
JoCG 12(1), 40–69, 2021 40

Journal of Computational Geometry jocg.org

APPROXIMATE RANGE COUNTING REVISITED ∗

Saladi Rahul †

Abstract. We study range-searching for colored objects, where one has to count (approxi-
mately) the number of colors present in a query range. The problems studied mostly involve
orthogonal range-searching in two and three dimensions, and the dual setting of rectangle
stabbing by points. We present optimal and near-optimal solutions for these problems.
Most of the results are obtained via reductions to the approximate uncolored version, and
improved data-structures for them. An additional contribution of this work is the introduc-
tion of nested shallow cuttings.

1 Introduction

q

Let S be a set of n geometric objects in Rd which are segregated
into disjoint groups (i.e., colors). Given a query q ⊆ Rd, a color c
intersects (or is present in) q if any object in S of color c intersects
q, and let k be the number of colors of S present in q. In the ap-
proximate colored range-counting problem, the task is to preprocess
S into a data structure, so that for a query q, one can efficiently
report the approximate number of colors present in q. Specifically,
return any value in the range
[(1− ε)k, (1 + ε)k], where ε ∈ (0, 1) is a pre-specified parameter.

Colored range searching and its related problems have been studied before [31, 39,
40, 37, 32, 30, 23, 13, 8, 24, 27, 29, 33, 34, 38, 43]. They are known as GROUP-BY queries in
the database literature. A popular variant is the colored orthogonal range searching problem:
S is a set of n colored points in Rd, and q is an axes-parallel rectangle. As a motivating
example for this problem, consider the following query: “How many countries have employees
aged between X1 and X2 while earning annually more than Y rupees?". An employee is
represented as a colored point (age, salary), where the color encodes the country, and the
query is the axes-parallel rectangle [X1, X2]× [Y,∞).

1.1 Previous work and background

In the standard approximate range counting problem there are no colors. One is interested
in the approximate number of objects intersecting the query. Specifically, if k is the number
of objects of S intersecting q, then return a value in the range [(1− ε)k, (1 + ε)k].
∗A preliminary version of this paper appeared at 33rd International Symposium on Computational Ge-

ometry (SoCG 2017).
†Department of Computer Science and Automation, Indian Institute of Science, Bangalore,

saladi@iisc.ac.in

http://jocg.org/

JoCG 12(1), 40–69, 2021 41

Journal of Computational Geometry jocg.org

ε-approximations. In the additive-error ε-approximation, a set Z ⊆ S is picked such that,
given a query q, we only inspect Z and return a value which lies in the range [k−εn, k+εn].
Vapnik and Chervonenkis [47] proved that a random sample Z of size O(δ

ε2
log δ

ε) provides an
ε-approximation with good probability, where δ is the VC-dimension (δ is usually a constant
for standard geometric settings).

Relative (p, ε)-approximation. Har-Peled and Sharir [25] introduced the notion of relative
(p, ε)-approximation for geometric settings. The goal is to pick a small set Z ⊂ S which can
be used to compute a relative approximation for queries with large value of k. Formally,
given a parameter p ∈ (0, 1), a set Z ⊂ S is a relative (p, ε)-approximation if:

|Z ∩ q| · n|Z| ∈
{

[(1− ε)k, (1 + ε)k] if k ≥ pn
[k − εpn, k + εpn] otherwise.

Har-Peled and Sharir prove that a sample Z from S of size O
(

1
ε2p

(
δ log 1

p + log 1
q

))
will

succeed with probability at least 1− q.
Har-Peled and Sharir construct relative (p, ε)-approximations for point sets and half-

spaces in Rd, for d ≥ 2, and use them to answer approximate counting for any query which
contains more than pn points. A nice feature of these results is that they are sensitive to the
value of k. Specifically, the larger the value of k is, the faster the query is answered. The
intuition is that the larger the value of k is, the larger is the error the query is allowed to
make and hence, a smaller sample suffices. Even though relative (p, ε)-approximations give
a relative approximation only for queries with large values of k, Aronov and Sharir [11], and
Sharir and Shaul [42] incorporated them into data structures which give an approximate
count for all values of k.

General reduction to companion problems. Aronov and Har-Peled [10], and Kaplan,
Ramos and Sharir [28] presented general techniques to answer approximate range counting
queries. In both instances, the authors reduce the task of answering an approximate counting
query, into answering a few queries in data-structures solving an easier (companion) problem.
Aronov and Har-Peled’s companion problem is the emptiness query, where the goal is to
report whether |S ∩ q| = 0. Specifically, assume that there is a data structure of size S(n)
which answers the emptiness query in O(Q(n)) time. Aronov and Har-Peled show that there
is a data structure of size O(S(n) log n) which answers the approximate counting query in
O(Q(n) log n) time (for simplicity we ignore the dependency on ε). Kaplan et al.’s companion
problem is the range-minimum query, where each object of S has a weight associated with
it and the goal is to report the object in S ∩ q with the minimum weight.

Even though the reductions of [10] and [28] seem different, there is an interesting
discussion in Section 6 of [10] about the underlying “sameness" of both techniques.

Levels. Informally, for a set S of n objects, a (≤ t)-level of S is the locus of all the points
contained in at most t objects of S. A t-level is then defined as the boundary between the
(≤ t)-level and the (≤ t+1)-level of S. Range counting can be reduced in some cases to

http://jocg.org/

JoCG 12(1), 40–69, 2021 42

Journal of Computational Geometry jocg.org

deciding the level of a query point. Unfortunately, the complexity of a single level is not
well understood. For example, for hyperplanes in the plane, the t-level has super-linear
complexity Ω(n2

√
log t) [45] in the worst-case (the known upper bound is O(nt1/3) [19] and

closing the gap is a major open problem). In particular, the prohibitive complexity of such
levels makes them inapplicable for the approximate range counting problem, where one
shoots for linear (or near-linear) space data-structures.

Shallow cuttings. A t-level shallow cutting is a set of simple cells which cover the (≤ t)-
level and are strictly inside the (≤ O(t))-level. For many geometric objects in two and three
dimensions, such t-level shallow cuttings have O(n/t) cells [6]. Using such cuttings leads to
efficient data-structures for approximate range counting. Specifically, one uses binary search
on a “ladder” of approximate levels (realized via shallow cuttings) to find the approximation.

For halfspaces in R3, Afshani and Chan [2] avoid doing the binary search and find
the two consecutive levels in optimal O(log n

k) expected time. Later, Afshani, Hamilton and
Zeh [4] obtained a worst-case optimal solution for many geometric settings. Interestingly,
their results hold in the pointer machine model, the I/O-model and the cache-oblivious
model. However, in the word-RAM model their solution is not optimal and the query time
is Ω(log logU + (log log n)2).

Specific problems. Approximate counting for orthogonal range searching in R2 was stud-
ied by Nekrich [38], and Chan and Wilkinson [16] in the word-RAM model. In this setting,
the input set is points in R2 and the query is a rectangle in R2. A hyper-rectangle in Rd
is (d + k)-sided if it is bounded on both sides in k out of the d dimensions and unbounded
on one side in the remaining d− k dimensions. Nekrich [38] presented a data structure for
approximate colored 3-sided range searching in R2, where the input is points and the query
is a 3-sided rectangle in R2. However, it has an approximation factor of (4 + ε), whereas
we are interested in obtaining a tighter approximation factor of (1 + ε). To the best of our
knowledge, this is the only work directly addressing an approximate colored counting query.

1.2 Motivation

Avoiding expensive counting structures. A search problem is decomposable if given two
disjoint sets of objects S1 and S2, the answer to F (S1 ∪ S2) can be computed in constant
time, given the answers to F (S1) and F (S2) separately. This property is widely used in
the literature [7] for counting in standard problems (going back to the work of Bentley
and Saxe [12] in the late 1970s). For colored counting problems, however, F (·) is not
decomposable. If F (S1) (resp. F (S2)) has n1 (resp. n2) colors, then this information is
insufficient to compute F (S1 ∪ S2), as they might have common colors.

As a result, for many exact colored counting queries the known space and query
time bounds are expensive. For example, for colored orthogonal range searching problem
in Rd, existing structures use O(nd) space to achieve polylogarithmic query time [29]. Any
substantial improvement in the preprocessing time and the query time would lead to a
substantial improvement in the best exponent of matrix multiplication [29] (which is a
major open problem). Similarly, counting structures for colored halfspace counting in R2

http://jocg.org/

JoCG 12(1), 40–69, 2021 43

Journal of Computational Geometry jocg.org

and R3 [23] are expensive.

Instead of an exact count, if one is willing to settle for an approximate count, then
this work presents a data structure with O(n polylog n) space and O(polylog n) query time.

Approximate counting in the speed of emptiness. In an emptiness query, the goal is
to decide if S ∩ q is empty. The approximate counting query is at least as hard as the
emptiness query: When k = 0 and k = 1, no error is tolerated. Therefore, a natural
goal while answering approximate range counting queries is to match the bounds of its
corresponding emptiness query.

1.3 Our results and techniques

1.3.1 Specific problems

The focus of the paper is building data structures for approximate colored counting queries,
which exactly match or almost match the bounds of their corresponding emptiness problem.

3-sided rectangle stabbing in 2d and related problems. In the colored interval stabbing
problem, the input is n colored intervals with endpoints in JUK = {1, . . . , U}, and the query
is a point in JUK. We present a linear-space data structure which answers the approximate
counting query in O(log logU) time. The new data structure can be used to handle some
geometric settings in 2d: the colored dominance search (the input is a set of n colored points,
and the query is a 2-sided rectangle) and the colored 3-sided rectangle stabbing (the input is
a set of n colored 3-sided rectangles, and the query is a point). The results are summarized
in Table 1.

Range searching in R2. The input is a set of n colored points in the plane. For 3-sided
query rectangles, an optimal solution (in terms of n) for approximate counting is obtained.
For 4-sided query rectangles, an almost-optimal solution for approximate counting is ob-
tained. The size of our data structure is off by a factor of log logn w.r.t. its corresponding
emptiness structure which occupies O(n logn

log logn) space and answers the emptiness query in
O(log n) time [17]. The results are summarized in Table 1.

Dominance search in R3. The input is a set of n colored points in R3 and the query is a
3-sided rectangle in R3 (i.e., an octant). An almost-optimal solution is obtained requiring
O(n log log n) space and O(log n) time to answer the approximate counting query.

For the sake of completeness, in Section 7 we present results for a couple of other
colored problems which have expensive exact counting structures. One shortcoming of our
results is the preprocessing time. Except for Theorem 1, the preprocessing time for all the
other results is nO(d).

http://jocg.org/

JoCG 12(1), 40–69, 2021 44

Journal of Computational Geometry jocg.org

Dime- Input, New Results Previous Approx. Exact Counting Model
-nsion Query Counting Results Results

1 intervals, S: n, S: n, S: n,
point Q: log logU Q: log logU+ Q: log logU WR

2 points, (log log n)2 + logw n
2-sided
rectangle

2 3-sided Theorem 1 Remark 1 Remark 2
rectangles,

point

2 points, S: n, S: n log2 n,
3-sided Q: log n Q: log2 n not studied PM
rectangle Theorem 5(A) Remark 5

2 points, S: n log n, S: n log3 n, S: n2 log6 n,
4-sided Q: log n Q: log2 n Q: log7 n PM
rectangle Theorem 5(B) Remark 5 Kaplan et al. [29]

3 points, S: n log∗ n, S: n log2 n,
3-sided Q: log n · log logn Q: log2 n not studied PM
rectangle Theorem 2 Remark 3

Table 1: A summary of the results obtained for several approximate colored counting queries.
To avoid clutter, the O(·) symbol and the dependency on ε is not shown in the space and
the query time bounds. For the second column in the table, the first entry is the input and
the second entry is the query. For each of the results column in the table, the first entry is
the space occupied by the data structure and the second entry is the time taken to answer
the query. All our results are worst case bounds. Finally, WR denotes the word-RAM model
and PM denotes the pointer machine model. The appendix has a description of these two
models.

1.3.2 General reductions

We present two general reductions for solving approximate colored counting queries by
reducing them to “easy" companion queries (Theorem 3 and Theorem 4).

Reduction-I (Reporting + C-approximation). In the first reduction a colored approx-
imate counting query is answered using two companion structures: (a) reporting structure
(its objective is to report the k colors), and (b) C-approximation structure (its objective is
to report any value z s.t. k ∈ [z, Cz], where C is a constant). Significantly, unlike previous
reductions [10, 28], there is no asymptotic loss of efficiency in space and query time bounds
w.r.t. to the two companion problems.

Reduction-II (Only Reporting). The second reduction is a modification of the Aronov

http://jocg.org/

JoCG 12(1), 40–69, 2021 45

Journal of Computational Geometry jocg.org

and Har-Peled [10] reduction. We present the reduction for the following reasons:

a) Unlike reduction-I, this reduction is “easier" to use since it uses only the reporting struc-
ture and avoids the C-approximation structure.

b) The analysis of Aronov and Har-Peled is slightly complicated because of their insistence
on querying emptiness structures. We show that by using reporting structures the analy-
sis of our reduction becomes arguably simpler. Our reduction is useful when the reporting
query is not significantly costlier than the emptiness query.

1.3.3 Our techniques

The results are obtained via a non-trivial combination of several techniques. For example,
(a) new reductions from colored problems to standard problems, (b) obtaining a linear-
space data structure by performing random sampling on a super-linear-size data structure,
(c) refinement of path-range trees of Nekrich [38] to obtain an optimal data structure for
C-approximation of colored 3-sided range search in R2, and (d) random sampling on colors
to obtain the two general reductions.

In addition, we introduce nested shallow cuttings for 3-sided rectangles in 2d. The
idea of using a hierarchy of cuttings (or samples) is, of course, not new. However, for this
specific setting, we get a hierarchy where there is no penalty for the different levels being
compatible with each other. Usually, cells in the lower levels have to be clipped to cells
in the higher levels of the hierarchy, leading to a degradation in performance. In our case,
however, cells of the lower levels are fully contained in the cells of the level above it. The
shallow cuttings used in [9] have nested property for cells within the same level, but in
our setting the nested property holds across different levels which is crucial in avoid binary
search on levels.

Paper organization. In Section 2, we present a solution to the colored 3-sided rectangle
stabbing in 2d problem. In Section 3, we present a solution to the colored dominance search
in R3 problem. In Section 4 and 5, the two general reductions are presented. In Section 6,
the application of the first reduction to colored orthogonal range search in R2 problem is
shown. In Section 7, applications of the second reduction is shown. Finally, we conclude in
Section 8.

2 3-sided Rectangle Stabbing in 2d

The goal of this section is to prove the following theorem.

Theorem 1. Consider the following three colored geometric settings:

1. Colored interval stabbing in 1d, where the input is a set S of n colored intervals
in one-dimension and the query q is a point. The endpoints of the intervals and the
query point lie on a grid JUK.

http://jocg.org/

JoCG 12(1), 40–69, 2021 46

Journal of Computational Geometry jocg.org

2. Colored dominance search in 2d, where the input is a set S of n colored points in
2d and the query q is a quadrant of the form [qx,∞)× [qy,∞). The input points and
the point (qx, qy) lie on a grid JUK× JUK.

3. Colored 3-sided rectangle stabbing in 2d, where the input is a set S of n colored
3-sided rectangles in 2d and the query q is a point. The endpoints of the rectangles
and the query point lie on a grid JUK× JUK.

Then there exists an Oε(n) size word-RAM data structure which can answer an approximate
counting query for these three settings in Oε(log logU) time. The notation Oε(·) hides the
dependency on ε. The preprocessing time is n · logO(1) n.

Our strategy for proving this theorem is the following: In Subsection 2.1, we present
a transformation of these three colored problems to the standard 3-sided rectangle stabbing
in 2d problem. Then in Subsection 2.2, we construct nested shallow cuttings and use them
to solve the standard 3-sided rectangle stabbing in 2d problem.

2.1 Transformation to a standard problem

From now on the focus will be on colored 3-sided rectangle stabbing in 2d problem, since
the geometric setting of (1) and (2) in Theorem 1 are its special cases. We present a
transformation of the colored 3-sided rectangle stabbing in 2d problem to the standard 3-
sided rectangle stabbing in 2d problem.

Let Sc ⊆ S be the set of 3-sided rectangles of a color c. In the preprocessing phase,
we perform the following steps: (1) Construct a union of the rectangles of Sc. Call it U(Sc).
(2) The vertices of U(Sc) include original vertices of Sc and some new vertices. Perform a
vertical decomposition of U(Sc) by shooting a vertical ray upwards from every new vertex of
U(Sc) till it hits +∞. This leads to a decomposition of U(Sc) into Θ(|Sc|) pairwise-disjoint
3-sided rectangles. Call these new set of rectangles N (Sc).

q2

q1 q1

q2

Sc U(Sc) N (Sc)

Given a query point q, we can make the following two observations:

• If Sc ∩ q = ∅, then N (Sc) ∩ q = ∅. See query point q1 in the above figure.

• If Sc ∩ q 6= ∅, then exactly one rectangle in N (Sc) is stabbed by q. See query point q2

in the above figure.

http://jocg.org/

JoCG 12(1), 40–69, 2021 47

Journal of Computational Geometry jocg.org

Let N (S) =
⋃
cN (Sc), and clearly, |N (S)| = O(n). Therefore, the colored 3-sided

rectangle stabbing in 2d problem on S has been reduced to the standard 3-sided rectangle
stabbing in 2d problem on N (S).

2.2 Standard 3-sided rectangle stabbing in 2d

In this subsection we will prove the following lemma.

Lemma 1. (Standard 3-sided rectangle stabbing in 2d.) In this geometric setting,
the input is a set S of n uncolored 3-sided rectangles of the form [x1, x2] × [y,∞), and the
query q is a point. The endpoints of the rectangles and q lie on a grid JUK × JUK. Then,
there exists a data structure of size Oε(n) which can answer an approximate counting query
in Oε(log logU) time.

By a standard rank-space reduction, the rectangles of S can be projected to a J2nK×
JnK grid: Let Sx (resp., Sy) be the list of the 2n vertical (resp., n horizontal) sides of
S in increasing order of their x− (resp., y−) coordinate value. Then each rectangle r =
[x1, x2]× [y,∞) ∈ S is projected to a rectangle [rank(x1), rank(x2)]× [rank(y),∞), where
rank(xi) (resp., rank(y)) is the index of xi (resp., y) in the list Sx (resp., Sy). Given a query
point q ∈ JUK× JUK, we can use the van Emde Boas structure [46] to perform a predecessor
search on Sx and Sy in O(log logU) time to find the position of q on the J2nK × JnK grid.
Now we will focus on the new setting and prove the following result.

Lemma 2. For the standard 3-sided rectangle stabbing in 2d problem, consider a setting
where q and the rectangles have endpoints lying on a grid J2nK × JnK. Then there exists
a data structure of size Oε(n) which can answer the approximate counting query in Oε(1)
time.

2.2.1 Nested shallow cuttings

To prove Lemma 2, we will first construct shallow cuttings for 3-sided rectangles in 2d.

Lemma 3. Let S be a set of 3-sided rectangles (of the form [x1, x2]×[y,∞)) whose endpoints
lie on a J2nK× JnK grid. A t-level shallow cutting of S produces a set C of interior-disjoint
3-sided rectangles/cells of the form [x1, x2]×(−∞, y]. There exists a set C with the following
three properties:

1. |C| = 2n/t.

2. If q does not lie inside any of the cell in C, then |S ∩ q| ≥ t.

3. Each cell in C intersects at most 2t rectangles of S.

Proof. Partition the plane into 2n
t vertical slabs, such that t vertical lines of S lie in each slab,

i.e., each slab has a width of t. See Figure 1(a). Consider a slab s = [x1, x2]× (−∞,+∞).
Among all the rectangles of S which completely span the slab s, let yt be the y-coordinate

http://jocg.org/

JoCG 12(1), 40–69, 2021 48

Journal of Computational Geometry jocg.org

upper segments

2t

t
t

2t

22t

23t

qqy

(a) (b) (c)

(logn, n)-structure

k ≤ √logn: bit tricks

(
√
logn, logn)-structure

t 2t

Figure 1: (a) A portion of the t-level and 2t-level is shown. Notice that by our construction,
each cell in the t-level is contained inside a cell in the 2t-level. (b) A cell in the t-level and
the set Cr associated with it. (c) A high-level summary of our data structure.

of the rectangle with the t-th smallest y-coordinate. If less than t segments of S span slab
s, then set yt := +∞. Let the upper segment of the slab s be the horizontal segment
[x1, x2]× [yt]. Each slab contributes a cell [x1, x2]× (−∞, yt] to set C. See Figure 1(a).

Property 1 is easy to verify, since 2n
t slabs are constructed. To prove Property 2,

consider a point q which lies in slab s but does not lie in the cell [x1, x2] × (−∞, yt]. This
implies that there are at least t rectangles of S which contain q, and hence, |S ∩ q| ≥ t. To
prove Property 3, consider a cell r and its corresponding slab s. The rectangles of S which
intersect r either span the slab s or partially span the slab s. By our construction, there
can be at most t rectangles of S of each type.

Observation 1. (Nested Property) Let t and i be integers. Consider a t-level and a 2it-level
shallow cutting. By our construction, each cell in 2it-level contains exactly 2i cells of the
t-level. More importantly, there is only one cell in 2it-level that contains each cell in t-level.
(see Figure 1(a)).

2.2.2 Data structure

Now we will use nested shallow cuttings to find a constant-factor approximation for the 3-
sided rectangle stabbing in 2d problem. In [4], the authors show how to convert a constant-
factor approximation into a (1 + ε)-approximation for this geometric setting. Our solution
is based on (t, t′)-level-structure and (≤ √log n)-level lookup table.

(t, t′)-level structure. Let i, t and t′ be integers s.t. t′ = 2it. If q(qx, qy) lies between the
t-level and the t′-level cutting of S, then a (t, t′)-level-structure will answer the approximate
counting query in O(1) time and occupy O

(
n+ n

t log t′
)
space.

Structure. Construct a shallow cutting of S for levels 2jt,∀j ∈ [0, i]. For each cell, say
r, in the t-level we do the following: Let Cr be the set of cells from the 21t, 22t, 23t, . . . , 2it-

http://jocg.org/

JoCG 12(1), 40–69, 2021 49

Journal of Computational Geometry jocg.org

level, which contain r (Observation 1 guarantees this property). Now project the upper
segment of each cell of Cr onto the y-axis (each segment projects to a point). Based on
the y-coordinates of these |Cr| projected points build a fusion-tree [22]. Since there are
O(n/t) cells in the t-level and |Cr| = O(log t′), the total space occupied is O(nt log t′). See
Figure 1(b).

Query algorithm. Since qx ∈ J2nK, it takes O(1) time to find the cell r of the t-level
whose x-range contains qx. If the predecessor of qy in Cr belongs to the 2jt-level, then 2jt is
a constant-factor approximation of k. The predecessor query also takes O(1) time.

(≤ √log n)-level lookup table. Suppose q lies in a cell in the
√

log n-level shallow cutting
of S. Then constructing the (≤ √log n)-level lookup table will answer the exact counting
query in O(1) time. We will need the following lemma.

Lemma 4. For a cell c in the
√

log n-level shallow cutting of S, its conflict list Sc is the
set of rectangles of S intersecting c. Although the number of cells in the

√
log n-level is

O
(

n√
logn

)
, the number of combinatorially “different" conflict lists is merely O(

√
n).

Proof. Consider any set Sc from the shallow cutting. By a standard rank-space reduction
the endpoints of Sc will lie on a J2|Sc|K× J|Sc|K grid. Any set Sc on the J2|Sc|K× J|Sc|K grid
can be uniquely represented using O(|Sc| log |Sc|) = O(

√
log n log logn) bits as follows: (a)

assign a label to each rectangle, and (b) write down the label of each rectangle in increasing
order of their y-coordinates. The label for a rectangle [x1, x2]× [y,∞) will be “x1x2” which
requires O(log log n) bits. The number of combinatorially different conflict lists which can
be represented using O(

√
log n log log n) bits is bounded by 2O(

√
logn log logn) = O(nδ), for an

arbitrarily small δ < 1. We set δ = 1/2.

Lookup table. Construct a
√

log n-level shallow cutting of S. For each cell c, perform
a rank-space reduction of its conflict list Sc. Collect the combinatorially different conflict
lists. On each conflict list, the number of combinatorially different queries will be only
O(|Sc|2) = O(log n). In a lookup table, for each pair of (Sc, q) we store the exact value of
|Sc ∩ q|. The total number of entries in the lookup table is O(n1/2 log n).

Query algorithm. Given a query q(qx, qy), the following three O(1) time operations
are performed: (a) Find the cell c in the

√
log n-level which contains q. If no such cell is

found, then stop the query and conclude that k ≥ √log n. (b) Otherwise, perform a rank-
space reduction on qx and qy to map it to the J2|Sc|K× J|Sc|K grid. Since, |Sc| = O(

√
log n),

we can build fusion trees [22] on Sc to perform the rank-space reduction in O(1) time. (c)
Finally, search for (Sc, q) in the lookup table and report the exact count.

Final structure. At first thought, one might be tempted to construct a (0, n)-level-structure.
However, that would occupy O(n log n) space. The issue is that the (t, t′)-level structure
requires super-linear space for small values of t. Luckily, the (≤ √log n)-level lookup table
will efficiently handle the small values of t.

http://jocg.org/

JoCG 12(1), 40–69, 2021 50

Journal of Computational Geometry jocg.org

Therefore, the strategy is to construct the following: (a) a (≤ √log n)-level lookup
table, (b) a (

√
log n, log n)-level-structure, and (c) a (log n, n)-level-structure. Now, the

space occupied by all the three structures will be O(n). See Figure 1(c) for a summary of
our data structure.

Remark 1. For the standard 3-sided rectangle stabbing in 2d problem, a simple binary
search on the levels leads to a linear-space data structure with a query time of Oε(log logU+
(log log n)2). The technique of Afshani et al. [4] can be used to answer this approximate
counting query. However, their analysis works well for structures with query time of the
form log n or logB n, but breaks down for structures with query time of the form log log n.

Remark 2. If we want an exact count for the standard 3-sided rectangle stabbing in 2d
problem, then the problem can be reduced to exact counting for standard dominance search
in 2d [20]. Jaja et al. [26] present a linear-space structure which can answer the exact
counting for dominance search in 2d in Oε(log logU + logw n) time.

3 Colored Dominance Search in R3

Theorem 2. In the colored dominance search in R3 problem, the input set S is n colored
points in R3 and the query q is a point. Then there is a pointer machine data structure of size
Oε(n log∗ n) which can answer an approximate colored counting query in Oε(log n · log log n)
time. The notation Oε(·) hides the dependency on ε.

The strategy to prove this theorem is the following. First, we reduce the colored
dominance search in R3 problem to a standard problem of 5-sided rectangle stabbing in
R3. Then in the remaining section we solve the standard 5-sided rectangle stabbing in R3

problem.

3.1 Reduction to 5-sided rectangle stabbing in R3

In this subsection we present a reduction of colored dominance search in R3 problem to
the standard 5-sided rectangle stabbing in R3 problem. Let S be a set of n colored points
lying in R3. Let Sc ⊆ S be the set of points of color c, and p1, p2, . . . , pt be the points
of Sc in decreasing order of their z-coordinate value. With each point pi(pix, piy, piz), we
associate a region φi in R3 which satisfies the following invariant: a point (x, y, z) belongs to
φi if and only if in the region [x,+∞)× [y,+∞)× [z,+∞) the point of Sc with the largest
z-coordinate is pi. The following assignment of regions ensures the invariant:

• φ1 = (−∞, p1x]× (−∞, p1y]× (−∞, p1z]

• φi = (−∞, pix]× (−∞, piy]× (−∞, piz] \
⋃i−1
j=1 φj , ∀i ∈ [2, |Sc|].

By our construction, each region φi is unbounded in the negative z-direction. Each
region φi is broken into disjoint 5-sided rectangles via vertical decomposition in the xy-
plane (see Figure 2). The vertical decomposition ensures that the total number of disjoint

http://jocg.org/

JoCG 12(1), 40–69, 2021 51

Journal of Computational Geometry jocg.org

rectangles generated is bounded by O(|Sc|). Now we can observe that (i) if a color c has at
least one point inside q, then exactly one of its transformed rectangle will contain q, and
(ii) if a color c has no point inside q, then none of its transformed rectangles will contain q.
Therefore, the colored dominance search in R3 has been transformed to the standard 5-sided
rectangle stabbing query.

p1
p2

p3

p4

Figure 2: A dataset containing four points. The projection of φ1, φ2, φ3 and φ4 onto the
xy-plane is shown. The dashed lines are created during the vertical decomposition. Each
rectangle created during the vertical decomposition is lifted back to a 5-sided rectangle in
R3.

3.2 Initial strcuture

Lemma 5. In the standard 5-sided rectangle stabbing in R3 problem, the input is a set S of
n 5-sided rectangles in R3 and the query q is a point. Then there exists a pointer machine
data structure of size Oε(n log logn) which can answer an approximate counting query in
Oε(log n · log log n) time.

The rest of the subsection is devoted to proving this lemma.

Recursion tree. Define a parameter t = log1+ε n. We will assume that the 5-sided rect-
angles are unbounded along the z-axis. Consider the projection of the rectangles of S on to
the xy-plane and impose an orthogonal

q
2
√

n
t

y
×

q
2
√

n
t

y
grid such that each horizontal and

vertical slab contains the projections of
√
nt sides of S. Call this the root of the recursion

tree. Next, for each vertical and horizontal slab, we recurse on the rectangles of S which
are sent to that slab. At each node of the recursion tree, if we have m rectangles in the
subproblem, then t is changed to log1+εm and the grid size changes to

q
2
√

m
t

y
×

q
2
√

m
t

y
.

We stop the recursion when a node has less than c rectangles, for a suitably large constant
c.

Assignment of rectangles. For a node in the tree, the intersection of every pair of
horizontal and vertical grid line defines a grid point. Each rectangle of S is assigned to
Oε(log log n) nodes in the tree. The assignment of a rectangle to a node is decided by the
following three cases:

Case-I. The xy-projection of a rectangle intersects none of the grid points, i.e., it lies com-
pletely inside one of the row slab or/and the column slab. Then the rectangle is not assigned

http://jocg.org/

JoCG 12(1), 40–69, 2021 52

Journal of Computational Geometry jocg.org

to this node, but sent to the child node corresponding to the row or column the rectangle
lies in.

Case-II. The xy-projection of a rectangle r intersects at least one of the grid points. Let cl
and cr be the leftmost and the rightmost column of the grid intersected by r. Similarly, let
rb and rt be the bottom most and the topmost row of the grid intersected by r.

Then the rectangle is broken into at most five disjoint pieces: a grid rectangle, which
is the bounding box of all the grid points lying inside r (see Figure 3(b)), two column
rectangles, which are the portions of r lying in column cl and cr (see Figure 3(d)), and two
row rectangles, which are the remaining portion of the rectangle r lying in row rb and rt (see
Figure 3(c)). The grid rectangle is assigned to the node. Note that each column rectangle
(resp., row rectangle) is now a 4-sided rectangle in R3 w.r.t. the column (resp., row) it lies
in, and is sent to its corresponding child node.

(a) (b) (c) (d)

Figure 3:

Case-III. The xy-projection of a 4-sided rectangle r intersects at least one of the grid points.
Without loss of generality, assume that the 4-sided rectangle r is unbounded along the
negative x-axis. Then the rectangle is broken into at most four disjoint pieces: a grid
rectangle, as shown in Figure 4(b), one column rectangle, as shown in Figure 4(d), and two
row rectangles, as shown in Figure 4(c). The grid rectangle and the two row rectangles are
assigned to the node. Note that the two row rectangles are now 3-sided rectangles in R3

w.r.t. their corresponding rows (unbounded in one direction along x−, y− and z−axis). The
column rectangle is sent to its corresponding child node. Analogous partition is performed
for 4-sided rectangles which are unbounded along positive x-axis, positive y-axis and negative
y-axis.

(a) (b) (c) (d)

Figure 4:

Observation 2. A rectangle of S gets assigned to at most four nodes at each level in the
recursion tree.

Proof. Consider a rectangle r ∈ S. If r falls under Case-II, then its grid rectangle is assigned
to the node. Note that r can fall under Case-II only once, since each of its four row and

http://jocg.org/

JoCG 12(1), 40–69, 2021 53

Journal of Computational Geometry jocg.org

column rectangles are now effectively 4-sided rectangles. Let r′ be one of these row or column
rectangles. If r′ falls under Case-III at a node, then it gets assigned there. However, this
time exactly one of the broken portion of r′ will be sent to the child node. Therefore, there
can be at most four nodes at each level where rectangle r (and broken portions of r) can
get assigned.

Data structures at each node. We build two types of structures at each node in the
tree.

Structure-I. A rectangle r′ is higher than rectangle r′′ if r′ has a larger span than r′′ along
z-direction. For each cell c of the grid, based on the rectangles which completely cover c, we
construct a sketch as follows: select the rectangle with the (1 + ε)0, (1 + ε)1, (1 + ε)2, . . .-th
largest span. For a given cell, the size of the sketch will be O(log1+εm).

Structure-II. For a given row or column in the grid, let Ŝ be the 3-sided rectangles in R3

assigned to it. We build the linear-size structure of [4] on Ŝ, which will return a (1 + ε)-
approximation of |Ŝ ∩ q| in Oε(log n) time. This structure is built for each row and column
slab.

Space analysis. Consider a node in the recursion tree with m rectangles. There will
be
(
2
√

m
t

)
×
(
2
√

m
t

)
= 4mt cells at this node. The space occupied by structure-I will be

O
(
m
t · log1+εm

)
= O(m). The space occupied by structure-II will be O(m). Using Obser-

vation 2, the total space occupied by all the nodes at a particular level will be O(n). Since
the height of the recursion tree is Oε(log log n), the total space occupied is Oε(n log log n).

Query algorithm. Given a query point q, we start at the root node. At each visited node,
the following three steps are performed:

1. Query structure-I. Locate the cell c on the grid containing q. Scan the sketch of cell
c to return a (1 + ε)-approximation of the number of rectangles which cover c and
contain q. This takes Oε(logm) time.

2. Query structure-II. Next, query structure-II of the horizontal and the vertical slab
containing q, to find a (1 + ε)-approximation of the 3-sided rectangles containing q.
This takes Oε(logm) time.

3. Recurse. Finally, we recurse on the horizontal and the vertical slab containing q.

The final output is the sum of the count returned by all the nodes queried.

Query time analysis. Let Q(n) denote the overall query time. Then

Q(n) = 2Q(
√
nt) +Oε(log n), t = log1+ε n.

This solves to Q(n) = Oε(log n · log log n). This finishes the proof of Lemma 5.

http://jocg.org/

JoCG 12(1), 40–69, 2021 54

Journal of Computational Geometry jocg.org

3.3 Final structure

In this subsection we improve upon the data structure built in the previous subsection by
reducing the size to Oε(n log∗ n).

Lemma 6. In the standard 5-sided rectangle stabbing in R3 problem, the input is a set
S of n 5-sided rectangles in R3 and the query q is a point. Then there exists a pointer
machine data structure of size Oε(n log∗ n) which can solve an approximate counting problem
in Oε(log n · log logn) time.

Let ε′ ← ε/4 and C > 3. The reason for choosing these parameters will become clear
later. We divide the solution into two cases.

3.3.1 Case-I: k ∈ [0, Cε′−2 log n · log logn]

For the reporting version of 5-sided rectangle stabbing in R3 problem, Rahul [41] presented a
structure of size O(n log∗ n) which can answer a query in O(log n · log log n+ k) time. Build
this structure on all the rectangles in set S. Given a query point q, query the structure
till all the rectangles in S ∩ q have been reported or Cε′−2 log n · log log n+ 1 rectangles in
S ∩ q have been reported. If the first event happens, then the exact value of k is reported.
Otherwise, we conclude that k > Cε′−2 log n · log log n.

3.3.2 Case-II: k ∈ [Cε−2 log n · log log n, n]

We will need the following random sampling based lemma.

Lemma 7. Let S be a set of n 5-sided rectangles in R3. Consider a query point q such
that k ≥ Cε′−2 log n · log log n. Then there exists a set R ⊂ S of size O

(
n

log logn

)
such that

(|R ∩ q| · log log n) ∈ [(1− ε′)k, (1 + ε′)k].

Proof. Fix a parameter δ = log log n. Choose a random sample R where each object of S is
picked independently with probability 1/δ. Therefore, the expected size of R is n/δ (if the
size of R exceeds O(n/δ), then re-sample till we get the desired size). For a given query q,
E[|R ∩ q|] = |S ∩ q|/δ = k/δ. Therefore, by Chernoff bound [36] we observe that

Pr
[∣∣∣∣|R ∩ q| − k

δ

∣∣∣∣ > ε′
k

δ

]
≤ e−Ω(ε′2(k/δ)) ≤ e−Ω(ε′2(Cε′−2 logn)) ≤ e−Ω(C logn) = n−Ω(C) ≤ o(1/nC)

Set C to be greater than 3. There are O(n3) combinatorially different query points on the
set S. Therefore, by union bound it follows that there exists a subset R ⊂ S of size O(n/δ)
such that |k − |R ∩ q| · δ| ≤ ε′k, for any q such that k ≥ Cε′−2 log n · log logn.

Preprocessing steps. We perform the following steps:

http://jocg.org/

JoCG 12(1), 40–69, 2021 55

Journal of Computational Geometry jocg.org

• Apply Lemma 7 on set S to obtain a set R of size O(n/ log log n).

• Build the data structure of Lemma 5 based on set R with error parameter ε′.

Query algorithm. For a given a query q, let τR be the value returned by the data structure
built on R. Then we report τR · log logn as the answer.

Analysis. Since |R| = O(n/ log log n), by Lemma 5 the space occupied by this data struc-
ture will be Oε(n). The query time follows from Lemma 5. Next, we will prove that
(1− ε)k ≤ τR · log logn ≤ (1 + ε)k.

If we knew the exact value of |R ∩ q|, then from Lemma 7 we can infer that:

(1− ε′)k ≤ |R ∩ q| log logn ≤ (1 + ε′)k (1)

However, by using Lemma 5 we only get an approximate value of |R ∩ q|:

(1− ε′)|R ∩ q| ≤ τR ≤ (1 + ε′)|R ∩ q| (2)

Combining the above two equations, it is easy to verify that (1−ε)k ≤ τR log logn ≤ (1+ε)k,
where ε = 4ε′. This finishes the proof of Lemma 6.

Remark 3. The general technique of Aronov and Har-Peled [10] can be adapted to answer
the approximate counting query for the colored dominance search in R3 problem. Assume
that we have a data structure of size S(n) which can answer the emptiness query in Q(n)
time. Ignoring the dependence on ε, the technique of [10] guarantees a data structure of size
O(S(n) log2 n) which can answer a colored approximate counting query in O(Q(n) log n)
time (O(log2 n) emptiness structures are built with each of them storing Θ(n) objects in
the worst-case). To answer an emptiness query, we can use a standard reporting structure
instead of a colored reporting structure, since a non-empty (resp., an empty) intersection
of the input objects with the query trivially implies that the number of colors intersecting
the query is greater than zero (resp., zero). For colored dominance search in R3, plugging
in S(n) = O(n) and Q(n) = O(log n) [1] (a standard reporting structure), we get a data
structure which requires Oε(n log2 n) space and Oε(log2 n) query time.

4 Reduction-I: Reporting + C-approximation

Our first reduction states that given a colored reporting structure and a colored C-approximation
structure, one can obtain a colored (1+ε)-approximation structure with no additional loss of
efficiency. We need a few definitions before stating the theorem. A geometric setting is poly-
nomially bounded if there are only nO(1) possible outcomes of S∩q, over all possible values of
q. For example, in 1d orthogonal range search on n points, there are only Θ(n2) possible out-
comes of S ∩ q. A function f(n) is converging if

∑t
i=0 ni = n, then

∑t
i=0 f(ni) = O(f(n)).

For example, it is easy to verify that f(n) = n log n is converging.

Theorem 3. For a colored geometric setting, assume that we are given the following two
structures:

http://jocg.org/

JoCG 12(1), 40–69, 2021 56

Journal of Computational Geometry jocg.org

• a colored reporting structure of Srep(n) size which can solve a query in O(Qrep(n) +κ)
time, where κ is the output-size, and

• a colored C-approximation structure of Scapp(n) size which can solve a query in O(Qcapp(n))
time.

We also assume that: (a) Srep(n) and Scapp(n) are converging, and (b) the geometric setting
is polynomially bounded. Then we can obtain a (1 + ε)-approximation using a structure that
requires Sεapp(n) space and Qεapp(n) query time, such that

Sεapp(n) = O(Srep(n) + Scapp(n)) (3)
Qεapp(n) = O

(
Qrep(n) +Qcapp(n) + ε−2 · log n

)
. (4)

4.1 Refinement Structure

The goal of a refinement structure is to convert a constant-factor approximation of k into a
(1 + ε)-approximation of k.

Lemma 8. (Refinement structure) Let C be the set of colors in set S, and C ∩ q be the
set of colors in C present in q. For a query q, assume we know that:

• k = |C ∩ q| = Ω(ε−2 log n), and

• k ∈ [z, Cz], where z is an integer.

Then there is a refinement structure of size O
(
Srep

(
ε−2n logn

z

))
which can report a value

τ ∈ [(1− ε)k, (1 + ε)k] in O(Qrep(n) + ε−2 log n) time.

The following lemma states that sampling colors (instead of input objects) is a useful
approach to build the refinement structure.

Lemma 9. Consider a query q which satisfies the two conditions stated in Lemma 8. Let
c1 be a sufficiently large constant and c be another constant s.t. c = Θ(c1 log e). Choose
a random sample R where each color in C is picked independently with probability M =
c1ε−2 logn

z . Then with probability 1− n−c we have
∣∣∣k − |R∩q|M

∣∣∣ ≤ εk.
Proof. For each of the k colors which are present in q, define an indicator variable Xi. Set
Xi = 1, if the corresponding color is in the random sample R. Otherwise, set Xi = 0. Then
|R ∩ q| = ∑k

i=1Xi and E[|R ∩ q|] = k ·M . By Chernoff bound,

Pr

[∣∣∣|R ∩ q| − E[|R ∩ q|]
∣∣∣ > ε · E[|R ∩ q|]

]
< exp

(
− ε2E[|R ∩ q|]

)
< exp

(
−ε2 · kM

)
< exp

(
−ε2zM

)
< exp (−c1 log n) ≤ 1

nc

Therefore, with high probability
∣∣∣|R ∩ q| − kM ∣∣∣ ≤ ε · kM .

http://jocg.org/

JoCG 12(1), 40–69, 2021 57

Journal of Computational Geometry jocg.org

Lemma 10. (Finding a suitable R) Pick a random sample R as defined in Lemma 9.
Let nR be the number of objects of S whose color belongs to R. We say R is suitable if it
satisfies the following two conditions:

•
∣∣∣k − |R∩q|M

∣∣∣ ≤ εk for all queries which have k = Ω(ε−2 log n).

• nR ≤ 10nM . This condition is needed to bound the size of the data structure.

A suitable R always exists.

Proof. Let nα be the number of combinatorially different queries q on the set S. From
Lemma 9, by setting c = α + 1, we can conclude that τ ←− |R∩q|

M will lie in the range
[(1 − ε)k, (1 + ε)k] with probability at least 1 − 1/nα+1. By the standard union bound,
it implies that the probability of the random sample R failing for any query is at most
1/nα+1 × nα = 1/n.

Next, it is easy to observe that the expected value of nR is nM : Let nc be the
number of objects of S having color c. Then E[nR] =

∑
c nc · M = nM . By Markov’s

inequality, the probability of nR being larger than 10nM is less than or equal to 1/10. By
union bound, R will be not be suitable with probability ≤ 1/n + 1/10. Therefore, with
probability ≥ 9/10 − 1/n, R will be suitable and hence, we are done. We do not discuss
the preprocessing time here, since it is not known how to efficiently verify if a sample R is
suitable. We leave this as an interesting open problem.

Refinement structure and query algorithm. In the preprocessing stage pick a random
sample R ⊆ C as stated in Lemma 9. If the sample R is not suitable, then discard R and
re-sample, till we get a suitable sample. Based on all the objects of S whose color belongs to
R, build a colored reporting structure. Given a query q, the colored reporting structure is
queried to compute |R∩q|. We report τ ←− (|R ∩ q|/M) as the final answer. The query time
is bounded by O(Qrep(n)+ε−2 log n), since by Lemma 9, |R∩q| ≤ (1+ε)·kM = O(ε−2 log n).
This finishes the description of the refinement structure.

4.2 Overall solution

Data structure. The data structure consists of the following three components:

1. Reporting structure. Based on the set S we build a colored reporting structure. This
occupies O(Srep(n)) space.

2.
√
C-approximation structure. Based on the set S we build a

√
C-approximation struc-

ture. The reason for choosing
√
C will become clear in the analysis. This occupies

O(Scapp(n)) space.

3. Refinement structures. Build the refinement structure of Lemma 8 for the values
z = (

√
C)i · ε−2 log n,∀i ∈

[
0, log√C

(⌈
ε2n
⌉)]

. The total size of all the refinement

http://jocg.org/

JoCG 12(1), 40–69, 2021 58

Journal of Computational Geometry jocg.org

structures will be
∑

z O (Srep(nM)) = O(Srep(n)), since Srep(·) is converging and∑
z nM = O(n). Note that our choice of z ensures that the size of the data structure

is independent of ε.

Query algorithm. The query algorithm performs the following steps:

1. Given a query object q, the colored reporting structure reports the colors present in
S∩q till all the colors have been reported or ε−2 log n+1 colors have been reported. If
the first event happens, then the exact value of k is reported. Otherwise, we conclude
that k = Ω(ε−2 log n). This takes O(Qrep(n) + ε−2 log n) time.

2. If k > ε−2 log n, then

(a) First, query the
√
C-approximation structure. Let ka be the

√
C-approximate

value returned s.t. k ∈ [ka,
√
Cka]. This takes O(Qcapp(n)) time.

(b) Then query the refinement structure with the largest value of z s.t. z ≤ ka ≤√
Cz. It is trivial to verify that k ∈ [z, Cz]. This takes O(Qrep(n) + ε−2 log n)

time.

5 Reduction-II: Using Only Reporting Structure

In this section we will present our second general reduction. The reader is assumed to be
familiar with Section 4.

Theorem 4. For a given colored geometric setting, assume that we are given a colored
reporting structure of Srep(n) size which can answer the query in O(Qrep(n) + κ) time. We
also assume that: (a) Srep(n) is converging, and (b) the geometric setting is polynomially
bounded. Then we can obtain a (1 + ε) approximation using a structure which requires
Sεapp(n) = O(Srep(n)) space and

Qεapp(n) = O

((
Qrep(n) + ε−2 · log n

)
· log(log1+ε |C|)

)
(5)

query time, where C is the number of colors in S.

Similar to Section 4, a colored reporting structure will be built on S to either report
the exact value of |C ∩ q| or report that |C ∩ q| is greater than ε−2 log n. From now on we
will assume that k = |C ∩ q| = Ω(ε−2 log n).

5.1 Decision structure

Lemma 11. (Decision structure) Let z = Ω(ε−2 log n) be a pre-specified parameter.
Given a query q, the decision structure reports whether |C ∩ q| ≥ z or |C ∩ q| < z. The data
structure is allowed to make a mistake when |C ∩ q| ∈ [(1− ε)z, (1 + ε)z]. There is a decision
structure of size O

(
Srep

(
ε−2n logn

z

))
which can answer the query in O(Qrep(n) + ε−2 log n)

time.

http://jocg.org/

JoCG 12(1), 40–69, 2021 59

Journal of Computational Geometry jocg.org

In this subsection we will prove the above lemma. A few words on the intuition
behind the solution. Suppose each color in C is sampled with probability ≈ (log n)/z. For a
given query q, if k < z (resp., k > z), then the expected number of colors from C∩q sampled
will be less than log n (resp., greater than log n). We will start by proving the following
lemma.

Lemma 12. Let c1 be a sufficiently large constant and c be another constant s.t. c =
Θ(c1 log e). Consider a random sample R where each color in C is picked independently with
probability M = c1ε−2 logn

z , where ε ∈ (0, 1/2]. Then

Pr
[
|R ∩ q| > zM

∣∣∣∣ k ≤ (1− ε)z
]
≤ 1

nc
.

Similarly,

Pr
[
|R ∩ q| ≤ zM

∣∣∣∣ k ≥ (1 + ε)z

]
≤ 1

nc

Proof. For each of the k colors present in q, define an indicator variable Xi. Set Xi = 1
if the corresponding color is in the random sample R. Otherwise, set Xi = 0. Then
|R∩ q| = ∑k

i=1Xi and E[|R∩ q|] = k ·M . For the sake of brevity, let Y = |R∩ q|. We only
prove the first fact here. The proof for the second fact is similar. Let

α = Pr
[
Y > zM

∣∣∣∣ k ≤ (1− ε)z
]

The value α is maximized when k = (1− ε)z. Therefore,

α ≤ Pr
[
Y > zM

∣∣∣∣ k = (1− ε)z
]

In this case, E[Y] = kM = (1− ε)zM . Therefore,

α ≤ Pr[Y > zM] = Pr
[
Y >

1

1− εE[Y]

]
≤ Pr [Y > (1 + ε)E [Y]]

≤ exp
(
−ε

2E[Y]

4

)
By Chernoff bound

= exp
(
−ε2(1− ε)z

(
c1ε
−2 log n

4z

))
= exp

(
−c1(1− ε) log n

4

)
≤ exp

(
−c1

8
log n

)
since ε ≤ 1/2

≤ 1

nc

Lemma 13. Let z = Ω(ε−2 log n) be a pre-specified parameter. Using notation from Sec-
tion 4, a sample R ⊆ C is called suitable if

• For all queries, (a) if k < (1− ε)z then |R ∩ q| < c1ε
−2 log n, and (b) if k ≥ (1 + ε)z

then |R ∩ q| ≥ c1ε
−2 log n.

http://jocg.org/

JoCG 12(1), 40–69, 2021 60

Journal of Computational Geometry jocg.org

• nR ≤ 10nM .

Such an R always exists.

Proof. The proof is exactly the same as the proof in Lemma 10. The only difference is that
we replace Lemma 9 with Lemma 12.

Decision structure and query algorithm. In the preprocessing phase pick a random sample
R ⊆ C as stated in Lemma 12. If the sample R is not suitable, then discard R and re-sample,
till we get a suitable sample. Based on all the points of S whose color belongs to R, build a
colored reporting structure. Given a query object q, the colored reporting structure reports
R ∩ q, till all the colors have been reported or c1ε

−2 log n colors have been reported. If the
first event happens, then we report k < z. Otherwise, we report k ≥ z. The query time is
bounded by O(Qrep(n) + ε−2 log n),

In Lemma 12, we assumed ε ∈ (0, 1/2]. Handling ε ∈ (1/2, 1] is easy: Set a new
variable εnew ←− 1/2. The decision structure will be built with the error parameter εnew
(and not ε). Since εnew < ε, the error made by the decision structure is tolerable. Since

1
εnew

≤ 2
ε , the space and the query time bounds are also not affected.

5.2 Final structure

Data structure. Recall that we only have to handle k = Ω(ε−2 log n). For the values
zi = c1(ε−2 log n)(1+ε)i, for i = 1, 2, 3, . . . ,W = O(log1+ε |C|), we build a decision structure
Di using Lemma 11. By performing similar analysis as in Section 4, the overall size will be
O(Srep(n)).

Query algorithm. For a moment, assume that we query all the data structuresD1, . . . ,DW .
Then we will see a sequence of structures Dj for j ∈ [1, i] claiming |C ∩ q| > zj , followed by
a sequence of structures Di+1, . . . ,DW claiming |C ∩ q| ≤ zj . Then we report τ ← zi as the
answer to the approximate colored counting query. A simple calculation reveals that τ will
lie in the range [(1− ε)k, (1 + ε)k]. We perform a binary search on D1, . . . ,DW to efficiently

find the index i. The query time will be O
((
Qrep(n) + ε−2 · log n

)
· log(log1+ε |C|)

)
.

Remark 4. Our result is a generalization of the reduction of Aronov and Har-Peled [10] to
colored problems. Handling “small" values of k efficiently is usually challenging, since the
error tolerated is small. Using the reporting structure makes it easy to handle the “small"
values of k (unlike an emptiness structure which was used by [10]). Random sampling and
Chernoff bound are easy to apply for “large" values of k. As a result, the analysis of our
reduction is easier than [10].

6 Colored Orthogonal Range Search in R2

To illustrate an application of Reduction-I, we study the approximate colored counting query
for orthogonal range search in R2.

http://jocg.org/

JoCG 12(1), 40–69, 2021 61

Journal of Computational Geometry jocg.org

Theorem 5. Consider the following two problems:

A) Colored 3-sided range search in R2. In this setting, the input set S is n colored
points in R2 and the query q is a 3-sided rectangle in R2. There is a data structure
of O(n) size which can answer the approximate colored counting query in O(ε−2 log n)
time. This pointer machine structure is optimal in terms of n.

B) Colored 4-sided range search in R2. In this setting, the input set S is n colored
points in R2 and the query q is a 4-sided rectangle in R2. There is a data struc-
ture of O(n log n) size which can answer the approximate colored counting query in
O(ε−2 log n) time.

6.1 Colored 3-sided range search in R2

We use the framework of Theorem 3 to prove the result of Theorem 5(A). For this geometric
setting, a colored reporting structure with Srep = n and Qrep = log n is already known [43].
The path-range tree of Nekrich [38] gives a (4+ε)-approximation, but it requires super-linear
space. The C-approximation structure presented in this subsection is a refinement of the
path-range tree for the pointer machine model.

Lemma 14. For the colored 3-sided range search in R2 problem, there is a C-approximation
structure which requires O(n) space and answers a query in O(log n) time.

We prove Lemma 14 in the rest of this subsection.

6.1.1 Interval tree

Our solution is based on an interval tree and we will need the following fact about it.

Lemma 15. Using interval trees, a query on (3 + t)-sided rectangles in R3 can be broken
down into O(log n) queries on (2 + t)-sided rectangles in R3. Here t ∈ [1, 3].

Proof. Let R be a set of n (3 + t)-sided rectangles. We build an interval tree IT as follows:
W.l.o.g., assume that the rectangles are bounded along the x-axis. Let h be a plane perpen-
dicular to the x-axis such that there are equal number of endpoints of R on each side of the
plane. The splitting halfplane h is stored at the root of IT and the two subtrees are built
recursively. In general, h(v) is the splitting halfplane stored at a node v ∈ IT . A rectangle
r ∈ R is stored at the highest node v s.t. r intersects h(v). Let Rv be the set of rectangles
stored at a node v. Each rectangle in r ∈ Rv is split by h(v) into two rectangles r− and r+.
Define R−v :=

⋃
r∈Rv

r− and R+
v :=

⋃
r∈Rv

r+.

Given a query point q, trace a path Π of length O(log n) from the root to a leaf
node corresponding to q. For a node v ∈ Π, if q lies to the left (resp., right) of h(v), then
answering a query on Rv ∩ q is equivalent to answering it on R−v ∩ q (resp., R+

v ∩ q), and
we can treat R−v (resp., R+

v) as (2 + t)-sided rectangles in R3, since h(v) is effectively +∞
(resp., −∞).

http://jocg.org/

JoCG 12(1), 40–69, 2021 62

Journal of Computational Geometry jocg.org

6.1.2 Initial structure

Lemma 16. For the colored 3-sided range search in R2 problem, there is a 2-approximation
structure which requires O(n) space and answers a query in O(log3 n) time.

Proof. By a simple exercise, the colored 3-sided range search in R2 can be reduced to the
colored dominance search in R3. Therefore, using the reduction of Subsection 3.1 the colored
3-sided range search in R2 also reduces to standard 5-sided rectangle stabbing problem (for
brevity, call it 5-sided RSP).

There is a simple linear-size data structure which reports in O(log3 n) time a 2-
approximation for the 5-sided RSP: By inductively applying Lemma 15 twice, we can de-
compose 5-sided RSP to O(log2 n) 3-sided RSPs. For 3-sided RSP, there is a linear-size
structure of which reports a 2-approximation in O(log n) time [4]. By using this structure
the 5-sided RSP can be solved in O(log3 n) time.

6.1.3 Final structure

Now we will present the optimal C-approximation structure of Lemma 14.

Structure. Sort the points of S based on their x-coordinate value and divide them
into buckets containing log2 n consecutive points. Based on the points in each bucket, build
a D-structure which is an instance of Lemma 16. Next, build a height-balanced binary
search tree T , where the buckets are placed at the leaves from left to right based on their
ordering along the x-axis. Let v be a proper ancestor of a leaf node u and let Π(u, v) be
the path from u to v (excluding u and v). Let Sl(u, v) be the set of points in the subtrees
rooted at nodes that are left children of nodes on the path Π(u, v) but not themselves on
the path. Similarly, let Sr(u, v) be the set of points in the subtrees rooted at nodes that are
right children of nodes on the path Π(u, v) but not themselves on the path. See Figure 5,
which illustrates these sets for two leaves u = ul and u = ur. For each pair (u, v), let S′l(u, v)
(resp., S′r(u, v)) be the set of points that each have the highest y-coordinate value among
the points of the same color in Sl(u, v) (resp., Sr(u, v)).

Finally, for each pair (u, v), construct a sketch, S′′l (u, v), by selecting the 20, 21, 22, . . .-
th highest y-coordinate point in S′l(u, v). A symmetric construction is performed to obtain
S′′r (u, v). The number of (u, v) pairs is bounded by O((n/ log2 n) × (log n)) = O(n/ log n)
and hence, the space occupied by all the S′′l (u, v) and S′′r (u, v) sets is O(n).

Query algorithm. To answer a query q = [x1, x2] × [y,∞), we first determine the
leaf nodes ul and ur of T containing x1 and x2, respectively. If ul = ur, then we query the
D-structure corresponding to the leaf node and we are done. If ul 6= ur, then we find the
node v which is the least common ancestor of ul and ur. The query is now broken into four
sub-queries: First, report the approximate count in the leaves ul and ur by querying the
D-structure of ul with [x1,∞) × [y,∞) and the D-structure of ur with (−∞, x2] × [y,∞).
Next, scan the list S′′r (ul, v) (resp., S′′l (ur, v)) to find a 2-approximation of the number of
colors of Sr(ul, v) (resp., Sl(ur, v)) present in q.

The final answer is the sum of the count returned by the four sub-queries. The time

http://jocg.org/

JoCG 12(1), 40–69, 2021 63

Journal of Computational Geometry jocg.org

v

Π(ul, v) Π(ur, v)

ul ur

Sr(ul, v) Sl(ur, v)

Figure 5: ul and ur are the leaf nodes containing x1 and x2.

taken to find ul, ur and v is O(log n). Querying the leaf structures takes O((log(log2 n))3) =
O(log n) time. The time taken for scanning the lists S′′r (ul, v) and S′′l (ur, v) is O(log n).
Therefore, the overall query time is bounded by O(log n). Since each of the four sub-queries
give a 2-approximation, overall we get a 8-approximation.

6.2 C-approximation for 4-sided range search

Now we will prove Theorem 5(B). Again we will use the framework of Theorem 3. It is
straightforward to obtain a data structure with Scapp = O(n log n), Qcapp = O(log n) and
C = 16. Simply build a binary range tree on the y-coordinates of S and at each node build
an instance of Lemma 14 based on the points in its subtree. Given a 4-sided query rectangle
q, it can be broken down into two 3-sided query rectangles. Shi and Jaja [43] presented a
reporting structure with Srep = O(n log n) and Qrep = O(log n). Plugging in these values
into Theorem 3 proves Theorem 5(B).

Remark 5. As discussed in Remark 3, the technique of [10] can be adapted to answer a
colored approximate counting query. For colored 3-sided range search in R2, plugging in
S(n) = O(n) and Q(n) = O(log n) [35] leads to a data structure of size O(n log2 n) and
query time O(log2 n). For colored 4-sided range search in R2, plugging in S(n) = O(n log n)
and Q(n) = O(log n) [18] leads to a data structure of size O(n log3 n) and query time
O(log2 n) (the standard reporting structure of Chazelle [17] can be used to obtain slightly
better space).

7 Applications of Reduction-II

In this section we present a few applications of reduction-II. For the colored problems dis-
cussed in this section, their exact counting structures are expensive [23, 29].

Theorem 6. Consider the following three colored geometric settings:

1. Colored halfplane range search, where the input is a set of n colored points in R2

and the query is a halfplane. There is a data structure of O(n) size which can answer
the approximate counting query in O

(
1
ε2
· log n · log(log1+ε |C|)

)
time.

http://jocg.org/

JoCG 12(1), 40–69, 2021 64

Journal of Computational Geometry jocg.org

2. Colored halfspace range search in R3, where the input is a set of n points in R3

and the query is a halfspace. There is a data structure of O(n log n) size which can
answer the approximate counting query in O

(
1
ε2

log3 n · log(log1+ε |C|)
)
time.

3. Colored orthogonal range search in Rd, where the input is a set of n points in Rd
and the query is an axis-parallel rectangle. There is a data structure of O(n logd n) size
which can answer the approximate counting query in O

(
1
ε2
· logd+1 n · log(log1+ε |C|)

)
time.

Colored orthogonal range search in Rd. First consider the standard orthogonal range
emptiness query in Rd (d ≥ 2). Using range trees, this problem can be solved using M(n) =
O(n logd−1 n) space and Qrep(n) = O(logd−1 n) query time. Using this structure, the colored
orthogonal range reporting problem in Rd can be answered in O(Qrep(n) + κQrep(n) log n)
query time using a structure of size O(M(n) log n). Here κ is the number of colors reported
(see Section 1.3.4 of [23] for the details of this transformation).

By applying Theorem 4, the space occupied by the approximate counting structure
will be O(n logd n). In Theorem 4, we assumed that the query time of the colored reporting
structure can be expressed as O(Qrep +κ), whereas for this problem the query time is being
expressed as O(Qrep + κQrep log n). Therefore, equation 5 of the query time Qεapp(n) in
Theorem 4 can be rewritten as

O

((
Qrep(n) + (ε−2 log n)Qrep(n) log n

)
· log(log1+ε |C|)

)
Plugging in the value of Qrep(n) into the above expression, we get

Qεapp(n) = O

((
logd−1 n+ε−2 logd+1 n

)
·log(log1+ε |C|)

)
= O

(
ε−2·logd+1 n·log(log1+ε |C|)

)

Colored halfspace range search in R3. There exists an O(n log2 n) space reporting data
structure for this problem which can answer the query in O(n1/2+δ + κ) time [23]. But we
will not use this structure, since for our purpose κ = O(ε−2 log n) and the transformation
technique used for the colored orthogonal range search problem will give us a reporting data
structure with better bounds. Again, first consider the standard halfspace range emptiness
query in R3. This problem can be solved using M(n) = O(n) space and Qrep(n) = O(log n)
query time [3]. Using this structure, the colored halfspace range reporting problem in R3 can
be answered in O(Qrep(n) +κQrep(n) log n) = O(ε−2 log3 n) query time using a structure of
size O(M(n) log n) = O(n log n).

Applying Theorem 4, the space occupied by the approximate counting structure will
be O(n log n). The query time will be

O

((
Qrep(n) + (ε−2 log n)Qrep(n) log n

)
· log(log1+ε |C|)

)
= O

(
(ε−2 log3 n) · log(log1+ε |C|)

)

Colored halfplane range search. In [23] a reduction is presented from this problem to
the segments-below-point problem: Given a set of n segments in the plane, report all the

http://jocg.org/

JoCG 12(1), 40–69, 2021 65

Journal of Computational Geometry jocg.org

segments hit by a vertical query ray. Recently, this segments-below-point has been solved
by Agarwal, Cheng, Tao and Yi [5] in the context of designing data structures for uncertain
data. They present an O(n) space data structure to solve the query in O(log n + κ) time.
This implies a solution for colored halfplane range reporting with the same bounds. Plugging
in this result into Theorem 4, we obtain an O(n) size data structure which can answer the
approximate counting query in O(ε−2 log n · log(log1+ε |C|)) time.

8 Conclusion and Future Directions

In this work, we built optimal and near-optimal approximate counting data structures for
several colored and uncolored (i.e., standard) geometric settings. We finish by presenting a
couple of interesting future directions.

Preprocessing time. We do not discuss the preprocessing time in this paper since most of
our solutions (except Theorem 1) are based on verifying if a sample is “suitable", and we do
not know how to verify if a sample is suitable in n logO(1) n time. This is challenging but an
important problem to resolve.

Colored orthogonal range search in 2d and 3d. Colored orthogonal range search in 1d is the
simplest possible geometric setting, where the input is a set of n colored points and the
query is an interval. Recently, for this setting El-Zein et al. [21] obtained a succinct data
structure to answer approximate colored counting query in constant time. Approximate
colored counting query for orthogonal range search in 2d and 3d remains open. Note that
the reductions presented in this paper lead to a query time of Ω(log n), whereas colored
reporting structures with sub-logarithmic query time and near-linear space are known in the
word-RAM model. For example, the recent result of Chan and Nekrich with O(n log3/4+ε n)
space and O(log logU + k) query time in 2d [15], and another recent result of Chan, He
and Nekrich with O(n log2+ε n) space and O(log logU + k log log n) query time in 3d [14].
Obtaining corresponding matching bounds in 2d and 3d (with k = 0) for approximate
colored counting is open.

Instance-specific bounds for exact colored counting. As mentioned in the Introduction, many
exact colored counting problems have expensive space and query time bounds. However, not
all instances of colored objects are “hard”. In extreme cases, if all the objects have the same
color, then exact colored counting reduces to an emptiness query, and if all the objects have
distinct colors, then exact colored counting reduces to “standard” counting. In general, is it
possible to capture the hardness of a colored instance, and then construct data structures
whose space and query time bounds are sensitive to the hardness?

Acknowledgements. I am thankful to Prof. Sariel Har-Peled, Prof. Ravi Janardan, Yuan
Li, Sivaramakrishnan Ramamoorthy, Stavros Sintos, and Jie Xue for fruitful discussions on
these problems and comments on the previous drafts. Thanks to the anonymous referees
whose comments helped in immensely improving the content and the presentation of the
paper.

http://jocg.org/

JoCG 12(1), 40–69, 2021 66

Journal of Computational Geometry jocg.org

References

[1] Peyman Afshani. On dominance reporting in 3D. In Proceedings of European Sympo-
sium on Algorithms (ESA), pages 41–51, 2008.

[2] Peyman Afshani and Timothy M. Chan. On approximate range counting and depth.
Discrete & Computational Geometry, 42(1):3–21, 2009.

[3] Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three di-
mensions. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 180–186, 2009.

[4] Peyman Afshani, Chris H. Hamilton, and Norbert Zeh. A general approach for cache-
oblivious range reporting and approximate range counting. Computational Geometry:
Theory and Applications, 43(8):700–712, 2010.

[5] Pankaj K. Agarwal, Siu-Wing Cheng, Yufei Tao, and Ke Yi. Indexing uncertain data.
In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages
137–146, 2009.

[6] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow
levels in 3-dimensional arrangements and its applications. SIAM Journal of Computing,
29(3):912–953, 1999.

[7] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives.
Advances in Discrete and Computational Geometry, pages 1–56, 1999.

[8] Pankaj K. Agarwal, Sathish Govindarajan, and S. Muthukrishnan. Range searching in
categorical data: Colored range searching on grid. In Proceedings of European Sympo-
sium on Algorithms (ESA), pages 17–28, 2002.

[9] Lars Arge, Gerth Stølting Brodal, Rolf Fagerberg, and Morten Laustsen. Cache-
oblivious planar orthogonal range searching and counting. In Proceedings of Symposium
on Computational Geometry (SoCG), pages 160–169, 2005.

[10] Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems.
SIAM Journal of Computing, 38(3):899–921, 2008.

[11] Boris Aronov and Micha Sharir. Approximate halfspace range counting. SIAM Journal
of Computing, 39(7):2704–2725, 2010.

[12] Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: Static-to-
dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.

[13] Panayiotis Bozanis, Nectarios Kitsios, Christos Makris, and Athanasios K. Tsakalidis.
New upper bounds for generalized intersection searching problems. In International
Colloquium on Automata, Languages and Programming (ICALP), pages 464–474, 1995.

http://jocg.org/

JoCG 12(1), 40–69, 2021 67

Journal of Computational Geometry jocg.org

[14] Timothy M. Chan, Qizheng He, and Yakov Nekrich. Further results on colored range
searching. In International Symposium on Computational Geometry (SoCG), pages
28:1–28:15, 2020.

[15] Timothy M. Chan and Yakov Nekrich. Better data structures for colored orthogonal
range reporting. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 627–636, 2020.

[16] Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal
range counting. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 241–251, 2013.

[17] Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM Journal
of Computing, 15(3):703–724, 1986.

[18] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

[19] Tamal K. Dey. Improved bounds for planar k -sets and related problems. Discrete &
Computational Geometry, 19(3):373–382, 1998.

[20] Herbert Edelsbrunner and Mark H. Overmars. On the equivalence of some rectangle
problems. Information Processing Letters (IPL), 14(3):124–127, 1982.

[21] Hicham El-Zein, J. Ian Munro, and Yakov Nekrich. Succinct color searching in one
dimension. In International Symposium on Algorithms and Computation (ISAAC),
pages 30:1–30:11, 2017.

[22] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences (JCSS), 47(3):424–436,
1993.

[23] Prosenjit Gupta, Ravi Janardan, Saladi Rahul, and Michiel H. M. Smid. Computa-
tional geometry: Generalized (or colored) intersection searching. In Handbook of Data
Structures and Applications. 2018.

[24] Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Further results on generalized
intersection searching problems: Counting, reporting, and dynamization. Journal of
Algorithms, 19(2):282–317, 1995.

[25] Sariel Har-Peled and Micha Sharir. Relative (p, ε)-approximations in geometry. Discrete
& Computational Geometry, 45(3):462–496, 2011.

[26] Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast
algorithms for multidimensional dominance reporting and counting. In International
Symposium on Algorithms and Computation (ISAAC), pages 558–568, 2004.

[27] Ravi Janardan and Mario A. Lopez. Generalized intersection searching problems. In-
ternational Journal of Computational Geometry and Applications, 3(1):39–69, 1993.

http://jocg.org/

JoCG 12(1), 40–69, 2021 68

Journal of Computational Geometry jocg.org

[28] Haim Kaplan, Edgar Ramos, and Micha Sharir. Range minima queries with respect
to a random permutation, and approximate range counting. Discrete & Computational
Geometry, 45(1):3–33, 2011.

[29] Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Counting colors in boxes.
In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 785–794, 2007.

[30] Haim Kaplan, Micha Sharir, and Elad Verbin. Colored intersection searching via sparse
rectangular matrix multiplication. In Proceedings of Symposium on Computational
Geometry (SoCG), pages 52–60, 2006.

[31] Marek Karpinski and Yakov Nekrich. Top-k color queries for document retrieval. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 401–411, 2011.

[32] Ying Kit Lai, Chung Keung Poon, and Benyun Shi. Approximate colored range and
point enclosure queries. Journal of Discrete Algorithms, 6(3):420–432, 2008.

[33] Kasper Green Larsen and Rasmus Pagh. I/O-efficient data structures for colored range
and prefix reporting. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 583–592, 2012.

[34] Kasper Green Larsen and Freek van Walderveen. Near-optimal range reporting struc-
tures for categorical data. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 265–276, 2013.

[35] Edward M. McCreight. Priority search trees. SIAM Journal of Computing, 14(2):257–
276, 1985.

[36] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

[37] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceedings
of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666,
2002.

[38] Yakov Nekrich. Efficient range searching for categorical and plain data. ACM Trans-
actions on Database Systems (TODS), 39(1):9, 2014.

[39] Yakov Nekrich and Jeffrey Scott Vitter. Optimal color range reporting in one dimension.
In Proceedings of European Symposium on Algorithms (ESA), pages 743–754, 2013.

[40] Manish Patil, Sharma V. Thankachan, Rahul Shah, Yakov Nekrich, and Jeffrey Scott
Vitter. Categorical range maxima queries. In Proceedings of ACM Symposium on
Principles of Database Systems (PODS), pages 266–277, 2014.

[41] Saladi Rahul. Improved bounds for orthogonal point enclosure query and point location
in orthogonal subdivisions in R3. In Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 200–211, 2015.

http://jocg.org/

JoCG 12(1), 40–69, 2021 69

Journal of Computational Geometry jocg.org

[42] Micha Sharir and Hayim Shaul. Semialgebraic range reporting and emptiness searching
with applications. SIAM Journal of Computing, 40(4):1045–1074, 2011.

[43] Qingmin Shi and Joseph JáJá. Optimal and near-optimal algorithms for general-
ized intersection reporting on pointer machines. Information Processing Letters (IPL),
95(3):382–388, 2005.

[44] Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain
disjoint sets. Journal of Computer and System Sciences (JCSS), 18(2):110–127, 1979.

[45] Géza Tóth. Point sets with many k -sets. In Proceedings of Symposium on Computational
Geometry (SoCG), pages 37–42, 2000.

[46] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters (IPL), 6(3):80–82, 1977.

[47] V.N. Vapnik and A.Ya. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory of Probability and its Applications,
16(2):264–280, 1971.

Appendix: Models of computation

Word-RAM model. In this model [22], we have a collection of cells, each of which is a w-bit
word. Each cell can, therefore, store integer values in the range {0, . . . , 2w − 1}. Random
access to any cell can be performed in constant time. Basic operations on words (which
are performed in modern programming languages such as C, C++, or Java) take constant
time. This includes arithmetic operations (such as +,−, ∗, /,%), comparisons (<,>,=),
and bitwise boolean operations (bitwise-AND, OR, and exclusive-OR). We assume that
w ≥ logU and w ≥ log n, so that the coordinate of any object fits in a single word and the
memory location of any of the n objects also fits in a single word, respectively. The space
of the data structure is measured in terms of the number of words/cells occupied.

Pointer machine model. This model has been used extensively for proving several inter-
esting lower bounds and upper bounds for range searching and related problems. Loosely
speaking, in this model the data structure is modeled as a graph and one is not allowed to
do a random access. Formally, as defined by Tarjan [44], in this model a data structure can
be regarded as a directed graph, where each node stores O(1) real values and O(1) pointers
to other nodes. Random access to a node is not allowed and only pointers can be used
to access a node. We begin answering a query using a pointer to a root node of the data
structure. The query time of an algorithm is the total number of nodes visited, whereas the
size of a structure is the number of its nodes and edges. Further details can be found in
Agarwal and Erickson [7].

http://jocg.org/

	Introduction
	Previous work and background
	Motivation
	Our results and techniques
	Specific problems
	General reductions
	Our techniques

	3-sided Rectangle Stabbing in 2d
	Transformation to a standard problem
	Standard 3-sided rectangle stabbing in 2d
	Nested shallow cuttings
	Data structure

	Colored Dominance Search in R3
	Reduction to 5-sided rectangle stabbing in R3
	Initial strcuture
	Final structure
	Case-I: k[0,C'-2lognloglogn]
	Case-II: k[C-2lognloglogn,n]

	Reduction-I: Reporting + C-approximation
	Refinement Structure
	Overall solution

	Reduction-II: Using Only Reporting Structure
	Decision structure
	Final structure

	Colored Orthogonal Range Search in R2
	Colored 3-sided range search in R2
	Interval tree
	Initial structure
	Final structure

	C-approximation for 4-sided range search

	Applications of Reduction-II
	Conclusion and Future Directions

