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Abstract

Advancing our understanding of human behavior hinges on the ability of theories to

unveil the mechanisms underlying such behaviors. Measuring the ability of theories

and models to predict unobserved behaviors provides a principled method to

evaluate their merit and, thus, to help establish which mechanisms are most

plausible. Here, we propose models and develop rigorous inference approaches to

predict strategic decisions in dyadic social dilemmas. In particular, we use bipartite

stochastic block models that incorporate information about the dilemmas faced by

individuals. We show, combining these models with empirical data on strategic

decisions in dyadic social dilemmas, that individual strategic decisions are to a large

extent predictable, despite not being “rational.” The analysis of these models also

allows us to conclude that: (i) individuals do not perceive games according their

game-theoretical structure; (ii) individuals make decisions using combinations of

multiple simple strategies, which our approach reveals naturally.

Keywords: Stochastic block model; Mixed-Membership Stochastic block model;

Statistical inference; Social dilemmas; Behavioural phenotypes; Prisoner’s dilemma;
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1 Introduction

Many human activities have strong recurrent patterns that make them easy to predict [1,

2]. Other activities involve active decision making and are, therefore, not so obviously

predictable. These include relatively simple decisions about, for example, which movie to

watch or which book to purchase [3, 4], as well as complex strategic decisions in which in-

dividuals need to anticipate and take into consideration the decisions of others. For these

complex strategic decisions, the question of whether the decision-making process is pre-

dictable, and to what extent, has been largely unexplored.

Strategic decision making has been studied in the social sciences, especially in politi-

cal science and in economics [5, 6]. Experimental approaches, in which individuals play

simplified games that pose specific social dilemmas, have been particularly insightful and

have demonstrated that individuals often do not act “rationally” to maximize their profits

[7–9]. This makes their behaviors more unpredictable than onemay have anticipated. Un-

fortunately, approaches to analyze data from these experiments have focused mostly on
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characterizing aggregate behaviors (qualitatively or using regression-based approaches)

and on measuring deviations from rationality, on the aggregate and at the level of individ-

uals [10]. In general, however, they have not assessed quantitatively the power of existing

theories to predict accurately the actions of each individual.

The lack of such analyses is significant because quantifying predictability provides a rig-

orous framework to compare theories of decision-making. Indeed, if we formalize theories

into models and compare their predictive power, the most plausible theory will be, in gen-

eral, the one that makes the most accurate predictions [11, 12]. Similarly, given a simple

model that we aim to refine and improve, the refinements should increase predictability;

otherwise, they ought to be revised or discarded [11]. All in all, studying the predictive

power of theories and models opens the door to advance our understanding of human

behavior on solid grounds [11].

Here, we aim precisely at narrowing this gap by proposing models for strategic decision

making, by developing rigorousmodel inference approaches, and by showing that individ-

ual strategic decisions are, to a large extent, predictable. Specifically, we focus on a recent

large-scale study of individuals playing a variety of dyadic games in a controlled setting

[13]. We propose twomodels, and the corresponding inference approaches, that are more

predictive than those built upon expectations of individuals’ rationality. Our models are

based on the assumption that there are groups of individuals that use similar decision-

making strategies (have similar behavioral phenotypes [13–16]), and groups of games that

are perceived similarly by individuals. We are agnostic a priori about which groups of in-

dividuals are most appropriate, so that the groups we obtain arise from fitting the models

and are the ones that describe the observed behaviorsmost parsimoniously [12]. Similarly,

we do notmake strong assumptions about the groups of games that are perceived similarly

by individuals and, in particular, we do not assume that games with the same Nash equi-

librium [17] are in the same group. However, we do exploit existing information on the

similarities between the payoffs of particular pairs of games. Importantly, our approach

gives predictive models that are interpretable, which enables us to conclude that: (i) the

perception of games by individuals is at odds with their game-theoretical structure; (ii)

individuals do not use a single strategy when making decisions but rather a combination

of multiple simple strategies, which our approach reveals naturally.

2 Data

We consider a dataset [13] consisting of 541 individuals playing a collection of dyadic

games in which each player has to choose among two actions: cooperation (C) or defec-

tion (D). Each game is characterized by its payoff matrix (Fig. 1(a)): if both players coop-

erate, they both obtain a “reward” R; if both defect, they both get a “punishment” P; and

if one cooperates and the other defects, the cooperator gets a “sucker’s payoff” S and the

defector a “temptation payoff” T .

For the experiments, the reward and punishmentwere fixed to R = 10 and P = 5, whereas

the other payoffs took values S ∈ {0, 1, . . . , 10} and T ∈ {5, 6, . . . , 15}. Depending on these

values, the games display different Nash equilibria [17] (which are the assumed rational

behaviors inwhich no players have incentives to change behavior) and are typically divided

into four groups (Fig. 1(b)) [13]: harmony game (HG), snowdrift game (SG), stag hunt

(SH) game, and prisoner’s dilemma (PD). HG and PD have a single stable equilibrium that

corresponds to a pure strategy: cooperate (HG) and defect (PD). SH displays two equilibria
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Figure 1 Structure of the dyadic games. (a) Payoff matrix for the dyadic games played by individuals. (b) The

games are typically divided into four groups depending on the different Nash equilibria and on the payoffs S

and T (given that R and P are constant for all games). (c) In our models, we do not impose any group structure

for games, but we assume that neighboring games are a priori more likely to belong to the same group. The

neighbors of the game marked in red are marked in dark blue

corresponding to the two pure strategies. SG has a stable equilibrium that corresponds

to a mixed strategy (that is, players have a certain probability of defecting and a certain

probability of cooperating) [13, 17].

Each individual in the dataset played an average of 14 rounds, each one with a randomly

selected payoff matrix (that is, a randomly chosen (S,T) pair) and against a different, un-

known, and randomly-selected player (that is, in general there were no repeated interac-

tions between pairs of players). Based on the payoffs they obtained, participants received

tickets for a lottery (one ticket for 40 payoff points), in which they could win four coupons

of 50 euro redeemable at predefined stores [13].

We observe that the behavior of each player during the first four rounds is erratic, which

leads to their behavior being less predictable during those rounds (Fig. S1). After round 4,

all rounds are statistically indistinguishable by the metrics we use in what follows. There-

fore, we discard the first four rounds of each player and consider all others as indistin-

guishable.

3 Single-strategymodel, multiple-strategymodel, and gamemetadata

It has been postulated that individuals can be classified into “behavioral phenotypes” de-

pending on how they make decisions when facing social dilemmas [13–15]. The idea be-

hind the concept of phenotype is that individuals apply general rules when making deci-

sions, regardless of the structure of individual games. For example, players displaying the

“envious” phenotype in Ref. [13] cooperate if, and only if, cooperation leads to higher pay-

offs for them than their opponents, regardless of whether that corresponds to the Nash

equilibrium. In practice, among all possible combinations of strategies for single games

there are only a few phenotypes that are followed by players. Here, we formalize this idea

into group-based generative models of decision making, and go a step further to investi-

gate to what extent these groups can be used to predict unobserved decisions.
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We propose two models: a single-strategy model in which each player follows always

the same strategy for the same game, and a multiple-strategy model in which players are

not limited to following always the same strategy (Fig. S2). In the single-strategy model,

we assume that each player i belongs to one group of players k. Similarly, each game g

(defined by the payoff values T and S) belongs to solely one group of games ℓ. Moreover,

the probability of player i taking action aig ∈ {C,D} in game g depends exclusively on the

groups k and ℓ, so that the probability of cooperation is

Pr[aig = C] = pkℓ (1)

with pkℓ ∈ [0, 1]. The element pkl is therefore the strategy of players in group k for each

of the games in group ℓ. In a slight abuse of language we also call strategy the vector pk

of strategies for all game groups; because in the single-strategy model each individual has

a single strategy, pk also defines their phenotype. Note that in our approach we do not

make any assumption about the strategies for individual games, which can either be pure

(pkl ∈ {0, 1}) or mixed (0 < pkl < 1) [18].

In themultiple-strategymodel, players do not always follow the same strategy but rather

adopt different strategies with certain probabilities. We formalize this idea by allowing

players to belong to amixture of groups, with θik being the probability that player i belongs

to group k (
∑

k θik = 1), that is, that i adopts strategy k. Similarly, we assume that games

are not always regarded by players as belonging to the same group, and allow games to also

belong to a mixture of groups; ηgℓ is the probability that game g is regarded as belonging

to group ℓ (
∑

ℓ ηgℓ = 1). In this model, the probability that player i cooperates in game g is

Pr[aig = C] =
∑

k,ℓ

θikηgℓpkℓ, (2)

where pkℓ is the same as in the single-strategy model and the sum is over the K groups for

players and the L groups for games. In fact, if we restrict the elements of the membership

vectors θ and η to be either 0 or 1 (that is games/players are restricted to belong to a

single group) we recover the single-strategymodel, so in what follows we use themultiple-

strategy formulation without loss of generality.

A critical aspect in the modeling process (specially if we have limited data) is to specify

how the a priori information we have about players and games affects the plausibilities of

model parameters, namely the strategy matrices p and the group membership vectors θ

and η. In our case, we only have auxiliary information (metadata) on the games. There-

fore, we make no a priori assumptions about which values for p and θ are more plausible

(see Methods for details). In contrast, we expect games with similar payoffs (S,T) to be

regarded by players as similar. This means that games that are neighbors in the TS-plane

are more likely to have similar membership vectors. We model this expectation by choos-

ing a prior distribution that introduces an exponential penalty when membership vectors

of neighboring games are dissimilar

P(η) ∝ exp

[

–α
∑

〈gg′〉

(1 – ηg · ηg′ )

]

. (3)

Here, the sum runs over all pairs of games that are nearest-neighbors in the TS-plane,

that is, that differ by plus or minus one in S or T (but not both; Fig. 1(c)), and α ≥ 0 is
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a parameter that we call the game aggregation factor. Note that α plays a similar role as

the interaction in Ising, Potts and N-spin models [19, 20], so that for α = 0 we recover the

uniform prior, whereas increasing values of α make it more likely that neighboring games

have similar mixing vectors. Note that in the single-strategy model, Eq. (3) is in reality a

prior over partitions of games into groups πg , since, as for the players, themodel considers

only the set of membership vectors η that result in disjoint partitions.

These models are reminiscent of existing models, but differ in important aspects. The

single-strategy model is the formalization of the idea that there exist “behavioral phe-

notypes,” and that decisions depend only on those phenotypes [13–15]. Unlike previous

work, however, we do not assume that the groups of games are known a priori. Formally,

this model is a bipartite stochastic block model [21], whereas the multiple-strategy model

is a bipartite mixed-membership stochastic block model [4, 22, 23]. The idea of allowing

the existence of more than one strategy is reminiscent of the population strategy mod-

els used in evolutionary game theory in which competing strategies can coexist within a

population [18]. The difference is that, in our case, each individual is allowed to simultane-

ously consider more than one strategy to make decisions, rather than having a population

in which different strategies are represented. Moreover, as we previously mentioned, in

our approach we make no assumptions about which strategy (pure or mixed) players are

using in each game; we can determine whether players are usingmixed strategies or not as

an outcome of the inference process. This possibility is especially interesting in the analy-

sis of real data since the empirical relevance of this concept has been so far hard to prove

[24, 25].

Also unlike previous models, we are able to use the available game metadata, which we

introduce in the model through the prior distribution of model parameters, an approach

that is reminiscent of what has been used in networks [26] (an alternative is to model the

metadata together with the data [27]). Modeling game similarity through the scalar prod-

uct of game membership vectors opens the door to modeling other network-like systems

whose nodes, like games, are embedded in a low-dimensional space.

4 Inference of themost plausible partitions andmixtures

Given a record of observed actions Ao from many players, our goal is to find the most

plausible membership vectors (or, in the case of the single-strategy game, to find the most

plausible partition into groups of players and games). The most plausible membership

vectors are those that maximize the posterior P(θ ,η|Ao) and, in general, they are also the

most predictive ones [12]. Next, we show how to obtain them in both models.

For the single-strategy model, it is possible to analytically marginalize the posterior over

the strategy matrices p, which gives (Additional file 1, Sect. 3)

P
(

θ ,η|A0
)

=
1

Z
exp

[

–H(θ ,η)
]

. (4)

Here, Z is a normalizing constant, andH(θ ,η) is given by

H(θ ,η) =
∑

kℓ

[

ln(nkℓ + 1)! – ln
(

nCkℓ
)

! – ln
(

nDkℓ
)

!
]

+ αF (5)

with nCkℓ and nDkℓ being the number of observed cooperations and defections, respectively,

of players in group k in games in group ℓ, nkℓ = nCkℓ + nDkℓ the number of observed actions
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for those groups, and F the number of neighboring pairs of games that are not in the same

group.We obtain themost plausible partitions (θ∗,η∗) of players and games byminimizing

H, that is

(

θ∗,η∗
)

= arg min
θ ,η

H(θ ,η). (6)

Because this is a combinatorial optimization problem, we use simulated annealing for the

minimization (Additional file 1, Sect. 4). Note that we do not have to fix the number of

groups for players and games in the single-strategy model; we obtain these groups as a

result of the inference process.

For the multiple-strategy model, we cannot marginalize over the strategy matrices ex-

actly. Therefore, we assume that the distribution P(θ ,η,p|A0) is very peaked around

p∗ = arg maxp P(θ ,η,p|A0) and use the approximation [4]

P
(

θ ,η|A0
)

≈ P
(

θ ,η,p∗|A0
)

. (7)

Because θ and η are not discrete as in the single-strategy model, one can use a variational

approach to obtain analytic expressions for the optimal membership vectors θ∗ and η∗, as

well as for p∗.

We obtain the following equations for the model parameters (Additional file 1, Sect. 3)

θik =

∑

g∈Ci

∑

ℓ w
C
ig(k,ℓ) +

∑

g∈Di

∑

ℓ w
D
ig(k,ℓ)

di
, (8)

ηgℓ =

∑

i∈Cg

∑

k w
C
ig(k,ℓ) +

∑

i∈Dg

∑

k w
D
ig(k,ℓ)

dg + α
∑

r∈∂g ηr · ηg

+
α

∑

r∈∂g ηrℓηgℓ

dg + α
∑

r∈∂g ηr · ηg
, (9)

pkℓ =

∑

(ig)∈C w
C
ig(k,ℓ)

∑

(ig)∈C w
C
ig(k,ℓ) +

∑

(ig)∈D wD
ig(k,ℓ)

. (10)

Here C is the set of observed player-game pairs such that aig = C, and D is the set of ob-

served player-game pairs such that aig = D. Correspondingly, Ci/Di is the set of observed

games in which player i cooperates/defects, and Cg/Dg is the set of players that cooper-

ate/defect in game g . di is the total number of games played by player i, dg is the total

number of players that played game g , and ∂g is the set of the nearest-neighbors of game g

in the TS-plane. Finally, wC
ig(kℓ) and wD

ig(kℓ) are the estimated probabilities that a specific

action (cooperate or defect) is due to player i and game g belonging to groups k and ℓ

respectively, which can be computed as

wC
ig(k,ℓ) =

θikηgℓpkℓ
∑

k′ℓ′ θik′ηgℓ′pk′ℓ′

,

wD
ig(k,ℓ) =

θikηgℓ(1 – pkℓ)
∑

k′ℓ′ θik′ηgℓ′ (1 – pk′ℓ′ )
.

(11)

The equations can be solved iteratively using an expectation-maximization (EM) algo-

rithm in order to find the optimal model parameter values [4]. Because iterating the EM
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algorithm of the update equations can lead to different fixed points depending on its ini-

tial conditions, we perform 500 independent runs and take the run with the maximum a

posteriori to make predictions. In contrast to the single-strategy model, here we have to

fix K and L and use model selection criteria to select the optimal values (Additional file 1,

Sect. 5 and Fig. S3).

5 Baselinemodel

Westart by studying the predictive power of themodel proposed in Ref. [13], whichwewill

consider as a baseline prediction. In this model, games are divided into four fixed groups

(harmony game, snowdrift game, stag hunt game, and prisoner’s dilemma). Each user i is

then characterized by a strategy vector vi that quantifies their propensity to cooperate in

each of the four types of games. In the baseline model, players are grouped according to

the similarity in their strategy vectors using k-means.

To test the predictive power of the model, we use 5-fold cross-validation, that is, we

divide the data in five equally-sized splits, and then use four splits as a training set and the

remaining split as a test set to assess the capacity of the model to predict unobserved data.

We repeat this for the five possible train-test combinations. For each training set, we find

the player groups, and estimate pkℓ, the probability that players in group k cooperate in

games in group ℓ, as the frequency with which players in group k cooperate in games in

group ℓ in the empirical data. Then, we use these frequencies to predict cooperation in the

test data, so that if pkl > 0.5 then the prediction is that all users in group k will cooperate

in games in group ℓ. We obtain an average predictive accuracy of 0.683 ± 0.005 (Fig. 2(a)).

6 Single-strategymodels: maximally predictive partitions reveal perception of

games by players

Next, we study the predictive power of the single-strategy model as a function of the game

aggregation parameter α, which controls how strongly neighboring games are pushed into

the same group. We use the same 5-fold cross validation scheme as before. For each split,

we obtain the optimal partitions of players and groups from Eq. (6) and, as before, use

the observed cooperation frequencies of groups of players in groups of games to make

predictions on the test set.

We find that the predictive power of the model increases with α and reaches its maxi-

mum for α = 2, at which point it is significantly more predictive than the baseline model

with a predictive accuracy of 0.714 ± 0.008 (Fig. 2(a)).

A close inspection of the optimal partitions for players and games reveals that the game

aggregation factor has an effect on the partition of both players and games into groups

(Fig. 2(b), (c)–(f )). With respect to the number of groups of players, we observe that the

number of groups decreases as we increase α, and stabilizes for α > 2 at around 20 groups.

Note that many of these player groups are small since 5 or 6 groups typically account over

50% of the players (see bottom rowof Fig. 2(c)–(f )).With respect to the partitions of games

we observe two noteworthy aspects. First, that the absence of a prior for game member-

ships (α = 0)makes game groupings (and as a surrogate player’s groupings) too susceptible

to fluctuations, which results in low predictive power. Second, that as α increases the prior

helps disregard statistical fluctuations in favor of a well-defined structure of game groups

within the TS-plane, leading to a higher predictive performance. Despite the fact that the

prior acts on the games alone, it also leads to a lower number of player groups becausewith
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Figure 2 Single-strategy model. (a) Predictive accuracy of the single-strategy model as a function of the

game aggregation factor α . Each point represents the average of a 5-fold cross-validation; error bars indicate

the standard error of the mean. The solid black line represents the accuracy of the baseline model (see text

and Ref. [13]). (b) Average number of groups of players 〈Ng〉 as a function of the game aggregation factor α .

Each point represents the average of the number of groups for players identified for each of the 5 folds; error

bars indicate the standard error of the mean. (c)–(e) Groups of games in the TS-plane (top) and cooperation

matrix p (bottom) for aggregation factors α equal to: (c) 0, (d) 1, (e) 2, (f) 4. In the game plots, each color

indicates a different group of games in the most plausible partition as obtained from Eq. (6) for each value of

α . In the cooperation matrices, each row corresponds to a group of players k (with height proportional to the

number of players in the group), and each column to a group of games ℓ as indicated by the colors at the top

(with width proportional to the number of games in the group). Each element pkℓ represents the probability

that an individual in group k cooperates when playing a game in group ℓ, with dark red meaning always

cooperate and dark blue always defect. The game groups and the cooperation matrices correspond to one of

the folds in the 5-fold cross-validation, but are very consistent across folds (see Fig. S5)

fewer game groups the number of possible strategy vectors is also smaller. Interestingly,

games fall into groups defined by the difference between sucker and temptation payoffs

� = (T – S), and are qualitatively different from the four regions that follow from game-

theoretic considerations (Fig. 1(b)). More specifically, at the optimal aggregation factor

α = 2 we observe three regions that correspond approximately to: (i) S > T , where most

players cooperate; (ii) S < T – P = T – 5, where most players do not cooperate (although

some do, including a few that always cooperate); (iii) the intermediate region where some

cooperate and others do not. These groups are consistent with the observations described

in Ref. [13], but in our analysis arise naturally from the rigorous comparison of models,

and get incorporated in the models. In this sense, our approach illuminates the way in

which individuals are “predictably irrational” [28].
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Figure 3 Most common behavioral phenotypes for

single-strategy models. Game groups (top; as in Fig. 2),

and cooperation probability in each game group for

the three largest player groups (or behavioral

phenotypes) for: (a) α = 1, (b) α = 2. The groups and

cooperation probabilities correspond to one of the

folds in the 5-fold cross-validation, but are very

consistent across folds

To further investigate the collective behavior of players, we focus on the phenotypes

associated to the three largest groups of players identified for α = 1, 2 (Fig. 3). In both

cases we see that the largest group is characterized by two facts: i) players only distinguish

between two types of games (S ≥ T and S < T ); and ii) players display pure strategies

in these games: always cooperate in games with S ≥ T and always defect in games with

S < T (Fig. 3). Interestingly, this phenotype is precisely the envious phenotype identified

in [13], but in our case it arises naturally from ourmodel-selection criteria without having

to make any assumptions about the structure of the TS-plane or about the number of

player groups. The two remaining most common phenotypes for α = 1, 2 also show that

players fully cooperate in games with S ≥ T . However, the cooperation patterns for S <

T cannot be mapped directly into any behavioral phenotype described previously in the

literature, and, despite being strongly correlated with � and leading to better predictions,

they are not as easy to interpret as the most common phenotype. In part, this is due to the

large number of observed phenotypes (Fig. 2(c)–(f )); in the following section, we show

that the multiple-membership model provides a more parsimonious and straightforward

description of this variety of phenotypes.

7 Multiple-strategymodels are more predictive and easier to interpret than

single-strategymodels

Finally, we investigate the predictive power of models in which players are allowed to

use mixtures of strategy vectors. As we show in Fig. 4, we find that, again, predictive
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Figure 4 Mixed-strategy model. (a) Predictive accuracy of the multiple-strategy model (green) as a function

of the game aggregation factor α . We show results for K = 3 latent groups of players and L = 4 latent groups

of games; increasing the number of groups did not result in an increase in accuracy (see Fig. S3). Each point

represents the average of a 5-fold cross-validation; error bars indicate the standard error of the mean. Grey

symbols represent the predictive accuracy of the single-strategy model as in Fig. 2(a), and the solid black line

represents the accuracy of the baseline model. (b)–(e) Top group memberships for each game (top),

distribution of the entropies of player membership vectors (middle), and cooperation matrices p (bottom) for

each of the values α = 0, 2, 4, 8. In the game membership plots, each color indicates a different group of

games in the most plausible model as obtained from Eqs. (8)–(11). The saturation of the color indicates how

distributed a game is among groups, so that games with multiple memberships (typically at the border

between groups) are paler (Fig. S4). In the distribution of the player entropies, players with a single strategy

vector entropy H = 0 (red dashed line); players that mix two strategy vectors with equal weights have entropy

H = log3 2 = 0.63 (blue dashed line); and players that mix three strategy vectors with equal weights have

entropy H = 1 (green dashed line). In the cooperation matrices p, each row corresponds to a group of players

k, and each column to a group of games ℓ as indicated by the colors at the top. The height of player group k

is proportional to the effective number of players in that group
∑

i θik . The width of game group ℓ is

proportional to the effective number of games in that group
∑

g ηgℓ . Each element pkℓ represents the

probability that an individual in group k cooperates when playing a game in group ℓ, with dark red meaning

always cooperate and dark blue always defect. The groups, entropies, and cooperation matrices correspond

to one of the folds in the 5-fold cross-validation, but are very consistent across folds (see Fig. S6)

performance grows with the game aggregation α and saturates after α = 3. Remarkably,

the multiple-strategy model is, in all cases, significantly more predictive than the single-

strategy model, with a maximum predictive accuracy of 0.744 ± 0.007.

Let us consider first the effect of mixed-membership on game grouping. We observe

that α has a smaller impact in the group membership vectors of games than it has in

single-strategy models (Fig. 4(b)). Indeed, for all values α > 0 the top membership ma-

trix for games strongly resembles the game classification for single-strategy models in
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Fig. 2, which confirms that the perception of games by players following the difference

� = (T – S) is robust. Rather than changing the structure of game groups, the main effect

of increasing α is increasing the localization of games into groups—the top group mem-

bership of most of the games tends to one, whereas the other memberships all vanish to

zero (see also Fig. S4). This implies that mixed-membership does not play a major role in

game grouping, since games end up belonging mostly to a single well-defined group as in

the single-strategy model (Fig. 4(b)).

Therefore, the increase in predictive performancemust be due to the multiple member-

ship of players, that is, to the fact that players are best described as not making decisions

following a unique strategy but rather using a combination of strategies. Indeed, we find

that the majority of players use a mixture of strategies (center row in Fig. 3), and that three

global strategies are enough to make the most accurate predictions of players’ decisions

(bottom row in Fig. 3). Note that, unlike the single-strategy model, we need to fix the

number of groups; but we find that such a small number of strategies provides the most

accurate predictions (Fig. S3). Interestingly, these global strategy vectors are for the most

part combinations of pure strategies in which players either fully cooperate or fully defect

in games.

All three global strategies are used often (Fig. 4(b)–(e)), although one of them, the en-

vious strategy (to cooperate only in games with S ≥ T ), is slightly most common than the

others. This, again, is consistent with the results in Ref. [13] and with the most common

strategy obtained using the single-strategy model. The other two strategies correspond

to: (i) a more rational strategy that leads to cooperation for half of the games (including

all harmony games) and to defection for the other half (including all prisoner’s dilemma

games); (ii) a strategy that accounts for non-rational behaviors, including incomplete co-

operation in harmony games and full cooperation for most other games, including pris-

oner’s dilemma games. This last strategy may seem counterintuitive but arises from the

need to assign non-zero probability to all behaviors; without this strategy, for example,

any observed non-cooperation in games with S ≥ T would lead to zero likelihood. It may

seem surprising, however, that this deviant strategy is used in as many as 25% of all the

decisions.

8 Discussion and conclusions

We have explored the power of group-based models to predict decisions made by indi-

viduals in simple classes of dyadic games that involve strategic thinking. Such decisions

are known to deviate from the rationally expected behavior. However, our analysis proves

that they still are highly predictable (74% of the decisions can be correctly predicted) and

that group-based models are good models of strategic decision making.

More importantly, proposing interpretable models of human behavior and comparing

them in terms of their predictive accuracy sets the bases for advancing the social sciences

on solid grounds [11]. In this regard, we have shown that the most explanatory groupings

of games reveal the perception of games by players, which differs from game-theoretical

expectations. Our approach also gives the most explanatory cooperation strategies fol-

lowed by players, and suggests that models in which players are allowed to use multiple

strategies (rather than sticking to a single strategy) are more predictive than those mod-

els in which players are restricted to a single strategy. Multiple-strategy models are also

more parsimonious in that they summarize the wide variety of phenotypes suggested by
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single strategy models as combinations of a small number of simple strategies. In fact, the

combination of these two factors (perception of games by players and multiple strategies)

accounts well for the rich variety of phenotypes observed in real data.

More broadly, we believe that our approach and models can be used to analyze many

other behavioral experiments and datasets. Indeed, whenever humans face distinct (dis-

crete, non-overlapping) situations and take distinct actions, their decisions can be mod-

eled using the exact same approaches we have proposed here. For example, one could

model how individuals make decisions in stock markets based on the situation they face

(for example market going up or down). Given the expressiveness of group-based models,

we anticipate that such models would provide accurate predictions and insightful char-

acterization of behaviors. All together, we think that our work could have important im-

plications in how new experiments, models, and theories are built to better understand

human decision making.
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