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Abstract

It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and
estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic
networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general,
biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ
nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic
systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear
dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both
states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we
apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK
signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and
predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
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Introduction

Cells are complex interconnected web of dynamic systems. They

involve metabolites, genes and proteins which are organized into

different biochemical reaction networks: metabolic, signal transduc-

tion and gene regulation networks, and protein interaction networks

which form complex biological systems [1].These biochemical

reaction networks control cell proliferation, differentiation, and

survival [2]. To unravel the rules that govern behavior of biological

systems is the focus of molecular biology researches. To gain a deep

understanding about the biological systems requires modeling of

biochemical reaction networks. Simple empirical description of

biochemical reaction networks is insufficient for discovery of the

general principles underlying biological process and prediction of

dynamic response of biological networks to drug interventions or

environmental perturbation [3]. The inherent properties of complex

biochemical reaction networks are hard to elucidate by intuition [4].

Mathematical and computational modeling of biochemical reaction

networks can comprehensively integrate experimental knowledge

into forming and testing hypotheses and help to gain into system

level understanding of biochemical networks, which will not been

seen if the components of biochemical networks are separately

studied. Therefore, developing mathematical models of biological

systems holds a key to understanding and predicting the dynamic

behaviors of the biological systems under perturbation of external

stimuli and hence a major task of systems biology and is the keystones

of systems biology [5].

Two basic types of approaches: bottom-up approach and top-

down approach have been widely used in mathematical modeling

of biochemical reaction networks [6]. Bottom-up approach usually

assumes the mechanistic kinetic models. A full understanding of

biochemical reaction networks requires quantitative information

about the structure of the networks, kinetic laws and the

concentrations of metabolites, enzymes and proteins [7]. The

kinetic models allow us to test hypotheses, investigate the

fundamental design principles of cell functions, and predict the

dynamic changes of concentration of metabolites and proteins [8].

The kinetic models explicitly incorporate prior knowledge about

biochemical mechanism underlying biological processes into the

model and hence can serve as the basis for studying the effects of

direct intervention for improving desired properties of biological

systems. Top-down approach assumes ‘‘black-boxes’’ models

about the molecular organization of biochemical networks and

quantifies the input and output relations in biochemical networks.

The kinetic models are undoubtedly a major tool for investigation

of biochemical networks [9].

A great challenge in kinetic modeling of biochemical networks is

to identify the structure of the networks and estimate kinetic

parameters in the model [10]. Since most kinetic models of

biochemical networks are nonlinear it is extremely difficult to

identify the structure of the networks by computational methods.

They are often determined by experiments. We are mainly

concerned with estimation of kinetic parameters in this report. It is

increasingly recognized that it is dynamics of the systems that
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determines the function of cells, tissues and organisms. Successful

modeling which can unravel inherent dynamic properties of

biochemical networks requires time-course quantitative measure-

ments of metabolites, enzymes and proteins, although these

measurements are still difficult to obtain [11]. A general

framework for parameter estimation is to estimate the parameters

in the mathematical model of the biochemical network, given

time-course experimental data [12]. Parameter estimation in

nonlinear dynamic systems is extremely important, but also

extremely difficult. Most current methods for parameter estima-

tion, in principle, are to formulate the parameter estimation

problem as a nonlinear optimization problem with differential-

algebraic constraints that describe dynamics of biochemical

networks. The objective function of the optimization is the

discrepancy between model prediction, which are obtained from

simulations using assumed model with estimated parameters, and

the experimental data [13].Various deterministic and stochastic

optimization methods have been used to solve the formulated

nonlinear dynamic optimization problems [14–18].

However, nonlinear dynamic optimization approach to param-

eter estimation of biochemical networks has a number of

limitations. First, computational cost for nonlinear dynamic

optimization is very high. Second, although measurement errors

can be incorporated into the observation equations, it is difficult to

integrate system noise into rate equations (or system equations).

Third, due to the high nonlinearity and nature of dynamic

constraints, nonlinear dynamic optimizations of the parameter

estimation of biochemical networks are often multimodal.

Therefore, their solutions may not reach global optimum. They

often converge to a local optimum [14].

To overcome these limitations, parameter estimation for rate

equation models of biochemical networks can be formulated as

parameter estimation for nonlinear state-space models that consist

of two types of variables: state variables (hidden variables) and

observed variables, and two types of equations: system equations

and observation equations [19]. Essential nature of the rate

equation models of biochemical networks is that some variables in

the models are not observable. These unobserved variables can be

taken as state variables. Nonlinear rate equations that are ordinary

differential equations describe evolution of dynamics of concen-

trations of metabolites, enzymes and proteins over time. The

observed variables are functions of the states of the dynamic

system of biochemical networks. Estimation problems in nonlinear

state-space models are addressed mainly within a probability

framework. In other words, the complete solution to the parameter

estimation problem is determined by the conditional probability

density function of the states X, given the observed data Y, Ph(X|Y),

where h is parameters. Due to its extreme complexity, we must

resort to approximation techniques for the solution to the

parameter estimation in nonlinear dynamic systems. Most popular

approaches to approximation are extended Kalman Filter [20–24]

and sequential Monte Carlo methods [25–29,30–32]. Extended

Kalman filter (EKF) is to recursively approximate nonlinear model

by a linear model and then use the traditional Kalman filter for the

linearized model. The EKF for parameter estimation has a

number of advantages. First, in its update rule, the EKF only use

the mean and covariance of the state. The EKF is simple and

computationally fast. Second, the EKF has close connection with

the state-space theory. Third, the EKF has a unified formulation

for both single variable and multivariable problems.

Purpose of this report is to use nonlinear state-space models as a

general framework for investigation of dynamics of biochemical

networks and formulate the estimation of parameters in biochemical

networks as a recursive nonlinear state estimation problem. Since the

EKF can jointly estimate both parameters and hidden states of the

nonlinear dynamic systems, the EKF will be employed to solve the

recursive nonlinear state estimation problem. To evaluate its

performance, the EKF will be applied to the real JAK-STAT and

Ras/Raf/MEK/ERK signaling transduction pathway data.

Methods

Kinetic Models for JAK/STAT Signal Transduction
Pathway

JAK/STAT which is initiated by cytokines is an important signal

transduction pathway in regulating immune response [4,33]. JAKs

(Janus kinases) represent a family of non-receptor tyrosine kinases.

STATs (signal transducers and activators of transcription) consist of

a family of structurally and functionally related proteins [34]. As

shown in Figure 1, binding of the ligand, the hormone erythropro-

tein (Epo) to the receptor activates the receptor associated Janus

kinase (JAK) by phosphorylation, which in turn results in the

recruitment of monomeric Stat5. Stat5 is then tyrosine-phosphor-

ylated. The phosphorylated monomeric forms dimmers which

migrate into the nucleus where they further bind to the promoter of

target gene and initiate gene transcription. The dimerized Stat5

stops its active role by dedimerization and dephosphorylation.

Dephosphorylated Stat5 is then exported to the cytoplasm.

Biochemical reactions for the JAK/STAT signal transduction

pathway are given by

EPoRAzSTAT-5 DCA
k1

STAT5-P

2STAT5-P DCA
k2

STAT5-2P

STAT5-2P DCA
k3

STAT5-2P nucleusð Þ

STAT5-2P nucleusð Þ DCA
k4

2STAT-5

Let x1 be unphosphorylated monomeric STAT-5, x2 be phos-

phorylated monomeric STAT-5, x3 be phosphorylated dimeric

STAT-5 in the cytoplasm and x4 be the phosphorylated dimeric in

the nucleus. Let the rates of the reactions are given by

v1~k1x1u

v2~k2x2
2

v3~k3x3

v4~k4x3 t{tð Þ,

where u is the concentration of EpoRA and t denotes the delayed

time.

The stoichiometrix, S, is

S~

{1 0 0 2

1 {2 0 0

0 1 {1 0

0 0 1 {1

2
6664

3
7775

Let x = [x1, x2, x3, x4]T and V(x, u) = [v1, v2, v3, v4]T. The differential

equations for the reactions of JAK-STAT signal transduction

pathway is then expressed as

Parameter Estimation
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dx

dt
~SV x,uð Þ: ð1Þ

The variables x1, x2, x3 and x4 are often not observed. The observed

quantities are the concentrations of the phosphorylated STAT-5 in

the cytoplasm and total unphosphorylated and phosphorylated

STAT in the cytoplasm. The observed equations are then

y1~k5 x2z2x3ð Þ

y2~k6 x1zx2z2x3ð Þ
ð2Þ

Ras/Raf/MEK/ERK Pathway
The Ras/Raf/MEK(mitogen-activated protein kinase)/ERK

(extracellular-signal-regulated kinase) pathway is a mitogen-

activated protein kinase (MAPK) pathway, which is involved in

proliferation, differentiation, survival and apoptosis processes [35].

The MAPK pathway consists of three kinases: a MAPK kinase

kinase (MAPKKK), a MAPK kinase (MAPKK) and MAPK.

There are six distinguishable MAPK modules that share

structurally similar components, but perform specific biological

tasks. In Ras/Raf/MEK/ERK pathway (Figure 2), Ras can be

treated as a G-protein, Raf as MAPKKK, MEK as MAPKK and

ERK as MAPK. Ras and Raf are proto-oncogenes. Growth factor

receptors activate the G-protein Ras, which in turn binds to and

activates the Raf-1 kinase. Activated Raf-1 then phosphorylates

and activates MEK, which in turn phosphorylates and activates

ERK. The activated ERK then moves to the nucleus to regulate

the transcription of the targeted genes.

Here, we mainly focus on studying the subset of ERK signal

transduction pathway regulated by RKIP. The considered

biochemical reactions of the ERK pathway regulated by RKIP

are as follows:

(1) RKIP binds Raf-1* and forms a complex Raf-1*/RKIP;

Raf {1 �zRKIP
DCA

k1

BCC
k2

Raf {1�=RKIP ð3Þ

(2) The activated ERK-PP interacts with the Raf-1*/RKIP

complex to form a Raf-1*/RKIP/ERK-PP complex;

Raf {1�=RKIPzERK{PP
DCA

k3

BCC
k4

Raf {1�=RKIP=ERK{PP

ð4Þ

(3) Phosphorylated RKIP-P, Dephosphorylated ERK and free Raf-

1* are released from the complex Raf-1*/RKIP/ERK-PP;

Raf {1�=RKIP=ERK{PP DCA
k5

Raf {1 �z

ERKzRKIP{P
ð5Þ

(4) Double phosphorylated MEK activates ERK and forms

MEK-PP/ERK complex;

Figure 1. Scheme of the JAK-STAT pathway.
doi:10.1371/journal.pone.0003758.g001
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MEK{PPzERK
DCA

k6

BCC
k7

MEK{PP=ERK ð6Þ

(5) Dissociation of the complex MEK-PP/ERK and ERK

phosphorylation;

MEK{PP=ERK DCA
k8

MEK{PPzERK{PP ð7Þ

(6) RP (RKIP-phosphotase) intacts with the RKIP to form

complex RKIP-P/RP;

RKIP{PzRP
DCA

k9

BCC
k10

RKIP{P=RP ð8Þ

(7) Disassociation of the complex RKIP-P/RP and dephosphor-

ylation of RKIP-P;

RKIP{P=RP DCA
k11

RKIPzRP ð9Þ

Let x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 and x11 be the

concentrations of Raf-1*, RKIP, Raf-1*/RKIP, Raf-1*/RKIP/

ERK-PP, ERK, RKIP-P, MEK-PP, MEK-PP/ERK, ERK-PP,

RP and RKIP-P/RP, respectively. We define the rates of reactions

as follows:

v1~k1x1x2{k2x3

v2~k3x3x9{k4x4

v3~k5x4

v4~k6x5x7{k7x8

v5~k8x8

v6~k9x6x10{k10x11

v7~k11x11

The stoichiometrix for the biochemical reaction of the Ras/Raf/

MEK/ERK pathway is given by

Figure 2. Scheme of the Ras/Raf/MEK/ERK Pathway.
doi:10.1371/journal.pone.0003758.g002
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S~

{1 0 1 0 0 0 0

{1 0 0 0 0 0 1

1 {1 0 0 0 0 0

0 1 {1 0 0 0 0

0 0 1 {1 0 0 0

0 0 1 0 0 {1 0

0 0 0 {1 1 0 0

0 0 0 1 {1 0 0

0 {1 0 0 1 0 0

0 0 0 0 0 {1 1

0 0 0 0 0 1 {1

2
6666666666666666666664

3
7777777777777777777775

Let x = [x1, x2,…, x11]T, V(x) = [v1, v2,…, v7]T. The differential

equations for the biochemical reactions of the Ras/Raf/MEK/

ERK pathway is then given by

dx

dt
~SV xð Þ: ð10Þ

Nonlinear State-Space Models
As shown in previous sections, the problems encountered in

biochemical networks are of a nonlinear nature. Biochemical

networks can be treated as nonlinear dynamic systems. A very

powerful approach to deal with dynamic systems is the state-space

approach [36]. To develop nonlinear state-space models for

biochemical networks requires identifying the variables, their

components and biochemical reactions which characterize dy-

namics of the biochemical networks. In most case, variables in

biochemical networks are concentrations of metabolites, enzyme

and proteins or gene expression levels. In general, these variables

can be divided into three types of variables: input, output and state

variables. State variables making up the smallest variables that

determine the state of dynamic system are often not easily

accessible for measurements (hidden), but essential for evolution of

the system over time. Output variables are observed variables,

which are functions of state variables.

The nonlinear state-space model is defined by two types of

equations: state equations that define the dynamics of biochemical

networks through time and observation equations that describe how

the state variables are observed. The popular state equations for

dynamics of biochemical networks are defined by dynamic mass

balance equations or kinetic models. As we illustrated in the previous

section, the general kinetic models can be formulated as [37]:

dx

dt
~SV x,uð Þ, ð11aÞ

or dx~SV x,uð ÞdtzG tð Þdb tð Þ, ð11bÞ

where S is a stoichiometrix matrix that describes the biochemical

transformation in a biochemical network, x is a vector of state

variables which are concentrations of metabolites, enzyme and

proteins or gene expression levels, u is a vector of input variables, and

V(x, u) is the vector of reaction rates and is usually the vector of

nonlinear function of the state and input variables, G(t) is the

dispersion matrix, b(t) is a Brownian motion with diffusion matrix

Q(t) [38]. Equation (11a) is ordinary differential equations, and

equation (11b) is stochastic differential equations. Intuitively,

equation (11b) can be considered as the ordinary differential

equation (11a) driven by random white noise processes w (t) as

follows

dx

dt
~SV x,uð ÞzG tð Þw tð Þ,

where w tð Þ~ db
dt

is a Gaussian white noise process in the sense that

w(t) and w(s) are uncorrelated (and independent) for all t. Stochastic

differential equations can incorporate the system noise into the

model. Equation (11a) or equation (11b) determines the evolution of

biochemical networks. Thus, it is often referred to as state equation

or system equation.

Let y be a vector of observed or output variables. The

observation equation that defines the relationships between the

observed variables, and state-input variables is given by

y~h x,uð Þ: ð12Þ

Equation (12) does not consider noise. However, measurement

noise always exists in biochemical systems. The noise should be

incorporated into the models. Equation (11a) is a continuous

ordinary differential equation and equation (11b) is a continuous

stochastic differential equation. Many estimation methods are

based on discrete-time dynamic systems. Thus, equation (11) needs

to be changed into difference equation. A general discrete

nonlinear model for biochemical networks is given by

xkz1~xkzSV xk,ukð Þzwk ð13Þ

In more general, the nonlinear state-space model for biochemical

networks is given by

xkz1~f xk,uk,hð Þzwk, ð14Þ

where, xk is an m-dimensional vector of state variables, uk is an l-

dimensional vector of input variables, f is an m-dimensional vector

of nonlinear functions, wk denotes zero-mean uncorrelated

Gaussian noise with covariance matrix Qk. The p-dimensional

vector of measurements yk is related to the unobserved hidden state

variable through the observation equation:

yk~h xk,uk,hð Þzvk, ð15Þ

Where, h is a p-dimensional vector of nonlinear functions and vk is

uncorrelated Gaussian noise with covariance matrix Rk. We

assume that the random processes wk and vk are mutually

independent. The initial state x0 is assumed to be Gaussian

distributed with mean a0 and covariance matrix P0. We also

assume that the vector of parameters h is identifiable.

Extended Kalman Filter (EKF) for Dual Estimation
The challenging tasks in inference for nonlinear state-space

models are to estimate both the states and parameters of the

systems from input variables and noise observations. One of

methods for this dual estimation is to use EKF by taking the

parameters as additional states and augmenting state equations

[39]. Let Z = [xT, hT]T. The augmented state equations are given

by

Parameter Estimation

PLoS ONE | www.plosone.org 5 November 2008 | Volume 3 | Issue 11 | e3758



zkz1~
xkz1

hkz1

" #
~

f xk,uk,hkð Þ

hk

" #
z

wk

gk

" #

~g zk,ukð Þzjk

ð16Þ

Where, gk is uncorrelated Gaussian noise with covariance matrix

Wk. After extending the state variables with the parameter vector,

the observation equation becomes

ykz1~h zk,ukð Þzvk: ð17Þ

The basic idea behind the Kalman filter is that it operates by

propagating the mean and covariance of the state through time

[22].

Define

ẑzkjk~E zkjYk,Uk½ �

ẑzkz1jk~E zkz1jYk,Uk½ �

Pkjk~E zk{ẑzkjk
� �

zk{ẑzkjk
� �T jYk,Uk

h i
Pkz1jk~E zkz1{ẑzkz1jk

� �
zkz1{ẑzkz1jk
� �T jYk,Uk

h i

Where, ẑzkjk~
x̂xkjk
ĥhkjk

� �
,ẑzkz1jk~

x̂xkz1jk
ĥhkz1jk

� �
.

Let

Fk~

Lf

LxT

Lf

LhT

0 I

2
4

3
5

x̂xkjk ,ĥhkjk

and Hkz1~
Lh

LxT

Lh

LhT

� �
x̂xkz1jk ,ĥhkz1jk ,ukz1

ð18Þ

Then, the EKF algorithm for dual estimation consists of two steps:

prediction and filtering:

Prediction:

(1) Given previous estimated state ẑk|k, the observation Yk and

new input uk, the system then moves to a new state. We

attempt to predict the new state of system at time tk+1:

ẑzkz1jk~E zkz1jYk,Uk½ �

~E g zk,ukð Þzjkð ÞjYk,Uk½ �

&E g ẑzkjk,uk

� �
z

Lg

LzT
zk{ẑzkjk
� �� �

jYk,Uk

� �

~g ẑzkjk,uk

� �
ð19Þ

The variance matrix of prediction error can be calculated as

Pkz1jk~E zkz1{ẑzkz1jk
� �

zkz1{ẑzkz1jk
� �T jYk,Uk

h i
~E g zk,ukð Þzjk{ẑzkz1jk

� �
g zk,ukð Þzjk{ẑzkz1jk
� �T jYk,Uk

h i

~E
Lg

LzT
zk{ẑzkjk
� �

zjk

� �
Lg

LzT
zk{ẑzkjk
� �

zjk

� �T

jYk,Uk

" #

~FkPkjkFT
k zYk

Where, Pk|k = E{[(zk2ẑk|k)[(zk2ẑk|k)]
T} is the variance matrix of

the filter error and Yk~
Qk 0

0 Wk

� �
;

Filtering:

In the filtering cycle, we use the observation yk+1 at time tk+1 to

update estimation of the state of system at time tk+1. In other words,

in the filtering cycle, we attempt to improve the information on zk+1

after the new observation yk+1 is available. The error of the

measurement prediction or innovation process is defined as

ek~ykz1{hk ẑzkz1jk,uk

� �
,

Where, the error includes the novelty or the new information which

is contained in the new observation. The estimator of the state of

system at time tk+1 is given by

ẑzkz1jkz1~E zkz1jYkz1,Uk½ �

~E zkz1jYk,Uk,ek½ �

~E zkz1jYk½ �zcov zkz1,ekð Þ Var ekð Þ½ �{1
ek

After some calculation, we obtain the update of the state estimation:

(1)

ẑzkz1jkz1~ẑzkz1jkzGkz1 ykz1{h ẑzkz1jk,ukz1

� �� �
,

Where, Gk+1 is the Kalman gain matrix defined as

(2)

Gkz1~Pkz1jkHT
kz1 Hkz1Pkz1jkHT

kz1zRkz1

� �{1
:

The filtered state estimate is the summation of the predicted

state estimate and gain state error which the new observation

yk+1 brings. The updated estimate covariance matrix is given by

(3)

Pkz1jkz1~E zkz1{ẑzkz1jkz1

� �
zkz1{ẑzkz1jkz1

� �T jY kz1

n o
:

~ I{Gkz1Hkz1½ �Pkz1jk ð20Þ

Results

To evaluate its performance for estimation of parameters in

nonlinear state-space model of biochemical networks, the EKF

was applied to simulation data, the real experimental data of the

JAK-STAT pathway and Ras/Raf/MEK/ERK pathway.

Simulated Data
The data were simulated according to the following discrete

nonlinear model [40]:

x1 kz1ð Þ~h1x1 kð Þzx1 kð Þx2 kð Þz0:1zav1 kð Þ

x2 kz1ð Þ~h2x2 kð Þ{x1 kð Þx2 kð Þz0:1zav2 kð Þ

y kð Þ~x2 kð Þzaw kð Þ

where, h1 = 0.8, h2 = 1.5, a = 0.01, the independent zero-mean

noise v1, v2, w which obey the following discrete distributions:

Parameter Estimation
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Figure 3. 3A. The estimated parameter h1 for the simulated data. 3B. The estimated parameter h2 for the simulated data.
doi:10.1371/journal.pone.0003758.g003
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P v2 kð Þ~{1ð Þ~0:8,

P v1 kð Þ~{1ð Þ~0:6, P v2 kð Þ~4ð Þ~0:2,

P v1 kð Þ~0ð Þ~0:2, P w kð Þ~{7ð Þ~0:3,

P v1 kð Þ~3ð Þ~0:2, P w kð Þ~3ð Þ~0:7:

Simulations were performed for 800 equally spaced time points.

The estimation process began with the initial values of the state

variables x0 = [1.35,0.11]T. The initial values of the parameters

were assigned to zero, i. e. h0 = [0,0]T. The estimated parameters

as a function of time k were shown in Figures 3A and 3B, where

the solid lines were true parameters. From Figures 3A and 3B we

can see that at the beginning the estimated parameters show

fluctuations, but they quickly converge to the true parameters.

This example demonstrated that although the parameters were

treated as the states of the systems and hence may change over

time, they can reach stable values. From Figures 3A and 3B we

also can see some limitations on the Kalman filter for less than 100

data points. One way to overcome the limitations is to choose

appropriate covariance matrix Wk of the noise in the parameter

equation (16). It is well known that the covariance matrix Wk will

affect the convergence rate and tracking performance [41]. A

simple way to chose Wk is to set Wk to an arbitrary value, and make

this towards zeros as the EKF proceeds.

The JAK-STAT Pathway
The time-course experiments were performed four times for the

core module of the JAK-STAT pathway, which was shown in

Figure 1 [2,33]. For each time point, 107 cells were taken from the

pool of BaF3cells. The state variables include concentrations of

unphosphorylated STAT5 (x1), tyrosine phosphorylated mono-

meric STAT5 (x2), tyrosine phosphorylated dimeric STAT5 (x3)

and nuclear STAT5 (x4). Unfortunately, to experimentally

measure all individual STAT5 is difficult. Only concentrations

of tyrosine phosphorylated STAT5 in the cytoplasm and total

STAT5 in the cytoplasm were measured at 16 time points (from 0

to 60 minutes) by quantitative immunoblotting. In addition,

measurements of Epo-induced tyrosine phosphorylation EpoR

(EpoRA) as input were available.

The initial values of the state variables and parameters were

assumed as x1 = 0.1, x2 = 0, x3 = 0, x4 = 0, k1 = 0.017, k2 = 2.1768,

k3 = 0.1184 and k4 = 0.1. The estimated parameters were listed in

Table 1. The estimates by the EKF and maximum likelihood

approach [2] were close, but significantly different from the

estimates by unscented Kalman filter (UKF) [19]. Using the

estimated parameters and the concentration of EpoRA as input,

given initial values x1 = 0.1, x2 = x3 = x4 = 0, we can predict

evolution of the state variables and observed concentrations of

tyrosine phosphorylated STAT5 in the cytoplasm and total

STAT5 in the cytoplasm. Figures 4A and 4B plot the predicted

by the EKF and the UKF and observed concentrations of tyrosine

phosphorylated STAT5 in the cytoplasm and total STAT5 in the

cytoplasm (y1 and y2) in which all time-course data from four

experiments were used to estimate parameters and observed data

were from experiment 1. From Figures 4A and 4B we can see that

the model fits the data very well. Figures 4A and 4B also

demonstrated that the EKF fitted the concentrations of tyrosine

phosphorylated STAT5 in the cytoplasm better than the UKF

when the time passed 30 minutes and that the EKF fitted total

STAT5 in the cytoplasm much better than the UKF for the most

time points. Figure 5 showed the predicted dynamic behavior of

unphosphorylated STAT5 (x1), tyrosine phosphorylated STAT5

monomers (x2) and dimers (x3) in the cytoplasm, and STAT5

molecules in the nucleus (x4).

Ras/Raf/MEK/ERK Pathway
To investigate the impact of RKIP on the dynamics of the ERK

pathway, an experiment was conducted [42]. The concentrations

of Raf-1*, RKIP, Raf-1*/RKIP, Raf-1*/RKIP/ERK-PP, ERK,

RKIP-P, MEK-PP, MEK-PP/ERK, ERK-PP, RP and RKIP-P/

RP at ten equally spaced time points were collected. Since the

EKF takes parameters as the state variables, the estimated

parameters may vary over time. However, in the model we

assume that the parameters are constants. The reasonable

estimates of the parameters should reach to steady-state values.

The steady-state values of the estimated parameters were

summarized in Table 2 where we also listed the estimated

parameters obtained by solving difference-algebraic equations

[42]. Table 2 demonstrated that both estimates of the parameters

were very close. To compare discrepancy between the estimated

and observed concentrations of proteins, we performed simula-

tions using the nonlinear state-space model given by equation (10)

and estimated parameters. In simulations, the initial values of the

states and parameters were assumed in Table 3. We plotted

Figures 6A and 6B showing the observed and predicted

concentrations of Raf-1* and RKIP as a function of time. We

can see from Figures 6A and 6B that the model quite accurately

predicted the concentrations of Raf-1* and RKIP.

Discussion

Biochemical pathways form an intricate network of functional

and physical interactions between molecular species in the cell. To

understand system behavior of biochemical pathways requires

developing mathematic models of biochemical networks. In this

report, we addressed two important issues for modeling biochem-

ical networks. One issue is to develop a general framework for

modeling biochemical networks. Second issue is how to estimate

the parameters in the models.

Kinetic models have been widely used mechanistic models for

biochemical networks and hence should be the basis of

mathematic models of biochemical networks. However, pure

kinetic models for investigation of biochemical networks have

limitations. First, deterministic kinetic models do not incorporate

systems noise, which widely exist in the biochemical networks, into

their formulations of biochemical networks. Second, only a rather

small portion of noise corrupted observations of metabolites and

proteins is available. Many quantities that determine the states of

biological systems cannot be directly measured [43]. For example,

gene regulatory systems involve a number of known and unknown

biological machinery such as transcription factors, microRNA,

chromatin, and biochemical modifications, which regulate the

expression of the genes [44]. Neither activity level of regulator

protein nor most of the upstream biochemical events regulating

Table 1. Estimated Parameters in the Nonlinear State-Space
Model for the JAK-STAT Pathway.

Study k1 k2 k3 k4 t

Our Study 0.0211 2.2788 0.1064 0.1057 6 min

Swameye et al. (2003) 0.0210 2.4600 0.1066 0.1066 6.4 min

Wuach et al.( 2007) 0.0515 3.3900 0.3500

doi:10.1371/journal.pone.0003758.t001
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the activity of proteins can be measured today [45]. To overcome

these limitations, a kinetic equation-based nonlinear state-space

model was taken as a general framework for modeling biochemical

networks in this report.

Kinetic models provide mechanisms for description of biochem-

ical networks. We took the recent formulation of kinetic models for

biochemical networks in which the derivatives of the concentrations

of the compounds in the network are decomposed into the product of

Figure 4. 4A. The predicted and observed concentrations of tyrosine phosphorylated STAT5 in the cytoplasm for experiment 1. 4B. The predicted
and observed concentrations of total STAT5 in the cytoplasm for experiment 1.
doi:10.1371/journal.pone.0003758.g004
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the stoichiometrix matrix and vector of the reaction rates [37]. We

then extended the kinetic model of the biochemical network to

including system noises. The extended kinetic equation was used as a

system equation in the nonlinear state-space model.

To deal with a large number of unmeasured quantities in the

biochemical reactions, we added observation equations that

incorporate the unmeasured states and the observed quantities

into the model. In the report, we demonstrated that the presented

nonlinear state-space models for biochemical networks that consist

of systems and observation equations not only can deal with both

hidden and observed variables, but also can cover both

deterministic and random variables. The nonlinear state-space

models provide a very general framework for modeling a wide

range of biological systems [19].

Parameter estimation is another key issue for modeling

biochemical networks. Efficient parameter estimation methods

should share a common feature which can handle the noises due to

both systems and measurements. A common principle for most of

Figure 5. The predicted dynamic behavior of unphosphorylated STAT5 (x1), tyrosine phosphorylated STAT5 monomers (x2) and
dimers (x3) in the cytoplasm, and STAT5 molecules in the nucleus (x4) in the JAK-STAT pathway.
doi:10.1371/journal.pone.0003758.g005

Table 2. The estimates of the parameters in nonlinear state-
space model of ERK pathway.

Parameters Estimates by EKF Estimates by Cho et al. (2003)

k1 0.5242 0.5300

k2 0.0075 0.0072

k3 0.6108 0.6250

k4 0.0025 0.00245

k5 0.0371 0.0315

k6 0.8101 0.8000

k7 0.0713 0.0075

k8 0.0687 0.0710

k9 0.9600 0.9200

k10 0.0012 0.00122

k11 0.8720 0.8700

doi:10.1371/journal.pone.0003758.t002

Table 3. The initial values of the concentrations of the
proteins and parameters.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

66 0.054 0.019 59 0.09 0.012 65 26 175 161 2.18

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11

0.546 0.014 0.619 0.046 21.29 0.84 20.05 0.43 0.98 20.006 0.88

doi:10.1371/journal.pone.0003758.t003
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Figure 6. 6A. The observed and predicted concentrations of Raf-1* in the Ras/Raf/MEK/ERK Pathway. 6B. The observed and predicted
concentrations of RKIP in the Ras/Raf/MEK/ERK Pathway.
doi:10.1371/journal.pone.0003758.g006
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current methods for estimation of parameters in the models of

biochemical networks is to minimize description between the

observed and predicted quantities. Therefore, these methods

cannot handle systems noise, often reach a local optimum, and

require intensive computations. In engineering, widely used

methods for parameter estimation in nonlinear models of dynamic

systems are to jointly estimate the states of the systems and

parameters in the model. Recently, Quach and his coworkers [19]

proposed to use the unscented Kalman filter (UKF) to estimate the

parameters in the nonlinear state-space model of biochemical

network. The UKF is the recently developed method to

simultaneously estimate the states of the system and parameters

in the model. Alternative to the UKF, in this report, we proposed

to use the EKF for parameter estimation. The EKF is the widely

used methods for estimation of both the states and parameters.

The EKF is easy to implement and requires less computational

time than other methods. Although, in general, the EKF is thought

to be less accurate for parameter estimation in nonlinear dynamic

systems, our preliminary results in the report showed that the EKF

can also reach very good accuracy in estimation of nonlinear

dynamic models of biochemical networks. In addition to the EKF

and UKF for parameter estimation in the nonlinear models of

dynamic systems, a number of new methods based on sequential

Monte Carlo (SMC) methods and expectation-maximization

methods for parameter estimations have been developed. All

these methods are based on Kalman filter. We can expect that the

Kalman filter-based parameter estimation methods for nonlinear

dynamic models will open a new avenue for investigation of large-

scale biochemical networks.

As previously discussed, in this report we considered two errors:

the system or process noise and the measurement noise. When all

systematic information about the studied network has been

included in the models, there will be random effects which have

not been incorporated into the model. Also, in practice, there are

measurement errors. Therefore, in this report, we assumed that

the process noise and measurement noise existed and that the

process noise and measurement noise were both white. However,

in practice, the noise may not be white. In this case, we need to

consider colored process noise and measurement noise. We also

assumed that the process noise and measurement noise were

uncorrelated. In practice, the process noise and measurement

noise may be correlated. Correlation between process and

measurement noise should be considered.

We assumed that the variance matrices of the process noise and

measurement noise were known. This assumption is not realistic

and hence should be released. The procedures for estimation of

the variance matrices of the noise should be incorporated into the

EKF in the future.

The Kalman filter can be either viewed as a minimum mean

square estimates or a maximum posterior estimates. The EKF can

also be interpreted as maximum likelihood estimate if we assume

that the system noise and measurement errors follow Gaussian

processes [46]. In general, the EKF methods may obtain only local

optimum rather than global optimal solutions. A heuristic

approach to sidestepping the multi-mode problem is to start

algorithms many times by randomly selecting initial values for the

states and parameters.

The size of the network which the EKF can fit depends on the

number of time points and the number of replications (number of

samples). Due to the experimental cost of measuring kinetic data,

the number of time points and replications are often limited, which

will affect the size of the network the EKF can fit. Also, estimation

of the covariance matrices Qk and Rk will increase the number of

parameters and hence may affect the size of the network the EKF

can fit. Since it takes the parameters as the states, the EKF

increases the number of state variables. In this report, we have not

studied whether this will reduce the size of the network the EKF

fits. Simulations to address this issue should be carried out in the

future.

Unlike the maximum likelihood estimate or EM algorithms

where the initial values of the states and their covariance matrix

can be optimally estimated, a quite open subject for the dual EKF

is the choice of the initial values for both states and parameters. To

avoid complexity, in this report we used a trial-and-error

procedure to estimate the initial values for getting the tradeoff

between global optimality of the estimators and convergence.

However, selection of the initial parameters is important in

ensuring convergence of the EKF algorithm. Estimation of initial

values of both states and parameters should be incorporated into

the EKF algorithms in the future.

One limitation of this report is that standard errors on

parameters and an error variance to measure fit have not been

estimated. Although the results of distributions of the estimators of

the parameters in the nonlinear state space models in the literature

have been limited, we will investigate asymptotical distributions of

the estimators of the parameters and estimate the standard errors

on parameters as well as the error variance to measure fitness by

resampling methods in the future.
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Adrenergic Receptor Signaling and Desensitization Elucidated by Quantitative

Modeling of Real Time cAMP Dynamics. J Biol Chem 283: 2949–2961.

33. Timmer J, Muller TGM, Swameye I, Sandra O, Klingmuller U (2004)

Modeling the nonlinear dynamics of cellular signal transduction. International
Journal of Bifurcation and Chaos 14: 2069–2079.

34. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling

through the JAK/STAT pathway, recent advances and future Challenges. Gene
285: 1–24.

35. Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/
ERK pathway by protein interaction. Biochem J 351: 289–305.

36. Ogata K (1998) System Dynamics. Third edition. New Jersey: Prentice Hall,

Upper Saddle River.
37. Jamshidi N, Palsson BØ (2008) Formulating genome-scale kinetic models in the

post-genome era. Molecular Systems Biology 4: 171.
38. Henderson D, Plaschko P (2006) stochastic differential equations in science and

engineering. New Jersey: World Scientific. 240 p.
39. Li P, Goodall R, Kadirkamanathan V (2004) Estimation of parameters in a

linear state space model using a Rao-Blackwellised particle filter. IEE Proc

Control Theory Appl 151: 727–738.
40. Germani A, Manes C, Palumbo P (2003) Polynomial extended kalman filtering

for discrete-time nonlinear stochastic systems. Proceedings of the 42nd IEEE
Conference on Decision and Control Maui, Hawii, USA, December 2003 1:

886–891.

41. Nelson TA (2000) nonlinear estimation and modeling of noisy time-series by
dual Kalman filter methods. PhD thesis, Oregon Graduate Institute of Science

and Technology.
42. Cho KH, Shin SY, Kim HW, Wolkenhauer O, McFerran B, et al. (2003)

Mathematical Modeling of the influence of RKIP on the ERK Signaling
Pathway. Lecture Notes in Computer Science 2602: 127–141.

43. Sitz A, Schwarz U, Kurths J, Voss HU (2002) Estimation of parameters and

unobserved components for nonlinear systems from noisy time series. Physical
Review E 66: 016210.

44. Riddihough G, Purnell BA, Travis J (2008) Freedom of expression Introduction
to special issue. Science 319(5871): 1781.

45. Nachman I, Regev A, Friedman N (2004) Inferring quantitative models of

regulatory networks from expression data. Bioinformatics 20 (Suppl. 1):
248–256.

46. Ljung L (1979) asymptotic behavior of the extended Kalman filter as a
parameter estimator for linear systems. IEEE Trans on Automatic Control AC-

2: 36–50.

Parameter Estimation

PLoS ONE | www.plosone.org 13 November 2008 | Volume 3 | Issue 11 | e3758


