes the projection onto the subspace generated by (ℎ𝑗)𝑗∈𝐽

(𝐽 is an arbitrary subset of
N), then ‖P𝐽‖𝐿𝑝(0,1)→𝐿𝑝(0,1)

≤ 𝛽𝑝 for some universal constant 𝛽𝑝 depending only on 𝑝. The purpose of this paper is to study related
restricted weak-type bounds for the projections P𝐽. Specifically, for any 1 ≤ 𝑝 < ∞ we identify the best constant 𝐶𝑝 such that
‖P𝐽𝜒𝐴‖𝐿𝑝,∞(0,1)

≤ 𝐶𝑝‖𝜒𝐴‖𝐿𝑝(0,1)
for every 𝐽 ⊆ N and any Borel subset 𝐴 of [0, 1]. In fact, we prove this result in the more general

setting of continuous-time martingales. As an application, a related estimate for a large class of Fourier multipliers is established.

1. Introduction

Ourmotivation comes froma very natural question about ℎ =

(ℎ𝑛)𝑛≥0, the Haar system on [0, 1]. Recall that this collection
of functions is given by
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and so on. Here we have identified a set with its indicator
function. A classical result of Schauder [1] states that the Haar

system forms a basis of 𝐿
𝑝

= 𝐿
𝑝
(0, 1), 1 ≤ 𝑝 < ∞ (with

the underlying Lebesgue measure). That is, for every 𝑓 ∈ 𝐿
𝑝

there is a unique sequence 𝑎 = (𝑎𝑛)𝑛≥0 of real numbers
satisfying ‖𝑓 − ∑

𝑛

𝑘=0
𝑎𝑘ℎ𝑘‖𝐿𝑝(0,1) → 0. For any subset 𝐽 of

nonnegative integers, we will denote by P𝐽 the projection
onto the space generated by the subcollection (ℎ𝑗)𝑗∈𝐽. Let
𝛽𝑝(ℎ) be the unconditional constant of ℎ, that is the least
𝛽 ∈ [1,∞] such that

󵄩󵄩󵄩󵄩P𝐽𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(0,1)

≤ 𝛽
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(0,1), (2)

for any 𝐽 ⊆ N and any 𝑓 ∈ 𝐿𝑝(0, 1). Using Paley’s inequality
[2], Marcinkiewicz [3] proved that 𝛽𝑝(ℎ) < ∞ if and only if
1 < 𝑝 < ∞.This remarkable and beautiful fact and its various
extensions have influenced several areas of mathematics,
including the theory singular integrals, stochastic integrals,
the structure of Banach spaces, and many others. As an
example, let us consider the martingale version of (2), which
was obtained by Burkholder in [4]. Assume that (Ω,F,P)

is a probability space, filtered by (F𝑘)𝑘≥0, a nondecreasing
family of sub-𝜎-fields of F. Let 𝑓 = (𝑓𝑘)𝑘≥0 be a real-valued
martingale with the difference sequence (𝑑𝑓𝑘)𝑘≥0 given by
𝑑𝑓0 = 𝑓0 and 𝑑𝑓𝑘 = 𝑓𝑘 − 𝑓𝑘−1 for 𝑘 ≥ 1. Let 𝑔 be a transform
of 𝑓 by a predictable sequence V = (V𝑘)𝑘≥0 with values in
[0, 1]: that is, we have 𝑑𝑔𝑘 = V𝑘𝑑𝑓𝑘 for all 𝑘 ≥ 0 and by
predictability we mean that each term V𝑘 is measurable with
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respect to F(𝑘−1)∨0. Then (cf. [4]) for 1 < 𝑝 < ∞ there is a
universal constant 𝑐󸀠

𝑝
for which

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝 ≤ 𝑐

󸀠

𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝. (3)

Here we have used the notation ‖𝑓‖
𝑝

= sup
𝑛
‖𝑓𝑛‖𝐿𝑝(Ω). Let

𝑐𝑝 (2) and 𝑐
󸀠

𝑝
(3) denote the optimal constants in (2) and

(3), respectively. The Haar system is a martingale differ-
ence sequence with respect to its natural filtration (on the
probability space being Lebesgue’s unit interval) and hence
so is (𝑎𝑘ℎ𝑘)𝑘≥0, for given fixed real numbers 𝑎0, 𝑎1, 𝑎2, . . .

(sometimes such special martingales are called Haar mar-
tingales, Paley-Walsh martingales, or dyadic martingales). In
addition, the deterministic 0-1 coefficients are allowed in the
transforming sequence, so 𝑐𝑝 (2)≤ 𝑐

󸀠

𝑝
(3) for all 1 < 𝑝 < ∞.

It follows from the results of Burkholder [5] and Maurey [6]
that the constants actually coincide: 𝑐𝑝 (2) = 𝑐

󸀠

𝑝
(3) for all

1 < 𝑝 < ∞. The question about the precise value of 𝑐𝑝 (2)
was answered by Choi in [7]: the description of the constant
is quite complicated, so we will not present it here and refer
the interested reader to that paper.

Our objective will be to study a certain sharp version of
(2), Let us provide some defnitions. Assume that (𝑀, 𝜇) is
a given measure space. A linear (or sublinear) operator 𝑇

defined on 𝐿
𝑝
(𝑀) and taking values in 𝐿

𝑝,∞
(𝑀) is said to be

of restricted weak type (𝑝, 𝑝), if there is a constant𝐶 such that,
for every measurable set 𝐴 ⊆ 𝑀 of finite measure,

󵄩󵄩󵄩󵄩𝑇𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝,∞(𝑀)

≤ 𝐶
󵄩󵄩󵄩󵄩𝜒𝐴

󵄩󵄩󵄩󵄩𝐿𝑝(𝑀)
. (4)

Here
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,∞(𝑀)
:= sup {𝜆

𝑝
𝜇 ({𝑥 ∈ 𝑀 :

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≥ 𝜆})}

1/𝑝
, (5)

is the usual weak quasinorm on the Lorenz space 𝐿
𝑝,∞

(𝑀).
One of the reasons for considering restricted weak-type
estimates is that usually these bounds are easier to obtain than
other types of inequalities: indeed, the functions involved
are bounded and two-valued instead of arbitrary measurable.
On the other hand, by means of standard interpolation
arguments (see, e.g., Corollary 1.4.21 in Grafakos [8]), a pair
of restricted weak-type estimates implies various estimates
on intermediate spaces. We will establish a sharp version
of restricted weak type bounds for the projections P𝐽.
Introduce the constants 𝐶𝑝 by

𝐶𝑝 =
{

{

{

1 if 1 ≤ 𝑝 ≤ 4,

𝑝

4
𝑒
(4−𝑝)/𝑝 if 𝑝 > 4.

(6)

Furthermore, if 𝑔 is a discrete-time martingale, we define its
weak 𝑝th quasinorm by ‖𝑔‖

𝑝,∞
= sup

𝑛
‖𝑔𝑛‖𝐿𝑝,∞(Ω). Here is

one of our main results.

Theorem 1. Let 𝑓 be a martingale taking values in [0, 1],
terminating at {0, 1} (i.e., satisfying lim𝑛→∞𝑓𝑛 ∈ {0, 1} almost
surely), and let𝑔 be its transformby a predictable sequencewith
values in [0, 1]. Then for any 1 ≤ 𝑝 < ∞ one has

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝,∞ ≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝. (7)

The constant 𝐶𝑝 is the best possible. It is already optimal in the
estimate

󵄩󵄩󵄩󵄩P𝐽𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝,∞(0,1)

≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝(0,1), (8)

for the projections associated with the Haar system.

We will also provide a version of this result for the
case in which the space 𝐿

𝑝,∞ is endowed with a different
norming. As we will see, this new version of restricted weak-
type estimates will be more convenient for applications (cf.
Remark 11 below). Namely, for 𝑝 > 1 put

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐿𝑝,∞(𝑀)

:= sup{
1

𝜇(𝐸)
1−1/𝑝

∫
𝐸

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 𝑑𝜇} , (9)

where the supremum is taken over all measurable 𝐸 ⊆ 𝑀

with 0 < 𝜇(𝐸) < ∞. Unfortunately, under these norms, we
have managed to prove sharp restricted bounds in the case
𝑝 ≥ 4 only (and we do not know the corresponding sharp
bounds for 1 < 𝑝 < 4). In analogy with the above defini-
tions, if 𝑔 is a discrete-time martingale, we let |||𝑔|||

𝑝,∞
=

sup
𝑛≥0

|||𝑔𝑛|||𝐿𝑝,∞(Ω).

Theorem 2. Let 𝑓 be a martingale taking values in [0, 1],
terminating at {0, 1}, and let 𝑔 be its transform by a predictable
sequence with values in [0, 1]. Then for any 𝑝 ≥ 4 one has

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑔

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑝,∞ ≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝. (10)

The constant 𝐶𝑝 is the best possible. It is already optimal in the
estimate

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨P𝐽𝜒𝐴

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐿𝑝,∞(0,1)

≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝(0,1), (11)

for the projections associated with the Haar system.

So, for 𝑝 ≥ 4 the best constant is the same for both norms
‖ ⋅ ‖𝑝,∞ and ||| ⋅ |||𝑝,∞.

All the results discussed above can be formulated in the
more general setting of continuous-time martingales. Fur-
thermore, instead of transforms with values in [0, 1], one can
work under the less restrictive assumption of nonsymmetric
differential subordination of martingales (for the necessary
definitions and the precise statement of our results, we refer
the reader to Section 2). This setting has the advantage of
being more convenient for applications, which constitute
the second half of the paper. Specifically, we will apply the
aforementioned martingale estimates in the study of the
corresponding bounds for Fourier multipliers. This will be
done in Sections 3 and 4.

2. A Martingale Inequality

2.1. Background and Main Results. Assume that (Ω,F,P)

is a complete probability space, equipped with (F𝑡)𝑡≥0, a
nondecreasing family of sub-𝜎-fields of F, such that F0

contains all the events of probability 0. Suppose that 𝑋, 𝑌
are two adapted real-valued martingales, whose paths are
right continuous and have limits from the left. The symbol
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[𝑋, 𝑌] will stand for the quadratic covariance process of
𝑋 and 𝑌 (see, e.g., Dellacherie and Meyer [9] for details).
Following Bañuelos and Wang [10] and Wang [11], we say
that 𝑌 is differentially subordinate to 𝑋, if the process
([𝑋,𝑋]𝑡 − [𝑌, 𝑌]𝑡)𝑡≥0 is nonnegative and nondecreasing as
a function of 𝑡. For example, assume that 𝑓 is a discrete-
time martingale and let 𝑔 denote its transform by a certain
predictable sequence Vwith values in [−1, 1]. Let us treat these
two sequences as continuous-time processes, via 𝑋𝑡 = 𝑓⌊𝑡⌋,
𝑌𝑡 = 𝑔⌊𝑡⌋, 𝑡 ≥ 0.Then the required condition on [𝑋,𝑋]−[𝑌, 𝑌]

is equivalent to saying that

󵄨󵄨󵄨󵄨𝑑𝑔𝑘
󵄨󵄨󵄨󵄨
2
≤

󵄨󵄨󵄨󵄨𝑑𝑓𝑘
󵄨󵄨󵄨󵄨
2
, 𝑘 = 0, 1, 2, . . . , (12)

which is the original definition of differential subordination
due toBurkholder [5, 12].Obviously, this condition is satisfied
for the above setting of martingale transforms.

As exhibited in [13, 14], martingales 𝑋, 𝑌 satisfying the
differential subordination arise naturally in the martingale
study of Fourier multipliers. In this paper, we will work with
pairs 𝑋, 𝑌 satisfying a slightly different condition:

([𝑋, 𝑌]𝑡 − [𝑌, 𝑌]𝑡)𝑡≥0 is nondecreasing and nonnegative

as a function of 𝑡,

(13)

which can be understood as “nonsymmetric differential
subordination.” For instance, this holds in the above setting
of martingale transforms, if we assume that the sequence V
takes values in [0, 1] (and hence the continuous-time setup
does form an extension of the discrete-time case described
in the previous section). Inequalities for such martingales
were studied by several authors: see, for example, Burkholder
[15], Choi [7], and the author [16, 17]. We refer the interested
reader to those papers and mention here only result, which
will be needed later. It was proven for martingale transforms
by Burkholder [15] and in the general continuous-time case
by the author in [17].Throughout, we use the notation ‖𝑋‖𝑝 =

sup
𝑡≥0

‖𝑋𝑡‖𝐿𝑝(Ω), ‖𝑋‖𝑝,∞ = sup
𝑡≥0

‖𝑋𝑡‖𝐿𝑝,∞(Ω), and |||𝑋|||𝑝,∞ =

sup
𝑡≥0

|||𝑋𝑡|||𝐿𝑝,∞(Ω), 1 ≤ 𝑝 ≤ ∞.

Theorem3. Let𝑋,𝑌 be two real-valuedmartingales satisfying
(13). Then for any 𝜆 > 0 one has

𝜆 sup
𝑡≥0

P (
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 ≥ 1) ≤ ‖𝑋‖1. (14)

For each 𝜆 the inequality is sharp. Therefore, ‖𝑌‖1,∞ ≤ ‖𝑋‖1
and the constant 1 cannot be improved.

We turn our attention to the formulation of the main
result of this section. We will use the notation

𝑃 (𝜆) = {
𝜆
−1 if 0 < 𝜆 ≤ 1,

𝑒
4−4𝜆 if 𝜆 > 1.

(15)

Theorem 4. Suppose that 𝑋 is a martingale taking values
in [0, 1] and 𝑌 is a real valued martingale such that (13) is
satisfied.

(i) For any 𝜆 > 0 one has

sup
𝑡≥0

P (
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 ≥ 𝜆) ≤ 𝑃 (𝜆) ‖𝑋‖1. (16)

The bound on the right-hand side of (16) is the best
possible for each 𝜆, even in the following version for the
Haar system: for any 𝐽 ⊆ N and 𝑓 : [0, 1] → [0, 1],

󵄨󵄨󵄨󵄨{𝑥 ∈ [0, 1] :
󵄨󵄨󵄨󵄨P𝐽𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ≥ 𝜆}
󵄨󵄨󵄨󵄨 ≤ 𝑃 (𝜆)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(0,1). (17)

(ii) For any 𝜆 ≥ 1 one has

4 sup
𝑡≥0

E(
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 − 𝜆 +
1

4
)
+

≤ 𝑃 (𝜆) ‖𝑋‖1. (18)

The bound on the right-hand side is the best possible
for each 𝜆, even in the following version for the Haar
system: for any 𝐽 ⊆ N and 𝑓 : [0, 1] → [0, 1],

4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑃𝐽𝑓 − 𝜆 +

1

4
)
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩1
≤ 𝑃 (𝜆)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(0,1). (19)

Some comments on the above statement are in order.
At the first glance, part (ii) may seem a little artificial, but
this is not the case. As we will see (consult Remark 11), the
inequality (18) is very convenient for our applications. The
second remark concerns the proof of Theorem 4. Namely,
the main difficulty lies in showing the assertion for 𝜆 > 1.
Indeed, when 𝜆 ≤ 1, then (16) is an immediate consequence
of (14), and its sharpness follows from simple examples.
Furthermore, having proved (18) for 𝜆 > 1, we deduce the
case 𝜆 = 1 by a standard limiting argument. Finally, note that
𝜒{|𝑦|≥𝜆} ≤ 4(|𝑦| − 𝜆 + 1/4)+, which implies that the inequality
(18) is stronger than (16). Putting all these facts together, we
see that we will be done if we establish the second estimate of
Theorem 4 in the case 𝜆 > 1 and prove the sharpness of (17)
for 𝜆 > 0.

2.2. Special Function and Their Properties. The proof of the
inequality (18) will be based on Burkholder’s method. This
technique reduces the problem of proving a given martingale
inequality to that of constructing a special function, which
possesses certain convexity and majorization properties.
For the detailed description of the approach, we refer the
interested reader to Burkholder’s survey [18] and to the recent
monograph [19] by the author.

The purpose of this subsection is to introduce special
functions corresponding to (18) and present their basic
properties, which will be needed later. We assume that 𝜆 > 1

is a fixed parameter. First, consider the following subsets of
[0, 1] × R:

𝐷1 = {(𝑥, 𝑦) :
1

2
𝑥 −

1

4
≤ 𝑦 ≤ 𝑥 −

1

4
, 𝑦 ≤

1

4
} ,

𝐷2 = {(𝑥, 𝑦) : 𝑥 −
1

4
< 𝑦 ≤ 𝑥 + 𝜆 − 1, 𝑥 ≤

1

2
} ,

𝐷3 = {(𝑥, 𝑦) :
1

4
≤ 𝑦 ≤ 𝜆 −

1

2
, 𝑥 >

1

2
} ,

𝐷4 = {(𝑥, 𝑦) : 𝑦 ≥ 𝜆 −
1

2
or 𝑦 ≥ 𝑥 + 𝜆 − 1} .

(20)
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Now we introduce a function 𝑈𝜆 by

𝑈𝜆 (𝑥, 𝑦) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑒
3−4𝜆

(4𝑦
2
− 4𝑦𝑥

+2𝑦 +
1

4
) if (𝑥, 𝑦) ∈ 𝐷1,

𝑥 exp (−4𝑥 + 4𝑦 − 4𝜆 + 4) if (𝑥, 𝑦) ∈ 𝐷2,

(1 − 𝑥) exp (4𝑦 − 4𝜆 + 2) if (𝑥, 𝑦) ∈ 𝐷3,

(𝑦 − 𝑥 − 𝜆) (4𝑦 − 4𝜆 + 3)

+5 (𝑦 − 𝜆) + 4 if (𝑥, 𝑦) ∈ 𝐷4

(21)

and extend it to the whole strip [0, 1] × R by the condition

𝑈𝜆 (𝑥, 𝑦) = 𝑈𝜆 (1 − 𝑥, −𝑦)

for 𝑥 ∈ [0, 1] , 𝑦 ∈ R.

(22)

Let us provide some information on this object. In what
follows, the symbol 𝐴𝑜 denotes the interior of a set 𝐴.

Lemma 5. The function 𝑈𝜆 enjoys the following properties.

(i) It is of class 𝐶1 on (0, 1) ×R and of class 𝐶∞ in𝐷
𝑜

1
,𝐷𝑜

2
,

𝐷
𝑜

3
, and 𝐷

𝑜

4
.

(ii) There is a Borel function 𝑐 : 𝐷
𝑜

1
∪ 𝐷

𝑜

2
∪ 𝐷

𝑜

3
∪ 𝐷

𝑜

4
→

[0,∞) with the following property: for any (𝑥, 𝑦) ∈

𝐷
𝑜

1
∪ 𝐷

𝑜

2
∪ 𝐷

𝑜

3
∪ 𝐷

𝑜

4
and any ℎ, 𝑘 ∈ R such that

|𝑥 + ℎ| ≤ 1,

𝑈𝜆𝑥𝑥 (𝑥, 𝑦) ℎ
2
+ 2𝑈𝜆𝑥𝑦 (𝑥, 𝑦) ℎ𝑘

+ 𝑈𝜆𝑦𝑦 (𝑥, 𝑦) 𝑘
2
≤ 𝑐 (𝑥, 𝑦) (𝑘

2
− ℎ𝑘) .

(23)

(iii) For any 𝑥 ∈ [0, 1] and 𝑦 ∈ R one has the majorization

𝑈𝜆 (𝑥, 𝑦) ≥ 4(
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 − 𝜆 +
1

4
)
+

. (24)

(iv) For any 𝑥 ∈ [0, 1] and 𝑦 ∈ [0, 𝑥] one has

𝑈𝜆 (𝑥, 𝑦) ≤ 𝑥𝑒
4−4𝜆

. (25)

Proof. (i) This is straightforward. The fact that 𝑈𝜆 is of class
𝐶
∞ on each𝐷

𝑜

𝑖
is evident, and to show that𝑈𝜆 is of class𝐶

1 in
the strip, one needs to check that the partial derivativesmatch
appropriately at the common boundaries of 𝐷1, 𝐷2, 𝐷3, and
𝐷4. We leave the necessary calculations to the reader.

(ii) If (𝑥, 𝑦) ∈ 𝐷
𝑜

1
, then the left-hand side of (23) equals

8𝑒
3−4𝜆

(𝑘
2
− ℎ𝑘), so we may take 𝑐(𝑥, 𝑦) = 8𝑒

3−4𝜆. If (𝑥, 𝑦)

belongs to the interior of𝐷2, the expression on the left of (23)
is equal to

16 (𝑥 −
1

2
) (𝑘 − ℎ)

2
𝑒
4𝑦−4𝑥−4𝜆+4

+ 8 (𝑘
2
− ℎ𝑘) 𝑒

4𝑦−4𝑥−4𝜆+4
.

(26)

But 𝑥 < 1/2, because (𝑥, 𝑦) ∈ 𝐷
𝑜

2
; therefore 𝑐(𝑥, 𝑦) =

8𝑒
4𝑦−4𝑥−4 satisfies the desired bound. Next, assume that (𝑥, 𝑦)

lies in 𝐷
𝑜

3
. We compute the left-hand side of (23) and obtain

16 (
1

2
− 𝑥) 𝑘

2
𝑒
4𝑦−4𝜆+2

+ 8 (ℎ
2
− ℎ𝑘) 𝑒

4𝑦−4𝜆+2
. (27)

This time we have 𝑥 > 1/2 and hence 𝑐(𝑥, 𝑦) = 8𝑒
4𝑦−4𝜆+2

works fine. Finally, if (𝑥, 𝑦) lies in the interior of 𝐷4, then

𝑈𝜆𝑥𝑥 (𝑥, 𝑦) ℎ
2
+ 2𝑈𝜆𝑥𝑦 (𝑥, 𝑦) ℎ𝑘

+ 𝑈𝜆𝑦𝑦 (𝑥, 𝑦) 𝑘
2
= 8 (𝑘

2
− ℎ𝑘) ,

(28)

so we may take 𝑐(𝑥, 𝑦) = 8.
Before we proceed, let us observe that, by (22), the

inequality (23) holds also in the interiors of the “reflected”
domains 𝐷󸀠

1
, 𝐷󸀠

2
, 𝐷󸀠

3
, and 𝐷

󸀠

4
given by

𝐷
󸀠

𝑖
= {(𝑥, 𝑦) : (1 − 𝑥, −𝑦) ∈ 𝐷𝑖} , (29)

with 𝑐 given by 𝑐(1 − 𝑥, −𝑦) = 𝑐(𝑥, 𝑦).
(iii) Directly from (i) and (ii), the function 𝑈𝜆 has the

following property: for a fixed𝑦, the function𝑥 󳨃→ 𝑈𝜆(𝑥, 𝑦) is
concave on [0, 1] (simply plug 𝑘 = 0 in (23)). Since the right-
hand side of (24) does not depend on 𝑥, it suffices to verify
the majorization for 𝑥 ∈ {0, 1} only. Furthermore, because
of (22), we may restrict ourselves to two cases 𝑥 = 0 and
𝑦 ≥ −1/4; 𝑥 = 1 and𝑦 ≥ 1/4. If 𝑥 = 0 and−1/4 ≤ 𝑦 ≤ 𝜆−1/4,
then the right-hand side vanishes, while the left-hand side is
nonnegative. If 𝑥 = 0 and 𝑦 > 𝜆 − 1/4, then we must prove
that 4(𝑦 − 𝜆 + 1)

2
≥ 4(𝑦 − 𝜆 + 1/4), which is equivalent to the

obvious estimate:

(𝑦 − 𝜆)
2
+ (𝑦 − 𝜆) +

3

4
≥ 0. (30)

Next, if 𝑥 = 1 and 1/4 ≤ 𝑦 ≤ 𝜆 − 1/4, then both sides of
(24) are equal to 0. Finally, if 𝑥 = 1 and 𝑦 ≥ 𝜆 − 1/4, the
majorization reads

4(𝑦 − 𝜆 +
1

2
)

2

≥ 4 (𝑦 − 𝜆 +
1

4
) , (31)

or, equivalently, (𝑦 − 𝜆)
2
≥ 0.

(iv) Since 𝑈𝜆(0, 0) = 0, we can rewrite the bound in the
form

𝑈𝜆 (𝑥, 𝑦) − 𝑈𝜆 (0, 0) ≤ 𝑥𝑒
4−4𝜆

. (32)

It follows from (i) and (ii) that, for any 𝑎 ∈ [0, 1], the
function 𝜉𝑎 : 𝑥 󳨃→ 𝑈𝜆(𝑥, 𝑎𝑥) is concave (if we put 𝑘 = 𝑎ℎ

in (23), the right-hand side of this bound is nonpositive).
Consequently, wewill be done if we show that 𝜉󸀠

𝑎
(0+), the one-

sided derivative of 𝜉𝑎 at 0, does not exceed 𝑒
4−4𝜆. But this is

simple: we have

𝜉
󸀠

𝑎
(0+) = lim

𝑑↓0

𝑈𝜆 (𝑑, 𝑎𝑑)

𝑑

= lim
𝑑↓0

𝑒
4𝑎𝑑−4𝑑−4𝜆+4

= 𝑒
4−4𝜆

.

(33)

This completes the proof of the lemma.
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2.3. Proof of (18) for 𝜆 > 1. It is convenient to split the
reasoning into a few separate parts.

Step 1 (a mollification argument). The proof of (18) rests on
Itô’s formula. Since 𝑈𝜆 is not of class 𝐶

2, this enforces us to
modify𝑈𝜆 so that it has the required smoothness. Consider a
𝐶
∞ function 𝑔 : R2

→ [0,∞), supported on the unit ball of
R2 and satisfying ∫

R2
𝑔 = 1. For a given 𝛿 ∈ (0, 1/4), let 𝑈(𝛿)

𝜆

be defined on (𝛿, 1 − 𝛿) × R by the convolution

𝑈
(𝛿)

𝜆
(𝑥, 𝑦) = ∫

[−1,1]
2

𝑈𝜆 (𝑥 + 𝛿𝑢, 𝑦 + 𝛿V) 𝑔 (𝑢, V) 𝑑𝑢 𝑑V.

(34)

The function 𝑈
(𝛿)

𝜆
is of class 𝐶

∞ in the interior of its domain
and inherits the crucial properties from𝑈𝜆. Namely, we have
the following version of (24):

𝑈
(𝛿)

𝜆
(𝑥, 𝑦) ≥ 4(

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 − 𝜆 +

1

4
− 𝛿)

+

, (35)

for all (𝑥, 𝑦) ∈ (𝛿, 1 − 𝛿) × R. Next, by Lemma 5 (i) and the
integration by parts, we get

𝑈
(𝛿)

𝜆𝑥𝑥
(𝑥, 𝑦) = ∫

[−1,1]
2

𝑈𝜆𝑥𝑥 (𝑥 + 𝛿𝑢, 𝑦 + 𝛿V) 𝑔 (𝑢, V) 𝑑𝑢 𝑑V.

(36)

Similar identities hold for 𝑈
(𝛿)

𝜆𝑥𝑦
and 𝑈

(𝛿)

𝜆𝑦𝑦
, so we see that 𝑈(𝛿)

𝜆

satisfies (23) for all (𝑥, 𝑦) ∈ (𝛿, 1 − 𝛿), with

𝑐
(𝛿)

(𝑥, 𝑦) = ∫
[−1,1]

2

𝑐 (𝑥 + 𝛿𝑢, 𝑦 + 𝛿V) 𝑔 (𝑢, V) 𝑑𝑢 𝑑V ≥ 0

(37)

(the function 𝑐 constructed above is locally bounded, so there
is no problem with the integration).

Step 2 (application of Itô’s formula). Takemartingales𝑋,𝑌 as
in the statement and consider the processes𝑋𝑡 = 𝛿 + 𝑋𝑡 ⋅ (1−

2𝛿),𝑌𝑡 = 𝑌𝑡 ⋅(1−2𝛿), and𝑍𝑡 = (𝑋𝑡, 𝑌𝑡) for 𝑡 ≥ 0. Observe that
the pair (𝑋, 𝑌) still satisfies (13). Furthermore, 𝑍 takes values
in the strip [𝛿, 1 − 𝛿] ×R, so an application of Itô’s formula to
the process (𝑈(𝛿)

𝜆
(𝑍𝑡))𝑡≥0 yields

𝑈
(𝛿)

𝜆
(𝑍𝑡) = 𝑈

(𝛿)

𝜆
(𝑍0) + 𝐼1 +

𝐼2

2
+ 𝐼3, (38)

where

𝐼1 = ∫

𝑡

0+

𝑈
(𝛿)

𝜆𝑥
(𝑍𝑠−) 𝑑𝑋𝑠 + ∫

𝑡

0+

𝑈
(𝛿)

𝜆𝑦
(𝑍𝑠−) 𝑑𝑌𝑠,

𝐼2 = ∫

𝑡

0+

𝑈
(𝛿)

𝜆𝑥𝑥
(𝑍𝑠−) 𝑑[𝑋,𝑋]

𝑐

𝑠

+ 2∫

𝑡

0+

𝑈
(𝛿)

𝜆𝑥𝑦
(𝑍𝑠−) 𝑑[𝑋, 𝑌]

𝑐

𝑠

+ ∫

𝑡

0+

𝑈
(𝛿)

𝜆𝑦𝑦
(𝑍𝑠−) 𝑑[𝑌, 𝑌]

𝑐

𝑠
,

𝐼3 = ∑

0<𝑠≤𝑡

[𝑈
(𝛿)

𝜆
(𝑍𝑠) − 𝑈

(𝛿)

𝜆
(𝑍𝑠−)

−𝑈
(𝛿)

𝜆𝑥
(𝑍𝑠−) Δ𝑋𝑠 − 𝑈

(𝛿)

𝜆𝑦
(𝑍𝑠−) Δ𝑌𝑠] .

(39)

Here Δ𝑋𝑠 = 𝑋𝑠 − 𝑋𝑠− denotes the jump of 𝑋 at time 𝑠, and
[𝑋,𝑋]

𝑐 is the unique continuous part of the bracket [𝑋,𝑋]

(cf. Dellacherie and Meyer [9]). Let us analyze each of the
terms 𝐼1–𝐼3 separately. We have E𝐼1 = 0, by the properties
of stochastic integrals. By straightforward approximation
argument (see, e.g., Wang [11]), the inequality (23) and the
domination (13) imply that 𝐼2 ≤ 0. Finally, each term in the
sum 𝐼3 is also nonpositive. To see this, observe first that for
each 𝜔 we have

󵄨󵄨󵄨󵄨󵄨
Δ𝑌𝑠 (𝜔)

󵄨󵄨󵄨󵄨󵄨

2

≤ Δ𝑋𝑠 (𝜔) Δ𝑌𝑠 (𝜔) , (40)

since otherwise the condition (13) would not be satisfied.
Now, applying the mean-value property, we get that

𝑈
(𝛿)

𝜆
(𝑍𝑠) − 𝑈

(𝛿)

𝜆
(𝑍𝑠−)

− 𝑈
(𝛿)

𝜆𝑥
(𝑍𝑠−) Δ𝑋𝑠 − 𝑈

(𝛿)

𝜆𝑦
(𝑍𝑠−) Δ𝑌𝑠

=
1

2
[𝑈

(𝛿)

𝜆𝑥𝑥
(𝜉)

󵄨󵄨󵄨󵄨󵄨
Δ𝑋𝑠(𝜔)

󵄨󵄨󵄨󵄨󵄨

2

+ 2𝑈
(𝛿)

𝜆𝑥𝑦
(𝜉) Δ𝑋𝑠 (𝜔) Δ𝑌𝑠 (𝜔)

+𝑈
(𝛿)

𝜆𝑦𝑦
(𝜉)

󵄨󵄨󵄨󵄨󵄨
Δ𝑌𝑠 (𝜔)

󵄨󵄨󵄨󵄨󵄨

2

] ,

(41)

where 𝜉 is a certain point in (𝛿, 1 − 𝛿) × R. Using (23),
this can be bounded from above by 𝑐

(𝛿)
(𝜉)[|Δ𝑌𝑠(𝜔)|

2
−

Δ𝑋𝑠(𝜔)Δ𝑌𝑠(𝜔)]. Thus (40) gives 𝐼3 ≤ 0.

Step 3 (the final part). If we combine all the above facts and
take expectation of both sides of (38), we obtain the estimate
E𝑈

(𝛿)

𝜆
(𝑍𝑡) ≤ E𝑈

(𝛿)

𝜆
(𝑍0). By (35), this implies 4E(|𝑌𝑡| − 𝜆 +

1/4 − 𝛿)+ ≤ E𝑈
(𝛿)

𝜆
(𝑍0). If we let 𝛿 → 0, then 𝑌𝑡 → 𝑌𝑡,

𝑍0 → (𝑋0, 𝑌0) and 𝑈
(𝛿)

𝜆
(𝑍0) → 𝑈𝜆(𝑋0, 𝑌0), so we get

4E(
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 − 𝜆 +
1

4
)
+

≤ E𝑈𝜆 (𝑋0, 𝑌0) , (42)

by Fatou’s lemma and Lebesgue’s dominated convergence
theorem (we have |𝑍0| ≤ |𝑋0| + |𝑌0| ≤ 2 for all 𝛿). It
remains to use (25): by (13), we have 𝑌0 ∈ [0, 𝑋0] and hence
E𝑈𝜆(𝑋0, 𝑌0) ≤ 𝑃(𝜆)E𝑋0 = 𝑃(𝜆)‖𝑋‖1. Taking the supremum
over 𝑡 ≥ 0 completes the proof.

2.4. Proofs of Inequalities of Theorems 1 and 2. We start with
the following important auxiliary fact.

Corollary 6. Suppose that 𝑋 is a martingale taking values in
[0, 1] and let𝑌 be a real-valuedmartingale such that (13) holds
true. Then for any 𝐸 ∈ F, 𝑡 ≥ 0, and 𝜆 ≥ 3/4 one has

E
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 𝜒𝐸 ≤
1

4
𝑒
3−4𝜆

E𝑋0 + 𝜆P (𝐸) . (43)
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Proof. We have 𝐸 = 𝐸
+
∪ 𝐸

−, where 𝐸
+

= 𝐸 ∩ {|𝑌𝑡| ≥ 𝜆} and
𝐸
−
= 𝐸 ∩ {|𝑌𝑡| < 𝜆}. By (18),

4E (
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 − 𝜆) 𝜒𝐸+ ≤ 4E(
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 − (𝜆 +
1

4
) +

1

4
)
+

≤ 𝑒
4−4(𝜆+1/4)

E𝑋0 = 𝑒
3−4𝜆

E𝑋0

(44)

and, obviously, 4E(|𝑌𝑡| − 𝜆)𝜒𝐸− ≤ 0. Adding the two inequal-
ities above yields the claim.

Equipped with the above statement, we turn toTheorems
1 and 2.

Proof of (7) and (10). We prove these estimates in the more
general continuous-time setting described above. Suppose
that 𝑋 is a martingale taking values in [0, 1] and terminating
at {0, 1}, and let 𝑌 be a real-valued martingale such that (13)
is satisfied. Multiplying both sides of (16) by 𝜆

𝑝 gives

𝜆
𝑝 sup

𝑡≥0

P (
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 ≥ 𝜆) ≤ {
𝜆
𝑝−1

‖𝑋‖1 if 𝜆 ≤ 1,

𝜆
𝑝
𝑒
4−4𝜆

‖𝑋‖1 if 𝜆 > 1.
(45)

Let us optimize the right-hand side over 𝜆. If 𝑝 < 4, then the
maximal value is attained at 𝜆 = 1, and we get

‖𝑌‖
𝑝

𝑝,∞
≤ ‖𝑋‖1 = ‖𝑋‖

𝑝

𝑝
, (46)

where in the last passage we have used the fact that
lim𝑡→∞𝑋𝑡 ∈ {0, 1}. On the other hand, if 𝑝 ≥ 4, then
the right-hand side of (45) is maximized for the choice 𝜆 =

𝑝/4. Substituting this value of 𝜆 gives ‖𝑌‖
𝑝

𝑝,∞
≤ 𝐶

𝑝

𝑝‖𝑋‖1 =

𝐶
𝑝

𝑝‖𝑋‖
𝑝

𝑝
, and hence (7) follows. The inequality (10) can be

proven in a similar manner, with an additional help of (43).
Namely, fix appropriate 𝑋, 𝑌, and 𝐸 ∈ F of positive
probability. Assume first that P(𝐸) ≤ ‖𝑋‖1 and optimize the
right-hand side of (43) over 𝜆. A straightforward analysis of
the derivative shows that the maximum is attained for 𝜆 =

3/4 + (1/4) log(‖𝑋‖1/P(𝐸)) ≥ 3/4. Plugging this value of 𝜆
gives the bound

E
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 𝜒𝐸 ≤
1

4
P (𝐸) + (

3

4
+

1

4
log ‖𝑋‖1

P (𝐸)
)P (𝐸)

= P(𝐸)
1/𝑞

[P(𝐸)
1/𝑝

+
1

4
P(𝐸)

1/𝑝 log ‖𝑋‖1

P (𝐸)
]

(47)

(here 𝑞 = 𝑝/(𝑝 − 1) is the harmonic conjugate to 𝑝). But the
expression in the square brackets, considered as a function
of P(𝐸), does not exceed 𝐶𝑝(‖𝑋‖1)

1/𝑝. Thus, it suffices to
divide by P(𝐸)

1/𝑞, take the supremum over 𝐸, and note
that ‖𝑋‖1 = ‖𝑋‖

𝑝

𝑝
to get the desired bound. It remains to

consider the case when P(𝐸) > ‖𝑋‖1. An application of
Schwarz inequality, Burkholder’s bound ‖𝑌‖2 ≤ ‖𝑋‖2 (which
follows from the chain E|𝑌𝑡|

2
= E[𝑌, 𝑌]𝑡 ≤ E[𝑋, 𝑌]𝑡 ≤

(E[𝑌, 𝑌]𝑡)
1/2

(E[𝑋,𝑋]𝑡)
1/2

≤ ‖𝑌‖2‖𝑋‖2), and the fact that 𝑋

terminates at the set {0, 1} imply

E
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 𝜒𝐸 ≤
󵄩󵄩󵄩󵄩𝑌𝑡

󵄩󵄩󵄩󵄩2P(𝐸)
1/2

≤ ‖𝑋‖2P(𝐸)
1/2

= ‖𝑋‖
1/2

1
P(𝐸)

1/2

= ‖𝑋‖
1/2

1
P(𝐸)

1/2
.

(48)

But we have ‖𝑋‖
1/2

1
P(𝐸)

1/2
≤ ‖𝑋‖

1/𝑝

1
P(𝐸)

1/𝑞: indeed, this can
be rewritten in the form ‖𝑋‖

1/2−1/𝑝

1
≤ P(𝐸)

1/𝑞−1/2 and follows
from the equality 1/2−1/𝑝 = 1/𝑞−1/2 and the bounds𝑝 > 4,
P(𝐸) > ‖𝑋‖1. Combining this with the above estimate, the
inequality (𝑝/4)𝑒

(4−𝑝)/𝑝
≥ 1, and the equation ‖𝑋‖1 = ‖𝑋‖

𝑝

𝑝
,

give

E
󵄨󵄨󵄨󵄨𝑌𝑡

󵄨󵄨󵄨󵄨 𝜒𝐸 ≤ 𝐶𝑝‖𝑋‖𝑝P(𝐸)
1/𝑞

. (49)

Now (10) follows immediately.

2.5. Sharpness of (8), (11), (17), and (19). By an application
of the results of Burkholder (see Section 10 in [12]) and
Marcinkiewicz [3], the best constants in the inequalities for
the Haar system are the same as those in the corresponding
estimates for discrete-time martingales (roughly speaking,
any martingale pair (𝑓, 𝑔), where 𝑔 is a transform of 𝑓, can
be appropriately embedded into a pair consisting of a dyadic
martingale and its transform). This is also closely related to
the equality 𝑐𝑝 (2) = 𝑐

󸀠

𝑝
(3), which we have discussed at the

beginning of the paper. Thus, we will be done if we provide
the construction of appropriate martingales.

We start from showing that (17) and (19) are sharp.
Assume first that 𝜆 ≤ 1, fix 𝑤 ∈ (0, 𝜆), and define the pair
(𝑓, 𝑔) by the following conditions:

(i) 𝑓 = 𝑔,
(ii) 𝑓0 ≡ 𝑤 ∈ (0, 𝜆),
(iii) 𝑓1 = 𝑓2 = ⋅ ⋅ ⋅ is a random variable satisfying

P (𝑓1 = 0) = 1 −
𝑤

𝜆
, P (𝑓1 = 𝜆) =

𝑤

𝜆
. (50)

Then we easily see that P(|𝑔1| ≥ 𝜆) = 𝑤/𝜆 = 𝑃(𝜆)‖𝑓‖
1
.

We turn to the more difficult case 𝜆 > 1. As we have
already noted, (19) is stronger than (17), so it suffices to focus
on the latter estimate. Let 𝑤 ∈ (0, 1/2) be a fixed number
and let 𝛿 = (𝜆 − 1)/𝑁, where 𝑁 is a large positive integer.
Consider a sequence (𝜉𝑛)

2𝑁+1

𝑛=1
of independent mean-zero

random variables with the distribution uniquely determined
by the following conditions.

(i) 𝜉1 takes values in {−𝑤, 𝛿 − 𝑤 + 1/2}.
(ii) For 𝑛 = 1, 2, . . . , 𝑁, 𝜉2𝑛 takes values in the set

{−𝛿, 1/2 − 𝛿}.
(iii) For 𝑛 = 1, 2, . . . , 𝑁 − 1, 𝜉2𝑛+1 takes values in the set

{−1/2, 𝛿}.
(iv) 𝜉2𝑁+1 takes values ±1/2.

Next, let 𝜏 = inf{𝑛 : 𝑤 + 𝜉1 + 𝜉2 + ⋅ ⋅ ⋅ + 𝜉𝑛 ∈ {0, 1}}, with
the convention inf 0 = ∞. It is easy to check that 𝜏 is an
almost surely finite stopping time (with respect to the natural
filtration of 𝜉). Since 𝜉𝑛 are centered, the process

𝑓 = (𝑓𝑛)
2𝑁+1

𝑛=0
= (𝑤 + 𝜉1 + 𝜉2 + ⋅ ⋅ ⋅ + 𝜉𝜏∧𝑛)

2𝑁+1

𝑛=0
(51)

is a martingale. Let 𝑔 denote the transform of 𝑓 by the
deterministic sequence (1, 1, 0, 1, 0, 1, 0, . . .). To gain some
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intuition about (𝑓, 𝑔), let us take a look at its dynamics. The
pair starts from the point (𝑤, 𝑤) and, at the first move, it goes
to (0, 0) or to (1/2 + 𝛿, 1/2 + 𝛿). If it went to (0, 0), it stays
there forever; if it jumped to (1/2 + 𝛿, 1/2 + 𝛿), then it moves
horizontally either to (1, 1/2 + 𝛿) (and stops) or to (1/2, 1/2 +

𝛿). If the latter possibility occurs, the movement continues:
the pair goes to (0, 𝛿) (and terminates) or to (1/2+𝛿, 1/2+2𝛿).
In the latter case, it moves horizontally to (1, 1/2 + 2𝛿) or to
(1/2, 1/2 + 2𝛿) and so on. During the first 2𝑁 steps, the pair
either hits one of the lines 𝑥 = 0, 𝑥 = 1 (and stops) or visits
the point (1/2, 𝜆 − 1/2) on 2𝑁th step. If the latter takes place,
then (𝑓, 𝑔) jumps to (0, 𝜆 − 1) or to (1, 𝜆).

Directly from the above analysis, we see that 𝑓 takes
values in [0, 1] and terminates at {0, 1}, and

P (
󵄨󵄨󵄨󵄨𝑔2𝑁+1

󵄨󵄨󵄨󵄨 ≥ 𝜆)

= P (𝜉1 > 0, 𝜉2 < 0, 𝜉3 > 0,

𝜉4 < 0, . . . , 𝜉2𝑁 < 0, 𝜉2𝑁+1 > 0)

=
𝑤

1 + 2𝛿
⋅ (

1/2 − 𝛿

1/2
)

𝑁

(
1/2

1/2 + 𝛿
)

𝑁−1

⋅
1

2

=
𝑤

1 + 2𝛿
(1 − 2𝛿)

𝑁
(1 −

2𝛿

1 + 2𝛿
)

𝑁−1

.

(52)

However, recall that 𝛿 = (𝜆−1)/𝑁.Therefore, if we let𝑁 go to
infinity, the latter expression converges to𝑤𝑒

4−4𝜆. This shows
that the constant 𝑃(𝜆) cannot be replaced in (17) by a smaller
number.

The examples analyzed above can be also used to prove
the sharpness of (8) and (11). First, suppose that 𝑝 ∈ [1, 4]

and consider the above example for 𝜆 = 1. Then ‖𝑔‖
𝑝

𝑝,∞
≥

P(|𝑔1| ≥ 1) = ‖𝑓‖
1

= ‖𝑓‖
𝑝

𝑝
and hence 𝐶𝑝 = 1 is the best in

(8). On the other hand, if 𝑝 > 4, we take the above example
corresponding to 𝜆 = 𝑝/4 and a large 𝑁. Then

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
𝑝

𝑝,∞
≥ 𝜆

𝑝
P (

󵄨󵄨󵄨󵄨𝑔2𝑁+1
󵄨󵄨󵄨󵄨 ≥ 𝜆)

𝑁→∞

󳨀󳨀󳨀󳨀󳨀→ 𝜆
𝑝
𝑒
4−4𝜆

𝑤

= 𝐶
𝑝

𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1 = 𝐶

𝑝

𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑝

𝑝

(53)

and hence 𝐶𝑝 cannot be replaced in (8) by a smaller number.
This also proves the sharpness of (11), since this bound is
stronger than (8) (we easily check that ‖𝑓‖

𝑝,∞
≤ |||𝑓|||

𝑝,∞

for all 𝑓 ∈ 𝐿
𝑝,∞).

3. Applications to Fourier Multipliers

For the sake of convenience, we have split this section
into three parts. The first of them contains the necessary
definitions, an overview of related facts from the literature
and the description of our contribution. The second sub-
section explains very briefly the martingale representation
of a certain class of Fourier multipliers, which will be of
importance to us; the material is taken from [13, 14], and we
have included it here for completeness. The final subsection
contains the proof of our main result.

3.1. Background, Notation and Results. It is well known (cf.
[10, 13, 14, 20–23] and numerous other papers) that the
martingale theory forms an efficient tool to obtain various
bounds for many important singular integrals and Fourier
multipliers. Recall that, for any bounded function𝑚 : R𝑑

→

C, there is a unique bounded linear operator 𝑇𝑚 on 𝐿
2
(R𝑑

),
called the Fourier multiplier with the symbol 𝑚, given by the
equality 𝑇𝑚𝑓 = 𝑚𝑓. The norm of 𝑇𝑚 on 𝐿

2
(R𝑑

) is equal
to ‖𝑚‖𝐿∞(R𝑑) and a classical problem of harmonic analysis is
to study/characterize those 𝑚, for which the corresponding
Fourier multiplier extends to a bounded linear operator on
𝐿
𝑝
(R𝑑

), 1 < 𝑝 < ∞.This question ismotivated by the analysis
of the classical example, the collection of Riesz transforms
{𝑅𝑗}

𝑑

𝑗=1
on R𝑑 (see Stein [24]). Here, for any 𝑗, the transform

𝑅𝑗 is a Fouriermultiplier corresponding to the symbol𝑚(𝜉) =

−𝑖𝜉𝑗/|𝜉|, 𝜉 ̸= 0. An alternative definition of 𝑅𝑗 involves the use
of singular integrals:

𝑅𝑗𝑓 (𝑥) =
Γ ((𝑑 + 1) /2)

𝜋(𝑑+1)/2
p.v.∫

R𝑑

𝑥𝑗 − 𝑦𝑗

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑑+1

𝑓 (𝑦) 𝑑𝑦,

𝑗 = 1, 2, . . . , 𝑑.

(54)

It is well known that singular integral operators play a dis-
tinguished role in the theory of partial differential equations
and have been used, in particular, in the study of the higher
integrability of the gradient of weak solutions. The exact
information on the size of such operators (e.g., on the 𝑝-
norms) provides the insight into the degrees of improved
regularity and other geometric properties of solutions and
their gradients. This gives rise to another classical problem
for Fouriermultipliers: for a given𝑚, provide tight bounds for
the size of the multiplier 𝑇𝑚 in terms of some characteristics
of the symbol.

We will extend the aforementioned restricted weak-type
estimates to this new setting. We will consider a certain
subclass of symbols which are particularly convenient from
the probabilistic point of view. Namely, they can be obtained
by the modulation of jumps of certain Lévy processes. This
class has appeared for the first time in the papers by Bañuelos
and Bogdan [13] and Bañuelos et al. [14]. To describe it, let ]
be a Lévymeasure onR𝑑, that is, a nonnegative Borelmeasure
on R𝑑 such that ]({0}) = 0, and

∫
R𝑑

min {|𝑥|
2
, 1} ] (𝑑𝑥) < ∞. (55)

Assume further that 𝜇 is a finite Borel measure on the unit
sphere S of R𝑑 and fix two Borel functions 𝜙 on R𝑑 and 𝜓

on S which take values in the unit ball of C. We define the
associated multiplier 𝑚 = 𝑚𝜙,𝜓,𝜇,] on R𝑑 by

𝑚(𝜉) = (
1

2
∫
S

⟨𝜉, 𝜃⟩
2
𝜓 (𝜃) 𝜇 (𝑑𝜃)

+∫
R𝑑

[1 − cos ⟨𝜉, 𝑥⟩] 𝜙 (𝑥) ] (𝑑𝑥))
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× (
1

2
∫
S

⟨𝜉, 𝜃⟩
2
𝜇 (𝑑𝜃)

+∫
R𝑑

[1 − cos ⟨𝜉, 𝑥⟩] ] (𝑑𝑥))

−1

(56)

if the denominator is not 0, and 𝑚(𝜉) = 0 otherwise.
Here ⟨⋅, ⋅⟩ stands for the scalar product in R𝑑. This class
includesmany important examples, including the real and the
imaginary parts of Beurling-Ahlfors operator (cf. [13, 14]).We
will only present here one type of multipliers, which will be
of importance later. Pick a proper subset 𝐽 of {1, 2, . . . , 𝑑} and
take 𝜇 = 𝛿𝑒1

+ 𝛿𝑒2
+ ⋅ ⋅ ⋅ + 𝛿𝑒𝑑

, ] = 0, and 𝜓(𝑒𝑗) = 𝜒𝐽(𝑗),
𝑗 = 1, 2, . . . , 𝑑. Here 𝑒1, 𝑒2, . . . , 𝑒𝑑 are the versors in R𝑑. This
choice of parameters gives the operator ∑

𝑗∈𝐽
𝑅
2

𝑗
on R𝑑.

One of the principal results of [14] is the following 𝐿
𝑝

estimate (consult also the earlier paper [25] of Nazarov and
Volberg which was devoted to the version for Beurling-
Ahlfors operator).

Theorem 7. Let 1 < 𝑝 < ∞ and let 𝑚 = 𝑚𝜙,𝜓,𝜇,] be given by
(56). Then for any 𝑓 ∈ 𝐿

𝑝
(R𝑑

) one has
󵄩󵄩󵄩󵄩𝑇𝑚𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑) ≤ (𝑝
∗
− 1)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑), (57)

where 𝑝
∗
= max{𝑝, 𝑝/(𝑝 − 1)}.

It turns out that the constant𝑝∗−1 is the best possible: see
Geiss et al. [22] or Bañuelos and Osȩkowski [26] for details.

Our work will concern a certain subclass of (56), cor-
responding to those 𝜙 and 𝜓, which take values in [0, 1].
There are many interesting examples of this type (cf. [26]);
for instance the operator ∑

𝑗∈𝐽
𝑅
2

𝑗
introduced above is of this

form. We will prove the following result.

Theorem 8. Suppose that 𝑚 is a symbol given by (56), where
𝜙 and 𝜓 are assumed to take values in [0, 1]. Then for any 4 ≤

𝑝 < ∞ and any measurable 𝐴 ⊂ R𝑑 with |𝐴| < ∞,
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑇𝑚𝜒𝐴

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐿𝑝,∞(R𝑑) ≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑). (58)

The inequality is sharp. More precisely, for any 4 ≤ 𝑝 < ∞,
any 𝐶 < 𝐶𝑝, any 𝑑 ≥ 2, and any proper subset 𝐽 of {1, 2, . . . , 𝑑}
there is 𝐴 ⊂ R𝑑 of finite measure such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑗∈𝐽

𝑅
2

𝑗
𝜒𝐴

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐿𝑝,∞(R𝑑)

> 𝐶
󵄩󵄩󵄩󵄩𝜒𝐴

󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑). (59)

Following Stein andWeiss [27], we can give the following
application of the above result. Let 𝑇𝑚 be a Fourier multiplier
as in the above statement. Then for any real-valued function
𝑓 ∈ 𝐿

𝑝,1
(R𝑑

), 𝑝 ≥ 4, we have

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑇𝑚𝑓

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐿𝑝,∞(R𝑑) ≤ 2

−1−1/𝑝
𝑒
(2−𝑝)/2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,1(R𝑑). (60)

To see this, assume first that 𝑓 = ∑
𝑁

𝑗=1
𝑎𝑗𝜒𝐸𝑗

, where 𝑎1 > 𝑎2 >

⋅ ⋅ ⋅ > 𝑎𝑁 > 0 and 𝐸𝑗 are pairwise disjoint subsets of R
𝑑 of

finite measure. Let 𝐹0 = 0 and 𝐹𝑗 = 𝐸1 ∪ 𝐸2 ∪ ⋅ ⋅ ⋅ ∪ 𝐸𝑗, 𝑗 =

1, 2, . . . , 𝑁.Then𝑓 can be rewritten in the form𝑓 = ∑
𝑁

𝑗=1
(𝑎𝑗−

𝑎𝑗+1)𝜒𝐹𝑗
, where 𝑎𝑁+1 = 0, and

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑇𝑚𝑓

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐿𝑝,∞(R𝑑) ≤

𝑁

∑

𝑗=1

(𝑎𝑗 − 𝑎𝑗+1)
󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝑇𝑚𝜒𝐹𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨𝐿𝑝,∞(R𝑑)

≤
𝑝

4
𝑒
(4−𝑝)/𝑝

𝑁

∑

𝑗=1

(𝑎𝑗 − 𝑎𝑗+1)
󵄩󵄩󵄩󵄩󵄩󵄩
𝜒𝐹𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝑝

=
𝑝

4
𝑒
(4−𝑝)/𝑝

𝑁−1

∑

𝑗=0

𝑎𝑗+1 (
󵄨󵄨󵄨󵄨󵄨
𝐹𝑗+1

󵄨󵄨󵄨󵄨󵄨

1/𝑝

−
󵄨󵄨󵄨󵄨󵄨
𝐹𝑗

󵄨󵄨󵄨󵄨󵄨

1/𝑝

)

=
1

4
𝑒
(4−𝑝)/𝑝󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,1(R𝑑).

(61)

By standard approximation, the above inequality extends to
any nonnegative𝑓 ∈ 𝐿

𝑝,∞
(R𝑑

). To pass to general real-valued
functions, it suffices to use the decomposition𝑓 = 𝑓+−𝑓− and
the inequality ‖𝑓+‖𝐿𝑝,1(R𝑑) + ‖𝑓−‖𝐿𝑝,1(R𝑑) ≤ 2

1−1/𝑝
‖𝑓‖

𝐿𝑝,1(R𝑑).

3.2. The Martingale Representation of the Fourier Multipliers
(56). By the reasoning from [14], we are allowed to assume
that the Lévy measure ] satisfies the symmetry condition
](𝐵) = ](−𝐵) for all Borel subsets 𝐵 of R𝑑. To be more
precise, for any ] there is a symmetric ] which leads to the
same multiplier. Furthermore, assume for a while that |]| =

](R𝑑
) is finite and nonzero, and introduce the probability

measure ]̃ = ]/|]|. Consider the independent random
variables 𝑇−1, 𝑇−2, . . . , 𝑍−1, 𝑍−2, . . . such that, for each 𝑛 =

−1, −2, . . . , 𝑇𝑛 has exponential distributionwith parameter |]|
and 𝑍𝑛 takes values inR𝑑 and has ]̃ as the distribution. Next,
put 𝑆𝑛 = −(𝑇−1 + 𝑇−2 + ⋅ ⋅ ⋅ + 𝑇𝑛) for 𝑛 = −1, −2, . . . and let

𝑋𝑠,𝑡 = ∑

𝑠<𝑆𝑗≤𝑡

𝑍𝑗, 𝑋𝑠,𝑡− = ∑

𝑠<𝑆𝑗<𝑡

𝑍𝑗,

Δ𝑋𝑠,𝑡 = 𝑋𝑠,𝑡 − 𝑋𝑠,𝑡−,

(62)

for −∞ < 𝑠 ≤ 𝑡 ≤ 0. Next, if 𝑓 ∈ 𝐿
∞

(R𝑑
) is a given function,

define its parabolic extensionU𝑓 to (−∞, 0] × R𝑑 by

U𝑓 (𝑠, 𝑥) = E𝑓 (𝑥 + 𝑋𝑠,0) . (63)

Now, fix 𝑥 ∈ R𝑑, 𝑠 < 0 and let 𝑓, 𝜙 ∈ 𝐿
∞

(R𝑑
). We introduce

the processes 𝐹 = (𝐹
𝑥,𝑠,𝑓

𝑡
)𝑠≤𝑡≤0 and 𝐺 = (𝐺

𝑥,𝑠,𝑓,𝜙

𝑡
)𝑠≤𝑡≤0 by

𝐹𝑡 = U𝑓 (𝑡, 𝑥 + 𝑋𝑠,𝑡) ,

𝐺𝑡 = ∑

𝑠<𝑢≤𝑡

[Δ𝐹𝑢 ⋅ 𝜙 (Δ𝑋𝑠,𝑢)]

− ∫

𝑡

𝑠

∫
R𝑑

[U𝑓 (V, 𝑥 + 𝑋𝑠,V− + 𝑧)

−U𝑓 (V, 𝑥 + 𝑋𝑠,V−)] 𝜙 (𝑧) ] (𝑑𝑧) 𝑑V.

(64)
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These processes aremartingales adapted to the filtrationF𝑡 =

𝜎(𝑋𝑠,𝑡 : 𝑡 ∈ [𝑠, 0]) (see [13, 14]). The key fact is the following.

Lemma 9. If 𝜙 takes values in [0, 1], then the pair (𝐹
𝑥,𝑠,𝑓

,

𝐺
𝑥,𝑠,𝑓,𝜙

) satisfies (13).

Proof. The assertion follows immediately from the identities

[𝐹, 𝐺]𝑡 = ∑

𝑠<𝑢≤𝑡

󵄨󵄨󵄨󵄨Δ𝐹𝑢
󵄨󵄨󵄨󵄨
2
𝜙 (Δ𝑋𝑠,𝑢) ,

[𝐺, 𝐺]𝑡 = ∑

𝑠<𝑢≤𝑡

󵄨󵄨󵄨󵄨Δ𝐹𝑢
󵄨󵄨󵄨󵄨
2
(𝜙 (Δ𝑋𝑠,𝑢))

2
,

(65)

which can be established by repeating the reasoning from
[13].

Now we introduce a family of multipliers. Fix 𝑠 < 0, a
function𝜙onR𝑑 taking values in the unit ball ofC, and define
the operatorT = T𝑠 by the bilinear form:

∫
R𝑑

T𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 = ∫
R𝑑

E [𝐺
𝑥,𝑠,𝑓,𝜙

0
𝑔 (𝑥 + 𝑋𝑠,0)] 𝑑𝑥, (66)

where 𝑓, 𝑔 ∈ 𝐶
∞

0
(R𝑑

). We have the following fact, proven in
[13].

Lemma 10. Let 1 < 𝑝 < ∞ and 𝑑 ≥ 2. The operatorT𝑠 is well
defined and extends to a bounded operator on 𝐿

𝑝
(R𝑑

), which
can be expressed as a Fourier multiplier with the symbol

𝑀(𝜉) = 𝑀𝑠 (𝜉)

= [1 − exp(2𝑠∫
R𝑑

(1 − cos ⟨𝜉, 𝑧⟩) ] (d𝑧))]

×
∫
R𝑑

(1 − cos ⟨𝜉, 𝑧⟩) 𝜙 (𝑧) ] (d𝑧)
∫
R𝑑

(1 − cos ⟨𝜉, 𝑧⟩) ] (d𝑧)

(67)

if ∫
R𝑑

(1 − cos⟨𝜉, 𝑧⟩)](𝑑𝑧) ̸= 0, and 𝑀(𝜉) = 0 otherwise.
Furthermore, (66) holds true for all 𝑓 ∈ 𝐶

∞

0
(R𝑑

) and all 𝑔
belonging to 𝐿

𝑞
(R𝑑

) for some 1 < 𝑞 < ∞.

3.3. Proof of (58). We may and do assume that at least one
of the measures 𝜇, ] is nonzero. It is convenient to split the
reasoning into two parts.

Step 1. First we show the estimate for the multipliers of the
form

𝑀𝜙,] (𝜉) =
∫
R𝑑

(1 − cos ⟨𝜉, 𝑧⟩) 𝜙 (𝑧) ] (𝑑𝑧)

∫
R𝑑

(1 − cos ⟨𝜉, 𝑧⟩) ] (𝑑𝑧)
. (68)

Assume that 0 < ](R𝑑
) < ∞, so that the above machinery

using Lévy processes is applicable. Fix 𝑠 < 0 and functions
𝑓, 𝑔 ∈ 𝐶

∞

0
(R𝑑

) such that𝑓 takes values in [0, 1], while 𝑔 takes
values in [−1, 1] and is supported on a certain set 𝐸 of finite
Lebesguemeasure. Of course, then themartingale𝐹𝑥,𝑠,𝑓 takes

values in [0, 1]. By Fubini’s theorem and (43), for any 𝜆 ≥ 3/4

we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑑

E [𝐺
𝑥,𝑠,𝑓,𝜙

0
𝑔 (𝑥 + 𝑋𝑠,0)] 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
R𝑑

E
󵄨󵄨󵄨󵄨󵄨󵄨
𝐺
𝑥,𝑠,𝑓,𝜙

0

󵄨󵄨󵄨󵄨󵄨󵄨
𝜒{𝑥+𝑋𝑠,0∈𝐸}

𝑑𝑥

≤
𝑒
3−4𝜆

4
∫
R𝑑

E
󵄨󵄨󵄨󵄨󵄨󵄨
𝐹
𝑥,𝑠,𝑓

0

󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ 𝜆∫
R𝑑

P (𝑥 + 𝑋𝑠,0 ∈ 𝐸) 𝑑𝑥

=
𝑒
3−4𝜆

2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1(R𝑑) + 𝜆 |𝐸| .

(69)

Plugging this into the definition of S and taking the supre-
mum over all 𝑔 as above, we obtain

∫
𝐸

󵄨󵄨󵄨󵄨󵄨
S
𝑠,𝜙,]

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ≤

𝑒
3−4𝜆

2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1(R𝑑) + 𝜆 |𝐸| . (70)

Now if we let 𝑠 → −∞, then 𝑀𝑠,𝜙,] converges pointwise to
the multiplier 𝑀𝜙,] given by (68). By Plancherel’s theorem,
S𝑠,𝜙,]

𝑓 → 𝑇𝑀𝜙,]
𝑓 in 𝐿

2
(R𝑑

) and hence there is a sequence
(𝑠𝑛)

∞

𝑛=1
converging to −∞ such that lim𝑛→∞S𝑠𝑛 ,𝜙,]𝑓 →

𝑇𝑀𝜙,]
𝑓 almost everywhere. Thus Fatou’s lemma combined

with (70) yields the bound

∫
𝐸

󵄨󵄨󵄨󵄨󵄨󵄨
𝑇𝑀𝜙,]

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ≤

𝑒
3−4𝜆

4

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1(R𝑑) + 𝜆 |𝐸| . (71)

Now we repeat word by word the optimization arguments
used in Section 2 in the proof of (10) (we need to consider
the cases ‖𝑓‖

𝐿1(R𝑑) ≤ |𝐸| and ‖𝑓‖
𝐿1(R𝑑) > |𝐸| separately). As

the result, we obtain the bound

∫
𝐸

󵄨󵄨󵄨󵄨󵄨󵄨
𝑇𝑀𝜙,]

𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
1/𝑝

𝐿1(R𝑑)
|𝐸|

1/𝑞
. (72)

Finally, using some standard approximation arguments, we
see that (72) can be applied to 𝑓 = 𝜒𝐴 (where 𝐴 is a
measurable subset ofR𝑑, satisfying |𝐴| < ∞), and we get the
estimate:

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇𝑀𝜙,]

𝜒𝐴

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝,∞(R𝑑)
≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑). (73)

This is precisely the desired claim (but for the above special
multipliers).

Step 2. Now we deduce the result for the general multipliers
as in (56) and drop the assumption 0 < ](R𝑑

) < ∞. For a
given 𝜀 > 0, define a Lévy measure ]𝜀 in polar coordinates
(𝑟, 𝜃) ∈ (0,∞) × S by

]𝜀 (𝑑𝑟𝑑𝜃) = 𝜀
−2

𝛿𝜀 (𝑑𝑟) 𝜇 (𝑑𝜃) . (74)

Here 𝛿𝜀 denotes Dirac measure on {𝜀}. Next, consider a
multiplier 𝑀𝜀,𝜙,𝜓,𝜇,] as in (68), in which the Lévy measure is
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𝜒{|𝑥|>𝜀}]+]𝜀 and the jumpmodulator is given by 𝜒{|𝑥|>𝜀}𝜙(𝑥)+

𝜒{|𝑥|=𝜀}𝜓(𝑥/|𝑥|). Note that this Lévy measure is finite and
nonzero, at least for sufficiently small 𝜀. If we let 𝜀 → 0, we
see that

∫
R𝑑

[1 − cos ⟨𝜉, 𝑥⟩] 𝜓(
𝑥

|𝑥|
) ]𝜀 (𝑑𝑥)

= ∫
S

⟨𝜉, 𝜃⟩
2
𝜙 (𝜃)

1 − cos ⟨𝜉, 𝜀𝜃⟩
⟨𝜉, 𝜀𝜃⟩

2
𝜇 (𝑑𝜃)

󳨀→
1

2
∫
S

⟨𝜉, 𝜃⟩
2
𝜙 (𝜃) 𝜇 (𝑑𝜃)

(75)

and, consequently,𝑀𝜀,𝜙,𝜓,𝜇,] → 𝑚𝜙,𝜓,𝜇,] pointwise.Thus (73)
yields (7). Indeed, using Plancherel’s theorem as above, we
see that there is a sequence (𝜀𝑛)𝑛≥1 converging to 0 such that
𝑇𝑀𝜀𝑛,𝜙,𝜓,𝜇,]

𝜒𝐴 → 𝑇𝑚𝜙,𝜓,𝜇,]
𝜒𝐴 almost everywhere. It suffices to

apply Fatou’s lemma, and the proof is complete.

Remark 11. An important comment is in order. The above
proof rests on the estimate (43), which we have managed to
prove in the case 𝜆 ≥ 3/4 only; this is the reason why the
restricted bound (58) holds only for 𝑝 ≥ 4. To get a sharp
bound for 𝑝 < 4, we would require a version of (43) for small
𝜆; unfortunately, the bound (16) does not seem to be powerful
enough to yield any result of this type.

4. On the Lower Bound for
the Constant in (58)

We turn to the final section of the paper inwhichwewill show
that the constant 𝐶𝑝 in (58) is the best possible. The proof
will be a combination of various analytic and probabilistic
facts, and it is convenient to split the reasoning into a several
separate parts. Throughout this section, B ⊂ C denotes the
ball of center 0 and radius 1.

4.1. Laminates: Necessary Definitions. Assume that R𝑚×𝑛

denotes the space of all real matrices of dimension 𝑚 × 𝑛

and letR𝑛×𝑛

sym be the subclass ofR𝑛×𝑛 which consists of all real
symmetric 𝑛 × 𝑛 matrices.

Definition 12. A function 𝑓 : R𝑚×𝑛
→ R is said to be rank-

one convex, if 𝑡 󳨃→ 𝑓(𝐴 + 𝑡𝐵) is convex for all 𝐴, 𝐵 ∈ R𝑚×𝑛

with rank 𝐵 = 1.
Let P = P(R𝑚×𝑛

) stand for the class of all compactly
supported probability measures on R𝑚×𝑛. For ] ∈ P, we
denote by ] = ∫

R𝑚×𝑛
𝑋𝑑](𝑋) the center of mass or barycenter

of ].

Definition 13. We say that a measure ] ∈ P is a laminate (and
write ] ∈ L), if

𝑓 (]) ≤ ∫
R𝑚×𝑛

𝑓𝑑] (76)

for all rank-one convex functions𝑓.The set of laminates with
barycenter 0 is denoted byL0(R

𝑚×𝑛
).

Laminates can be used to obtain lower bounds for solu-
tions of certain PDEs, as was first noticed by Faraco in [28].
Furthermore, laminates arise naturally in several applications
of convex integration, where they can be used to produce
interesting counterexamples; see, for example, [29–33]. We
will be particularly interested in the case of 2 × 2 symmetric
matrices.The important fact is that laminates can be regarded
as probability measures that record the distribution of the
gradients of smooth maps; see Corollary 17. Let us briefly
explain this; detailed proofs of the statements below can be
found, for example, in [32–34].

Definition 14. Let 𝑈 ⊂ R2×2 be a given set. Then PL(𝑈)

denotes the class of prelaminates in 𝑈, that is, the smallest
class of probability measures on 𝑈 which

(i) contains all measures of the form 𝜆𝛿𝐴+(1−𝜆)𝛿𝐵 with
𝜆 ∈ [0, 1] and satisfying rank (𝐴 − 𝐵) = 1;

(ii) is closed under splitting in the following sense: if
𝜆𝛿𝐴 + (1 − 𝜆)] belongs to PL(𝑈) for some ] ∈

P(R2×2
) and 𝜇 also belongs to PL(𝑈) with 𝜇 = 𝐴,

then also 𝜆𝜇 + (1 − 𝜆)] belongs toPL(𝑈).

By the successive application of Jensen’s inequality, we
have the inclusion PL ⊂ L. Let us state two well-known
facts (see [29, 32–34]).

Lemma 15. Let ] = ∑
𝑁

𝑖=1
𝜆𝑖𝛿𝐴𝑖

∈ PL(R2×2

sym) with ] = 0.
Moreover, let 0 < 𝑟 < (1/2)min |𝐴 𝑖 − 𝐴𝑗| and 𝛿 > 0. For any
bounded domain Ω ⊂ R2 there exists 𝑢 ∈ 𝑊

2,∞

0
(Ω) such that

‖𝑢‖𝐶1 < 𝛿 and for all 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁

󵄨󵄨󵄨󵄨󵄨
{𝑥 ∈ Ω :

󵄨󵄨󵄨󵄨󵄨
𝐷
2
𝑢 (𝑥) − 𝐴 𝑖

󵄨󵄨󵄨󵄨󵄨
< 𝑟}

󵄨󵄨󵄨󵄨󵄨
= 𝜆𝑖 |Ω| . (77)

Lemma 16. Let 𝐾 ⊂ R2×2

sym be a compact convex set and ] ∈

L(R2×2

sym) with supp ] ⊂ 𝐾. For any relatively open set 𝑈 ⊂

R2×2

sym with 𝐾 ⊂⊂ 𝑈 there exists a sequence ]𝑗 ∈ PL(𝑈) of
prelaminates with ]𝑗 = ] and ]𝑗

∗

⇀ ].

These two lemmas, combined with a simplemollification,
yield the following statement proven originally by Boros et al.
[35]. It exhibits the connection between laminates supported
on symmetric matrices and second derivatives of functions
and will play a crucial role below.

Corollary 17. Let ] ∈ L0(R
2×2

sym). Then there exists a sequence
𝑢𝑗 ∈ 𝐶

∞

0
(B) with uniformly bounded second derivatives, such

that

1

|B|
∫
B

𝜙 (𝐷
2
𝑢𝑗 (𝑥)) d𝑥 󳨀→ ∫

R2×2sym

𝜙d] (78)

for all continuous 𝜙 : R2×2

sym → R.

Let us stress here that the corollary works for laminates
of barycenter 0. This will give rise to some small technical
difficulties, as “natural” laminates do not have this property;
see below.
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4.2. Biconvex Functions and a Special Laminate. In the next
step in our analysis, we introduce a certain special laminate.
To do this, we need some additional notation. A function
𝜁 : R × R → R is said to be biconvex if, for any fixed
𝑧 ∈ R, the functions 𝑥 󳨃→ 𝜁(𝑥, 𝑧) and 𝑦 󳨃→ 𝜁(𝑧, 𝑦) are
convex. Now, for a given 𝑝 ≥ 4, pick 𝜆 = 𝑝/4 and let 𝑓, 𝑔
be martingales of Section 2, which exhibit the sharpness of
(10) and (11) (actually, there is a whole family of examples,
corresponding to different choices of 𝑤 and 𝑁—these two
parameters will be specified later). Consider the R2-valued
martingale:

(𝐹, 𝐺) := (𝑔 − 𝑤, 𝑓 − 𝑔) . (79)

We subtract 𝑤 on the first coordinate to ensure that the pair
(𝐹, 𝐺) has mean (0, 0). This sequence has the following zigzag
property: for any 0 ≤ 𝑛 ≤ 2𝑁 + 1 we have 𝐹𝑛 = 𝐹𝑛+1 with
probability 1 or 𝐺𝑛 = 𝐺𝑛+1 almost surely; that is, in each
step (𝐹, 𝐺)moves either horizontally or vertically. Indeed, this
follows directly from the construction that for each 𝑛we have
P(𝑑𝑓𝑛 = 𝑑𝑔𝑛) = 1 orP(𝑑𝑔𝑛 = 0) = 1. This property combines
nicely with biconvex functions: if 𝜁 is such a function, then a
successive application of Jensen’s inequality gives

E𝜁 (𝐹2𝑁+2, 𝐺2𝑁+2)

≥ E𝜁 (𝐹2𝑁+1, 𝐺2𝑁+1) ≥ ⋅ ⋅ ⋅ ≥ E𝜁 (𝐹0, 𝐺0) = 𝜁 (0, 0) .

(80)

Now, the martingale (𝐹, 𝐺), or rather the distribution of its
terminal variable (𝐹2𝑁+2, 𝐺2𝑁+2), gives rise to a probability
measure ] on R2×2

sym: put

] (diag (𝑥, 𝑦)) = P ((𝐹2𝑁+2, 𝐺2𝑁+2) = (𝑥, 𝑦)) ,

(𝑥, 𝑦) ∈ R
2
.

(81)

Here and below, diag(𝑥, 𝑦) denotes the diagonalmatrix (
𝑥 0
0 𝑦 ).

The key observation is that ] is a laminate of barycenter 0. To
prove this, note that if 𝜓 : R2×2 is a rank-one convex, then
(𝑥, 𝑦) 󳨃→ 𝜓(diag(𝑥, 𝑦)) is biconvex and thus, by (80),

∫
R2×2

𝜓𝑑] = 𝐸𝜓 (diag (𝐹2𝑁+2, 𝐺2𝑁+2))

≥ 𝜓 (diag (0, 0)) = 𝜓 (]) .

(82)

Finally, note that P(𝐹2𝑁+2 + 𝐺2𝑁+2 ∈ {−𝑤, 1 − 𝑤}) =

P(𝑓2𝑁+2 ∈ {0, 1}) = 1, and hence the support of ] is contained
in

𝐾 = {diag (𝑥, 𝑦) : 𝑥 + 𝑦 ∈ {−𝑤, 1 − 𝑤}} . (83)

4.3. Sharpness of (58): The Case 𝑑 = 2. We will prove that 𝐶𝑝

is the best in
󵄩󵄩󵄩󵄩󵄩
𝑅
2

1
𝜒𝐴

󵄩󵄩󵄩󵄩󵄩𝐿𝑝,∞(R𝑑)
≤ 𝐶𝑝

󵄩󵄩󵄩󵄩𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑). (84)

For the convenience of the reader, let us first sketch the idea.
We start with the application Corollary 17 to the laminate

]: let (𝑢𝑗)𝑗≥1 be the corresponding sequence of smooth
functions. As we have just observed above, the support of ]
is contained in𝐾 given by (83). Since the distribution of 𝑢𝑗 is
close to ] (in the sense of Corollary 17), we expect that Δ𝑢𝑗,
essentially, takes only values close to −𝑤 or close to 1 − 𝑤.
Thus, if we define V𝑗 = Δ𝑢𝑗 + 𝑤𝜒B for 𝑗 = 1, 2, . . ., then V𝑗 is
close to an indicator function of a certain set𝐴.Thus, to prove
the sharpness of (84), one can try to study this estimate with
𝜒𝐴 replaced by V𝑗. We will look separately at the action on
𝑅
2

1
on Δ𝑢𝑗 and 𝑤𝜒B; to handle the Laplacian, we will use the

arguments from the previous two subsections, and 𝑤𝜒B will
be dealt with the aid of (57).

Step 1. We start from the specification of the parameters 𝑁

and𝑤. For a given𝑝 ≥ 4, pick an arbitrary number𝑀 smaller
than 𝑒

4−4𝜆
/4 (recall that 𝜆 = 𝑝/4): thus, 𝑀 = (1/4)𝑒

4−4𝜆
⋅ 𝜂

for some 𝜂 < 1. Let𝑤 ∈ (0, 1/2) be arbitrary and choose𝑁 so
that E(|𝑔2𝑁+2| − 𝜆)+ > 𝑀E𝑓0 = 𝑀𝑤. This is possible, in view
of the results of Section 2. Furthermore, let 𝜀 be an arbitrary
positive number (which will eventually be sent to 0). In what
follows, we will use the following convention: 𝐶1, 𝐶2, 𝐶3, . . .

will denote constants which depend only on 𝑤 and 𝑁.

Step 2. Consider a continuous function 𝜙 : R2×2

sym → R given
by 𝜙(diag(𝑥, 𝑦)) = |𝑥 + 𝑦 + 𝑤|. By Corollary 17, we have

1

|B|
∫
B

󵄨󵄨󵄨󵄨󵄨
V𝑗

󵄨󵄨󵄨󵄨󵄨
=

1

|B|
∫
B

𝜙 (𝐷
2
𝑢𝑗)

𝑗→∞

󳨀󳨀󳨀󳨀󳨀→ ∫
R2×2sym

𝜙𝑑]

= E
󵄨󵄨󵄨󵄨𝐹2𝑁+2 + 𝐺2𝑁+2 + 𝑤

󵄨󵄨󵄨󵄨 = 𝑤,

(85)

so for sufficiently large 𝑗 we have
1

|B|
∫
B

󵄨󵄨󵄨󵄨󵄨
V𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑤 (1 + 𝜀) . (86)

Step 3. Consider a continuous function 𝜙 : R2×2

sym → [0, 1],
which satisfies 𝜙(diag(𝑥, 𝑦)) = 0 if 𝑥 + 𝑦 + 𝑤 ∈ {0, 1} and
which is 1 if the distance between 𝑥 + 𝑦 + 𝑤 and the set {0, 1}
is larger than 𝜀. By Corollary 17,

1

|B|
∫
B

𝜙 (𝐷
2
𝑢𝑗) 󳨀→ ∫

R2×2sym

𝜙𝑑] = 0, (87)

since P(𝐹2𝑁+2 + 𝐺2𝑁+2 + 𝑤 ∈ {0, 1}) = 1. Consider the sets

𝐴 = {𝑥 ∈ B :
󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 (𝑥) − 1 + 𝑤

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀} ,

𝐴 = {𝑥 ∈ B :
󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 (𝑥) + 𝑤

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀} .

(88)

Then (87) implies that
󵄨󵄨󵄨󵄨󵄨
B \ (𝐴 ∪ 𝐴)

󵄨󵄨󵄨󵄨󵄨

|B|
< 𝜀 for sufficiently large𝑗. (89)

Step 4. Next, consider a continuous function 𝜙 : R2×2

sym →

[0, 1], satisfying 𝜙(diag(𝑥, 𝑦)) = 1 if 𝑥 + 𝑦 + 𝑤 = 1 and
𝜙(diag(𝑥, 𝑦)) = 0 if |𝑥 + 𝑦 + 𝑤 − 1| > 𝜀. Then

|𝐴| ≥ ∫
B

𝜙 (𝐷
2
𝑢𝑗)

𝑗→∞

󳨀󳨀󳨀󳨀󳨀→ |B| ∫
R2×2sym

𝜙𝑑]

= |B|P (𝐹2𝑁+2 + 𝐺2𝑁+2 = 1 − 𝑤) = |B| 𝑤.

(90)
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Thus, for large 𝑗,
|𝐴| is bounded from below by 𝐶1. (91)

Consequently, for any 1 ≤ 𝑞 < ∞ and large 𝑗,
󵄩󵄩󵄩󵄩󵄩
V𝑗 − 𝜒𝐴

󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿𝑞(R2)

=
󵄩󵄩󵄩󵄩󵄩
Δ𝑢𝑗 + 𝑤 − 𝜒𝐴

󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿𝑞(B)

= ∫
𝐴

󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 + 𝑤 − 𝜒𝐴

󵄨󵄨󵄨󵄨󵄨

𝑞

+ ∫
𝐴

󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 + 𝑤 − 𝜒𝐴

󵄨󵄨󵄨󵄨󵄨

𝑞

+ ∫
B\(𝐴∪𝐴)

󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗 + 𝑤 − 𝜒𝐴

󵄨󵄨󵄨󵄨󵄨

𝑞

≤ 𝜀
𝑞
|𝐴| + 𝜀

𝑞 󵄨󵄨󵄨󵄨󵄨
𝐴
󵄨󵄨󵄨󵄨󵄨
+ 𝜀 |B| (sup

B

󵄨󵄨󵄨󵄨󵄨
Δ𝑢𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝑤) .

(92)

Here in the last passage we have used the definition of 𝐴,
𝐴, and (89). Combining this with (91) (and the fact that the
second-order partial derivatives of 𝑢𝑗 are uniformly bounded
by 𝐶2; see Corollary 17), we get that, for sufficiently large 𝑗,

󵄩󵄩󵄩󵄩󵄩
V𝑗 − 𝜒𝐴

󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿𝑞(R2)
≤ 𝐶3𝜀 |𝐴| . (93)

In other words, the function V𝑗 is close to the indicator
function of 𝐴.

Step 5. Next, consider the function 𝜙 : R2×2

sym → R given by
𝜙(diag(𝑥, 𝑦)) = (|𝑥+𝑤|−𝜆)+. By the choice of𝑤,𝑁, and (86),

1

|B|
∫
B

𝜙 (𝐷
2
𝑢𝑗)

𝑗→∞

󳨀󳨀󳨀󳨀󳨀→ ∫
R2×2sym

𝜙𝑑] = E(
󵄨󵄨󵄨󵄨𝑔2𝑁+2

󵄨󵄨󵄨󵄨 − 𝜆)
+

> 𝑀𝑤 ≥
𝑀

1 + 𝜀
⋅

1

|B|
∫
B

󵄨󵄨󵄨󵄨󵄨
V𝑗

󵄨󵄨󵄨󵄨󵄨

≥
𝑀

1 + 𝜀
⋅

1

|B|
(|𝐴| − ∫

B

󵄨󵄨󵄨󵄨󵄨
V𝑗 − 𝜒𝐴

󵄨󵄨󵄨󵄨󵄨
) .

(94)

Now multiply throughout by |B| and apply (93) with 𝑞 = 1;
we get that, for sufficiently large 𝑗,

∫
B

𝜙 (𝐷
2
𝑢𝑗) ≥

𝑀

1 + 𝜀
(1 − 𝐶3𝜀) |𝐴| . (95)

However, observe that

𝜙 (𝐷
2
𝑢𝑗) = (

󵄨󵄨󵄨󵄨󵄨
𝜕11𝑢𝑗 + 𝑤

󵄨󵄨󵄨󵄨󵄨
− 𝜆)

+

= (
󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
Δ𝑢𝑗 + 𝑤

󵄨󵄨󵄨󵄨󵄨
− 𝜆)

+

= (
󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
V𝑗 − 𝑤𝑅

2

1
𝜒B + 𝑤

󵄨󵄨󵄨󵄨󵄨
− 𝜆)

+

(96)

onB. Therefore, the preceding considerations yield that, for
large 𝑗,

𝑀

1 + 𝜀
(1 − 𝐶3𝜀) |𝐴| ≤ ∫

B

(
󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
V𝑗 − 𝑤𝑅

2

1
𝜒B + 𝑤

󵄨󵄨󵄨󵄨󵄨
− 𝜆)

+

≤ ∫
B

(
󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
𝜒𝐴 − 𝑤𝑅

2

1
𝜒B + 𝑤

󵄨󵄨󵄨󵄨󵄨
− 𝜆)

+

+ ∫
B

󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
(V𝑗 − 𝜒𝐴)

󵄨󵄨󵄨󵄨󵄨
.

(97)

However, the normof𝑅2
1
as an operator on𝐿

2
(R2

) is bounded
by 1: see (57). Consequently, by Schwarz inequality, (93), and
then (91),

∫
B

󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
(V𝑗 − 𝜒𝐴)

󵄨󵄨󵄨󵄨󵄨
≤

󵄩󵄩󵄩󵄩󵄩
V𝑗 − 𝜒𝐴

󵄩󵄩󵄩󵄩󵄩2
|B|

1/2

≤ 𝐶4𝜀
1/2

|𝐴|
1/2

≤ 𝐶5𝜀
1/2

|𝐴| .

(98)

Plugging this into the above inequality, we get that if 𝑗 is
sufficiently large, then

∫
B

(
󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
𝜒𝐴 − 𝑤𝑅

2

1
𝜒B + 𝑤

󵄨󵄨󵄨󵄨󵄨
− 𝜆)

+
≥

𝑀

1 + 𝜀
(1 − 𝐶6𝜀

1/2
) |𝐴| .

(99)

Therefore, if we let 𝐸 = {𝑥 ∈ B : |𝑅
2

1
𝜒𝐴 − 𝑤𝑅

2

1
𝜒B + 𝑤| > 𝜆}

and recall that 𝑀 = (1/4)𝑒
4−4𝜆

⋅ 𝜂, then

∫
𝐸

󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
𝜒𝐴 − 𝑤𝑅

2

1
𝜒B + 𝑤

󵄨󵄨󵄨󵄨󵄨

≥
𝑀

1 + 𝜀
(1 − 𝐶6𝜀

1/2
) |𝐴| + 𝜆 |𝐸|

≥
(1 − 𝐶6𝜀

1/2
) 𝜂

1 + 𝜀
[
𝑒
4−4𝜆

4
|𝐴| + 𝜆 |𝐸|] .

(100)

However, we have 𝜆 = 𝑝/4. Plugging this above and applying
the Young inequality, we see that the right-hand side is not
smaller than

(1 − 𝐶6𝜀
1/2

) 𝜂

1 + 𝜀
⋅
𝑝

4
𝑒
(4−𝑝)/𝑝󵄩󵄩󵄩󵄩𝜒𝐴

󵄩󵄩󵄩󵄩𝐿𝑝(R2)|𝐸|
1−1/𝑝

. (101)

On the other hand, ‖𝑅2
1
‖
𝐿𝑝(R2)→𝐿𝑝(R2)

≤ 𝑝 − 1 (see (57)), so
by the Schwarz inequality and the bound |𝐴| ≥ 𝑤 (see the
estimate above (91),

∫
𝐸

󵄨󵄨󵄨󵄨󵄨
𝑤𝑅

2

1
𝜒B − 𝑤

󵄨󵄨󵄨󵄨󵄨

≤ 𝑤 (|𝐸| + (𝑝 − 1) |B|
1/𝑝

|𝐸|
1−1/𝑝

)

≤ 𝑤
1−1/𝑝

|𝐴|
1/𝑝

× (|𝐸| + (𝑝 − 1) |B|
1/𝑝

|𝐸|
1−1/𝑝

)

≤ 𝑝𝜋
1/𝑝

𝑤
1−1/𝑝󵄩󵄩󵄩󵄩𝜒𝐴

󵄩󵄩󵄩󵄩𝐿𝑝(R2)|𝐸|
1−1/𝑝

.

(102)

Combining this with the previous estimate, we get

∫
𝐸

󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
𝜒𝐴

󵄨󵄨󵄨󵄨󵄨

≥ (
(1 − 𝐶6𝜀

1/2
) 𝜂

1 + 𝜀
⋅
𝑝

4
𝑒
(4−𝑝)/𝑝

− 𝑝𝜋
1/𝑝

𝑤
1−1/𝑝

)

×
󵄩󵄩󵄩󵄩𝜒𝐴

󵄩󵄩󵄩󵄩𝐿𝑝(R2)|𝐸|
1−1/𝑝

.

(103)

Using the fact that 𝜂 < 1, 𝜀 > 0 and 𝑤 > 0 were arbitrary,
we obtain that the constant (𝑝/4)𝑒

(4−𝑝)/𝑝 is indeed the best
possible in (58).
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4.4. Sharpness of (58): The Case 𝑑 ≥ 3. Let 𝐽 be a proper
subset of {1, 2, . . . , 𝑑} and write 𝑇 = ∑

𝑗∈𝐽
𝑅
2

𝑗
. It suffices to

consider only those 𝐽, which satisfy 1 ∈ 𝐽 and 2 ∉ 𝐽: for any
𝐽
󸀠
∈ {1, 2, . . . , 𝑑} of the same cardinality as 𝐽, the restricted

weak constants of 𝑇 and ∑
𝑗∈𝐽󸀠

𝑅
2

𝑗
are the same. So, suppose

that𝑇 is of that special formand assume that for somepositive
constant 𝐶 we have

∫
𝐸

󵄨󵄨󵄨󵄨󵄨
𝑅
2

2
𝜒𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ≤ 𝐶

󵄩󵄩󵄩󵄩𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑)|𝐸|

1−1/𝑝 (104)

for all measurable subsets 𝐴, 𝐸 of R𝑑 of positive and finite
Lebesgue measure. For 𝑡 > 0, define the dilation operator
𝛿𝑡 as follows: for any function 𝑔 : R2

× R𝑑−2
→ R, we let

𝛿𝑡𝑔(𝜉, 𝜁) = 𝑔(𝜉, 𝑡𝜁); for any𝐴 ⊂ R2
× R𝑑−2, let 𝛿𝑡𝐴 = {(𝜉, 𝑡𝜁) :

(𝜉, 𝜁) ∈ 𝐴}. Note that the function 𝛿𝑡𝜒𝐴 is supported on 𝛿
−1

𝑡
𝐴

and hence, by (104), the operator 𝑇𝑡 := 𝛿
−1

𝑡
∘ 𝑅

2

1
∘ 𝛿𝑡 satisfies

∫
𝐸

󵄨󵄨󵄨󵄨𝑇𝑡𝜒𝐴 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 = 𝑡

𝑑−2
∫
𝛿
−1
𝑡
𝐸

󵄨󵄨󵄨󵄨󵄨
𝑅
2

1
∘ 𝛿𝑡𝜒𝐴 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

≤ 𝐶(𝑡
𝑑−2

∫
𝛿
−1
𝑡
𝐴

󵄨󵄨󵄨󵄨𝛿𝑡𝜒𝐴 (𝑥)
󵄨󵄨󵄨󵄨
𝑝
𝑑𝑥)

1/𝑝

× (𝑡
𝑑−2 󵄨󵄨󵄨󵄨󵄨

𝛿
−1

𝑡
𝐸
󵄨󵄨󵄨󵄨󵄨
)
1−1/𝑝

= 𝐶
󵄩󵄩󵄩󵄩𝜒𝐴

󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑)|𝐸|
1−1/𝑝

.

(105)

It is straightforward to check that the Fourier transform F

satisfies the identityF = 𝑡
𝑑−2

𝛿𝑡 ∘F ∘𝛿𝑡; since 1 ∈ 𝐽 and 2 ∉ 𝐽,
the operator 𝑇𝑡 has the property that

𝑇𝑡𝑓 (𝜉, 𝜁) = −
𝜉
2

1
+ 𝑡

2
∑
𝑗∈𝐾

𝜁
2

𝑗

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2
+ 𝑡2

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨
2

𝑓 (𝜉, 𝜁) ,

(𝜉, 𝜁) ∈ R
2
× R

𝑑−2
,

(106)

where the set 𝐾 is defined by the requirement that 𝑘 ∈ 𝐾 if
and only if 𝑘 + 2 ∈ 𝐽. By Lebesgue’s dominated convergence
theorem, we have

lim
𝑡→0

𝑇𝑡𝑓 (𝜉, 𝜁) = 𝑇0𝑓 (𝜉, 𝜁) (107)

in 𝐿
2
(R𝑑

), where 𝑇0𝑓(𝜉, 𝜁) = −𝜉
2

1
𝑓(𝜉, 𝜁)/|𝜉|

2. By Plancherel’s
theorem, the passage to a subsequence which converges
almost everywhere, and Fatou’s lemma, we see that (105)
implies

∫
𝐸

󵄨󵄨󵄨󵄨𝑇0𝜒𝐴 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶

󵄩󵄩󵄩󵄩𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑)|𝐸|

1−1/𝑝
. (108)

Now pick an arbitrary set 𝐴 ⊂ R2 of nonzero and finite
Lebesgue measure and put 𝐴 = 𝐴 × [0, 1]

𝑑−2. Denoting by
R1 the first planar Riesz transform, we see that 𝑇0𝜒𝐴(𝜉, 𝜁) =

R2

1
𝜒
𝐴
(𝜉)𝜒

[0,1]
𝑑−2(𝜁), because of the identity

𝑇0𝜒𝐴 (𝜉, 𝜁) = −
𝜉
2

1

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

𝜒
𝐴
(𝜉) 𝜒

[0,1]
𝑑−2 (𝜁) . (109)

Plug this into (108) with the choice 𝐸 = 𝐸× [0, 1]
𝑑−2, where 𝐸

is an arbitrary subset of R2 with 0 < |𝐸| < ∞. As the result,
we obtain

∫
𝐸

󵄨󵄨󵄨󵄨󵄨
R

2

1
𝜒
𝐴
(𝜉)

󵄨󵄨󵄨󵄨󵄨
𝑑𝜉 ≤ 𝐶

󵄩󵄩󵄩󵄩𝜒𝐴
󵄩󵄩󵄩󵄩𝐿𝑝(R2)

󵄨󵄨󵄨󵄨󵄨
𝐸
󵄨󵄨󵄨󵄨󵄨

1−1/𝑝

. (110)

But we have shown in the previous subsection that this
implies 𝐶 ≥ 𝑝𝑒

(4−𝑝)/𝑝
/4. The proof is complete.
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[33] L. Székelyhidi Jr., “Counterexamples to elliptic regularity and
convex integration,” Contemporary Mathematics, vol. 424, pp.
227–245, 2007.

[34] B. Kirchheim, Rigidity and geometry of microstructures [Habili-
tationThesis], University of Leipzig, 2003, http://www.mis.mpg
.de/publications/other-series/ln/lecturenote-1603.html.
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