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A MIXED ELASTICITY FORMULATION FOR FLUID–POROELASTIC
STRUCTURE INTERACTION

Tongtong Li and Ivan Yotov*

Abstract. We develop a mixed finite element method for the coupled problem arising in the interaction
between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled
by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–
Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based
on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow
formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions
are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure
as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak
formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed
finite element approximation. Numerical experiments are presented to verify the theoretical results and
illustrate the robustness of the method with respect to the physical parameters.
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1. Introduction

In this paper we develop a new mixed elasticity formulation for the quasi-static Stokes–Biot problem that
models the interaction between a free fluid and flow in deformable porous medium. This coupled physical
phenomenon is referred to as fluid–poroelastic structure interaction (FPSI). There has been an increased interest
in this problem in recent years, due to its wide range of applications in petroleum engineering, hydrology,
environmental sciences, and biomedical engineering, such as predicting and controlling processes arising in gas
and oil extraction from naturally or hydraulically fractured reservoirs, cleanup of groundwater flow in deformable
aquifers, designing industrial filters, and modeling blood-vessel interactions in blood flows. The free fluid is
modeled by the Stokes equations, while the flow in the deformable porous media is modeled by the Biot system
of poroelasticity [15]. The Biot system couples an elasticity equation for the deformation of the elastic porous
matrix with a Darcy flow model for the mass conservation of the fluid in the pores. The Stokes and Biot regions
are coupled via interface conditions enforcing continuity of normal flux, the Beavers–Joseph–Saffman (BJS)
slip with friction condition for the tangential velocity, balance of forces, and continuity of normal stress. The
FPSI system exhibits features of both coupled Stokes–Darcy flows [28, 30, 33, 34, 40, 44, 49] and fluid–structure
interaction (FSI) [12,22,32,43], both of which have been extensively studied. In applications of the Stokes–Biot
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model to flow in fractured poroelastic media, the use of the Stokes model in the fractures provides a more
accurate alternative to the traditional Darcy model [42], which becomes inadequate for faster flow and higher
porosity.

The first mathematical analysis of the Stokes–Biot system can be found in [47], where a fully dynamic
system is considered and well-posedness is shown by rewriting it as a parabolic system. A numerical study
was presented in [11], using the Navier–Stokes equations to model the free fluid flow. The authors develop a
variational multiscale finite element method and propose both monolithic and iterative partitioned methods for
the solution of the coupled system. A non-iterative operator splitting scheme is developed in [20] for an arterial
flow model that includes a thin elastic membrane separating the two regions, using a pressure formulation for
the flow in the poroelastic region. In [18, 19], a mixed Darcy model is considered in the Biot system and the
Nitsche’s interior penalty method is used to impose weakly the continuity of normal flux. A Lagrange multiplier
formulation for imposing the normal flux continuity is developed in [1, 2]. A decoupling algorithm based on
solving an optimization problem is developed in [25]. A dimensionally reduced Brinkman–Biot model for flow
through fractures in poroelastic media is developed and analyzed in [21]. The well-posedness of the fully dynamic
coupled Navier–Stokes/Biot model using a pressure Darcy formulation is established in [23]. A finite element
method for this formulation is developed in [24]. A nonlinear Stokes–Biot model for non-Newtonian fluids and
its finite element approximation are considered in [3], where the first well-posedness analysis of the quasi-static
Stokes–Biot system is presented. Coupling of the Stokes–Biot system with transport is studied in [4]. A second
order in time decoupling scheme for a nonlinear Stokes–Biot model is developed in [39]. Recent works study
various discretization schemes for the Stokes–Biot system, including a coupled discontinuous Galerkin – mixed
finite element method [50], a staggered finite element method [14] and non-conforming finite element method
[51].

To the best of our knowledge, all of the previous works consider displacement-based discretizations of the
elasticity equation in the Biot system. In this paper we develop a mixed finite element discretization of the
quasi-static Stokes–Biot system using a mixed elasticity formulation with a weakly symmetric poroelastic stress.
The advantages of mixed finite element methods for elasticity include locking-free behavior, robustness with
respect to the physical parameters, local momentum conservation, and accurate stress approximations with
continuous normal components across element edges or faces. Here we consider a three-field stress–displacement–
rotation elasticity formulation. This formulation allows for mixed finite element methods with reduced number
of degrees of freedom, see e.g. [9, 10]. It is also the basis for the multipoint stress mixed finite element method
[5, 7], where stress and rotation can be locally eliminated, resulting in a positive definite cell-centered scheme
for the displacement. We consider a mixed velocity–pressure Darcy formulation, resulting in a five-field Biot
formulation, which was proposed in [41] and studied further in [6], where a multipoint stress-flux mixed finite
element method is developed. We note that our analysis can be easily extended to the strongly symmetric mixed
elasticity formulation, which leads to the four-field mixed Biot formulation developed in [52]. Finally, for the
Stokes equations we consider the classical velocity–pressure formulation. The weak formulation for the resulting
Stokes–Biot system has not been studied in the literature. One main difference from the previous works with
displacement-based elasticity formulations [2,3] is that the normal component of the poroelastic stress appears
explicitly in the interface terms. Correspondingly, we introduce a Lagrange multiplier with a physical meaning
of structure velocity that is used to impose weakly the balance of force and the BJS condition. In addition, a
Darcy pressure Lagrange multiplier is used to impose weakly the continuity of normal flux.

Since the weak formulation of the Stokes–Biot system considered in this paper is new, we first show that it
has a unique solution. This is done by casting it in the form of a degenerate evolution saddle point system and
employing results from classical semigroup theory for differential equations with monotone operators [46]. We
then present a semi-discrete continuous-in-time formulation, which is based on employing stable mixed finite
element spaces for the Stokes, Darcy, and elasticity equations on grids that may be non-matching along the
interface, as well as suitable choices for the Lagrange multiplier finite element spaces. Well-posedness of the
semidiscrete formulation is established with a similar argument to the continuous case, using discrete inf-sup
conditions for the divergence and interface bilinear forms. Stability and optimal order error estimates are then
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derived for all variables in their natural space-time norms. We emphasize that the estimates hold uniformly
in the limit of the storativity coefficient 𝑠0 going to zero, which is a locking regime for non-mixed elasticity
discretizations for the Biot system. In addition, our results are robust with respect to 𝑎min, the lower bound for
the compliance tensor 𝐴, which relates to another locking phenomena in poroelasticity called Poisson locking
[53]. Furthermore, we do not use Gronwall’s inequality in the stability bound, thus obtaining long-time stability
for our method. We present several computational experiments for a fully discrete finite element method designed
to verify the convergence theory, illustrate the behavior of the method for a problem modeling an interaction
between surface and subsurface hydrological systems, and study the robustness of the method with respect to
the physical parameters. In particular, the numerical experiments illustrate the locking-free properties of the
mixed finite element method for the Stokes–Biot system.

The rest of the paper is organized as follows. In Section 2 we present the mathematical model. Section 3 is
devoted to the continuous weak formulation. Well-posedness of the continuous formulation is proved in Section 4,
where existence and uniqueness of solution are established. The semidiscrete continuous-in-time approximation
is introduced in Section 5. Stability and error analyses are performed in Sections 6 and 7, respectively. Numerical
experiments are presented in Section 8, followed by conclusions in Section 9.

We end this section by fixing some notation. Let M, S and N denote the sets of 𝑛×𝑛 matrices, 𝑛×𝑛 symmetric
matrices and 𝑛 × 𝑛 skew-symmetric matrices, respectively. For a domain 𝒪 ⊂ R𝑛, we make use of the usual
notation for Lebesgue spaces L𝑝(𝒪), Sobolev spaces W𝑘,𝑝(𝒪), and Hilbert spaces H𝑘(𝒪). The corresponding
norms are denoted by ‖ · ‖L𝑝(𝒪), ‖ · ‖W𝑘,𝑝(𝒪) and ‖ · ‖H𝑘(𝒪). For a generic scalar space Z, we denote by Z and Z
the corresponding vector and tensor counterparts, respectively. The L2(𝒪) inner product is denoted by (·, ·)𝒪
for scalar, vector and tensor valued functions. For a section of the boundary 𝑆 ⊂ 𝜕𝒪, we write ⟨·, ·⟩𝑆 for the
L2(𝑆) inner product or duality pairing. We will also use the Hilbert space

H(div;𝒪) :=
{︀
v ∈ L2(𝒪) : ∇ · v ∈ L2(𝒪)

}︀
,

endowed with the norm ‖v‖2H(div;𝒪) := ‖v‖2L2(𝒪)+‖∇·v‖
2
L2(𝒪), as well as its tensor-valued counterpart H(div;𝒪)

consisting of matrices with rows in H(div;𝒪). The latter is equipped with the norm ‖𝜏‖2H(div;𝒪) := ‖𝜏‖2L2(𝒪) +
‖∇ · 𝜏‖2L2(𝒪). Given a separable Banach space V endowed with the norm ‖ · ‖V, we let L𝑝(0, 𝑇 ; V) be the space
of functions 𝑓 : (0, 𝑇 ) → V that are Bochner measurable and such that ‖𝑓‖L𝑝(0,𝑇 ;V) <∞, with

‖𝑓‖𝑝
L𝑝(0,𝑇 ;V) :=

∫︁ 𝑇

0

‖𝑓(𝑡)‖𝑝
V d𝑡, ‖𝑓‖L∞(0,𝑇 ;V) := ess sup

𝑡∈[0,𝑇 ]

‖𝑓(𝑡)‖V.

We employ 0 to denote the null vector or tensor, and use 𝐶 and 𝑐, with or without subscripts, bars, tildes or
hats, to denote generic constants independent of the discretization parameters, which may take different values
at different places.

2. Stokes–Biot model problem

Let Ω ⊆ R𝑛, 𝑛 = 2 or 3, be a connected domain that consists of two non-overlapping regions, the fluid part
Ω𝑓 and the poroelastic part Ω𝑝. Let Γ𝑓 = 𝜕Ω𝑓 ∩ 𝜕Ω, Γ𝑓𝑝 = 𝜕Ω𝑓 ∩ 𝜕Ω𝑝, and Γ𝑝 = 𝜕Ω𝑝 ∩ 𝜕Ω.

The free fluid in Ω𝑓 is governed by the Stokes equations

−∇ · 𝜎𝑓 = f𝑓 , ∇ · u𝑓 = 𝑞𝑓 in Ω𝑓 × (0, 𝑇 ], (2.1a)
u𝑓 = 0 on Γ𝑓 × (0, 𝑇 ], (2.1b)

where 𝑇 > 0 is the final time, u𝑓 is the fluid velocity, 𝑝𝑓 is the fluid pressure, and 𝜎𝑓 = −𝑝𝑓I + 2𝜇D(u𝑓 ) is the

stress tensor. Here D(u𝑓 ) =
1
2
(︀
∇u𝑓 +∇ut

𝑓

)︀
is the deformation rate tensor and 𝜇 > 0 is the fluid viscosity. In

addition, f𝑓 is a fluid body force and 𝑞𝑓 is an external source or sink term.
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The poroelastic region is governed by the quasi-static Biot system [15]

−∇ · 𝜎𝑝 = f𝑝, 𝜇K−1u𝑝 +∇𝑝𝑝 = 0,
𝜕

𝜕𝑡
(𝑠0𝑝𝑝 + 𝛼∇ · 𝜂𝑝) +∇ · u𝑝 = 𝑞𝑝 in Ω𝑝 × (0, 𝑇 ], (2.2a)

𝑝𝑝 = 0 on Γ𝐷𝑝
𝑝 × (0, 𝑇 ], u𝑝 · n𝑝 = 0 on Γ𝑁𝑣

𝑝 × (0, 𝑇 ], (2.2b)

𝜂𝑝 = 0 on Γ𝐷𝑑
𝑝 × (0, 𝑇 ], 𝜎𝑝n𝑝 = 0 on Γ𝑁𝑠

𝑝 × (0, 𝑇 ]. (2.2c)

Here u𝑝 is the Darcy velocity, 𝑝𝑝 is the Darcy pressure, 𝜂𝑝 is the displacement, and 𝜎𝑝 is the poroelastic stress
tensor, with

𝜎𝑝 = 𝜎𝑒 − 𝛼𝑝𝑝I, 𝐴𝜎𝑒 = D(𝜂𝑝), (2.3)

where 𝜎𝑒 is the elastic stress tensor and 𝐴 : S → M is the compliance tensor, which is a uniformly symmetric
and positive definite operator satisfying for some constants 0 < 𝑎min ≤ 𝑎max,

∀ 𝜏 ∈ S, 𝑎min 𝜏 : 𝜏 ≤ 𝐴 𝜏 : 𝜏 ≤ 𝑎max 𝜏 : 𝜏 ∀x ∈ Ω𝑝. (2.4)

In the isotropic case, 𝜎𝑒 = 𝜆𝑝(∇·𝜂𝑝)I+2𝜇𝑝D(𝜂𝑝), where 0 < 𝜆min ≤ 𝜆𝑝(x) ≤ 𝜆max and 0 < 𝜇min ≤ 𝜇𝑝(x) ≤ 𝜇max

are the Lamé parameters. In this case,

𝐴(𝜏 ) =
1

2𝜇𝑝

(︂
𝜏 − 𝜆𝑝

2𝜇𝑝 + 𝑛𝜆𝑝
tr (𝜏 )I

)︂
, 𝐴−1(𝜏 ) = 2𝜇𝑝 𝜏 + 𝜆𝑝 tr (𝜏 ) I, (2.5)

with 𝑎min = 1/(2𝜇max + 𝑛𝜆max) and 𝑎max = 1/(2𝜇min). We extend the definition of 𝐴 on M such that it is a
positive constant multiple of the identity map on N as in [41]. In addition, K is the symmetric and uniformly
positive definite rock permeability tensor satisfying for some constants 0 < 𝑘min ≤ 𝑘max,

∀w ∈ R𝑛, 𝑘min w ·w ≤ (Kw) ·w ≤ 𝑘max w ·w ∀x ∈ Ω𝑝. (2.6)

Finally, 𝑠0 > 0 is the storativity coefficient, 0 < 𝛼 ≤ 1 is the Biot–Willis constant, f𝑝 is a structure body force,
and 𝑞𝑝 is a source or sink term. For the boundary conditions we have Γ𝑝 = Γ𝐷𝑝

𝑝 ∪ Γ𝑁𝑣
𝑝 and Γ𝑝 = Γ𝐷𝑑

𝑝 ∪ Γ𝑁𝑠
𝑝 .

To avoid technical non-uniqueness issues, we assume that
⃒⃒⃒
Γ𝐷𝑝

𝑝

⃒⃒⃒
,

⃒⃒
Γ𝐷𝑑

𝑝

⃒⃒
> 0. Furthermore, to simplify the

characterization of the normal trace spaces on Γ𝑓𝑝, we assume that Γ𝐷𝑝
𝑝 and Γ𝐷𝑑

𝑝 are not adjacent to the

interface Γ𝑓𝑝, i.e. dist
(︁

Γ𝐷𝑝
𝑝 ,Γ𝑓𝑝

)︁
≥ 𝑑1 > 0 and dist

(︀
Γ𝐷𝑑

𝑝 ,Γ𝑓𝑝

)︀
≥ 𝑑2 > 0.

The Stokes and Biot equations are coupled through interface conditions on the fluid–poroelastic structure
interface Γ𝑓𝑝 [11, 47]. They are mass conservation, balance of normal components of the stresses, conservation
of momentum and the BJS condition [13,45] modeling slip with friction:

u𝑓 · n𝑓 +
(︂
𝜕

𝜕𝑡
𝜂𝑝 + u𝑝

)︂
· n𝑝 = 0, −(𝜎𝑓n𝑓 ) · n𝑓 = 𝑝𝑝 on Γ𝑓𝑝 × (0, 𝑇 ], (2.7a)

𝜎𝑓n𝑓 + 𝜎𝑝n𝑝 = 0, (−𝜎𝑓n𝑓 ) · t𝑓,𝑗 = 𝜇𝛼BJS

√︁
K−1

𝑗

(︂
u𝑓 −

𝜕

𝜕𝑡
𝜂𝑝

)︂
· t𝑓,𝑗 on Γ𝑓𝑝 × (0, 𝑇 ], (2.7b)

where n𝑓 and n𝑝 are the outward unit normal vectors to 𝜕Ω𝑓 and 𝜕Ω𝑝 respectively, t𝑓,𝑗 , 1 ≤ 𝑗 ≤ 𝑛 − 1 is an
orthonormal system of tangent vectors on Γ𝑓𝑝, K𝑗 = (Kt𝑓,𝑗) · t𝑓,𝑗 , and 𝛼BJS ≥ 0 is a friction coefficient.

Finally, the above system of equations is complemented by the initial condition 𝑝𝑝(x, 0) = 𝑝𝑝,0(x). Compatible
initial data for the rest of the variables can be constructed from 𝑝𝑝,0 in a way that all equations in the system
(2.1)–(2.7), except for the unsteady conservation of mass equation in (2.2a), hold at 𝑡 = 0. This will be established
in Lemma 4.11 below. We will consider a weak formulation with a time-differentiated elasticity equation and
compatible initial data (𝜎𝑝,0, 𝑝𝑝,0).
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3. Weak formulation

We define the fluid velocity space and fluid pressure space as the Hilbert spaces

V𝑓 :=
{︀
v𝑓 ∈ H1(Ω𝑓 ) : v𝑓 = 0 on Γ𝑓

}︀
, W𝑓 := L2(Ω𝑓 ),

respectively, endowed with the corresponding standard norms

‖v𝑓‖V𝑓
:= ‖v𝑓‖H1(Ω𝑓 ), ‖𝑤𝑓‖W𝑓

:= ‖𝑤𝑓‖L2(Ω𝑓 ).

For the structure region, we introduce a new variable, the structure velocity u𝑠 := 𝜕𝑡𝜂𝑝, using the notation
𝜕𝑡 := 𝜕

𝜕𝑡 . We will develop a formulation that uses u𝑠 instead of 𝜂𝑝, which is better suitable for analysis. To
impose the symmetry condition on 𝜎𝑝 weakly, we introduce the rotation operator 𝜌𝑝 := 1

2 (∇𝜂𝑝 −∇𝜂t
𝑝). In the

weak formulation we will use its time derivative 𝛾𝑝 := 𝜕𝑡𝜌𝑝 = 1
2 (∇u𝑠 −∇ut

𝑠). We introduce the Hilbert spaces

V𝑝 :=
{︀
v𝑝 ∈ H(div; Ω𝑝) : v𝑝 · n𝑝 = 0 on Γ𝑁𝑣

𝑝

}︀
, W𝑝 := L2(Ω𝑝),

X𝑝 :=
{︀
𝜏𝑝 ∈ H(div; Ω𝑝,M) : 𝜏𝑝n𝑝 = 0 on Γ𝑁𝑠

𝑝

}︀
,

V𝑠 := L2(Ω𝑝), Q𝑝 = L2(Ω𝑝,N),

endowed with the standard norms, respectively,

‖v𝑝‖V𝑝
:= ‖v𝑝‖H(div;Ω𝑝), ‖𝑤𝑝‖W𝑝

:= ‖𝑤𝑝‖L2(Ω𝑝),

‖𝜏𝑝‖X𝑝
:= ‖𝜏𝑝‖H(div;Ω𝑝), ‖v𝑠‖V𝑠

:= ‖v𝑠‖L2(Ω𝑝), ‖𝜒𝑝‖Q𝑝
:= ‖𝜒𝑝‖L2(Ω𝑝).

We further introduce two Lagrange multipliers:

𝜆 := −(𝜎𝑓n𝑓 ) · n𝑓 = 𝑝𝑝, and 𝜃 := u𝑠 on Γ𝑓𝑝.

The first one is standard in Stokes–Darcy and Stokes–Biot models with a mixed Darcy formulation and it is
used to impose weakly continuity of flux, cf. the first equation in (2.7a). The second one is needed in the mixed
elasticity formulation, since the trace of u𝑠 on Γ𝑓𝑝 is not well defined for u𝑠 ∈ L2(Ω𝑝). It will be used to impose
weakly the continuity of normal stress condition 𝜎𝑓n𝑓 ·n𝑓 = 𝜎𝑝n𝑝 ·n𝑝 and the BJS condition, cf. (2.7b). For the
Lagrange multiplier spaces we need Λ𝑝 = (V𝑝 ·n𝑝)′ and Λ𝑠 = (X𝑝n𝑝)′. According to the normal trace theorem,
since v𝑝 ∈ V𝑝 ⊂ H(div; Ω𝑝), then v𝑝 ·n𝑝 ∈ H−1/2(𝜕Ω𝑝). It is shown in [33] that if v𝑝 ·n𝑝 = 0 on 𝜕Ω𝑝∖Γ𝑓𝑝, then

v𝑝 · n𝑝 ∈ H−1/2(Γ𝑓𝑝). In our case, since v𝑝 · n𝑝 = 0 on Γ𝑁𝑣
𝑝 and dist

(︁
Γ𝐷𝑝

𝑝 ,Γ𝑓𝑝

)︁
≥ 𝑑1 > 0, the argument can

be modified as follows. For any 𝜉 ∈ H1/2(Γ𝑓𝑝), let 𝐸1𝜉 be a continuous extension to H1/2
(︀
Γ𝑓𝑝 ∪ Γ𝑁𝑣

𝑝

)︀
such that

𝐸1𝜉 = 0 on 𝜕
(︀
Γ𝑓𝑝 ∪ Γ𝑁𝑣

𝑝

)︀
, then let 𝐸2(𝐸1𝜉) ∈ H1/2(𝜕Ω) be a continuous extension of 𝐸1𝜉 such that 𝐸2(𝐸1𝜉) = 0

on Γ𝐷𝑝
𝑝 . We then have

⟨v𝑝 · n𝑝, 𝜉⟩Γ𝑓𝑝
= ⟨v𝑝 · n𝑝, 𝐸1𝜉⟩Γ𝑓𝑝∪Γ𝑁𝑣

𝑝
= ⟨v𝑝 · n𝑝, 𝐸2(𝐸1𝜉)⟩𝜕Ω𝑝

and
⟨v𝑝 · n𝑝, 𝜉⟩Γ𝑓𝑝

≤ ‖v𝑝 · n𝑝‖H−1/2(𝜕Ω𝑝)‖𝐸2(𝐸1𝜉)‖H1/2(𝜕Ω𝑝) ≤ 𝐶‖v𝑝‖H(div;Ω𝑝)‖𝜉‖H1/2(Γ𝑓𝑝). (3.1)

Similarly, for any 𝜑 ∈ H1/2(Γ𝑓𝑝),

⟨𝜎𝑝n𝑝,𝜑⟩Γ𝑓𝑝
≤ 𝐶‖𝜎𝑝‖H(div;Ω𝑝)‖𝜑‖H1/2(Γ𝑓𝑝). (3.2)

Thus we can take
Λ𝑝 := H1/2(Γ𝑓𝑝), Λ𝑠 := H1/2(Γ𝑓𝑝)
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with norms
‖𝜉‖Λ𝑝

:= ‖𝜉‖H1/2(Γ𝑓𝑝), ‖𝜑‖Λ𝑠
:= ‖𝜑‖H1/2(Γ𝑓𝑝). (3.3)

We now proceed with the derivation of the variational formulation of (2.1)–(2.7). We test the first equation
in (2.1a) with an arbitrary v𝑓 ∈ V𝑓 , integrate by parts, and combine with the BJS interface condition in (2.7b).
We test the third equation in (2.2a) by 𝑤𝑝 ∈ W𝑝 and make use of (2.3) and the fact that

∇ · 𝜂𝑝 = tr (D(𝜂𝑝)) = tr (𝐴𝜎𝑒) = tr𝐴(𝜎𝑝 + 𝛼𝑝𝑝 I),

as well as tr (𝜏 )𝑤 = 𝜏 : (𝑤I) ∀ 𝜏 ∈ M, 𝑤 ∈ R. In addition, equation (2.3) gives

𝐴(𝜎𝑝 + 𝛼𝑝𝑝I) = ∇𝜂𝑝 − 𝜌𝑝.

In the weak formulation we will use its time differentiated version

𝜕𝑡𝐴(𝜎𝑝 + 𝛼𝑝𝑝I) = ∇u𝑠 − 𝛾𝑝,

which is tested by 𝜏𝑝 ∈ X𝑝. Finally, we impose the remaining equations weakly, as well as the symmetry of 𝜎𝑝

and the interface conditions (2.7), obtaining the following mixed variational formulation: Given

f𝑓 : [0, 𝑇 ] → V′
𝑓 , f𝑝 : [0, 𝑇 ] → V′

𝑠, 𝑞𝑓 : [0, 𝑇 ] → W′
𝑓 , 𝑞𝑝 : [0, 𝑇 ] → W′

𝑝

and (𝜎𝑝,0, 𝑝𝑝,0) ∈ X𝑝×W𝑝, find (u𝑓 , 𝑝𝑓 ,𝜎𝑝,u𝑠,𝛾𝑝,u𝑝, 𝑝𝑝, 𝜆,𝜃) : [0, 𝑇 ] → V𝑓 ×W𝑓 ×X𝑝×V𝑠×Q𝑝×V𝑝×W𝑝×
Λ𝑝 ×Λ𝑠 such that (𝜎𝑝(0), 𝑝𝑝(0)) = (𝜎𝑝,0, 𝑝𝑝,0) and, for a.e. 𝑡 ∈ (0, 𝑇 ) and for all v𝑓 ∈ V𝑓 , 𝑤𝑓 ∈ W𝑓 , 𝜏𝑝 ∈ X𝑝,
v𝑠 ∈ V𝑠, 𝜒𝑝 ∈ Q𝑝, v𝑝 ∈ V𝑝, 𝑤𝑝 ∈ W𝑝, 𝜉 ∈ Λ𝑝, and 𝜑 ∈ Λ𝑠,

(2𝜇D(u𝑓 ),D(v𝑓 ))Ω𝑓
− (∇ · v𝑓 , 𝑝𝑓 )Ω𝑓

+ ⟨v𝑓 · n𝑓 , 𝜆⟩Γ𝑓𝑝

+
𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗 (u𝑓 − 𝜃) · t𝑓,𝑗 ,v𝑓 · t𝑓,𝑗

⟩
Γ𝑓𝑝

= (f𝑓 ,v𝑓 )Ω𝑓
, (3.4a)

(∇ · u𝑓 , 𝑤𝑓 )Ω𝑓
= (𝑞𝑓 , 𝑤𝑓 )Ω𝑓

, (3.4b)

(𝜕𝑡𝐴(𝜎𝑝 + 𝛼𝑝𝑝I), 𝜏𝑝)Ω𝑝
+ (∇ · 𝜏𝑝,u𝑠)Ω𝑝

+ (𝜏𝑝,𝛾𝑝)Ω𝑝
− ⟨𝜏𝑝n𝑝,𝜃⟩Γ𝑓𝑝

= 0, (3.4c)

(∇ · 𝜎𝑝,v𝑠)Ω𝑝
= −(f𝑝,v𝑠)Ω𝑝

, (3.4d)

(𝜎𝑝,𝜒𝑝)Ω𝑝
= 0, (3.4e)(︀

𝜇K−1u𝑝,v𝑝

)︀
Ω𝑝
− (∇ · v𝑝, 𝑝𝑝)Ω𝑝

+ ⟨v𝑝 · n𝑝, 𝜆⟩Γ𝑓𝑝
= 0, (3.4f)

(𝑠0𝜕𝑡𝑝𝑝, 𝑤𝑝)Ω𝑝
+ 𝛼(𝜕𝑡𝐴(𝜎𝑝 + 𝛼𝑝𝑝I), 𝑤𝑝I)Ω𝑝

+ (∇ · u𝑝, 𝑤𝑝)Ω𝑝
= (𝑞𝑝, 𝑤𝑝)Ω𝑝

, (3.4g)

⟨u𝑓 · n𝑓 + 𝜃 · n𝑝 + u𝑝 · n𝑝, 𝜉⟩Γ𝑓𝑝
= 0, (3.4h)

⟨𝜑 · n𝑝, 𝜆⟩Γ𝑓𝑝
−

𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗 (u𝑓 − 𝜃) · t𝑓,𝑗 ,𝜑 · t𝑓,𝑗

⟩
Γ𝑓𝑝

+ ⟨𝜎𝑝n𝑝,𝜑⟩Γ𝑓𝑝
= 0. (3.4i)

In the above, (3.4a), (3.4b) are the Stokes equations, (3.4c)–(3.4e) are the elasticity equations, (3.4f), (3.4g) are
the Darcy equations, and (3.4h), (3.4i) enforce weakly the interface conditions.

Remark 3.1. The time differentiated equation (3.4c) allows us to eliminate the displacement variable 𝜂𝑝 and
obtain a formulation that uses only u𝑠. As part of the analysis we will construct suitable initial data such that,
by integrating (3.4c) in time, we can recover the original equation

(𝐴(𝜎𝑝 + 𝛼𝑝𝑝I), 𝜏𝑝)Ω𝑝
+ (∇ · 𝜏𝑝,𝜂𝑝)Ω𝑝

+ (𝜏𝑝,𝜌𝑝)Ω𝑝
− ⟨𝜏𝑝n𝑝,𝜓⟩Γ𝑓𝑝

= 0, (3.5)

where 𝜓 := 𝜂𝑝|Γ𝑓𝑝
.
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In order to obtain a structure suitable for analysis, we combine the equations for the variables with coercive
bilinear forms, u𝑓 , u𝑝, 𝜎𝑝, and 𝑝𝑝, together with 𝜃, which is coupled with them via the continuity of flux and
BJS conditions. We further combine the rest of the equations. Introducing the bilinear forms

𝑎𝑓 (u𝑓 ,v𝑓 ) := (2𝜇D(u𝑓 ),D(v𝑓 ))Ω𝑓
, 𝑎𝑝(u𝑝,v𝑝) :=

(︀
𝜇K−1u𝑝,v𝑝

)︀
Ω𝑝
, 𝑎𝑝

𝑝(𝑝𝑝, 𝑤𝑝) := (𝑠0𝑝𝑝, 𝑤𝑝)Ω𝑝
,

𝑏⋆(v⋆, 𝑤⋆) := −(∇ · v⋆, 𝑤⋆)Ω⋆
, ⋆ ∈ {𝑓, 𝑝}, 𝑏𝑠(𝜏𝑝,v𝑠) := (∇ · 𝜏𝑝,v𝑠)Ω𝑝

,

𝑏𝑝𝑛(𝜏𝑝,𝜑) := ⟨𝜏𝑝n𝑝,𝜑⟩Γ𝑓𝑝
, 𝑏sk(𝜏𝑝,𝜒𝑝) := (𝜏𝑝,𝜒𝑝)Ω𝑝

,

𝑎𝑒(𝜎𝑝, 𝑝𝑝; 𝜏𝑝, 𝑤𝑝) := (𝐴(𝜎𝑝 + 𝛼𝑝𝑝I), 𝜏𝑝 + 𝛼𝑤𝑝I)Ω𝑝
,

𝑎BJS(u𝑓 ,𝜃; v𝑓 ,𝜑) :=
𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗 (u𝑓 − 𝜃) · t𝑓,𝑗 , (v𝑓 − 𝜑) · t𝑓,𝑗

⟩
Γ𝑓𝑝

,

𝑏Γ(v𝑓 ,v𝑝,𝜑; 𝜉) := ⟨v𝑓 · n𝑓 + 𝜑 · n𝑝 + v𝑝 · n𝑝, 𝜉⟩Γ𝑓𝑝
,

the system (3.4) can be written as follows:

𝑎𝑓 (u𝑓 ,v𝑓 ) + 𝑎𝑝(u𝑝,v𝑝) + 𝑎BJS(u𝑓 ,𝜃; v𝑓 ,𝜑) + 𝑏𝑝𝑛(𝜎𝑝,𝜑) + 𝑏𝑝(v𝑝, 𝑝𝑝) + 𝑏𝑓 (v𝑓 , 𝑝𝑓 )
+ 𝑏𝑠(𝜏𝑝,u𝑠) + 𝑏sk(𝜏𝑝,𝛾𝑝) + 𝑏Γ(v𝑓 ,v𝑝,𝜑;𝜆) + 𝑎𝑝

𝑝(𝜕𝑡𝑝𝑝, 𝑤𝑝) + 𝑎𝑒(𝜕𝑡𝜎𝑝, 𝜕𝑡𝑝𝑝; 𝜏𝑝, 𝑤𝑝)
− 𝑏𝑝𝑛(𝜏𝑝,𝜃)− 𝑏𝑝(u𝑝, 𝑤𝑝) = (f𝑓 ,v𝑓 ) + (𝑞𝑝, 𝑤𝑝)Ω𝑝

,

− 𝑏𝑓 (u𝑓 , 𝑤𝑓 )− 𝑏𝑠(𝜎𝑝,v𝑠)− 𝑏sk(𝜎𝑝,𝜒𝑝)− 𝑏Γ(u𝑓 ,u𝑝,𝜃; 𝜉) = (𝑞𝑓 , 𝑤𝑓 )Ω𝑓
+ (f𝑝,v𝑠). (3.6)

We group the spaces and test functions as:

Q := V𝑓 ×Λ𝑠 ×V𝑝 × X𝑝 ×W𝑝, S := W𝑓 ×V𝑠 ×Q𝑝 × Λ𝑝,

p := (u𝑓 ,𝜃,u𝑝,𝜎𝑝, 𝑝𝑝) ∈ Q, r := (𝑝𝑓 ,u𝑠,𝛾𝑝, 𝜆) ∈ S,

q := (v𝑓 ,𝜑,v𝑝, 𝜏𝑝, 𝑤𝑝) ∈ Q, s := (𝑤𝑓 ,v𝑠,𝜒𝑝, 𝜉) ∈ S,

where the spaces Q and S are endowed with the norms, respectively,

‖q‖Q = ‖v𝑓‖V𝑓
+ ‖𝜑‖Λ𝑠 + ‖v𝑝‖V𝑝 + ‖𝜏𝑝‖X𝑝 + ‖𝑤𝑝‖W𝑝 ,

‖s‖S = ‖𝑤𝑓‖W𝑓
+ ‖v𝑠‖V𝑠

+ ‖𝜒𝑝‖Q𝑝
+ ‖𝜉‖Λ𝑝

.

Hence, we can write (3.6) in an operator notation as a degenerate evolution problem in a mixed form:

𝜕𝑡 ℰ1 p(𝑡) +𝒜p(𝑡) + ℬ′ r(𝑡) = F(𝑡) in Q′,

−ℬ p(𝑡) = G(𝑡) in S′. (3.7)

The operators 𝒜 : Q → Q′, ℬ : Q → S′ and the functionals F(𝑡) ∈ Q′, G(𝑡) ∈ S′ are defined as follows:

𝒜 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐴𝑓 +𝐴𝑓
BJS

(︁
𝐴𝑓𝑠

BJS

)︁′
0 0 0

𝐴𝑓𝑠
BJS 𝐴𝑠

BJS 0 (𝐵𝑝
𝑛)′ 0

0 0 𝐴𝑝 0 𝐵′𝑝

0 −𝐵𝑝
𝑛 0 0 0

0 0 −𝐵𝑝 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, ℬ =

⎛⎜⎜⎜⎝
𝐵𝑓 0 0 0 0
0 0 0 𝐵𝑠 0
0 0 0 𝐵sk 0

𝐵𝑓
Γ 𝐵𝑠

Γ 𝐵𝑝
Γ 0 0

⎞⎟⎟⎟⎠, (3.8)

F(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎝
f𝑓
0
0
0

𝑞𝑝

⎞⎟⎟⎟⎟⎟⎟⎠, G(𝑡) =

⎛⎜⎜⎜⎝
𝑞𝑓

f𝑝
0
0

⎞⎟⎟⎟⎠,
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where

(𝐴𝑓u𝑓 ,v𝑓 ) = 𝑎𝑓 (u𝑓 ,v𝑓 ), (𝐴𝑝u𝑝,v𝑝) = 𝑎𝑝(u𝑝,v𝑝),
(𝐵𝑝u𝑝, 𝑤𝑝) = 𝑏𝑝(u𝑝, 𝑤𝑝), (𝐵𝑝

𝑛𝜎𝑝,𝜑) = 𝑏𝑝𝑛(𝜎𝑝,𝜑),(︁
𝐴𝑓

BJSu𝑓 ,v𝑓

)︁
= 𝑎BJS(u𝑓 ,0; v𝑓 ,0),

(︁
𝐴𝑓𝑠

BJSu𝑓 ,𝜑
)︁

= 𝑎BJS(u𝑓 ,0; 0,𝜑), (𝐴𝑠
BJS𝜃,𝜑) = 𝑎BJS(0,𝜃; 0,𝜑),

(𝐵𝑓u𝑓 , 𝑤𝑓 ) = 𝑏𝑓 (u𝑓 , 𝑤𝑓 ), (𝐵𝑠𝜎𝑝,v𝑠) = 𝑏𝑠(𝜎𝑝,v𝑠), (𝐵sk𝜎𝑝,𝜒𝑝) = 𝑏sk(𝜎𝑝,𝜒𝑠),(︁
𝐵𝑓

Γu𝑓 , 𝜉
)︁

= 𝑏Γ(u𝑓 ,0,0; 𝜉), (𝐵𝑠
Γ𝜃, 𝜉) = 𝑏Γ(0,0,𝜃; 𝜉), (𝐵𝑝

Γu𝑝, 𝜉) = 𝑏Γ(0,u𝑝,0; 𝜉).

The operator ℰ1 : Q → Q′ is given by:

ℰ1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 𝐴𝑠

𝑒 𝐴𝑠𝑝
𝑒

0 0 0 (𝐴𝑠𝑝
𝑒 )′ 𝐴𝑝

𝑝 +𝐴𝑝
𝑒

⎞⎟⎟⎟⎟⎟⎟⎠,

where

(𝐴𝑠
𝑒𝜎𝑝, 𝜏𝑝) = 𝑎𝑒(𝜎𝑝, 0; 𝜏𝑝, 0), (𝐴𝑠𝑝

𝑒 𝜎𝑝, 𝑤𝑝) = 𝑎𝑒(𝜎𝑝, 0; 0, 𝑤𝑝),
(𝐴𝑝

𝑒𝑝𝑝, 𝑤𝑝) = 𝑎𝑒(0, 𝑝𝑝; 0, 𝑤𝑝),
(︀
𝐴𝑝

𝑝𝑝𝑝, 𝑤𝑝

)︀
= 𝑎𝑝

𝑝(𝑝𝑝, 𝑤𝑝).

4. Well-posedness of the weak formulation

4.1. Preliminaries

We start with exploring important properties of the operators introduced in the previous section.

Lemma 4.1. The linear operators 𝒜 and ℰ1 are continuous and monotone.

Proof. Continuity follows from the Cauchy–Schwarz inequality and the trace inequalities (3.1) and (3.2). In
particular,

𝑎𝑓 (u𝑓 ,v𝑓 ) ≤ 2𝜇‖u𝑓‖V𝑓
‖v𝑓‖V𝑓

, 𝑎𝑝(u𝑝,v𝑝) ≤ 𝜇𝑘−1
min‖u𝑝‖L2(Ω𝑝)‖v𝑝‖L2(Ω𝑝),

𝑎BJS(u𝑓 ,𝜃; v𝑓 ,𝜑) ≤ 𝜇𝛼BJS𝑘
−1/2
min |u𝑓 − 𝜃|𝑎BJS

|v𝑓 − 𝜑|𝑎BJS

≤ 𝐶
(︁
‖u𝑓‖V𝑓

+ ‖𝜃‖L2(Γ𝑓𝑝)

)︁(︁
‖v𝑓‖V𝑓

+ ‖𝜑‖L2(Γ𝑓𝑝)

)︁
,

𝑏𝑝𝑛(𝜏𝑝,𝜑) ≤ 𝐶‖𝜏𝑝‖X𝑝
‖𝜑‖Λ𝑠

, 𝑏𝑝(v𝑝, 𝑤𝑝) ≤ ‖v𝑝‖V𝑝
‖𝑤𝑝‖W𝑝

, (4.1)

where, for v𝑓 ∈ V𝑓 , 𝜑 ∈ Λ𝑓 , |v𝑓 − 𝜑|2𝑎BJS
:=

∑︀𝑛−1
𝑗=1 ⟨(v𝑓 − 𝜑) · t𝑓,𝑗 , (v𝑓 − 𝜑) · t𝑓,𝑗⟩Γ𝑓𝑝

, and we have used the
trace inequality, for a domain 𝒪 and 𝑆 ⊂ 𝜕𝒪,

‖𝜙‖H1/2(𝑆) ≤ 𝐶‖𝜙‖H1(𝒪) ∀𝜙 ∈ H1(𝒪). (4.2)

Thus we have

(𝒜p,q) = 𝑎𝑓 (u𝑓 ,v𝑓 ) + 𝑎𝑝(u𝑝,v𝑝) + 𝑎BJS(u𝑓 ,𝜃; v𝑓 ,𝜑) + 𝑏𝑝𝑛(𝜎𝑝,𝜑)− 𝑏𝑝𝑛(𝜏𝑝, 𝜃) + 𝑏𝑝(v𝑝, 𝑝𝑝)− 𝑏𝑝(u𝑝, 𝑤𝑝)
≤ 𝐶‖p‖Q‖q‖Q (4.3)
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and
(ℰ1p,q) = (𝑠0𝑝𝑝, 𝑤𝑝)Ω𝑝 + (𝐴(𝜎𝑝 + 𝛼𝑝𝑝I), 𝜏𝑝 + 𝛼𝑤𝑝I)Ω𝑝 ≤ 𝐶‖p‖Q‖q‖Q. (4.4)

Therefore 𝒜 and ℰ1 are continuous. The monotonicity of 𝒜 follows from

𝑎𝑓 (v𝑓 ,v𝑓 ) = 2𝜇‖D(v𝑓 )‖2L2(Ω𝑓 ) ≥ 2𝜇𝐶2
𝐾‖v𝑓‖2H1(Ω𝑓 ),

𝑎𝑝(v𝑝,v𝑝) = 𝜇
⃦⃦⃦
K−1/2v𝑝

⃦⃦⃦2

L2(Ω𝑝)
≥ 𝜇𝑘−1

max‖v𝑝‖2L2(Ω𝑝),

𝑎BJS(v𝑓 ,𝜑; v𝑓 ,𝜑) ≥ 𝜇𝛼BJS𝑘
−1/2
max |v𝑓 − 𝜑|2𝑎BJS

, (4.5)

where we used Korn’s inequality ‖D(v𝑓 )‖ ≥ 𝐶𝐾‖v𝑓‖H1(Ω𝑓 ) in the first bound. The monotonicity of ℰ1 follows
from

(ℰ1q,q) = 𝑠0‖𝑤𝑝‖2L2(Ω𝑝) +
⃦⃦⃦
𝐴1/2(𝜏𝑝 + 𝛼𝑤𝑝 I)

⃦⃦⃦2

L2(Ω𝑝)
. (4.6)

�

Lemma 4.2. The linear operator ℬ is continuous. Furthermore, there exist positive constants 𝛽1, 𝛽2, and 𝛽3

such that

𝛽1

(︀
‖v𝑠‖V𝑠

+ ‖𝜒𝑝‖Q𝑝

)︀
≤ sup
𝜏𝑝∈X𝑝 s.t.𝜏𝑝n𝑝=0 onΓ𝑓𝑝

𝑏𝑠(𝜏𝑝,v𝑠) + 𝑏sk(𝜏𝑝,𝜒𝑝)
‖𝜏𝑝‖X𝑝

, ∀v𝑠 ∈ V𝑠, 𝜒𝑝 ∈ Q𝑝, (4.7)

𝛽2

(︁
‖𝑤𝑓‖W𝑓

+ ‖𝑤𝑝‖W𝑝
+ ‖𝜉‖Λ𝑝

)︁
≤ sup

(v𝑓 ,v𝑝)∈V𝑓×V𝑝

𝑏𝑓 (v𝑓 , 𝑤𝑓 ) + 𝑏𝑝(v𝑝, 𝑤𝑝) + 𝑏Γ(v𝑓 ,v𝑝,0; 𝜉)
‖(v𝑓 ,v𝑝)‖V𝑓×V𝑝

,

∀𝑤𝑓 ∈ W𝑓 , 𝑤𝑝 ∈ W𝑝, and 𝜉 ∈ Λ𝑝, (4.8)

𝛽3‖𝜑‖Λ𝑠
≤ sup
𝜏𝑝∈X𝑝 s.t.∇·𝜏𝑝=0

𝑏𝑝𝑛(𝜏𝑝,𝜑)
‖𝜏𝑝‖X𝑝

, ∀𝜑 ∈ Λ𝑠. (4.9)

Proof. The definition (3.8) of ℬ implies

(ℬq, s) = 𝑏𝑓 (v𝑓 , 𝑤𝑓 ) + 𝑏𝑠(𝜏𝑝,v𝑠) + 𝑏sk(𝜏𝑝,𝜒𝑝) + 𝑏Γ(v𝑓 ,v𝑝,𝜑; 𝜉)
≤ ‖∇ · v𝑓‖L2(Ω𝑓 )‖𝑤𝑓‖L2(Ω𝑓 ) + ‖∇ · 𝜏𝑝‖L2(Ω𝑝)‖v𝑠‖L2(Ω𝑝) + ‖𝜏𝑝‖L2(Ω𝑝)‖𝜒𝑝‖L2(Ω𝑝)

+ 𝐶‖v𝑓‖H1(Ω𝑓 )‖𝜉‖L2(Γ𝑓𝑝) + 𝐶‖v𝑝‖H(div;Ω𝑝)‖𝜉‖H1/2(Γ𝑓𝑝) + ‖𝜑‖L2(Γ𝑓𝑝)‖𝜉‖L2(Γ𝑓𝑝)

≤ 𝐶‖q‖Q‖s‖S, (4.10)

so ℬ is continuous. Next, inf-sup condition (4.7) follows from Section 2.4.3 of [35]. We note that the restriction
𝜏𝑝n𝑝 = 0 on Γ𝑓𝑝 allows us to eliminate the term 𝑏𝑝𝑛(𝜏𝑝,𝜃) when applying this inf-sup condition, see (4.26) below.
Inf-sup condition (4.8) follows from a modification of the argument in Lemmas 3.1 and 3.2 in [30] to account
for |Γ𝐷

𝑝 | > 0. Finally, (4.9) can be proved using the argument in Lemma 4.2 of [35]. �

4.2. Existence and uniqueness of a solution

We will establish existence of a solution to the weak formulation (3.7) using the following key result.

Theorem 4.3 ([46], Thm. IV.6.1(b)). Let the linear, symmetric and monotone operator 𝒩 be given for the real
vector space 𝐸 to its algebraic dual 𝐸*, and let 𝐸′𝑏 be the Hilbert space which is the dual of 𝐸 with the seminorm

|𝑥|𝑏 = (𝒩𝑥(𝑥))1/2 𝑥 ∈ 𝐸.
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Let ℳ ⊂ 𝐸 × 𝐸′𝑏 be a relation with domain 𝒟 = {𝑥 ∈ 𝐸 : ℳ(𝑥) ̸= ∅}. Assume that ℳ is monotone and
𝑅𝑔(𝒩 +ℳ) = 𝐸′𝑏. Then, for each 𝑢0 ∈ 𝒟 and for each 𝑓 ∈ W1,1(0, 𝑇 ;𝐸′𝑏), there is a solution 𝑢 of

d
d𝑡

(︀
𝒩 𝑢(𝑡)

)︀
+ℳ

(︀
𝑢(𝑡)

)︀
∋ 𝑓(𝑡) a.e. 0 < 𝑡 < 𝑇, (4.11)

with
𝒩 𝑢 ∈ W1,∞(0, 𝑇 ;𝐸′𝑏), 𝑢(𝑡) ∈ 𝒟, for a.e. 0 ≤ 𝑡 ≤ 𝑇, and 𝒩 𝑢(0) = 𝒩 𝑢0.

We cast (3.7) in the form (4.11) by setting

𝐸 = Q× S, 𝑢 =
(︂

p
r

)︂
, 𝒩 =

(︂
ℰ1 0
0 0

)︂
, ℳ =

(︂
𝒜 ℬ′
−ℬ 0

)︂
, 𝑓 =

(︂
F
G

)︂
. (4.12)

The seminorm induced by the operator ℰ1 is |q|2ℰ1 := 𝑠0‖𝑤𝑝‖2L2(Ω𝑝) +
⃦⃦
𝐴1/2 (𝜏𝑝 + 𝛼𝑤𝑝 I)

⃦⃦2

L2(Ω𝑝)
, cf. (4.6). Since

𝑠0 > 0, it is equivalent to ‖𝜏𝑝‖2L2(Ω𝑝) + ‖𝑤𝑝‖2L2(Ω𝑝). We denote by X𝑝,2 and W𝑝,2 the closures of the spaces X𝑝

and W𝑝, respectively, with respect to the norms ‖𝜏𝑝‖X𝑝,2 := ‖𝜏𝑝‖L2(Ω𝑝) and ‖𝑤𝑝‖W𝑝,2 := ‖𝑤𝑝‖L2(Ω𝑝). Then the
Hilbert space 𝐸′𝑏 in Theorem 4.3 in our case is

𝐸′𝑏 := Q′
2,0 × S′2,0, where Q′

2,0 := 0× 0× 0× X′𝑝,2 ×W′
𝑝,2, S′2,0 := 0× 0× 0× 0. (4.13)

We further define 𝒟 := {(p, r) ∈ Q× S : ℳ(p, r) ∈ 𝐸′𝑏}.

Remark 4.4. The above definition of the space 𝐸′𝑏 and the corresponding domain 𝒟 implies that, in order to
apply Theorem 4.3 for our problem (3.7), we need to restrict f𝑓 = 0, 𝑞𝑓 = 0, and f𝑝 = 0. To avoid this restriction
we will employ a translation argument [48] to reduce the existence for (3.7) to existence for the following
initial-value problem: Given initial data (̂︀p0,̂︀r0) ∈ 𝒟 and source terms

(︀̂︀𝑔𝜏𝑝 , ̂︀𝑔𝑤𝑝

)︀
: (0, 𝑇 ) → X′𝑝,2 ×W′

𝑝,2, find
(p, r) : [0, 𝑇 ] → Q× S such that (𝜎𝑝(0), 𝑝𝑝(0)) = (̂︀𝜎𝑝,0, ̂︀𝑝𝑝,0) and, for a.e. 𝑡 ∈ (0, 𝑇 ),

𝜕𝑡 ℰ1 p(𝑡) +𝒜p(𝑡) + ℬ′ r(𝑡) = ̂︀F(𝑡) in Q′
2,0,

−ℬ p(𝑡) = 0 in S′2,0, (4.14)

where ̂︀F(𝑡) =
(︀
0, 0, 0, ̂︀𝑔𝜏𝑝 , ̂︀𝑔𝑤𝑝

)︀t.

In order to apply Theorem 4.3 for problem (4.14), we need to (1) establish the required properties of the
operators 𝒩 and ℳ, (2) prove the range condition 𝑅𝑔(𝒩 +ℳ) = 𝐸′𝑏, and (3) construct compatible initial data
(̂︀p0,̂︀r0) ∈ 𝒟. We proceed with a sequence of lemmas establishing these results.

Lemma 4.5. The linear operator 𝒩 defined in (4.12) is continuous, symmetric, and monotone. The linear
operator ℳ defined in (4.12) is continuous and monotone.

Proof. The stated properties follow easily from the properties of the operators ℰ1, 𝒜, and ℬ established in
Lemmas 4.1 and 4.2. �

Next, we establish the range condition 𝑅𝑔(𝒩 + ℳ) = 𝐸′𝑏, which is done by solving the related resolvent
system. In fact, we will show a stronger result by considering a resolvent system where all source terms may
be non-zero. This stronger result will be used in the translation argument for proving existence of the original
problem (3.7). In particular, consider the following resolvent system: Given ̂︀𝑔v𝑓

∈ V′
𝑓 , ̂︀𝑔𝑤𝑓

∈ W′
𝑓 , ̂︀𝑔𝜏𝑝 ∈ X′𝑝,2,̂︀𝑔v𝑠

∈ V′
𝑠, ̂︀𝑔𝜒𝑝

∈ Q′𝑝, ̂︀𝑔v𝑝
∈ V′

𝑝, ̂︀𝑔𝑤𝑝
∈ W′

𝑝,2, ̂︀𝑔𝜉 ∈ Λ′𝑝, and ̂︀𝑔𝜑 ∈ Λ′𝑠, find (u𝑓 , 𝑝𝑓 ,𝜎𝑝,u𝑠,𝛾𝑝,u𝑝, 𝑝𝑝, 𝜆,𝜃) ∈
V𝑓 × W𝑓 × X𝑝 × V𝑠 × Q𝑝 × V𝑝 × W𝑝 × Λ𝑝 × Λ𝑠 such that for all v𝑓 ∈ V𝑓 , 𝑤𝑓 ∈ W𝑓 , 𝜏𝑝 ∈ X𝑝, v𝑠 ∈ V𝑠,
𝜒𝑝 ∈ Q𝑝, v𝑝 ∈ V𝑝, 𝑤𝑝 ∈ W𝑝, 𝜉 ∈ Λ𝑝, and 𝜑 ∈ Λ𝑠,

𝑎𝑓 (u𝑓 ,v𝑓 ) + 𝑎𝑝(u𝑝,v𝑝) + 𝑎BJS(u𝑓 ,𝜃; v𝑓 ,𝜑) + 𝑏𝑝𝑛(𝜎𝑝,𝜑) + 𝑏𝑝(v𝑝, 𝑝𝑝) + 𝑏𝑓 (v𝑓 , 𝑝𝑓 ) + 𝑏𝑠(𝜏𝑝,u𝑠)
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+ 𝑏sk(𝜏𝑝,𝛾𝑝) + 𝑏Γ(v𝑓 ,v𝑝,𝜑;𝜆) + 𝑎𝑝
𝑝(𝑝𝑝, 𝑤𝑝) + 𝑎𝑒(𝜎𝑝, 𝑝𝑝; 𝜏𝑝, 𝑤𝑝)− 𝑏𝑝𝑛(𝜏𝑝,𝜃)− 𝑏𝑝(u𝑝, 𝑤𝑝)

= (̂︀𝑔v𝑓
,v𝑓 )Ω𝑓

+ (̂︀𝑔𝜑,𝜑)Ω𝑝 + (̂︀𝑔v𝑝 ,v𝑝)Ω𝑝 + (̂︀𝑔𝜏𝑝 , 𝜏𝑝)Ω𝑝 + (̂︀𝑔𝑤𝑝 , 𝑤𝑝)Ω𝑝 ,

− 𝑏𝑓 (u𝑓 , 𝑤𝑓 )− 𝑏𝑠(𝜎𝑝,v𝑠)− 𝑏sk(𝜎𝑝,𝜒𝑝)− 𝑏Γ(u𝑓 ,u𝑝,𝜃; 𝜉)
= (̂︀𝑔𝑤𝑓

, 𝑤𝑓 )Ω𝑓
+ (̂︀𝑔v𝑠

,v𝑠)Ω𝑝
+ (̂︀𝑔𝜒𝑝

,𝜒𝑝)Ω𝑝
+ (̂︀𝑔𝜉, 𝜉)Ω𝑝

. (4.15)

Letting
Q2 = V𝑓 ×Λ𝑠 ×V𝑝 × X𝑝,2 ×W𝑝,2,

the resolvent system (4.15) can be written in an operator form as

(ℰ1 +𝒜)p + ℬ′r = ̂︀F in Q′
2,

−ℬp = ̂︀G in S′. (4.16)

where ̂︀F ∈ Q′
2 and ̂︀G ∈ S′ are the functionals on the right hand side of (4.15).

To prove the solvability of this resolvent system, we use a regularization technique, following the approach
in [3,48]. To that end, we introduce operators that will be used to regularize the problem. Let 𝑅u𝑝 : V𝑝 → V′

𝑝,
𝑅𝜎𝑝

: X𝑝 → X′𝑝, 𝑅𝑝𝑝
: W𝑝 → W′

𝑝, 𝐿𝑝𝑓
: W𝑓 → W′

𝑓 , 𝐿u𝑠
: V𝑠 → V′

𝑠, and 𝐿𝛾𝑝
: Q𝑝 → Q′𝑝 be defined as follows:(︀

𝑅u𝑝u𝑝,v𝑝

)︀
= 𝑟u𝑝(u𝑝,v𝑝) := (∇ · u𝑝,∇ · v𝑝)Ω𝑝

,(︀
𝑅𝜎𝑝

𝜎𝑝, 𝜏𝑝

)︀
= 𝑟𝜎𝑝

(𝜎𝑝, 𝜏𝑝) := (𝜎𝑝, 𝜏𝑝)Ω𝑝
+ (∇ · 𝜎𝑝,∇ · 𝜏𝑝)Ω𝑝

,(︀
𝑅𝑝𝑝

𝑝𝑝, 𝑤𝑝

)︀
= 𝑟𝑝𝑝

(𝑝𝑝, 𝑤𝑝) := (𝑝𝑝, 𝑤𝑝)Ω𝑝
,

(︀
𝐿𝑝𝑓

𝑝𝑓 , 𝑤𝑓

)︀
= 𝑙𝑝𝑓

(𝑝𝑓 , 𝑤𝑓 ) := (𝑝𝑓 , 𝑤𝑓 )Ω𝑓
,

(𝐿u𝑠u𝑠,v𝑠) = 𝑙u𝑠(u𝑠,v𝑠) := (u𝑠,v𝑠)Ω𝑝
,

(︀
𝐿𝛾𝑝𝛾𝑝,𝜒𝑃

)︀
= 𝑙𝛾𝑝(𝛾𝑝,𝜒𝑝) := (𝛾𝑝,𝜒𝑝)Ω𝑝

.

The following operator properties follow immediately from the above definitions.

Lemma 4.6. The operators 𝑅u𝑝
, 𝑅𝜎𝑝

, 𝑅𝑝𝑝
, 𝐿𝑝𝑓

, 𝐿u𝑠
, and 𝐿𝛾𝑝

are continuous and monotone.

For the regularization of the Lagrange multipliers, let 𝜓(𝜆) ∈ H1(Ω𝑝) be the weak solution of

−∇ · ∇𝜓(𝜆) = 0 in Ω𝑝,

𝜓(𝜆) = 𝜆 on Γ𝑓𝑝, ∇𝜓(𝜆) · n𝑝 = 0 on Γ𝑝.

Elliptic regularity and the trace inequality (4.2) imply that there exist positive constants 𝑐 and 𝐶 such that

𝑐‖𝜓(𝜆)‖H1(Ω𝑝) ≤ ‖𝜆‖H1/2(Γ𝑓𝑝) ≤ 𝐶‖𝜓(𝜆)‖H1(Ω𝑝). (4.17)

We define 𝐿𝜆 : Λ𝑝 → Λ′𝑝 as
(𝐿𝜆𝜆, 𝜉) = 𝑙𝜆(𝜆, 𝜉) := (∇𝜓(𝜆),∇𝜓(𝜉))Ω𝑝 . (4.18)

Similarly, let 𝜙(𝜃) ∈ H1(Ω𝑝) be the weak solution of

−∇ · ∇𝜙(𝜃) = 0 in Ω𝑝,

𝜙(𝜃) = 𝜃 on Γ𝑓𝑝, ∇𝜙(𝜃) · n𝑝 = 0 on Γ𝑝,

satisfying
𝑐‖𝜙(𝜃)‖H1(Ω𝑝) ≤ ‖𝜃‖H1/2(Γ𝑓𝑝) ≤ 𝐶‖𝜙(𝜃)‖H1(Ω𝑝). (4.19)

Let 𝑅𝜃 : Λ𝑠 → Λ′𝑠 be defined as

(𝑅𝜃𝜃,𝜑) = 𝑟𝜃(𝜃,𝜑) := (∇𝜙(𝜃),∇𝜙(𝜑))Ω𝑝 . (4.20)
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Lemma 4.7. The operators 𝐿𝜆 and 𝑅𝜃 are continuous and coercive.

Proof. It follows from (4.17) and (4.19) that there exist positive constants 𝑐 and 𝐶 such that

(𝐿𝜆𝜆, 𝜉) ≤ 𝐶‖𝜆‖H1/2(Γ𝑓𝑝)‖𝜉‖H1/2(Γ𝑓𝑝), (𝐿𝜆𝜆, 𝜆) ≥ 𝑐‖𝜆‖2H1/2(Γ𝑓𝑝), ∀𝜆, 𝜉 ∈ Λ𝑝,

(𝑅𝜃𝜃,𝜑) ≤ 𝐶‖𝜃‖H1/2(Γ𝑓𝑝)‖𝜑‖H1/2(Γ𝑓𝑝), (𝑅𝜃𝜃,𝜃) ≥ 𝑐‖𝜃‖2H1/2(Γ𝑓𝑝), ∀𝜃,𝜑 ∈ Λ𝑠. (4.21)

�

Lemma 4.8. For every ̂︀F ∈ Q′
2 and ̂︀G ∈ S′, there exists a solution of the resolvent system (4.16).

Proof. Define the operators ℛ : Q → Q′
2 and ℒ : S → S′ such that, for any p = (u𝑓 ,𝜃,u𝑝,𝜎𝑝, 𝑝𝑝), q =

(v𝑓 ,𝜑,v𝑝, 𝜏𝑝, 𝑤𝑝) ∈ Q and r = (𝑝𝑓 ,u𝑠,𝛾𝑝, 𝜆), s = (𝑤𝑓 ,v𝑠,𝜒𝑝, 𝜉) ∈ S,

(ℛp,q) := (𝑅u𝑝
u𝑝,v𝑝) + (𝑅𝜎𝑝

𝜎𝑝, 𝜏𝑝) + (𝑅𝑝𝑝
𝑝𝑝, 𝑤𝑝) + (𝑅𝜃𝜃,𝜑),

(ℒr, s) := (𝐿𝑝𝑓
𝑝𝑓 , 𝑤𝑓 ) + (𝐿u𝑠u𝑠,v𝑠) + (𝐿𝛾𝑝𝛾𝑝,𝜒𝑝) + (𝐿𝜆𝜆, 𝜉).

For 𝜖 > 0, consider a regularization of (4.15): Given ̂︀F = (̂︀𝑔v𝑓
, ̂︀𝑔𝜑, ̂︀𝑔v𝑝

, ̂︀𝑔𝜏𝑝
, ̂︀𝑔𝑤𝑝

) ∈ Q′
2 and ̂︀G = (̂︀𝑔𝑤𝑓

, ̂︀𝑔v𝑠
, ̂︀𝑔𝜒𝑝

, ̂︀𝑔𝜉)
∈ S′, find p𝜖 = (u𝑓,𝜖,𝜃𝜖,u𝑝,𝜖,𝜎𝑝,𝜖, 𝑝𝑝,𝜖) ∈ Q and r𝜖 = (𝑝𝑓,𝜖,u𝑠,𝜖,𝛾𝑝,𝜖, 𝜆𝜖) ∈ S such that

(𝜖ℛ+ ℰ1 +𝒜)p𝜖 + ℬ′r𝜖 = ̂︀F in Q′
2,

−ℬp𝜖 + 𝜖ℒr𝜖 = ̂︀G in S′. (4.22)

Let the operator 𝒪 : Q× S → Q′
2 × S′ be defined as

𝒪
(︂

q

s

)︂
=

(︂
𝜖ℛ+ ℰ1 +𝒜 ℬ′

−ℬ 𝜖ℒ

)︂ (︂
q

s

)︂
.

We have (︂
𝒪

(︂
p

r

)︂
,

(︂
q

s

)︂)︂
= ((𝜖ℛ+ ℰ1 +𝒜)p,q) + (ℬ′r,q)− (ℬp, s) + 𝜖(ℒr, s).

Lemmas 4.1–4.7 imply that 𝒪 is continuous. Moreover, using the coercivity and monotonicity bounds (4.5),
(4.6), and (4.21), we have(︂

𝒪
(︂

q

s

)︂
,

(︂
q

s

)︂)︂
= ((𝜖ℛ+ ℰ1 +𝒜)q,q) + (𝜖ℒs, s)

= 𝜖𝑟u𝑝
(v𝑝,v𝑝) + 𝜖𝑟𝜎𝑝

(𝜏𝑝, 𝜏𝑝) + 𝜖𝑟𝜃(𝜑,𝜑) + 𝜖𝑟𝑝𝑝
(𝑤𝑝, 𝑤𝑝) + 𝑎𝑝(v𝑝,v𝑝)

+ (𝐴(𝜏𝑝 + 𝛼𝑤𝑝I), 𝜏𝑝 + 𝛼𝑤𝑝I) + (𝑠0𝑤𝑝, 𝑤𝑝) + 𝑎𝑓 (v𝑓 ,v𝑓 ) + 𝑎BJS(v𝑓 ,𝜑; v𝑓 ,𝜑)
+ 𝜖𝑙𝑝𝑓

(𝑤𝑓 , 𝑤𝑓 ) + 𝜖𝑙u𝑠
(v𝑠,v𝑠) + 𝜖𝑙𝛾𝑝

(𝜒𝑝,𝜒𝑝) + 𝜖𝑙𝜆(𝜉, 𝜉)

≥ 𝐶
(︁
𝜖‖∇ · v𝑝‖2L2(Ω𝑝) + 𝜖‖𝜏𝑝‖2L2(Ω𝑝) + 𝜖‖∇ · 𝜏𝑝‖2L2(Ω𝑝) + 𝜖‖𝜑‖2H1/2(Γ𝑓𝑝) + 𝜖‖𝑤𝑝‖2L2(Ω𝑝)

+ ‖v𝑝‖2L2(Ω𝑝) +
⃦⃦⃦
𝐴1/2(𝜏𝑝 + 𝛼𝑤𝑝I)

⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0‖𝑤𝑝‖2L2(Ω𝑝) + ‖D(v𝑓 )‖2L2(Ω𝑓 )

+ |v𝑓 − 𝜑|2𝑎BJS
+ 𝜖‖𝑤𝑓‖2L2(Ω𝑝) + 𝜖‖v𝑠‖2L2(Ω𝑝) + 𝜖‖𝜒𝑝‖2L2(Ω𝑝) + 𝜖‖𝜉‖2H1/2(Γ𝑓𝑝)

)︁
, (4.23)

which implies that 𝒪 is coercive. Thus, an application of the Lax–Milgram theorem establishes the existence of
a unique solution (p𝜖, r𝜖) ∈ Q× S of (4.22). Now, from (4.22) and (4.23) we obtain

𝜖‖∇ · u𝑝,𝜖‖2L2(Ω𝑝) + 𝜖‖∇ · 𝜎𝑝,𝜖‖2L2(Ω𝑝) + 𝜖‖𝜃𝜖‖2H1/2(Γ𝑓𝑝) + 𝜖‖𝜎𝑝,𝜖‖2L2(Ω𝑝) + 𝜖‖𝑝𝑝,𝜖‖2L2(Ω𝑝) + ‖u𝑝,𝜖‖2L2(Ω𝑝)
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+
⃦⃦⃦
𝐴1/2(𝜎𝑝,𝜖 + 𝛼𝑝𝑝,𝜖I)

⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0‖𝑝𝑝,𝜖‖2L2(Ω𝑝) + ‖u𝑓,𝜖‖2H1(Ω𝑓 ) + |u𝑓,𝜖 − 𝜃𝜖|2𝑎BJS

+ 𝜖‖𝑝𝑓,𝜖‖2L2(Ω𝑝) + 𝜖‖u𝑠,𝜖‖2L2(Ω𝑝) + 𝜖‖𝛾𝑝,𝜖‖2L2(Ω𝑝) + 𝜖‖𝜆𝜖‖2H1/2(Γ𝑓𝑝)

≤ 𝐶
(︀
‖̂︀𝑔v𝑓

‖L2(Ω𝑓 )‖u𝑓,𝜖‖L2(Ω𝑓 ) + ‖̂︀𝑔𝜑‖L2(Ω𝑝)‖𝜃𝜖‖L2(Ω𝑝) + ‖̂︀𝑔v𝑝
‖L2(Ω𝑝)‖u𝑝,𝜖‖L2(Ω𝑝)

+ ‖̂︀𝑔𝜏𝑝
‖L2(Ω𝑝)‖𝜎𝑝,𝜖‖L2(Ω𝑝) + ‖̂︀𝑔𝑤𝑝

‖L2(Ω𝑝)‖𝑝𝑝,𝜖‖L2(Ω𝑝) + ‖̂︀𝑔𝑤𝑓
‖L2(Ω𝑓 )‖𝑝𝑓,𝜖‖L2(Ω𝑓 )

+ ‖̂︀𝑔v𝑠
‖L2(Ω𝑝)‖u𝑠,𝜖‖L2(Ω𝑝) + ‖̂︀𝑔𝜒𝑝

‖L2(Ω𝑝)‖𝛾𝑝,𝜖‖L2(Ω𝑝) + ‖̂︀𝑔𝜉‖L2(Ω𝑝)‖𝜆𝜖‖L2(Ω𝑝)

)︀
, (4.24)

which implies that ‖u𝑝,𝜖‖L2(Ω𝑝),
⃦⃦
𝐴1/2(𝜎𝑝,𝜖 + 𝛼𝑝𝑝,𝜖I)

⃦⃦
L2(Ω𝑝)

and ‖u𝑓,𝜖‖H1(Ω𝑓 ) are bounded independently of 𝜖.
Next, from (4.22) we have

(𝐴(𝜎𝑝,𝜖 + 𝛼𝑝𝑝,𝜖I), 𝜏𝑝)Ω𝑝
+ 𝜖(𝜎𝑝,𝜖, 𝜏𝑝)Ω𝑝

+ 𝜖(∇ · 𝜎𝑝,𝜖,∇ · 𝜏𝑝)Ω𝑝

− 𝑏𝑝𝑛(𝜏𝑝,𝜃𝜖) + 𝑏𝑠(𝜏𝑝,u𝑠,𝜖) + 𝑏sk(𝜏𝑝,𝛾𝑝,𝜖) =
(︀̂︀𝑔𝜏𝑝 , 𝜏𝑝

)︀
Ω𝑝
. (4.25)

Applying the inf-sup condition (4.7) results in

‖u𝑠,𝜖‖L2(Ω𝑝) + ‖𝛾𝑝,𝜖‖L2(Ω𝑝) ≤ 𝐶 sup
𝜏𝑝∈X𝑝 s.t.𝜏𝑝n𝑝=0 on Γ𝑓𝑝

𝑏𝑠(𝜏𝑝,u𝑠,𝜖) + 𝑏sk(𝜏𝑝,𝛾𝑝,𝜖)
‖𝜏𝑝‖X𝑝

= 𝐶 sup
𝜏𝑝∈X𝑝 s.t.𝜏𝑝n𝑝=0 on Γ𝑓𝑝

(︂−(𝐴(𝜎𝑝,𝜖 + 𝛼𝑝𝑝,𝜖I), 𝜏𝑝)Ω𝑝
− 𝜖(𝜎𝑝,𝜖, 𝜏𝑝)Ω𝑝

− 𝜖(∇ · 𝜎𝑝,𝜖,∇ · 𝜏𝑝)Ω𝑝
)Ω𝑝

‖𝜏𝑝‖X𝑝

+
𝑏𝑝𝑛(𝜏𝑝,𝜃𝜖) + (̂︀𝑔𝜏𝑝 , 𝜏𝑝)Ω𝑝

‖𝜏𝑝‖X𝑝

)︂
≤ 𝐶

(︁
‖𝐴(𝜎𝑝,𝜖 + 𝛼𝑝𝑝,𝜖I)‖L2(Ω𝑝) + 𝜖‖𝜎𝑝,𝜖‖L2(Ω𝑝) + 𝜖‖∇ · 𝜎𝑝,𝜖‖L2(Ω𝑝) + ‖̂︀𝑔𝜏𝑝

‖L2(Ω𝑝)

)︁
, (4.26)

where the term 𝑏𝑝𝑛(𝜏𝑝,𝜃𝜖) vanishes due to the restriction 𝜏𝑝n𝑝 = 0 on Γ𝑓𝑝. Also, applying the inf-sup condition
(4.9) and using (4.25), we obtain

‖𝜃𝜖‖H1/2(Γ𝑓𝑝) ≤ 𝐶 sup
𝜏𝑝∈X𝑝 s.t.∇·𝜏𝑝=0

𝑏𝑝𝑛(𝜏𝑝,𝜃𝜖)
‖𝜏𝑝‖X𝑝

= 𝐶 sup
𝜏𝑝∈X𝑝 s.t.∇·𝜏𝑝=0

(𝐴(𝜎𝑝,𝜖 + 𝛼𝑝𝑝,𝜖I), 𝜏𝑝)Ω𝑝
+ 𝜖(𝜎𝑝,𝜖, 𝜏𝑝)Ω𝑝

+ 𝑏sk(𝜏𝑝,𝛾𝑝,𝜖)− (̂︀𝑔𝜏𝑝
, 𝜏𝑝)Ω𝑝

‖𝜏𝑝‖X𝑝

≤ 𝐶
(︁
‖𝐴(𝜎𝑝,𝜖 + 𝛼𝑝𝑝,𝜖I)‖L2(Ω𝑝) + 𝜖‖𝜎𝑝,𝜖‖L2(Ω𝑝) + ‖𝛾𝑝,𝜖‖L2(Ω𝑓 ) + ‖̂︀𝑔𝜏𝑝

‖L2(Ω𝑝)

)︁
. (4.27)

Bounds (4.26) and (4.27) imply that ‖u𝑠,𝜖‖L2(Ω𝑝) ‖𝛾𝑝,𝜖‖L2(Ω𝑝), and ‖𝜃𝜖‖H1/2(Γ𝑓𝑝) are bounded independently of
𝜖. In addition, equation (4.22) gives

𝑎𝑝(u𝑝,𝜖,v𝑝) + 𝜖(∇ · u𝑝,𝜖,∇ · v𝑝)Ω𝑝 + 𝑏𝑝(v𝑝, 𝑝𝑝,𝜖) + ⟨v𝑝 · n𝑝, 𝜆𝜖⟩Γ𝑓𝑝
+ 𝑎𝑓 (u𝑓,𝜖,v𝑓 )

+ 𝑎BJS(u𝑓,𝜖,𝜃𝜖; v𝑓 ,0) + 𝑏𝑓 (v𝑓 , 𝑝𝑓,𝜖) + ⟨v𝑓 · n𝑓 , 𝜆𝜖⟩Γ𝑓𝑝
= 0, (4.28)

so applying the inf-sup condition (4.8), we obtain

‖𝑝𝑓,𝜖‖L2(Ω𝑓 ) + ‖𝑝𝑝,𝜖‖L2(Ω𝑝) + ‖𝜆𝜖‖H1/2(Γ𝑓𝑝)

≤ 𝐶 sup
(v𝑓 ,v𝑝,0)∈V𝑓×V𝑝×Λ𝑠

𝑏𝑓 (v𝑓 , 𝑝𝑓,𝜖) + 𝑏𝑝(v𝑝, 𝑝𝑝,𝜖) + 𝑏Γ(v𝑓 ,v𝑝,0;𝜆𝜖)
‖(v𝑓 ,v𝑝,0)‖V𝑓×V𝑝×Λ𝑠

= 𝐶 sup
(v𝑓 ,v𝑝,0)∈V𝑓×V𝑝×Λ𝑠

−𝑎𝑝(u𝑝,𝜖,v𝑝)− 𝜖(∇ · u𝑝,𝜖,∇ · v𝑝)− 𝑎𝑓 (u𝑓,𝜖,v𝑓 )− 𝑎BJS(u𝑓,𝜖,𝜃𝜖; v𝑓 ,0)
‖(v𝑓 ,v𝑝,0)‖V𝑓×V𝑝×Λ𝑠



14 T. LI AND I. YOTOV

≤ 𝐶
(︀
‖u𝑝,𝜖‖L2(Ω𝑝) + 𝜖‖∇ · u𝑝,𝜖‖L2(Ω𝑝) + ‖u𝑓,𝜖‖H1(Ω𝑓 ) + |u𝑓,𝜖 − 𝜃𝜖|𝑎BJS

)︀
. (4.29)

Therefore we have that ‖𝑝𝑓,𝜖‖L2(Ω𝑓 ), ‖𝑝𝑝,𝜖‖L2(Ω𝑝) and ‖𝜆𝜖‖H1/2(Γ𝑓𝑝) are also bounded independently of 𝜖.
Since ∇ · X𝑝 = V𝑠, by taking v𝑠 = ∇ · 𝜎𝑝,𝜖 in (4.22), we have

‖∇ · 𝜎𝑝,𝜖‖L2(Ω𝑝) ≤ 𝜖‖u𝑠,𝜖‖L2(Ω𝑝) + ‖̂︀𝑔v𝑠
‖L2(Ω𝑝), (4.30)

which implies that ‖∇·𝜎𝑝,𝜖‖L2(Ω𝑝) is bounded independently of 𝜖. Since
⃦⃦
𝐴1/2(𝜎𝑝,𝜖 + 𝛼𝑝𝑝,𝜖I)

⃦⃦
L2(Ω𝑝)

, ‖𝑝𝑝,𝜖‖L2(Ω𝑝)

and ‖∇ · 𝜎𝑝,𝜖‖L2(Ω𝑝) are all bounded independently of 𝜖, the same holds for ‖𝜎𝑝,𝜖‖H(div,Ω𝑝). Finally, since
∇ ·V𝑝 = W𝑝, by taking 𝑤𝑝 = ∇ · u𝑝,𝜖 in (4.22), we have

‖∇ · u𝑝,𝜖‖L2(Ω𝑝) ≤ 𝐶
(︀
‖𝜎𝑝,𝜖‖L2(Ω𝑝) + (𝑠0 + 𝜖)‖𝑝𝑝,𝜖‖L2(Ω𝑝) + ‖̂︀𝑔𝑤𝑝

‖L2(Ω𝑝)

)︀
, (4.31)

so ‖∇·u𝑝,𝜖‖L2(Ω𝑝), and therefore ‖u𝑝,𝜖‖V𝑝
is bounded independently of 𝜖. Thus we conclude that all the variables

are bounded independently of 𝜖.
Since Q and S are reflexive Banach spaces, as 𝜖→ 0 we can extract weakly convergent subsequences {p𝜖,𝑛}∞𝑛=1

and {r𝜖,𝑛}∞𝑛=1 such that p𝜖,𝑛 → p in Q, r𝜖,𝑛 → r in S. Taking the limit in (4.22), we obtain that (p, r) is a
solution to (4.16). �

Lemma 4.9. For 𝒩 , ℳ and 𝐸′𝑏 defined in (4.12) and (4.13), it holds that 𝑅𝑔(𝒩 + ℳ) = 𝐸′𝑏, that is, given
𝑓 ∈ 𝐸′𝑏, there exists 𝑣 ∈ 𝒟 such that (𝒩 +ℳ)𝑣 = 𝑓 .

Proof. Given any ̂︀𝑔𝜏𝑝
∈ X′𝑝,2 and ̂︀𝑔𝑤𝑝

∈ W′
𝑝,2, according to Lemma 4.8, there exist (p, r) ∈ Q× S such that

(ℰ1 +𝒜)p + ℬ′r = ̂︀F in Q′
2,0,

−ℬp = 0 in S′2,0,

where ̂︀F = (0, 0, 0, ̂︀𝑔𝜏𝑝
, ̂︀𝑔𝑤𝑝

)t ∈ Q′
2,0, implying the range condition. �

We are now ready to establish existence for the auxiliary initial value problem (4.14), assuming compatible
initial data.

Theorem 4.10. For each compatible initial data (̂︀p0,̂︀r0) ∈ 𝒟 and each (̂︀𝑔𝜏𝑝
, ̂︀𝑔𝑤𝑝

) ∈ W1,1(0, 𝑇 ; X′𝑝,2)×W1,1(0, 𝑇 ;
W′

𝑝,2), there exists a solution to (4.14) with (𝜎𝑝(0), 𝑝𝑝(0)) = (̂︀𝜎𝑝,0, ̂︀𝑝𝑝,0) and (u𝑓 , 𝑝𝑓 ,𝜎𝑝,u𝑠,𝛾𝑝,u𝑝, 𝑝𝑝, 𝜆,𝜃) ∈
L∞(0, 𝑇 ; V𝑓 )×L∞(0, 𝑇 ; W𝑓 )×W1,∞(︀

0, 𝑇 ; L2(Ω𝑝)
)︀
∩L∞(0, 𝑇 ; X𝑝)×L∞(0, 𝑇 ; V𝑠)×L∞(0, 𝑇 ; Q𝑝)×L∞(0, 𝑇 ; V𝑝)×

W1,∞(0, 𝑇 ; W𝑝)× L∞(0, 𝑇 ; Λ𝑝)× L∞(0, 𝑇 ; Λ𝑠).

Proof. Using Lemmas 4.5 and 4.9, we apply Theorem 4.3 with 𝐸, 𝒩 and ℳ defined in (4.12) to obtain existence
of a solution to (4.14) with 𝜎𝑝 ∈ W1,∞(︀

0, 𝑇 ; L2(Ω𝑝)
)︀

and 𝑝𝑝 ∈ W1,∞(0, 𝑇 ; W𝑝). From the equations (4.14) and
the inf-sup conditions in Lemma 4.2 we can further deduce that u𝑓 ∈ L∞(0, 𝑇 ; V𝑓 ), 𝑝𝑓 ∈ L∞(0, 𝑇 ; W𝑓 ),
𝜎𝑝 ∈ L∞(0, 𝑇 ; X𝑝), u𝑠 ∈ L∞(0, 𝑇 ; V𝑠), 𝛾𝑝 ∈ L∞(0, 𝑇 ; Q𝑝), u𝑝 ∈ L∞(0, 𝑇 ; V𝑝), 𝜆 ∈ L∞(0, 𝑇 ; Λ𝑝), and 𝜃 ∈
L∞(0, 𝑇 ; Λ𝑠). �

We will employ Theorem 4.10 to obtain existence of a solution to our problem (3.6). To that end, we first
construct compatible initial data (p0, r0).

Lemma 4.11. Assume that the initial data 𝑝𝑝,0 ∈ W𝑝 ∩H, where

H :=
{︀
𝑤𝑝 ∈ H1(Ω𝑝) : K∇𝑤𝑝 ∈ H1(Ω𝑝), K∇𝑤𝑝 · n𝑝 = 0 on Γ𝑁𝑣

𝑝 , 𝑤𝑝 = 0 on Γ𝐷𝑝
𝑝

}︀
. (4.32)

Then, there exist p0 := (u𝑓,0,𝜃0,u𝑝,0,𝜎𝑝,0, 𝑝𝑝,0) ∈ Q and r0 := (𝑝𝑓,0,u𝑠,0,𝛾𝑝,0, 𝜆0) ∈ S such that

𝒜p0 + ℬ′r0 = ̂︀F0 in Q′
2,

−ℬp0 = G(0) in S′, (4.33)

where ̂︀F0 =
(︀
f𝑓 (0), 0, 0, ̂︀𝑔𝜏𝑝

, ̂︀𝑔𝑤𝑝

)︀t ∈ Q′
2, with suitable ̂︀𝑔𝜏𝑝

∈ X′𝑝,2 and ̂︀𝑔𝑤𝑝
∈ W′

𝑝,2.
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Proof. Our approach is to solve a sequence of well-defined subproblems, using the previously obtained solutions
as data to guarantee that we obtain a solution of the coupled problem (4.33). We proceed as follows.

(1) Define u𝑝,0 := −𝜇−1K∇𝑝𝑝,0 ∈ H1(Ω𝑝), with 𝑝𝑝,0 ∈ W𝑝 ∩H, cf. (4.32). It follows that

𝜇K−1u𝑝,0 = −∇𝑝𝑝,0, ∇ · u𝑝,0 = −𝜇−1∇ · (K∇𝑝𝑝,0) in Ω𝑝, u𝑝,0 · n𝑝 = 0 on Γ𝑁𝑣
𝑝 .

Next, define 𝜆0 = 𝑝𝑝,0|Γ𝑓𝑝
∈ Λ𝑝. Testing the first two equations above with v𝑝 ∈ V𝑝 and 𝑤𝑝 ∈ W𝑝,

respectively, we obtain

𝑎𝑝(u𝑝,0,v𝑝) + 𝑏𝑝(v𝑝, 𝑝𝑝,0) + ⟨v𝑝 · n𝑝, 𝜆0⟩Γ𝑓𝑝
= 0, ∀v𝑝 ∈ V𝑝,

− 𝑏𝑝(u𝑝,0, 𝑤𝑝) = −𝜇−1(∇ · (K∇𝑝𝑝,0), 𝑤𝑝)Ω𝑝
, ∀𝑤𝑝 ∈ W𝑝. (4.34)

(2) Define (u𝑓,0, 𝑝𝑓,0) ∈ V𝑓 ×W𝑓 such that

𝑎𝑓 (u𝑓,0,v𝑓 ) + 𝑏𝑓 (v𝑓 , 𝑝𝑓,0)

= −
𝑛−1∑︁
𝑗=1

⟨𝜇𝛼BJS

√︁
K−1

𝑗 u𝑝,0 · t𝑓,𝑗 ,v𝑓 · t𝑓,𝑗⟩Γ𝑓𝑝
− ⟨v𝑓 · n𝑓 , 𝜆0⟩Γ𝑓𝑝

+ (f𝑓 (0),v𝑓 )Ω𝑓
, ∀v𝑓 ∈ V𝑓 ,

− 𝑏𝑓 (u𝑓,0, 𝑤𝑓 ) = (𝑞𝑓 (0), 𝑤𝑓 ), ∀𝑤𝑓 ∈ W𝑓 . (4.35)

This is a well-posed problem, since it corresponds to the weak solution of the Stokes system with mixed
boundary conditions on Γ𝑓𝑝. Note that 𝜆0 and u𝑝,0 are data for this problem.

(3) Define (𝜎𝑝,0,𝜂𝑝,0,𝜌𝑝,0,𝜓0) ∈ X𝑝 ×V𝑠 ×Q𝑝 ×Λ𝑠 such that

(𝐴𝜎𝑝,0, 𝜏𝑝)Ω𝑝 + 𝑏𝑠(𝜏𝑝,𝜂𝑝,0) + 𝑏sk(𝜏𝑝,𝜌𝑝,0)− 𝑏𝑝𝑛(𝜏𝑝,𝜓0) = −(𝐴𝛼𝑝𝑝,0I, 𝜏𝑝)Ω𝑝 , ∀ 𝜏𝑝 ∈ X𝑝,

𝑏𝑝𝑛(𝜎𝑝,0,𝜑) =
𝑛−1∑︁
𝑗=1

⟨𝜇𝛼BJS

√︁
K−1

𝑗 u𝑝,0 · t𝑓,𝑗 ,𝜑 · t𝑓,𝑗⟩Γ𝑓𝑝
− ⟨𝜑 · n𝑝, 𝜆0⟩Γ𝑓𝑝

, ∀𝜑 ∈ Λ𝑠,

− 𝑏𝑠(𝜎𝑝,0,v𝑠) = (f𝑝(0),v𝑠)Ω𝑝
, ∀v𝑠 ∈ V𝑠,

− 𝑏sk(𝜎𝑝,0,𝜒𝑝) = 0, ∀𝜒𝑝 ∈ Q𝑝. (4.36)

This is a well-posed problem corresponding to the weak solution of the mixed elasticity system with mixed
boundary conditions on Γ𝑓𝑝. Note that 𝑝𝑝,0, u𝑝,0 and 𝜆0 are data for this problem. Here 𝜂𝑝,0, 𝜌𝑝,0, and
𝜓0 are auxiliary variables that are not part of the constructed initial data. However, they can be used to
recover the variables 𝜂𝑝, 𝜌𝑝, and 𝜓 that satisfy the non-differentiated equation (3.5).

(4) Define 𝜃0 ∈ Λ𝑠 as
𝜃0 = u𝑓,0 − u𝑝,0 on Γ𝑓𝑝, (4.37)

where u𝑓,0 and u𝑝,0 are data obtained in the previous steps. Note that (4.37) implies that the BJS terms
in (4.35) and (4.36) can be rewritten with u𝑝,0 · t𝑓,𝑗 replaced by (u𝑓,0 − 𝜃0) · t𝑓,𝑗 and that (3.4h) holds for
the initial data.

(5) Define (̂︀𝜎𝑝,0,u𝑠,0,𝛾𝑝,0) ∈ X𝑝 ×V𝑠 ×Q𝑝 such that

(𝐴̂︀𝜎𝑝,0, 𝜏𝑝)Ω𝑝
+ 𝑏𝑠(𝜏𝑝,u𝑠,0) + 𝑏sk(𝜏𝑝,𝛾𝑝,0) = 𝑏𝑝𝑛(𝜏𝑝,𝜃0), ∀ 𝜏𝑝 ∈ X𝑝,

− 𝑏𝑠(̂︀𝜎𝑝,0,v𝑠) = 0, ∀v𝑠 ∈ V𝑠,

− 𝑏sk(̂︀𝜎𝑝,0,𝜒𝑝) = 0, ∀𝜒𝑝 ∈ Q𝑝. (4.38)

This is a well-posed problem, since it corresponds to the weak solution of the mixed elasticity system with
Dirichlet data 𝜃0 on Γ𝑓𝑝. We note that ̂︀𝜎𝑝,0 is an auxiliary variable not used in the initial data.
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Combining (4.34)–(4.38), we obtain (u𝑓,0,𝜃0,u𝑝,0,𝜎𝑝,0, 𝑝𝑝,0) ∈ Q and (𝑝𝑓,0,u𝑠,0,𝛾𝑝,0, 𝜆0) ∈ S satisfying
(4.33) with (︀̂︀𝑔𝜏𝑝 , 𝜏𝑝

)︀
Ω𝑝

= −(𝐴(̂︀𝜎𝑝,0), 𝜏𝑝)Ω𝑝
,

(︀̂︀𝑔𝑤𝑝 , 𝑤𝑝

)︀
Ω𝑝

= −𝑏𝑝(u𝑝,0, 𝑤𝑝).

The above equations implŷ⃦⃦︀𝑔𝜏𝑝

⃦⃦
L2(Ω𝑝)

+
⃦⃦̂︀𝑔𝑤𝑝

⃦⃦
L2(Ω𝑝)

≤ 𝐶
(︁
‖̂︀𝜎𝑝,0‖L2(Ω𝑝) + ‖∇ · u𝑝,0‖L2(Ω𝑝)

)︁
,

hence
(︀̂︀𝑔𝜏𝑝 , ̂︀𝑔𝑤𝑝

)︀
∈ X′𝑝,2 ×W′

𝑝,2, completing the proof. �

We are now ready to prove the main result of this section.

Theorem 4.12. For each compatible initial data (p0, r0) ∈ 𝒟 constructed in Lemma 4.11 and each

f𝑓 ∈ W1,1
(︀
0, 𝑇 ; V′

𝑓

)︀
, f𝑝 ∈ W1,1(0, 𝑇 ; V′

𝑠), 𝑞𝑓 ∈ W1,1
(︀
0, 𝑇 ; W′

𝑓

)︀
, 𝑞𝑝 ∈ W1,1

(︀
0, 𝑇 ; W′

𝑝

)︀
,

there exists a unique solution of (3.4) (u𝑓 , 𝑝𝑓 ,𝜎𝑝,u𝑠,𝛾𝑝,u𝑝, 𝑝𝑝, 𝜆,𝜃) ∈ L∞(0, 𝑇 ; V𝑓 ) × L∞(0, 𝑇 ; W𝑓 ) ×
W1,∞(︀

0, 𝑇 ; L2(Ω𝑝)
)︀
∩L∞(0, 𝑇 ; X𝑝)×L∞(0, 𝑇 ; V𝑠)×L∞(0, 𝑇 ; Q𝑝)×L∞(0, 𝑇 ; V𝑝)×W1,∞(0, 𝑇 ; W𝑝)×L∞(0, 𝑇 ;

Λ𝑝)× L∞(0, 𝑇 ; Λ𝑠) with (𝜎𝑝(0), 𝑝𝑝(0)) = (𝜎𝑝,0, 𝑝𝑝,0).

Proof. For each fixed time 𝑡 ∈ [0, 𝑇 ], Lemma 4.8 implies that there exists a solution to the resolvent system
(4.16) with ̂︀F = F(𝑡) and ̂︀G = G(𝑡) defined in (3.7). In other words, there exist (̃︀p(𝑡),̃︀r(𝑡)) such that

(ℰ1 +𝒜) ̃︀p(𝑡) + ℬ′ ̃︀r(𝑡) = F(𝑡) in Q′
2,

−ℬ ̃︀p(𝑡) = G(𝑡) in S′. (4.39)

We look for a solution to (3.7) in the form p(𝑡) = ̃︀p(𝑡) + ̂︀p(𝑡), r(𝑡) = ̃︀r(𝑡) + ̂︀r(𝑡). Subtracting (4.39) from (3.7)
leads to the reduced evolution problem

𝜕𝑡 ℰ1 ̂︀p(𝑡) +𝒜 ̂︀p(𝑡) + ℬ′ ̂︀r(𝑡) = ℰ1 ̃︀p(𝑡)− 𝜕𝑡 ℰ1 ̃︀p(𝑡) in Q′
2,0,

−ℬ ̂︀p(𝑡) = 0 in S′2,0, (4.40)

with initial condition ̂︀p(0) = p0 − ̃︀p(0) and ̂︀r(0) = r0 − ̃︀r(0). Subtracting (4.39) at 𝑡 = 0 from (4.33) gives

𝒜 ̂︀p(0) + ℬ′ ̂︀r(0) = ℰ1̃︀p(0) + ̂︀F0 − F(0) in Q′
2,0,

−ℬ ̂︀p(0) = 0 in S′2,0,

We emphasize that in the above, ̂︀F0−F(0) = (0, 0, 0, ̂︀𝑔𝜏𝑝
, ̂︀𝑔𝑤𝑝

− 𝑞𝑝(0))t ∈ Q′
2,0. Therefore, ℳ

(︂ ̂︀p(0)̂︀r(0)

)︂
∈ 𝐸′𝑏, i.e.

(̂︀p(0),̂︀r(0)) ∈ 𝒟. Thus, the reduced evolution problem (4.40) is in the form of (4.14). According to Theorem
4.10, it has a solution, which establishes the existence of a solution to (3.4) with the stated regularity satisfying
(𝜎𝑝(0), 𝑝𝑝(0)) = (𝜎𝑝,0, 𝑝𝑝,0).

We next show that the solution is unique. Since the problem is linear, it is sufficient to prove that the problem
with zero data has only the zero solution. Taking F = G = 0 in (3.7) and testing it with the solution (p, r)
yields

1
2
𝜕𝑡

(︂⃦⃦⃦
𝐴1/2(𝜎𝑝 + 𝛼𝑝𝑝 I)

⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0‖𝑝𝑝‖2L2(Ω𝑝)

)︂
+ 𝑎𝑝(u𝑝,u𝑝) + 𝑎𝑓 (u𝑓 ,u𝑓 ) + 𝑎BJS(u𝑓 ,𝜃; u𝑓 ,𝜃) = 0.

Integrating in time from 0 to 𝑡 ∈ (0, 𝑇 ] and using that the initial data is zero, as well as the coercivity of 𝑎𝑝

and 𝑎𝑓 and monotonicity of 𝑎BJS, cf. (4.5), we conclude that 𝜎𝑝 = 0, 𝑝𝑝 = 0, u𝑝 = 0, and u𝑓 = 0. Then the
inf-sup conditions (4.7)–(4.9) imply that u𝑠 = 0, 𝛾𝑝 = 0, 𝜃 = 0, 𝑝𝑓 = 0, and 𝜆 = 0, using arguments similar to
(4.26)–(4.29). Therefore the solution of (3.6) is unique. �
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Corollary 4.13. The solution of (3.6) satisfies u𝑓 (0) = u𝑓,0, 𝑝𝑓 (0) = 𝑝𝑓,0, u𝑝(0) = u𝑝,0, 𝜆(0) = 𝜆0, and
𝜃(0) = 𝜃0.

Proof. Since u𝑓 ∈ L∞(0, 𝑇 ; V𝑓 ), we can define u𝑓 (0) := lim𝑡→0+ u𝑓 (𝑡). Let u𝑓 := u𝑓 (0) − u𝑓,0, with a similar
definition and notation for the rest of the variables. Taking 𝑡→ 0+ in all equations without time derivatives in
(3.6) and using that the initial data (p0, r0) satisfies the same equations at 𝑡 = 0, cf. (4.33), and that 𝜎𝑝 = 0
and 𝑝𝑝 = 0, we obtain

(2𝜇D(u𝑓 ),D(v𝑓 ))Ω𝑓
−

(︀
∇ · v𝑓 , 𝑝𝑓

)︀
Ω𝑓

+
⟨︀
v𝑓 · n𝑓 , 𝜆

⟩︀
Γ𝑓𝑝

+
𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗

(︀
u𝑓 − 𝜃

)︀
· t𝑓,𝑗 ,v𝑓 · t𝑓,𝑗

⟩
Γ𝑓𝑝

= 0, (4.41a)

(∇ · u𝑓 , 𝑤𝑓 )Ω𝑓
= 0, (4.41b)(︀

𝜇K−1u𝑝,v𝑝

)︀
Ω𝑝

+
⟨︀
v𝑝 · n𝑝, 𝜆

⟩︀
Γ𝑓𝑝

= 0, (4.41c)⟨︀
u𝑓 · n𝑓 + 𝜃 · n𝑝 + u𝑝 · n𝑝, 𝜉

⟩︀
Γ𝑓𝑝

= 0, (4.41d)

⟨︀
𝜑 · n𝑝, 𝜆

⟩︀
Γ𝑓𝑝

−
𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗

(︀
u𝑓 − 𝜃

)︀
· t𝑓,𝑗 ,𝜑 · t𝑓,𝑗

⟩
Γ𝑓𝑝

= 0. (4.41e)

Taking (v𝑓 , 𝑤𝑓 ,v𝑝, 𝜉,𝜑) =
(︀
u𝑓 , 𝑝𝑓 ,u𝑝, 𝜆,𝜃

)︀
and combining the equations results in

‖u𝑓‖2H1(Ω𝑓 ) + ‖u𝑝‖2L2(Ω𝑝) +
⃒⃒
u𝑓 − 𝜃

⃒⃒2
𝑎BJS

≤ 0,

which implies u𝑓 = 0, u𝑝 = 0 and 𝜃 ·t𝑓,𝑗 = 0. Then (4.41d) implies that
⟨︀
𝜃 · n𝑝, 𝜉

⟩︀
Γ𝑓𝑝

= 0 for all 𝜉 ∈ H1/2(Γ𝑓𝑝).

We note that n𝑝 may be discontinuous on Γ𝑓𝑝, resulting in 𝜃 · n𝑝 ∈ L2(Γ𝑓𝑝). However, since H1/2(Γ𝑓𝑝) is dense
in L2(Γ𝑓𝑝), we obtain 𝜃 ·n𝑝 = 0, thus 𝜃 = 0. Using the inf-sup condition (4.8), together with (4.41a) and (4.41c),
we conclude that 𝑝𝑓 = 0 and 𝜆 = 0. �

Remark 4.14. As we noted in Remark 3.1, the time differentiated equation (3.4c) can be used to recover the
non-differentiated equation (3.5). In particular, recalling the initial data construction (4.36), let

∀ 𝑡 ∈ [0, 𝑇 ], 𝜂𝑝(𝑡) = 𝜂𝑝,0 +
∫︁ 𝑡

0

u𝑠(𝑠) d𝑠, 𝜌𝑝(𝑡) = 𝜌𝑝,0 +
∫︁ 𝑡

0

𝛾𝑝(𝑠) d𝑠, 𝜓(𝑡) = 𝜓0 +
∫︁ 𝑡

0

𝜃(𝑠) d𝑠.

Then (3.5) follows from integrating (3.4c) from 0 to 𝑡 ∈ (0, 𝑇 ] and using the first equation in (4.36).

5. Semi-discrete formulation

In this section we introduce the semi-discrete continuous-in-time approximation of (3.7). We assume for
simplicity that Ω𝑓 and Ω𝑝 are polygonal domains. Let 𝒯 𝑓

ℎ𝑓
and 𝒯 𝑝

ℎ𝑝
be shape-regular [26] affine finite element

partitions of Ω𝑓 and Ω𝑝, respectively, which may be non-matching along the interface Γ𝑓𝑝. Here ℎ𝑓 and ℎ𝑝

are the maximum element diameters in Ω𝑓 and Ω𝑝, respectively. Let (V𝑓ℎ,W𝑓ℎ) ⊂ (V𝑓 ,W𝑓 ) be any stable
Stokes finite element pair, such as Taylor-Hood or the MINI elements [17], and let (V𝑝ℎ,W𝑝ℎ) ⊂ (V𝑝,W𝑝) be
any stable Darcy mixed finite element pair, such as the Raviart–Thomas (RT) or the Brezzi–Douglas–Marini
(BDM) elements [17]. Let (X𝑝ℎ,V𝑠ℎ,Q𝑝ℎ) ⊂ (X𝑝,V𝑠,Q𝑝) by any stable finite element triple for mixed elasticity
with weak stress symmetry, such as the spaces developed in [9, 10,16]. We note that these spaces satisfy

∇ ·V𝑝ℎ = W𝑝ℎ, ∇ · X𝑝ℎ = V𝑠ℎ. (5.1)
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For the Lagrange multipliers, we choose non-conforming approximations:

Λ𝑝ℎ := V𝑝ℎ · n𝑝 |Γ𝑓𝑝
, Λ𝑠ℎ := X𝑝ℎn𝑝 |Γ𝑓𝑝

with norms ‖𝜉‖Λ𝑝ℎ
:= ‖𝜉‖L2(Γ𝑓𝑝), ‖𝜑‖Λ𝑠ℎ

:= ‖𝜑‖L2(Γ𝑓𝑝). (5.2)

The semi-discrete continuous-in-time problem is: Given f𝑓 : [0, 𝑇 ] → V′
𝑓 , f𝑝 : [0, 𝑇 ] → V′

𝑠, 𝑞𝑓 : [0, 𝑇 ] → W′
𝑓 ,

𝑞𝑝 : [0, 𝑇 ] → W′
𝑝, and (𝜎𝑝ℎ,0, 𝑝𝑝ℎ,0) ∈ X𝑝ℎ × W𝑝ℎ, find (u𝑓ℎ, 𝑝𝑓ℎ,𝜎𝑝ℎ,u𝑠ℎ,𝛾𝑝ℎ,u𝑝ℎ, 𝑝𝑝ℎ, 𝜆ℎ,𝜃ℎ) : [0, 𝑇 ] →

V𝑓ℎ ×W𝑓ℎ × X𝑝ℎ ×V𝑠ℎ ×Q𝑝ℎ ×V𝑝ℎ ×W𝑝ℎ × Λ𝑝ℎ ×Λ𝑠ℎ such that (𝜎𝑝ℎ(0), 𝑝𝑝ℎ(0)) = (𝜎𝑝ℎ,0, 𝑝𝑝ℎ,0) and, for
a.e. 𝑡 ∈ (0, 𝑇 ) and for all v𝑓ℎ ∈ V𝑓ℎ, 𝑤𝑓ℎ ∈ W𝑓ℎ, 𝜏𝑝ℎ ∈ X𝑝ℎ, v𝑠ℎ ∈ V𝑠ℎ, 𝜒𝑝ℎ ∈ Q𝑝ℎ, v𝑝ℎ ∈ V𝑝ℎ, 𝑤𝑝ℎ ∈ W𝑝ℎ,
𝜉ℎ ∈ Λ𝑝ℎ, and 𝜑ℎ ∈ Λ𝑠ℎ,

(2𝜇D(u𝑓ℎ),D(v𝑓ℎ))Ω𝑓
− (∇ · v𝑓ℎ, 𝑝𝑓ℎ)Ω𝑓

+ ⟨v𝑓ℎ · n𝑓 , 𝜆ℎ⟩Γ𝑓𝑝

+
𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗 (u𝑓ℎ − 𝜃ℎ) · t𝑓,𝑗 ,v𝑓ℎ · t𝑓,𝑗

⟩
Γ𝑓𝑝

= (f𝑓 ,v𝑓ℎ)Ω𝑓
, (5.3a)

(∇ · u𝑓ℎ, 𝑤𝑓ℎ)Ω𝑓
= (𝑞𝑓 , 𝑤𝑓ℎ)Ω𝑓

, (5.3b)

(𝜕𝑡𝐴(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI), 𝜏𝑝ℎ)Ω𝑝
+ (∇ · 𝜏𝑝ℎ,u𝑠ℎ)Ω𝑝

+ (𝜏𝑝ℎ,𝛾𝑝ℎ)Ω𝑝
− ⟨𝜏𝑝ℎn𝑝,𝜃ℎ⟩Γ𝑓𝑝

= 0, (5.3c)

(∇ · 𝜎𝑝ℎ,v𝑠ℎ)Ω𝑝
= −(f𝑝,v𝑠ℎ)Ω𝑝

, (5.3d)

(𝜎𝑝ℎ,𝜒𝑝ℎ)Ω𝑝
= 0, (5.3e)(︀

𝜇K−1u𝑝ℎ,v𝑝ℎ

)︀
Ω𝑝
− (∇ · v𝑝ℎ, 𝑝𝑝ℎ)Ω𝑝

+ ⟨v𝑝ℎ · n𝑝, 𝜆ℎ⟩Γ𝑓𝑝
= 0, (5.3f)

(𝑠0𝜕𝑡𝑝𝑝ℎ, 𝑤𝑝ℎ)Ω𝑝
+ 𝛼(𝜕𝑡𝐴(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI), 𝑤𝑝ℎI)Ω𝑝

+ (∇ · u𝑝ℎ, 𝑤𝑝ℎ)Ω𝑝
= (𝑞𝑝, 𝑤𝑝ℎ)Ω𝑝

, (5.3g)

⟨u𝑓ℎ · n𝑓 + 𝜃ℎ · n𝑝 + u𝑝ℎ · n𝑝, 𝜉ℎ⟩Γ𝑓𝑝
= 0, (5.3h)

⟨𝜑ℎ · n𝑝, 𝜆ℎ⟩Γ𝑓𝑝
−

𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗 (u𝑓ℎ − 𝜃ℎ) · t𝑓,𝑗 ,𝜑ℎ · t𝑓,𝑗

⟩
Γ𝑓𝑝

+ ⟨𝜎𝑝ℎn𝑝,𝜑ℎ⟩Γ𝑓𝑝
= 0. (5.3i)

Remark 5.1. We note that, since H1/2(Γ𝑓𝑝) is dense in L2(Γ𝑓𝑝), the continuous variational equations (3.4h)
and (3.4i) hold for test functions in L2(Γ𝑓𝑝), assuming that the solution is smooth enough. In particular, they
hold for 𝜉ℎ ∈ Λ𝑝ℎ and 𝜑ℎ ∈ Λ𝑠ℎ, respectively.

The formulation (5.3) can be equivalently written as

𝑎𝑓 (u𝑓ℎ,v𝑓ℎ) + 𝑎𝑝(u𝑝ℎ,v𝑝ℎ) + 𝑎BJS(u𝑓ℎ,𝜃ℎ; v𝑓ℎ,𝜑ℎ) + 𝑏𝑝𝑛(𝜎𝑝ℎ,𝜑ℎ) + 𝑏𝑝(v𝑝ℎ, 𝑝𝑝ℎ)
+ 𝑏𝑓 (v𝑓ℎ, 𝑝𝑓ℎ) + 𝑏𝑠(𝜏𝑝ℎ,u𝑠ℎ) + 𝑏sk(𝜏𝑝ℎ,𝛾𝑝ℎ) + 𝑏Γ(v𝑓ℎ,v𝑝ℎ,𝜑ℎ;𝜆ℎ) + 𝑎𝑝

𝑝(𝜕𝑡𝑝𝑝ℎ, 𝑤𝑝ℎ)
+ 𝑎𝑒(𝜕𝑡𝜎𝑝ℎ, 𝜕𝑡𝑝𝑝ℎ; 𝜏𝑝ℎ, 𝑤𝑝ℎ)− 𝑏𝑝𝑛(𝜏𝑝ℎ,𝜃ℎ)− 𝑏𝑝(u𝑝ℎ, 𝑤𝑝ℎ) = (f𝑓 ,v𝑓ℎ)Ω𝑓

+ (𝑞𝑝, 𝑤𝑝ℎ)Ω𝑝 ,

− 𝑏𝑓 (u𝑓ℎ, 𝑤𝑓ℎ)− 𝑏𝑠(𝜎𝑝ℎ,v𝑠ℎ)− 𝑏sk(𝜎𝑝ℎ,𝜒𝑝ℎ)− 𝑏Γ(u𝑓ℎ,u𝑝ℎ,𝜃ℎ; 𝜉ℎ) = (𝑞𝑓 , 𝑤𝑓ℎ)Ω𝑓
+ (f𝑝,v𝑠ℎ)Ω𝑝

. (5.4)

We group the spaces and test functions as in the continuous case:

Qℎ := V𝑓ℎ ×Λ𝑠ℎ ×V𝑝ℎ × X𝑝ℎ ×W𝑝ℎ, Sℎ := W𝑓ℎ ×V𝑠ℎ ×Q𝑝ℎ × Λ𝑝ℎ,

pℎ := (u𝑓ℎ,𝜃ℎ,u𝑝ℎ,𝜎𝑝ℎ, 𝑝𝑝ℎ) ∈ Qℎ, rℎ := (𝑝𝑓ℎ,u𝑠ℎ,𝛾𝑝ℎ, 𝜆ℎ) ∈ Sℎ,

qℎ := (v𝑓ℎ,𝜑ℎ,v𝑝ℎ, 𝜏𝑝ℎ, 𝑤𝑝ℎ) ∈ Qℎ, sℎ := (𝑤𝑓ℎ,v𝑠ℎ,𝜒𝑝ℎ, 𝜉ℎ) ∈ Sℎ,

where the spaces Qℎ and Sℎ are endowed with the norms, respectively,

‖qℎ‖Qℎ
= ‖v𝑓ℎ‖V𝑓

+ ‖𝜑ℎ‖Λ𝑠ℎ
+ ‖v𝑝ℎ‖V𝑝 + ‖𝜏𝑝ℎ‖X𝑝 + ‖𝑤𝑝ℎ‖W𝑝 ,

‖sℎ‖Sℎ
= ‖𝑤𝑓ℎ‖W𝑓

+ ‖v𝑠ℎ‖V𝑠
+ ‖𝜒𝑝ℎ‖Q𝑝

+ ‖𝜉ℎ‖Λ𝑝ℎ
.
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Hence, we can write (5.4) in an operator notation as a degenerate evolution problem in a mixed form:

𝜕𝑡 ℰ1 pℎ(𝑡) +𝒜pℎ(𝑡) + ℬ′ rℎ(𝑡) = F(𝑡) in Q′
ℎ,

−ℬ pℎ(𝑡) = G(𝑡) in S′ℎ. (5.5)

Next, we state the discrete inf-sup conditions.

Lemma 5.2. There exist positive constants 𝛽ℎ,1, 𝛽ℎ,2, and 𝛽ℎ,3 independent of ℎ𝑓 and ℎ𝑝 such that

𝛽ℎ,1

(︀
‖v𝑠ℎ‖V𝑠

+ ‖𝜒𝑝ℎ‖Q𝑝

)︀
≤ sup
𝜏𝑝ℎ∈X𝑝ℎ s.t. 𝜏𝑝ℎn𝑝=0 on Γ𝑓𝑝

𝑏𝑠(𝜏𝑝ℎ,v𝑠ℎ) + 𝑏sk(𝜏𝑝ℎ,𝜒𝑝ℎ)
‖𝜏𝑝ℎ‖X𝑝

,

∀v𝑠ℎ ∈ V𝑠ℎ, 𝜒𝑝ℎ ∈ Q𝑝ℎ, (5.6)

𝛽ℎ,2

(︀
‖𝑤𝑓ℎ‖W𝑓

+ ‖𝑤𝑝ℎ‖W𝑝
+ ‖𝜉ℎ‖Λ𝑝ℎ

)︀
≤ sup

(v𝑓ℎ,v𝑝ℎ)∈V𝑓ℎ×V𝑝ℎ

𝑏𝑓 (v𝑓ℎ, 𝑤𝑓ℎ) + 𝑏𝑝(v𝑝ℎ, 𝑤𝑝ℎ) + 𝑏Γ(v𝑓ℎ,v𝑝ℎ,0; 𝜉ℎ)
‖(v𝑓ℎ,v𝑝ℎ)‖V𝑓×V𝑝

,

∀𝑤𝑓ℎ ∈ W𝑓ℎ, 𝑤𝑝ℎ ∈ W𝑝ℎ, 𝜉ℎ ∈ Λ𝑝ℎ, (5.7)

𝛽ℎ,3‖𝜑ℎ‖Λ𝑠ℎ
≤ sup
𝜏𝑝ℎ∈X𝑝ℎ s.t.∇·𝜏𝑝ℎ=0

𝑏𝑝𝑛(𝜏𝑝ℎ,𝜑𝑝)
‖𝜏𝑝ℎ‖X𝑝

, ∀𝜑ℎ ∈ Λ𝑠ℎ. (5.8)

Proof. Inequality (5.6) can be shown using the argument in Theorem 4.1 of [5]. Inequality (5.7) is proved in
Theorem 5.2 of [3]. Inequality (5.8) can be derived as in Lemma 5.1 of[3]. �

We next discuss the construction of compatible discrete initial data (pℎ,0, rℎ,0) based on a modification of
the step-by-step procedure for the continuous initial data.

(1) Let 𝑃Λ𝑠

ℎ : Λ𝑠 → Λ𝑠ℎ be the L2-projection operator, satisfying, for all 𝜑 ∈ L2(Γ𝑓𝑝),⟨
𝜑− 𝑃Λ𝑠

ℎ 𝜑,𝜑ℎ

⟩
Γ𝑓𝑝

= 0 ∀𝜑ℎ ∈ Λ𝑠ℎ. (5.9)

Define
𝜃ℎ,0 = 𝑃Λ𝑠

ℎ 𝜃0. (5.10)

(2) Define (u𝑓ℎ,0, 𝑝𝑓ℎ,0) ∈ V𝑓ℎ ×W𝑓ℎ and (u𝑝ℎ,0, 𝑝𝑝ℎ,0, 𝜆ℎ,0) ∈ V𝑝ℎ ×W𝑝ℎ ×Λ𝑝ℎ by solving a coupled Stokes-
Darcy problem: for all v𝑓ℎ ∈ V𝑓ℎ, 𝑤𝑓ℎ ∈ W𝑓ℎ, v𝑝ℎ ∈ V𝑝ℎ, 𝑤𝑝ℎ ∈ W𝑝ℎ, 𝜉ℎ ∈ Λ𝑝ℎ,

𝑎𝑓 (u𝑓ℎ,0,v𝑓ℎ) + 𝑏𝑓 (v𝑓ℎ, 𝑝𝑓ℎ,0) +
𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗 (u𝑓ℎ,0 − 𝜃ℎ,0) · t𝑓,𝑗 ,v𝑓ℎ · t𝑓,𝑗

⟩
Γ𝑓𝑝

+ ⟨v𝑓ℎ · n𝑓 , 𝜆ℎ,0⟩Γ𝑓𝑝

= 𝑎𝑓 (u𝑓,0,v𝑓ℎ) + 𝑏𝑓 (v𝑓ℎ, 𝑝𝑓,0) +
𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗 (u𝑓,0 − 𝜃0) · t𝑓,𝑗 ,v𝑓ℎ · t𝑓,𝑗

⟩
Γ𝑓𝑝

+ ⟨v𝑓ℎ · n𝑓 , 𝜆0⟩Γ𝑓𝑝

= (f𝑓 (0),v𝑓ℎ)Ω𝑓
,

− 𝑏𝑓 (u𝑓ℎ,0, 𝑤𝑓ℎ) = −𝑏𝑓 (u𝑓,0, 𝑤𝑓ℎ) = (𝑞𝑓 (0), 𝑤𝑓ℎ),
𝑎𝑝(u𝑝ℎ,0,v𝑝ℎ) + 𝑏𝑝(v𝑝ℎ, 𝑝𝑝ℎ,0) + ⟨v𝑝ℎ · n𝑝, 𝜆ℎ,0⟩Γ𝑓𝑝

= 𝑎𝑝(u𝑝,0,v𝑝ℎ) + 𝑏𝑝(v𝑝ℎ, 𝑝𝑝,0) + ⟨v𝑝ℎ · n𝑝, 𝜆0⟩Γ𝑓𝑝
= 0,

− 𝑏𝑝(u𝑝ℎ,0, 𝑤𝑝ℎ) = −𝑏𝑝(u𝑝,0, 𝑤𝑝ℎ) = −𝜇−1(∇ · (K∇𝑝𝑝,0), 𝑤𝑝ℎ)Ω𝑝
,

− ⟨u𝑝ℎ,0 · n𝑝 + u𝑓ℎ,0 · n𝑓 + 𝜃ℎ,0 · n𝑝, 𝜉ℎ⟩Γ𝑓𝑝
= −⟨u𝑝,0 · n𝑝 + u𝑓,0 · n𝑓 + 𝜃0 · n𝑝, 𝜉ℎ⟩Γ𝑓𝑝

= 0. (5.11)

This is a well-posed problem due to the inf-sup condition (5.8), using the theory of saddle point problems
[17], see [30,40].
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(3) Define (𝜎𝑝ℎ,0,𝜂𝑝ℎ,0,𝜌𝑝ℎ,0,𝜓ℎ,0) ∈ X𝑝ℎ×V𝑠ℎ×Q𝑝ℎ×Λ𝑠ℎ such that, for all 𝜏𝑝ℎ ∈ X𝑝ℎ, v𝑠ℎ ∈ V𝑠ℎ, 𝜒𝑝ℎ ∈ Q𝑝ℎ,
𝜑ℎ ∈ Λ𝑠ℎ,

(𝐴𝜎𝑝ℎ,0, 𝜏𝑝ℎ)Ω𝑝
+ 𝑏𝑠(𝜏𝑝ℎ,𝜂𝑝ℎ,0) + 𝑏sk(𝜏𝑝ℎ,𝜌𝑝ℎ,0)− 𝑏𝑝𝑛(𝜏𝑝ℎ,𝜓ℎ,0) + (𝐴𝛼𝑝𝑝ℎ,0I, 𝜏𝑝ℎ)Ω𝑝

= (𝐴𝜎𝑝,0, 𝜏𝑝ℎ)Ω𝑝
+ 𝑏𝑠(𝜏𝑝ℎ,𝜂𝑝,0) + 𝑏sk(𝜏𝑝ℎ,𝜌𝑝,0)− 𝑏𝑝𝑛(𝜏𝑝ℎ,𝜓0) + (𝐴𝛼𝑝𝑝,0I, 𝜏𝑝ℎ)Ω𝑝

= 0,

− 𝑏𝑠(𝜎𝑝ℎ,0,v𝑠ℎ) = −𝑏𝑠(𝜎𝑝,0,v𝑠ℎ) = (f𝑝(0),v𝑠ℎ)Ω𝑝
,

− 𝑏sk(𝜎𝑝ℎ,0,𝜒𝑝ℎ) = −𝑏sk(𝜎𝑝,0,𝜒𝑝ℎ) = 0,

𝑏𝑝𝑛(𝜎𝑝ℎ,0,𝜑ℎ)−
𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗 (u𝑓ℎ,0 − 𝜃ℎ,0) · t𝑓,𝑗 ,𝜑ℎ · t𝑓,𝑗

⟩
Γ𝑓𝑝

+ ⟨𝜑ℎ · n𝑝, 𝜆ℎ,0⟩Γ𝑓𝑝

= 𝑏𝑝𝑛(𝜎𝑝,0,𝜑ℎ)−
𝑛−1∑︁
𝑗=1

⟨
𝜇𝛼BJS

√︁
K−1

𝑗 (u𝑓,0 − 𝜃0) · t𝑓,𝑗 ,𝜑ℎ · t𝑓,𝑗

⟩
Γ𝑓𝑝

+ ⟨𝜑ℎ · n𝑝, 𝜆0⟩Γ𝑓𝑝
= 0. (5.12)

It can be shown that the above problem is well-posed using the finite element theory for elasticity with
weak stress symmetry [9, 10] and the inf-sup condition (5.8) for the Lagrange multiplier 𝜓ℎ,0.

(4) Define (̂︀𝜎𝑝ℎ,0,u𝑠ℎ,0,𝛾𝑝ℎ,0) ∈ X𝑝ℎ ×V𝑠ℎ ×Q𝑝ℎ such that, for all 𝜏𝑝ℎ ∈ X𝑝ℎ, v𝑠ℎ ∈ V𝑠ℎ, 𝜒𝑝ℎ ∈ Q𝑝ℎ,

(𝐴̂︀𝜎𝑝ℎ,0, 𝜏𝑝ℎ)Ω𝑝
+ 𝑏𝑠(𝜏𝑝ℎ,u𝑠ℎ,0) + 𝑏sk(𝜏𝑝ℎ,𝛾𝑝ℎ,0) = 𝑏𝑝𝑛(𝜏𝑝ℎ,𝜃ℎ,0),

−𝑏𝑠(̂︀𝜎𝑝ℎ,0,v𝑠ℎ) = 0,
−𝑏sk(̂︀𝜎𝑝ℎ,0,𝜒𝑝ℎ) = 0. (5.13)

This is a well posed discrete mixed elasticity problem [9,10].

We then define pℎ,0 = (u𝑓ℎ,0,𝜃ℎ,0,u𝑝ℎ,0,𝜎𝑝ℎ,0, 𝑝𝑝,0) and rℎ,0 = (𝑝𝑓ℎ,0,u𝑠ℎ,0,𝛾𝑝ℎ,0, 𝜆ℎ,0). This construction
guarantees that the discrete initial data is compatible in the sense of Lemma 4.11:

𝒜pℎ,0 + ℬ′rℎ,0 = F0 in Q′
ℎ,

−ℬpℎ,0 = G(0) in S′ℎ, (5.14)

where F0 =
(︁
f𝑓 (0), 0, 0, 𝑔𝜏𝑝

, 𝑔𝑤𝑝

)︁t

∈ Q′
2, with suitable 𝑔𝜏𝑝

∈ X′𝑝,2 and 𝑔𝑤𝑝
∈ W′

𝑝,2. Furthermore, it provides
compatible initial data for the non-differentiated elasticity variables (𝜂𝑝ℎ,0,𝜌𝑝ℎ,0,𝜓ℎ,0) in the sense of the first
equation in (4.36).

The well-posedness of the problem (5.5) follows from similar arguments to the proof of Theorem 4.12.

Theorem 5.3. For each f𝑓 ∈ W1,1(0, 𝑇 ; V′
𝑓 ), f𝑝 ∈ W1,1(0, 𝑇 ; V′

𝑠), 𝑞𝑓 ∈ W1,1(0, 𝑇 ; W′
𝑓 ), and 𝑞𝑝 ∈ W1,1(0, 𝑇 ;

W′
𝑝), and initial data (pℎ,0, rℎ,0) satisfying (5.14), there exists a unique solution of (5.3) (u𝑓ℎ, 𝑝𝑓ℎ,𝜎𝑝ℎ,u𝑠ℎ,𝛾𝑝ℎ,

u𝑝ℎ, 𝑝𝑝ℎ, 𝜆ℎ,𝜃ℎ) ∈ L∞(0, 𝑇 ; V𝑓ℎ) × L∞(0, 𝑇 ; W𝑓ℎ) × W1,∞(︀
0, 𝑇 ; L2(Ω𝑝)

)︀
∩ L∞(0, 𝑇 ; X𝑝ℎ) × L∞(0, 𝑇 ; V𝑠ℎ) ×

L∞(0, 𝑇 ; Q𝑝ℎ)×L∞(0, 𝑇 ; V𝑝ℎ)×W1,∞(0, 𝑇 ; W𝑝ℎ)×L∞(0, 𝑇 ; Λ𝑝ℎ)×L∞(0, 𝑇 ; Λ𝑠ℎ) with (u𝑓ℎ(0), 𝑝𝑓ℎ(0),𝜎𝑝ℎ(0),
u𝑝ℎ(0), 𝑝𝑝ℎ(0), 𝜆ℎ(0),𝜃ℎ(0)) = (u𝑓ℎ,0, 𝑝𝑓ℎ,0,𝜎𝑝ℎ,0,u𝑝ℎ,0, 𝑝𝑝ℎ,0, 𝜆ℎ,0,𝜃ℎ,0).

Proof. With the discrete inf-sup conditions (5.6)–(5.8) and the discrete initial data construction described in
(5.9)–(5.12), the proof is similar to the proofs of Theorem 4.12 and Corollary 4.13, with two differences due to
non-conforming choices of the Lagrange multiplier spaces equipped with L2-norms. The first is in the continuity
of the bilinear forms 𝑏𝑝𝑛(𝜏𝑝ℎ,𝜑ℎ), cf. (4.1), and 𝑏Γ(v𝑓ℎ,v𝑝ℎ,𝜑ℎ; 𝜉ℎ), cf. (4.10). In particular, using the discrete
trace-inverse inequality for piecewise polynomial functions, ‖𝜙‖𝐿2(Γ𝑓𝑝) ≤ 𝐶ℎ

−1/2
𝑝,min‖𝜙‖𝐿2(Ω𝑝), where ℎ𝑝,min is the

minimum element diameter in 𝒯 𝑝
ℎ𝑝

, we have

𝑏𝑝𝑛(𝜏𝑝ℎ,𝜑ℎ) ≤ 𝐶ℎ
−1/2
𝑝,min‖𝜏𝑝ℎ‖L2(Ω𝑝)‖𝜑ℎ‖L2(Γ𝑓𝑝)
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and
𝑏Γ(v𝑓ℎ,v𝑝ℎ,𝜑ℎ; 𝜉ℎ) ≤ 𝐶(‖v𝑓ℎ‖H1(Ω𝑓 ) + ℎ

−1/2
𝑝,min‖v𝑝ℎ‖L2(Ω𝑝) + ‖𝜑ℎ‖L2(Γ𝑓𝑝))‖𝜉ℎ‖L2(Γ𝑓𝑝).

Therefore these bilinear forms are continuous for any given mesh. Second, the operators 𝐿𝜆 and 𝑅𝜃 from
Lemma 4.7 are now defined as 𝐿𝜆 : Λ𝑝ℎ → Λ′𝑝ℎ, (𝐿𝜆 𝜆ℎ, 𝜉ℎ) := ⟨𝜆ℎ, 𝜉ℎ⟩Γ𝑓𝑝

and 𝑅𝜃 : Λ𝑠ℎ → Λ′𝑠ℎ, (𝑅𝜃 𝜃ℎ,𝜑ℎ) :=
⟨𝜃ℎ,𝜑ℎ⟩Γ𝑓𝑝

. The fact that 𝐿𝜆 and 𝑅𝜃 are continuous and coercive follows immediately from their definitions,
since (𝐿𝜆 𝜉ℎ, 𝜉ℎ) = ‖𝜉‖2Λ𝑝ℎ

and (𝑅𝜃 𝜑ℎ,𝜑ℎ) = ‖𝜑ℎ‖2Λ𝑠ℎ
. We note that the proof of Corollary 4.13 works in the

discrete case due to the choice of the discrete initial data as the elliptic projection of the continuous initial data,
cf. (5.11) and (5.12). �

Remark 5.4. As in the continuous case, we can recover the non-differentiated elasticity variables with

∀ 𝑡 ∈ [0, 𝑇 ], 𝜂𝑝ℎ(𝑡) = 𝜂𝑝ℎ,0 +
∫︁ 𝑡

0

u𝑠ℎ(𝑠) d𝑠, 𝜌𝑝ℎ(𝑡) = 𝜌𝑝ℎ,0 +
∫︁ 𝑡

0

𝛾𝑝ℎ(𝑠) d𝑠, 𝜓ℎ(𝑡) = 𝜓ℎ,0 +
∫︁ 𝑡

0

𝜃ℎ(𝑠) d𝑠.

Then (3.5) holds discretely, which follows from integrating the third equation in (5.3) from 0 to 𝑡 ∈ (0, 𝑇 ] and
using the discrete version of the first equation in (4.36).

6. Stability analysis

In this section we establish a stability bound for the solution of semi-discrete continuous-in-time formulation
(5.5). We emphasize that the stability constant is independent of 𝑠0 and 𝑎min, indicating robustness of the
method in the limits of small storativity and almost incompressible media, which are known to cause locking
in numerical methods for the Biot system [53]. Furthermore, since we do not utilize Gronwall’s inequality, we
obtain long-time stability for our method.

Theorem 6.1. Assuming sufficient regularity of the data, for the solution to the semi-discrete problem (5.3),
there exists a constant 𝐶 independent of ℎ𝑓 , ℎ𝑝, 𝑠0 and 𝑎min such that

‖u𝑓ℎ‖L∞(0,𝑇 ;V𝑓 ) + ‖u𝑓ℎ‖L2(0,𝑇 ;V𝑓 ) + |u𝑓ℎ − 𝜃ℎ|L∞(0,𝑇 ;𝑎BJS) + |u𝑓ℎ − 𝜃ℎ|L2(0,𝑇 ;𝑎BJS)

+ ‖𝑝𝑓ℎ‖L∞(0,𝑇 ;W𝑓 ) + ‖𝑝𝑓ℎ‖L2(0,𝑇 ;W𝑓 ) +
⃦⃦⃦
𝐴1/2𝜎𝑝ℎ

⃦⃦⃦
L∞(0,𝑇 ;L2(Ω𝑝))

+ ‖∇ · 𝜎𝑝ℎ‖L∞(0,𝑇 ;L2(Ω𝑝))

+
⃦⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦
L2(0,𝑇 ;L2(Ω𝑝))

+ ‖∇ · 𝜎𝑝ℎ‖L2(0,𝑇 ;L2(Ω𝑝)) + ‖u𝑠ℎ‖L2(0,𝑇 ;V𝑠)

+ ‖𝛾𝑝ℎ‖L2(0,𝑇 ;Q𝑝) + ‖u𝑝ℎ‖L∞(0,𝑇 ;L2(Ω𝑝)) + ‖u𝑝ℎ‖L2(0,𝑇 ;V𝑝) + ‖𝑝𝑝ℎ‖L∞(0,𝑇 ;W𝑝) + ‖𝑝𝑝ℎ‖L2(0,𝑇 ;W𝑝)

+
√
𝑠0‖𝜕𝑡𝑝𝑝ℎ‖L2(0,𝑇 ;W𝑝) + ‖𝜆ℎ‖L∞(0,𝑇 ;Λ𝑝ℎ) + ‖𝜆ℎ‖L2(0,𝑇 ;Λ𝑝ℎ) + ‖𝜃ℎ‖L2(0,𝑇 ;Λ𝑠ℎ)

≤ 𝐶
(︁
‖f𝑓‖H1(0,𝑇 ;L2(Ω𝑓 )) + ‖f𝑝‖H1(0,𝑇 ;L2(Ω𝑝)) + ‖𝑞𝑓‖H1(0,𝑇 ;L2(Ω𝑓 )) + ‖𝑞𝑝‖H1(0,𝑇 ;L2(Ω𝑝))

+ ‖𝑝𝑝,0‖H1(Ω𝑝) + ‖∇ · (K∇𝑝𝑝,0)‖L2(Ω𝑝)

)︁
. (6.1)

Proof. By taking (v𝑓ℎ, 𝑤𝑓ℎ, 𝜏𝑝ℎ,v𝑠ℎ,𝜒𝑝ℎ,v𝑝ℎ, 𝑤𝑝ℎ, 𝜉ℎ,𝜑ℎ) = (u𝑓ℎ, 𝑝𝑓ℎ,𝜎𝑝ℎ,u𝑠ℎ,𝛾𝑝ℎ,u𝑝ℎ, 𝑝𝑝ℎ, 𝜆ℎ,𝜃ℎ) in (5.3)
and adding up all the equations, we get

𝑎𝑓 (u𝑓ℎ,u𝑓ℎ) + 𝑎BJS(u𝑓ℎ,𝜃ℎ; u𝑓ℎ,𝜃ℎ) + 𝑎𝑒(𝜕𝑡𝜎𝑝ℎ, 𝜕𝑡𝑝𝑝ℎ;𝜎𝑝ℎ, 𝑝𝑝ℎ) + 𝑎𝑝(u𝑝ℎ,u𝑝ℎ) + 𝑎𝑝
𝑝(𝜕𝑡𝑝𝑝ℎ, 𝑝𝑝ℎ)

= (f𝑓 ,u𝑓ℎ)Ω𝑓
+ (𝑞𝑓 , 𝑝𝑓ℎ)Ω𝑓

+ (f𝑝,u𝑠ℎ)Ω𝑝
+ (𝑞𝑝, 𝑝𝑝ℎ)Ω𝑝

. (6.2)

Using the algebraic identity
∫︀

𝑆
𝑣 𝜕𝑡𝑣 = 1

2𝜕𝑡‖𝑣‖2L2(𝑆), and employing the coercivity properties of 𝑎𝑓 and 𝑎𝑝, and
the semi-positive definiteness of 𝑎BJS, cf. (4.5), we obtain
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2𝜇𝐶2
𝐾‖u𝑓ℎ‖2V𝑓

+ 𝜇𝛼BJS𝑘
−1/2
max |u𝑓ℎ − 𝜃ℎ|2𝑎BJS

+
1
2
𝜕𝑡

⃦⃦⃦
𝐴1/2(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦2

L2(Ω𝑝)

+ 𝜇𝑘−1
max‖u𝑝ℎ‖2L2(Ω𝑝) +

1
2
𝑠0𝜕𝑡‖𝑝𝑝ℎ‖2W𝑝

≤ (f𝑓 ,u𝑓ℎ)Ω𝑓
+ (𝑞𝑓 , 𝑝𝑓ℎ)Ω𝑓

+ (f𝑝,u𝑠ℎ)Ω𝑝
+ (𝑞𝑝, 𝑝𝑝ℎ)Ω𝑝

.

Integrating from 0 to any 𝑡 ∈ (0, 𝑇 ] and applying the Cauchy–Schwarz and Young’s inequalities, we get∫︁ 𝑡

0

(︁
2𝜇𝐶2

𝐾‖u𝑓ℎ‖2V𝑓
+ 𝜇𝛼BJS𝑘

−1/2
max |u𝑓ℎ − 𝜃ℎ|2𝑎BJS

+ 𝜇𝑘−1
max‖u𝑝ℎ‖2L2(Ω𝑝)

)︁
d𝑠

+
1
2

⃦⃦⃦
𝐴1/2(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)(𝑡)

⃦⃦⃦2

L2(Ω𝑝)
− 1

2

⃦⃦⃦
𝐴1/2(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)(0)

⃦⃦⃦2

L2(Ω𝑝)
+

1
2
𝑠0‖𝑝𝑝ℎ(𝑡)‖2W𝑝

− 1
2
𝑠0‖𝑝𝑝ℎ(0)‖2W𝑝

≤ 𝜖

2

∫︁ 𝑡

0

(︁
‖u𝑓ℎ‖2L2(Ω𝑓 ) + ‖𝑝𝑓ℎ‖2W𝑓

+ ‖u𝑠ℎ‖2L2(Ω𝑝) + ‖𝑝𝑝ℎ‖2W𝑝

)︁
d𝑠

+
1
2𝜖

∫︁ 𝑡

0

(︁
‖f𝑓‖2L2(Ω𝑓 ) + ‖𝑞𝑓‖2L2(Ω𝑓 ) + ‖f𝑝‖2L2(Ω𝑝) + ‖𝑞𝑝‖2L2(Ω𝑝)

)︁
d𝑠. (6.3)

From the discrete inf-sup conditions (5.6)–(5.8) and (5.3a), (5.3c), and (5.3f), we have

‖𝑝𝑓ℎ‖W𝑓
+ ‖𝑝𝑝ℎ‖W𝑝

+ ‖𝜆ℎ‖Λ𝑝ℎ

≤ 𝐶 sup
(v𝑓ℎ,v𝑝ℎ)∈V𝑓ℎ×V𝑝ℎ

𝑏𝑓 (v𝑓ℎ, 𝑝𝑓ℎ) + 𝑏𝑝(v𝑝ℎ, 𝑝𝑝ℎ) + 𝑏Γ(v𝑓ℎ,v𝑝ℎ,0;𝜆ℎ)
‖(v𝑓ℎ,v𝑝ℎ)‖V𝑓×V𝑝

= 𝐶 sup
(v𝑓ℎ,v𝑝ℎ)∈V𝑓ℎ×V𝑝ℎ

−𝑎𝑓 (u𝑓ℎ,v𝑓ℎ)− 𝑎BJS(u𝑓ℎ,𝜃ℎ; v𝑓ℎ,0) + (f𝑓 ,v𝑓ℎ)Ω𝑓
− 𝑎𝑝(u𝑝ℎ,v𝑝ℎ)

‖v𝑓ℎ‖V𝑓
+ ‖v𝑝ℎ‖V𝑝

≤ 𝐶
(︀
‖u𝑓ℎ‖V𝑓

+ |u𝑓ℎ − 𝜃ℎ|𝑎BJS
+ ‖f𝑓‖L2(Ω𝑓 ) + ‖u𝑝ℎ‖L2(Ω𝑝)

)︀
, (6.4)

‖u𝑠ℎ‖V𝑠
+ ‖𝛾𝑝ℎ‖Q𝑝

≤ 𝐶 sup
𝜏𝑝ℎ∈X𝑝ℎ s.t. 𝜏𝑝ℎn𝑝=0 on Γ𝑓𝑝

𝑏𝑠(𝜏𝑝ℎ,u𝑠ℎ) + 𝑏sk(𝜏𝑝ℎ,𝛾𝑝ℎ)
‖𝜏𝑝ℎ‖X𝑝

= 𝐶 sup
𝜏𝑝ℎ∈X𝑝ℎ s.t. 𝜏𝑝ℎn𝑝=0 on Γ𝑓𝑝

−(𝐴𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI), 𝜏𝑝ℎ) + 𝑏𝑝𝑛(𝜏𝑝ℎ,𝜃ℎ)
‖𝜏𝑝ℎ‖X𝑝

≤ 𝐶
⃦⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦
L2(Ω𝑝)

, (6.5)

‖𝜃ℎ‖Λ𝑠ℎ
≤ 𝐶 sup

𝜏𝑝ℎ∈X𝑝ℎ s.t.∇·𝜏𝑝ℎ=0

𝑏𝑝𝑛(𝜏𝑝ℎ,𝜃ℎ)
‖𝜏𝑝ℎ‖X𝑝

= 𝐶 sup
𝜏𝑝ℎ∈X𝑝ℎ s.t.∇·𝜏𝑝ℎ=0

(𝐴𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI), 𝜏𝑝ℎ) + 𝑏sk(𝜏𝑝ℎ,𝛾𝑝ℎ) + 𝑏𝑠(𝜏𝑝ℎ,u𝑠ℎ)
‖𝜏𝑝ℎ‖X𝑝

≤ 𝐶

(︂⃦⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦
L2(Ω𝑝)

+ ‖𝛾𝑝ℎ‖Q𝑝

)︂
. (6.6)

Combining (6.3) with (6.4)–(6.6), and choosing 𝜖 small enough, results in∫︁ 𝑡

0

(︁
‖u𝑓ℎ‖2V𝑓

+ |u𝑓ℎ − 𝜃ℎ|2𝑎BJS
+ ‖𝑝𝑓ℎ‖2W𝑓

+ ‖u𝑠ℎ‖2V𝑠
+ ‖𝛾𝑝ℎ‖2Q𝑝

+ ‖u𝑝ℎ‖2L2(Ω𝑝) + ‖𝑝𝑝ℎ‖2W𝑝

+ ‖𝜆ℎ‖2Λ𝑝ℎ
+ ‖𝜃ℎ‖2Λ𝑠ℎ

)︁
d𝑠+

⃦⃦⃦
𝐴1/2(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)(𝑡)

⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0‖𝑝𝑝ℎ(𝑡)‖2W𝑝

≤ 𝐶

(︂∫︁ 𝑡

0

(︂⃦⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦2

L2(Ω𝑝)
+ ‖f𝑓‖2L2(Ω𝑓 ) + ‖𝑞𝑓‖2L2(Ω𝑓 ) + ‖f𝑝‖2L2(Ω𝑝) + ‖𝑞𝑝‖2L2(Ω𝑝)

)︂
d𝑠

+
⃦⃦⃦
𝐴1/2(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)(0)

⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0‖𝑝𝑝ℎ(0)‖2L2(Ω𝑝)

)︂
. (6.7)
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To get a bound for
⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
, we differentiate in time (5.3a), (5.3d), (5.3e), (5.3f),

and (5.3i), take (v𝑓ℎ, 𝑤𝑓ℎ, 𝜏𝑝ℎ,v𝑠ℎ,𝜒𝑝ℎ,v𝑝ℎ, 𝑤𝑝ℎ, 𝜉ℎ,𝜑ℎ) = (u𝑓ℎ, 𝜕𝑡𝑝𝑓ℎ, 𝜕𝑡𝜎𝑝ℎ,u𝑠ℎ,𝛾𝑝ℎ,u𝑝ℎ, 𝜕𝑡𝑝𝑝ℎ, 𝜕𝑡𝜆ℎ,𝜃ℎ) in
(5.3), and add all equations, to obtain

1
2
𝜕𝑡𝑎𝑓 (u𝑓ℎ,u𝑓ℎ) +

1
2
𝜕𝑡𝑎BJS(u𝑓ℎ,𝜃ℎ; u𝑓ℎ,𝜃ℎ) +

⃦⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦2

L2(Ω𝑝)
+

1
2
𝜕𝑡𝑎𝑝(u𝑝ℎ,u𝑝ℎ)

+ 𝑠0‖𝜕𝑡𝑝𝑝ℎ‖2W𝑝
= (𝜕𝑡f𝑓 ,u𝑓ℎ)Ω𝑓

+ (𝑞𝑓 , 𝜕𝑡𝑝𝑓ℎ)Ω𝑓
+ (𝜕𝑡f𝑝,u𝑠ℎ)Ω𝑝

+ (𝑞𝑝, 𝜕𝑡𝑝𝑝ℎ)Ω𝑝
. (6.8)

We next integrate (6.8) in time from 0 to an arbitrary 𝑡 ∈ (0, 𝑇 ] and use integration by parts in time for the
last two terms: ∫︁ 𝑡

0

(𝑞𝑓 , 𝜕𝑡𝑝𝑓ℎ)Ω𝑓
d𝑠+

∫︁ 𝑡

0

(𝑞𝑝, 𝜕𝑡𝑝𝑝ℎ)Ω𝑝
d𝑠 = (𝑞𝑓 , 𝑝𝑓ℎ)Ω𝑓

⃒⃒⃒𝑡
0
−

∫︁ 𝑡

0

(𝜕𝑡𝑞𝑓 , 𝑝𝑓ℎ)Ω𝑓
𝑑𝑠

+ (𝑞𝑝, 𝑝𝑝ℎ)Ω𝑝

⃒⃒⃒𝑡
0
−

∫︁ 𝑡

0

(𝜕𝑡𝑞𝑝, 𝑝𝑝ℎ)Ω𝑝
d𝑠.

Making use of the continuity of 𝑎𝑓 , 𝑎𝑝 and 𝑎BJS, cf. (4.1), the coercivity of 𝑎𝑓 and 𝑎𝑝, the semi-positive definiteness
of 𝑎BJS, cf. (4.5), and the Cauchy–Schwarz and Young’s inequalities, we get

𝜇𝐶2
𝐾‖u𝑓ℎ(𝑡)‖2V𝑓

+
1
2
𝜇𝛼BJS𝑘

−1/2
max |(u𝑓ℎ − 𝜃ℎ)(𝑡)|2𝑎BJS

+
1
2
𝜇𝑘−1

max‖u𝑝ℎ(𝑡)‖2L2(Ω𝑝)

+
∫︁ 𝑡

0

(︂⃦⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0‖𝜕𝑡𝑝𝑝ℎ‖2W𝑝

)︂
d𝑠

≤ 𝜖

2

(︂∫︁ 𝑡

0

(︁
‖u𝑓ℎ‖2L2(Ω𝑓 ) + ‖𝑝𝑓ℎ‖2W𝑓

+ ‖u𝑠ℎ‖2V𝑠
+ ‖𝑝𝑝ℎ‖2W𝑝

)︁
d𝑠+ ‖𝑝𝑓ℎ(𝑡)‖2W𝑓

+ ‖𝑝𝑝ℎ(𝑡)‖2W𝑝

)︂
+

1
2𝜖

(︂∫︁ 𝑡

0

(︁
‖𝜕𝑡f𝑓‖2L2(Ω𝑓 ) + ‖𝜕𝑡𝑞𝑓‖2L2(Ω𝑓 ) + ‖𝜕𝑡f𝑝‖2L2(Ω𝑝) + ‖𝜕𝑡𝑞𝑝‖2L2(Ω𝑝)

)︁
d𝑠+ ‖𝑞𝑓 (𝑡)‖2L2(Ω𝑓 ) + ‖𝑞𝑝(𝑡)‖2L2(Ω𝑝)

)︂
+ 𝜇‖u𝑓ℎ(0)‖2H1(Ω𝑓 ) +

1
2
𝜇𝛼BJS𝑘

−1/2
min |(u𝑓ℎ − 𝜃ℎ)(0)|2𝑎BJS

+
1
2
‖𝑝𝑓ℎ(0)‖2W𝑓

+
1
2
𝜇𝑘−1

min‖u𝑝ℎ(0)‖2L2(Ω𝑝) +
1
2
‖𝑝𝑝ℎ(0)‖2W𝑝

+
1
2
‖𝑞𝑓 (0)‖2L2(Ω𝑓 ) +

1
2
‖𝑞𝑝(0)‖2L2(Ω𝑝). (6.9)

We note that the first four terms on the right hand side are controlled in (6.7), while the terms ‖𝑝𝑓ℎ(𝑡)‖W𝑓
and

‖𝑝𝑝ℎ(𝑡)‖W𝑝
are controlled in the inf-sup bound (6.4). Thus, combining (6.4), (6.7) and (6.9), and taking 𝜖 small

enough, we obtain∫︁ 𝑡

0

(︂
‖u𝑓ℎ‖2V𝑓

+ |u𝑓ℎ − 𝜃ℎ|2𝑎BJS
+ ‖𝑝𝑓ℎ‖2W𝑓

+
⃦⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦2

L2(Ω𝑝)
+ ‖u𝑠ℎ‖2V𝑠

+ ‖𝛾𝑝ℎ‖2Q𝑝

+ ‖u𝑝ℎ‖2L2(Ω𝑝) + ‖𝑝𝑝ℎ‖2W𝑝
+ 𝑠0‖𝜕𝑡𝑝𝑝ℎ‖2W𝑝

+ ‖𝜆ℎ‖2Λ𝑝ℎ
+ ‖𝜃ℎ‖2Λ𝑠ℎ

)︁
d𝑠+ ‖u𝑓ℎ(𝑡)‖2V𝑓

+ |(u𝑓ℎ − 𝜃ℎ)(𝑡)|2𝑎BJS

+ ‖𝑝𝑓ℎ(𝑡)‖2W𝑓
+

⃦⃦⃦
𝐴1/2(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)(𝑡)

⃦⃦⃦2

L2(Ω𝑝)
+ ‖u𝑝ℎ(𝑡)‖2L2(Ω𝑝) + ‖𝑝𝑝ℎ(𝑡)‖2W𝑝

+ ‖𝜆ℎ(𝑡)‖2Λ𝑝ℎ

≤ 𝐶

(︂ ∫︁ 𝑡

0

(︁
‖f𝑓‖2L2(Ω𝑓 ) + ‖f𝑝‖2L2(Ω𝑝) + ‖𝑞𝑓‖2L2(Ω𝑓 ) + ‖𝑞𝑝‖2L2(Ω𝑝)

)︁
d𝑠+ ‖f𝑓 (𝑡)‖2L2(Ω𝑓 )

+
∫︁ 𝑡

0

(︁
‖𝜕𝑡f𝑓‖2L2(Ω𝑓 ) + ‖𝜕𝑡f𝑝‖2L2(Ω𝑝) + ‖𝜕𝑡𝑞𝑓‖2L2(Ω𝑓 ) + ‖𝜕𝑡𝑞𝑝‖2L2(Ω𝑝)

)︁
d𝑠+ ‖𝑞𝑓 (𝑡)‖2L2(Ω𝑓 ) + ‖𝑞𝑝(𝑡)‖2L2(Ω𝑝)
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+ ‖u𝑓ℎ(0)‖2V𝑓
+ |(u𝑓ℎ − 𝜃ℎ)(0)|2𝑎BJS

+ ‖𝑝𝑓ℎ(0)‖2W𝑓
+

⃦⃦⃦
𝐴1/2𝜎𝑝ℎ(0)

⃦⃦⃦2

L2(Ω𝑝)
+ ‖u𝑝ℎ(0)‖2L2(Ω𝑝)

+ ‖𝑝𝑝ℎ(0)‖2W𝑝
+ ‖𝑞𝑓 (0)‖2L2(Ω𝑓 ) + ‖𝑞𝑝(0)‖2L2(Ω𝑝)

)︂
. (6.10)

We remark that in the above bound we have obtained control on ‖𝑝𝑝ℎ(𝑡)‖L2(Ω𝑝) independent of 𝑠0. To bound
the initial data terms above, we recall that (u𝑓ℎ(0), 𝑝𝑓ℎ(0), 𝜎𝑝ℎ(0),u𝑝ℎ(0), 𝑝𝑝ℎ(0), 𝜆ℎ(0),𝜃ℎ(0)) = (u𝑓ℎ,0, 𝑝𝑓ℎ,0,
𝜎𝑝ℎ,0, u𝑝ℎ,0, 𝑝𝑝ℎ,0, 𝜆ℎ,0,𝜃ℎ,0) and the construction of the discrete initial data (5.11) and (5.12). Combining the
two systems and using the steady-state version of the arguments presented in (6.2)–(6.4), we obtain

‖u𝑓ℎ(0)‖V𝑓
+ ‖𝑝𝑓ℎ(0)‖W𝑓

+
⃦⃦⃦
𝐴1/2𝜎𝑝ℎ(0)

⃦⃦⃦
L2(Ω𝑝)

+ ‖u𝑝ℎ(0)‖L2(Ω𝑝) + ‖𝑝𝑝ℎ(0)‖W𝑝
+ |(u𝑓ℎ − 𝜃ℎ)(0)|𝑎BJS

≤ 𝐶(‖∇ · (K∇𝑝𝑝,0)‖L2(Ω𝑝) + ‖f𝑓 (0)‖L2(Ω𝑓 ) + ‖𝑞𝑓 (0)‖L2(Ω𝑓 ) + ‖f𝑝(0)‖L2(Ω𝑝). (6.11)

We complete the argument by deriving bounds for ‖∇ · u𝑝ℎ‖L2(Ω𝑝) and ‖∇ · 𝜎𝑝ℎ‖L2(Ω𝑝). Due to (5.1), we can
choose 𝑤𝑝ℎ = ∇ · u𝑝ℎ in (5.3g), obtaining

‖∇ · u𝑝ℎ‖2L2(Ω𝑝) = −(𝐴𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI),∇ · u𝑝ℎ)Ω𝑝
− (𝑠0𝜕𝑡𝑝𝑝ℎ,∇ · u𝑝ℎ)Ω𝑝

+ (𝑞𝑝,∇ · u𝑝ℎ)Ω𝑝

≤
(︂
𝑎1/2
max

⃦⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦
L2(Ω𝑝)

+ 𝑠0‖𝜕𝑡𝑝𝑝ℎ‖L2(Ω𝑝) + ‖𝑞𝑝‖L2(Ω𝑝)

)︂
‖∇ · u𝑝ℎ‖L2(Ω𝑝),

therefore∫︁ 𝑡

0

‖∇ · u𝑝ℎ‖2L2(Ω𝑝) d𝑠 ≤ 𝐶

∫︁ 𝑡

0

(︂⃦⃦⃦
𝐴1/2𝜕𝑡(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)

⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0‖𝜕𝑡𝑝𝑝ℎ‖2L2(Ω𝑝) + ‖𝑞𝑝‖2L2(Ω𝑝)

)︂
d𝑠. (6.12)

Similarly, the choice of v𝑠ℎ = ∇ · 𝜎𝑝ℎ in (5.3d) gives

‖∇ · 𝜎𝑝ℎ‖L2(Ω𝑝) ≤ ‖f𝑝‖L2(Ω𝑝) and
∫︁ 𝑡

0

‖∇ · 𝜎𝑝ℎ‖2L2(Ω𝑝) d𝑠 ≤
∫︁ 𝑡

0

‖f𝑝‖2L2(Ω𝑝) d𝑠. (6.13)

Combining (6.10)–(6.13), we conclude (6.1), where we also use⃦⃦⃦
𝐴1/2𝜎𝑝ℎ(𝑡)

⃦⃦⃦
L2(Ω𝑝)

≤ 𝐶

(︂⃦⃦⃦
𝐴1/2(𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI)(𝑡)

⃦⃦⃦
L2(Ω𝑝)

+ ‖𝑝𝑝ℎ(𝑡)‖L2(Ω𝑝)

)︂
.

�

7. Error analysis

In this section we derive an a priori error estimate for the semi-discrete formulation (5.3). We assume that
the finite element spaces contain polynomials of degrees 𝑠u𝑓

and 𝑠𝑝𝑓
for V𝑓ℎ and W𝑓ℎ, 𝑠u𝑝

and 𝑠𝑝𝑝
for V𝑝ℎ

and W𝑝ℎ, 𝑠𝜎𝑝
, 𝑠u𝑠

, and 𝑠𝛾𝑝
for X𝑝ℎ, V𝑠ℎ, and Q𝑝ℎ, 𝑠𝜃 and 𝑠𝜆 for Λ𝑠ℎ and Λ𝑝ℎ. Next, we define interpolation

operators into the finite elements spaces that will be used in the error analysis.
We recall that 𝑃Λ𝑠

ℎ : Λ𝑠 → Λ𝑠ℎ is the L2-projection operator, cf. (5.9), and define 𝑃Λ𝑝

ℎ : Λ𝑝 → Λ𝑝ℎ as the

L2-projection operator, satisfying, for any 𝜉 ∈ L2(Γ𝑓𝑝),
⟨
𝜉 − 𝑃

Λ𝑝

ℎ 𝜉, 𝜉ℎ

⟩
Γ𝑓𝑝

= 0 ∀ 𝜉ℎ ∈ Λ𝑝ℎ. Since the discrete

Lagrange multiplier spaces are chosen as Λ𝑠ℎ = X𝑝ℎ n𝑝|Γ𝑓𝑝
and Λ𝑝ℎ = V𝑝ℎ · n𝑝|Γ𝑓𝑝

, respectively, we have⟨
𝜑− 𝑃Λ𝑠

ℎ 𝜑, 𝜏𝑝ℎ n𝑝

⟩
Γ𝑓𝑝

= 0, ∀ 𝜏𝑝ℎ ∈ X𝑝ℎ,
⟨
𝜉 − 𝑃

Λ𝑝

ℎ 𝜉,v𝑝ℎ · n𝑝

⟩
Γ𝑓𝑝

= 0, ∀v𝑝ℎ ∈ V𝑝ℎ. (7.1)
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These operators have approximation properties [26],⃦⃦⃦
𝜑− 𝑃Λ𝑠

ℎ 𝜑
⃦⃦⃦
L2(Γ𝑓𝑝)

≤ 𝐶ℎ𝑠𝜃+1
𝑝 ‖𝜑‖H𝑠𝜃+1(Γ𝑓𝑝),

⃦⃦⃦
𝜉 − 𝑃

Λ𝑝

ℎ 𝜉
⃦⃦⃦

L2(Γ𝑓𝑝)
≤ 𝐶ℎ𝑠𝜆+1

𝑝 ‖𝜉‖H𝑠𝜆+1(Γ𝑓𝑝). (7.2)

Similarly, we introduce 𝑃W𝑓

ℎ : W𝑓 → W𝑓ℎ, 𝑃W𝑝

ℎ : W𝑝 → W𝑝ℎ, 𝑃V𝑠

ℎ : V𝑠 → V𝑠ℎ and 𝑃
Q𝑝

ℎ : Q𝑝 → Q𝑝ℎ as
L2-projection operators, satisfying(︁

𝑤𝑓 − 𝑃
W𝑓

ℎ 𝑤𝑓 , 𝑤𝑓ℎ

)︁
Ω𝑓

= 0, ∀𝑤𝑓ℎ ∈ W𝑓ℎ,
(︁
𝑤𝑝 − 𝑃

W𝑝

ℎ 𝑤𝑝, 𝑤𝑝ℎ

)︁
Ω𝑝

= 0, ∀𝑤𝑝ℎ ∈ W𝑝ℎ,(︁
v𝑠 − 𝑃V𝑠

ℎ v𝑠,v𝑠ℎ

)︁
Ω𝑝

= 0, ∀v𝑠ℎ ∈ V𝑠ℎ,
(︁
𝜒𝑝 − 𝑃

Q𝑝

ℎ 𝜒𝑝,𝜒𝑝ℎ

)︁
Ω𝑝

= 0, ∀𝜒𝑝ℎ ∈ Q𝑝ℎ, (7.3)

with approximation properties [26],⃦⃦⃦
𝑤𝑓 − 𝑃

W𝑓

ℎ 𝑤𝑓

⃦⃦⃦
L2(Ω𝑓 )

≤ 𝐶ℎ
𝑠𝑝𝑓

+1

𝑓 ‖𝑤𝑓‖H𝑠𝑝𝑓
+1

(Ω𝑓 )
,

⃦⃦⃦
𝑤𝑝 − 𝑃

W𝑝

ℎ 𝑤𝑝

⃦⃦⃦
L2(Ω𝑝)

≤ 𝐶ℎ
𝑠𝑝𝑝+1
𝑝 ‖𝑤𝑝‖H𝑠𝑝𝑝+1

(Ω𝑝)
,⃦⃦⃦

v𝑠 − 𝑃V𝑠

ℎ v𝑠

⃦⃦⃦
L2(Ω𝑝)

≤ 𝐶ℎ
𝑠u𝑠+1
𝑝 ‖v𝑠‖H𝑠u𝑠+1(Ω𝑝),

⃦⃦⃦
𝜒𝑝 − 𝑃

Q𝑝

ℎ 𝜒𝑝

⃦⃦⃦
L2(Ω𝑝)

≤ 𝐶ℎ
𝑠𝛾𝑝+1
𝑝 ‖𝜒𝑝‖H𝑠𝛾𝑝+1

(Ω𝑝)
. (7.4)

Next, we consider a Stokes-like projection operator 𝐼V𝑓

ℎ : V𝑓 → V𝑓ℎ, defined by solving the problem: find
𝐼
V𝑓

ℎ v𝑓 and ̃︀𝑝𝑓ℎ ∈ W𝑓ℎ such that

𝑎𝑓

(︁
𝐼
V𝑓

ℎ v𝑓 ,v𝑓ℎ

)︁
− 𝑏𝑓 (v𝑓ℎ, ̃︀𝑝𝑓ℎ) = 𝑎𝑓 (v𝑓 ,v𝑓ℎ), ∀v𝑓ℎ ∈ V𝑓ℎ,

𝑏𝑓

(︁
𝐼
V𝑓

ℎ v𝑓 , 𝑤𝑓ℎ

)︁
= 𝑏𝑓 (v𝑓 , 𝑤𝑓ℎ), ∀𝑤𝑓ℎ ∈ W𝑓ℎ. (7.5)

The operator 𝐼V𝑓

ℎ satisfies the approximation property [31]:⃦⃦⃦
v𝑓 − 𝐼

V𝑓

ℎ v𝑓

⃦⃦⃦
H1(Ω𝑓 )

≤ 𝐶ℎ
𝑠u𝑓

𝑓 ‖v𝑓‖H𝑠u𝑓
+1

(Ω𝑓 )
. (7.6)

Let 𝐼V𝑝

ℎ be the mixed finite element interpolant onto V𝑝ℎ, which satisfies for all v𝑝 ∈ V𝑝 ∩H1(Ω𝑝),(︁
∇ · 𝐼V𝑝

ℎ v𝑝, 𝑤𝑝ℎ

)︁
Ω𝑝

= (∇ · v𝑝, 𝑤𝑝ℎ)Ω𝑝
, ∀𝑤𝑝ℎ ∈ W𝑝ℎ,⟨

𝐼
V𝑝

ℎ v𝑝 · n𝑝,v𝑝ℎ · n𝑝

⟩
Γ𝑓𝑝

= ⟨v𝑝 · n𝑝,v𝑝ℎ · n𝑝⟩Γ𝑓𝑝
, ∀v𝑝ℎ ∈ V𝑝ℎ, (7.7)

and ⃦⃦⃦
v𝑝 − 𝐼

V𝑝

ℎ v𝑝

⃦⃦⃦
L2(Ω𝑝)

≤ 𝐶ℎ
𝑠u𝑝+1
𝑝 ‖v𝑝‖H𝑠u𝑝+1

(Ω𝑝)
,⃦⃦⃦

∇ ·
(︁
v𝑝 − 𝐼

V𝑝

ℎ v𝑝

)︁⃦⃦⃦
L2(Ω𝑝)

≤ 𝐶ℎ
𝑠u𝑝+1
𝑝 ‖∇ · v𝑝‖H𝑠u𝑝+1

(Ω𝑝)
. (7.8)

For X𝑝ℎ, we consider the weakly symmetric elliptic projection introduced in [8] and extended in [38] to the case
of Neumann boundary condition: given 𝜎𝑝 ∈ X𝑝 ∩H1(Ω𝑝), find (̃︀𝜎𝑝ℎ, ̃︀𝜂𝑝ℎ, ̃︀𝜌𝑝ℎ) ∈ X𝑝ℎ ×V𝑠ℎ ×Q𝑝ℎ such that
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(̃︀𝜎𝑝ℎ, 𝜏𝑝ℎ) + (̃︀𝜂𝑝ℎ,∇ · 𝜏𝑝ℎ) + (̃︀𝜌𝑝ℎ, 𝜏𝑝ℎ) = (𝜎𝑝, 𝜏𝑝ℎ), ∀ 𝜏𝑝ℎ ∈ X0
𝑝ℎ,

(∇ · ̃︀𝜎𝑝ℎ,v𝑠ℎ) = (∇ · 𝜎𝑝,v𝑠ℎ), ∀v𝑠ℎ ∈ V𝑠ℎ,

(̃︀𝜎𝑝ℎ,𝜒𝑝ℎ) = (𝜎𝑝,𝜒𝑝ℎ), ∀𝜒𝑝ℎ ∈ Q𝑝ℎ,

⟨̃︀𝜎𝑝ℎn𝑝, 𝜏𝑝ℎn𝑝⟩Γ𝑓𝑝
= ⟨𝜎𝑝n𝑝, 𝜏𝑝ℎn𝑝⟩Γ𝑓𝑝

, ∀ 𝜏𝑝ℎ ∈ XΓ𝑓𝑝

𝑝ℎ , (7.9)

where X0
𝑝ℎ = {𝜏𝑝ℎ ∈ X𝑝ℎ : 𝜏𝑝ℎn𝑝 = 0 on Γ𝑓𝑝}, and XΓ𝑓𝑝

𝑝ℎ is the complement of X0
𝑝ℎ in X𝑝ℎ, which spans the

degrees of freedoms on Γ𝑓𝑝. We define 𝐼X𝑝

ℎ 𝜎𝑝 := ̃︀𝜎𝑝ℎ, which satisfies⃦⃦⃦
𝜎𝑝 − 𝐼

X𝑝

ℎ 𝜎𝑝

⃦⃦⃦
L2(Ω𝑝)

≤ ℎ
𝑠𝜎𝑝+1
𝑝 ‖𝜎𝑝‖H𝑠𝜎𝑝+1

(Ω𝑝)
,⃦⃦⃦

∇ ·
(︁
𝜎𝑝 − 𝐼

X𝑝

ℎ 𝜎𝑝

)︁⃦⃦⃦
L2(Ω𝑝)

≤ 𝐶ℎ
𝑠𝜎𝑝+1
𝑝 ‖∇ · 𝜎𝑝‖H𝑠𝜎𝑝+1

(Ω𝑝)
. (7.10)

We now establish the main result of this section.

Theorem 7.1. Assuming sufficient regularity of the solution to the continuous problem (3.4), for the solution
of the semi-discrete problem (5.3), there exists a constant 𝐶 independent of ℎ, 𝑠0, and 𝑎min such that

‖u𝑓 − u𝑓ℎ‖L∞(0,𝑇 ;V𝑓 ) + ‖u𝑓 − u𝑓ℎ‖L2(0,𝑇 ;V𝑓 ) + |(u𝑓 − 𝜃)− (u𝑓ℎ − 𝜃ℎ)|L∞(0,𝑇 ;𝑎BJS)

+ |(u𝑓 − 𝜃)− (u𝑓ℎ − 𝜃ℎ)|L2(0,𝑇 ;𝑎BJS)
+ ‖𝑝𝑓 − 𝑝𝑓ℎ‖L∞(0,𝑇 ;W𝑓 ) + ‖𝑝𝑓 − 𝑝𝑓ℎ‖L2(0,𝑇 ;W𝑓 )

+
⃦⃦⃦
𝐴1/2(𝜎𝑝 − 𝜎𝑝ℎ)

⃦⃦⃦
L∞(0,𝑇 ;L2(Ω𝑝))

+ ‖∇ · (𝜎𝑝 − 𝜎𝑝ℎ)‖L∞(0,𝑇 ;L2(Ω𝑝)) + ‖∇ · (𝜎𝑝 − 𝜎𝑝ℎ)‖L2(0,𝑇 ;L2(Ω𝑝))

+
⃦⃦⃦
𝐴1/2𝜕𝑡((𝜎𝑝 + 𝛼𝑝𝑝I)− (𝜎𝑝ℎ + 𝛼𝑝𝑝ℎI))

⃦⃦⃦
L2(0,𝑇 ;L2(Ω𝑝))

+ ‖u𝑠 − u𝑠ℎ‖L2(0,𝑇 ;V𝑠) + ‖𝛾𝑝 − 𝛾𝑝ℎ‖L2(0,𝑇 ;Q𝑝)

+ ‖u𝑝 − u𝑝ℎ‖L∞(0,𝑇 ;L2(Ω𝑝)) + ‖u𝑝 − u𝑝ℎ‖L2(0,𝑇 ;V𝑝) + ‖𝑝𝑝 − 𝑝𝑝ℎ‖L∞(0,𝑇 ;W𝑝) + ‖𝑝𝑝 − 𝑝𝑝ℎ‖L2(0,𝑇 ;W𝑝)

+
√
𝑠0‖𝜕𝑡(𝑝𝑝 − 𝑝𝑝ℎ)‖L2(0,𝑇 ;W𝑝) + ‖𝜆− 𝜆ℎ‖L∞(0,𝑇 ;Λ𝑝ℎ) + ‖𝜆− 𝜆ℎ‖L2(0,𝑇 ;Λ𝑝ℎ) + ‖𝜃 − 𝜃ℎ‖L2(0,𝑇 ;Λ𝑠ℎ)

≤ 𝐶
√︀

exp(𝑇 )
(︁
ℎ

𝑠u𝑓

𝑓 ‖u𝑓‖H1
(︁
0,𝑇 ;H

𝑠u𝑓
+1

(Ω𝑓 )
)︁ + ℎ

𝑠𝑝𝑓
+1

𝑓 ‖𝑝𝑓‖H1
(︁
0,𝑇 ;H

𝑠𝑝𝑓
+1

(Ω𝑓 )
)︁ + ℎ

𝑠𝜎𝑝+1
𝑝 ‖𝜎𝑝‖H1(0,𝑇 ;H𝑠𝜎𝑝+1

(Ω𝑝))

+ ℎ
𝑠𝜎𝑝+1
𝑝 ‖∇ · 𝜎𝑝‖L∞(0,𝑇 ;H

𝑠𝜎𝑝+1
(Ω𝑝)) + ℎ

𝑠u𝑠+1
𝑝 ‖u𝑠‖L2(0,𝑇 ;H𝑠u𝑠+1(Ω𝑝)) + ℎ

𝑠𝛾𝑝+1
𝑝 ‖𝛾𝑝‖H1(0,𝑇 ;H𝑠𝛾𝑝+1

(Ω𝑝))

+ ℎ
𝑠u𝑝+1
𝑝

(︁
‖u𝑝‖H1(0,𝑇 ;H

𝑠u𝑝+1
(Ω𝑝)) + ‖∇ · u𝑝‖L2(0,𝑇 ;H

𝑠u𝑝+1
(Ω𝑝))

)︁
+ ℎ

𝑠𝑝𝑝+1
𝑝 ‖𝑝𝑝‖H1(0,𝑇 ;H

𝑠𝑝𝑝+1
(Ω𝑝))

+ ℎ𝑠𝜆+1
𝑝 ‖𝜆‖H1(0,𝑇 ;H𝑠𝜆+1(Γ𝑓𝑝)) + ℎ𝑠𝜃+1

𝑝 ‖𝜃‖H1(0,𝑇 ;H𝑠𝜃+1(Γ𝑓𝑝)) + ℎ
𝑠𝛾𝑝+1
𝑝 ‖𝜌𝑝(0)‖H𝑠𝛾𝑝+1

(Ω𝑝)

)︁
. (7.11)

Proof. We introduce the error terms as the differences of the solutions to (3.4) and (5.3) and decompose them
into approximation and discretization errors using the interpolation operators:

𝑒u𝑓
:= u𝑓 − u𝑓ℎ =

(︁
u𝑓 − 𝐼

V𝑓

ℎ u𝑓

)︁
+

(︁
𝐼
V𝑓

ℎ u𝑓 − u𝑓ℎ

)︁
:= 𝑒𝐼

u𝑓
+ 𝑒ℎ

u𝑓
,

𝑒𝑝𝑓
:= 𝑝𝑓 − 𝑝𝑓ℎ =

(︁
𝑝𝑓 − 𝑃

W𝑓

ℎ 𝑝𝑓

)︁
+

(︁
𝑃

W𝑓

ℎ 𝑝𝑓 − 𝑝𝑓ℎ

)︁
:= 𝑒𝐼

𝑝𝑓
+ 𝑒ℎ

𝑝𝑓
,

𝑒u𝑝
:= u𝑝 − u𝑝ℎ =

(︁
u𝑝 − 𝐼

V𝑝

ℎ u𝑝

)︁
+

(︁
𝐼
V𝑝

ℎ u𝑝 − u𝑝ℎ

)︁
:= 𝑒𝐼

u𝑝
+ 𝑒ℎ

u𝑝
,

𝑒𝑝𝑝
:= 𝑝𝑝 − 𝑝𝑝ℎ =

(︁
𝑝𝑝 − 𝑃

W𝑝

ℎ 𝑝𝑝

)︁
+

(︁
𝑃

W𝑝

ℎ 𝑝𝑝 − 𝑝𝑝ℎ

)︁
:= 𝑒𝐼

𝑝𝑝
+ 𝑒ℎ

𝑝𝑝
,

𝑒𝜎𝑝
:= 𝜎𝑝 − 𝜎𝑝ℎ =

(︁
𝜎𝑝 − 𝐼

X𝑝

ℎ 𝜎𝑝

)︁
+

(︁
𝐼

X𝑝

ℎ 𝜎𝑝 − 𝜎𝑝ℎ

)︁
:= 𝑒𝐼

𝜎𝑝
+ 𝑒ℎ

𝜎𝑝
,

𝑒u𝑠
:= u𝑠 − u𝑠ℎ =

(︁
u𝑠 − 𝑃V𝑠

ℎ u𝑠

)︁
+

(︁
𝑃V𝑠

ℎ u𝑠 − u𝑠ℎ

)︁
:= 𝑒𝐼

u𝑠
+ 𝑒ℎ

u𝑠
,
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𝑒𝛾𝑝 := 𝛾𝑝 − 𝛾𝑝ℎ =
(︁
𝛾𝑝 − 𝑃

Q𝑝

ℎ 𝛾𝑝

)︁
+

(︁
𝑃

Q𝑝

ℎ 𝛾𝑝 − 𝛾𝑝ℎ

)︁
:= 𝑒𝐼

𝛾𝑝
+ 𝑒ℎ

𝛾𝑝
,

𝑒𝜃 := 𝜃 − 𝜃ℎ =
(︁
𝜃 − 𝑃Λ𝑠

ℎ 𝜃
)︁

+
(︁
𝑃Λ𝑠

ℎ 𝜃 − 𝜃ℎ

)︁
:= 𝑒𝐼

𝜃 + 𝑒ℎ
𝜃,

𝑒𝜆 := 𝜆− 𝜆ℎ =
(︁
𝜆− 𝑃

Λ𝑝

ℎ 𝜆
)︁

+
(︁
𝑃

Λ𝑝

ℎ 𝜆− 𝜆ℎ

)︁
:= 𝑒𝐼

𝜆 + 𝑒ℎ
𝜆. (7.12)

We also define the approximation errors for non-differentiated variables:

𝑒𝐼
𝜂𝑝

= 𝜂𝑝 − 𝑃V𝑠

ℎ 𝜂𝑝, 𝑒𝐼
𝜌𝑝

= 𝜌𝑝 − 𝑃
Q𝑝

ℎ 𝜌𝑝, 𝑒𝐼
𝜓 = 𝜓 − 𝑃Λ𝑠

ℎ 𝜓.

We form the error equations by subtracting the semi-discrete equations (5.3) from the continuous equations
(3.4):

𝑎𝑓

(︀
𝑒u𝑓

,v𝑓ℎ

)︀
+ 𝑏𝑓

(︀
v𝑓ℎ, 𝑒𝑝𝑓

)︀
+ 𝑏Γ(v𝑓ℎ,0,0; 𝑒𝜆) + 𝑎BJS

(︀
𝑒u𝑓

, 𝑒𝜃; v𝑓ℎ,0
)︀

= 0, (7.13a)
−𝑏𝑓

(︀
𝑒u𝑓

, 𝑤𝑓ℎ

)︀
= 0, (7.13b)

𝑎𝑒

(︀
𝜕𝑡𝑒𝜎𝑝

, 𝜕𝑡𝑒𝑝𝑝
; 𝜏𝑝ℎ, 0

)︀
+ 𝑏𝑠(𝜏𝑝ℎ, 𝑒u𝑠

) + 𝑏sk
(︀
𝜏𝑝ℎ, 𝑒𝛾𝑝

)︀
− 𝑏𝑝𝑛(𝜏𝑝ℎ, 𝑒𝜃) = 0, (7.13c)
−𝑏𝑠

(︀
𝑒𝜎𝑝

,v𝑠ℎ

)︀
= 0, (7.13d)

−𝑏sk
(︀
𝑒𝜎𝑝 ,𝜒𝑝ℎ

)︀
= 0, (7.13e)

𝑎𝑝

(︀
𝑒u𝑝

,v𝑝ℎ

)︀
+ 𝑏𝑝

(︀
v𝑝ℎ, 𝑒𝑝𝑝

)︀
+ 𝑏Γ(0,v𝑝ℎ,0; 𝑒𝜆) = 0, (7.13f)

𝑎𝑝
𝑝

(︀
𝜕𝑡𝑒𝑝𝑝 , 𝑤𝑝ℎ

)︀
+ 𝑎𝑒

(︀
𝜕𝑡𝑒𝜎𝑝 , 𝜕𝑡𝑒𝑝𝑝 ; 0, 𝑤𝑝ℎ

)︀
− 𝑏𝑝

(︀
𝑒u𝑝 , 𝑤𝑝ℎ

)︀
= 0, (7.13g)

−𝑏Γ
(︀
𝑒u𝑓

, 𝑒u𝑝
, 𝑒𝜃; 𝜉ℎ

)︀
= 0, (7.13h)

𝑏Γ(0,0,𝜑ℎ; 𝑒𝜆) + 𝑎BJS
(︀
𝑒u𝑓

, 𝑒𝜃; 0,𝜑ℎ

)︀
+ 𝑏𝑝𝑛

(︀
𝑒𝜎𝑝

,𝜑ℎ

)︀
= 0. (7.13i)

Setting v𝑓ℎ = 𝑒ℎ
u𝑓
, 𝑤𝑓ℎ = 𝑒ℎ

𝑝𝑓
, 𝜏𝑝ℎ = 𝑒ℎ

𝜎𝑝
,v𝑠ℎ = 𝑒ℎ

u𝑠
,𝜒𝑝ℎ = 𝑒ℎ

𝛾𝑝
,v𝑝ℎ = 𝑒ℎ

u𝑝
, 𝑤𝑝ℎ = 𝑒ℎ

𝑝𝑝
, 𝜉ℎ = 𝑒ℎ

𝜆,𝜑ℎ = 𝑒ℎ
𝜃, and

summing the equations, we obtain

𝑎𝑓

(︁
𝑒𝐼
u𝑓
, 𝑒ℎ

u𝑓

)︁
+ 𝑎𝑓

(︁
𝑒ℎ
u𝑓
, 𝑒ℎ

u𝑓

)︁
+ 𝑎BJS

(︁
𝑒𝐼
u𝑓
, 𝑒𝐼
𝜃; 𝑒ℎ

u𝑓
, 𝑒ℎ
𝜃

)︁
+ 𝑎BJS

(︁
𝑒ℎ
u𝑓
, 𝑒ℎ
𝜃; 𝑒ℎ

u𝑓
, 𝑒ℎ
𝜃

)︁
+ 𝑎𝑒

(︁
𝜕𝑡𝑒

𝐼
𝜎𝑝
, 𝜕𝑡𝑒

𝐼
𝑝𝑝

; 𝑒ℎ
𝜎𝑝
, 𝑒ℎ

𝑝𝑝

)︁
+ 𝑎𝑒

(︁
𝜕𝑡𝑒

ℎ
𝜎𝑝
, 𝜕𝑡𝑒

ℎ
𝑝𝑝

; 𝑒ℎ
𝜎𝑝
, 𝑒ℎ

𝑝𝑝

)︁
+ 𝑎𝑝

(︁
𝑒𝐼
u𝑝
, 𝑒ℎ

u𝑝

)︁
+ 𝑎𝑝

(︁
𝑒ℎ
u𝑝
, 𝑒ℎ

u𝑝

)︁
+ 𝑎𝑝

𝑝

(︁
𝜕𝑡𝑒

𝐼
𝑝𝑝
, 𝑒ℎ

𝑝𝑝

)︁
+ 𝑎𝑝

𝑝

(︁
𝜕𝑡𝑒

ℎ
𝑝𝑝
, 𝑒ℎ

𝑝𝑝

)︁
+ 𝑏𝑝𝑛

(︁
𝑒𝐼
𝜎𝑝
, 𝑒ℎ
𝜃

)︁
+ 𝑏𝑝

(︁
𝑒ℎ
u𝑝
, 𝑒𝐼

𝑝𝑝

)︁
+ 𝑏𝑓

(︁
𝑒ℎ
u𝑓
, 𝑒𝐼

𝑝𝑓

)︁
+ 𝑏𝑠

(︁
𝑒ℎ
𝜎𝑝
, 𝑒𝐼

u𝑠

)︁
+ 𝑏sk

(︁
𝑒ℎ
𝜎𝑝
, 𝑒𝐼
𝛾𝑝

)︁
+ 𝑏Γ

(︁
𝑒ℎ
u𝑓
, 𝑒ℎ

u𝑝
, 𝑒ℎ
𝜃; 𝑒𝐼

𝜆

)︁
− 𝑏𝑝𝑛

(︁
𝑒ℎ
𝜎𝑝
, 𝑒𝐼
𝜃

)︁
− 𝑏𝑝

(︁
𝑒𝐼
u𝑝
, 𝑒ℎ

𝑝𝑝

)︁
− 𝑏𝑓

(︁
𝑒𝐼
u𝑓
, 𝑒ℎ

𝑝𝑓

)︁
− 𝑏𝑠

(︁
𝑒𝐼
𝜎𝑝
, 𝑒ℎ

u𝑠

)︁
− 𝑏sk

(︁
𝑒𝐼
𝜎𝑝
, 𝑒ℎ
𝛾𝑝

)︁
− 𝑏Γ

(︁
𝑒𝐼
u𝑓
, 𝑒𝐼

u𝑝
, 𝑒𝐼
𝜃; 𝑒ℎ

𝜆

)︁
= 0. (7.14)

Due to (5.1) and the properties of the projection operators (7.1), (7.3), (7.5), (7.7) and (7.9), we have

𝑏𝑝𝑛

(︁
𝑒ℎ
𝜎𝑝
, 𝑒𝐼
𝜃

)︁
= 0,

⟨
𝑒ℎ
u𝑝
· n𝑝, 𝑒

𝐼
𝜆

⟩
Γ𝑓𝑝

= 0, 𝑎𝑝
𝑝

(︁
𝜕𝑡𝑒

𝐼
𝑝𝑝
, 𝑒ℎ

𝑝𝑝

)︁
Ω𝑝

= 0, 𝑏𝑝

(︁
𝑒ℎ
u𝑝
, 𝑒𝐼

𝑝𝑝

)︁
= 0, 𝑏𝑠

(︁
𝑒ℎ
𝜎𝑝
, 𝑒𝐼

u𝑠

)︁
= 0,

𝑏𝑓

(︁
𝑒𝐼
u𝑓
, 𝑒ℎ

𝑝𝑓

)︁
= 0, 𝑏𝑝

(︁
𝑒𝐼
u𝑝
, 𝑒ℎ

𝑝𝑝

)︁
= 0,

⟨
𝑒𝐼
u𝑝
· n𝑝, 𝑒

ℎ
𝜆

⟩
Γ𝑓𝑝

= 0,

𝑏𝑠

(︁
𝑒𝐼
𝜎𝑝
, 𝑒ℎ

u𝑠

)︁
= 0, 𝑏sk

(︁
𝑒𝐼
𝜎𝑝
, 𝑒ℎ
𝛾𝑝

)︁
= 0, 𝑏𝑝𝑛

(︁
𝑒𝐼
𝜎𝑝
, 𝑒ℎ
𝜃

)︁
= 0.

With the use of the algebraic identity
∫︀

𝑆
𝑣 𝜕𝑡𝑣 = 1

2𝜕𝑡‖𝑣‖2L2(𝑆), the error equation (7.14) becomes

𝑎𝑓

(︁
𝑒ℎ
u𝑓
, 𝑒ℎ

u𝑓

)︁
+ 𝑎BJS

(︁
𝑒ℎ
u𝑓
, 𝑒ℎ
𝜃; 𝑒ℎ

u𝑓
, 𝑒ℎ
𝜃

)︁
+

1
2
𝜕𝑡

⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑝 𝑒
ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(Ω𝑝)
+ 𝑎𝑝

(︁
𝑒ℎ
u𝑝
, 𝑒ℎ

u𝑝

)︁
+

1
2
𝑠0𝜕𝑡

⃦⃦⃦
𝑒ℎ
𝑝𝑝

⃦⃦⃦2

W𝑝

= −𝑎𝑓

(︁
𝑒𝐼
u𝑓
, 𝑒ℎ

u𝑓

)︁
− 𝑎BJS

(︁
𝑒𝐼
u𝑓
, 𝑒𝐼
𝜃; 𝑒ℎ

u𝑓
, 𝑒ℎ
𝜃

)︁
− 𝑎𝑒

(︁
𝜕𝑡 𝑒

𝐼
𝜎𝑝
, 𝜕𝑡 𝑒

𝐼
𝑝𝑝

; 𝑒ℎ
𝜎𝑝
, 𝑒ℎ

𝑝𝑝

)︁
− 𝑎𝑝

(︁
𝑒𝐼
u𝑝
, 𝑒ℎ

u𝑝

)︁
− 𝑏𝑓

(︁
𝑒ℎ
u𝑓
, 𝑒𝐼

𝑝𝑓

)︁
− 𝑏sk

(︁
𝑒ℎ
𝜎𝑝
, 𝑒𝐼
𝛾𝑝

)︁
− 𝑏Γ

(︁
𝑒ℎ
u𝑓
,0, 𝑒ℎ

𝜃; 𝑒𝐼
𝜆

)︁
+ 𝑏Γ

(︁
𝑒𝐼
u𝑓
,0, 𝑒𝐼

𝜃; 𝑒ℎ
𝜆

)︁
. (7.15)
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We proceed by integrating (7.15) from 0 to 𝑡 ∈ (0, 𝑇 ], applying the coercivity properties of 𝑎𝑓 and 𝑎𝑝, the
semi-positive definiteness of 𝑎BJS (4.5), the Cauchy–Schwarz inequality, the trace inequality (4.2), and Young’s
inequality, to get⃦⃦⃦

𝑒ℎ
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃒⃒⃒
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁

(𝑡)
⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦⃦
𝑒ℎ
u𝑝

⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+ 𝑠0

⃦⃦⃦
𝑒ℎ
𝑝𝑝

(𝑡)
⃦⃦⃦2

W𝑝

≤ 𝜖

(︂⃦⃦⃦
𝑒ℎ
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃒⃒⃒
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼 𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
𝐴1/2𝑒ℎ

𝜎𝑝

⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))

+
⃦⃦⃦
𝑒ℎ
u𝑝

⃦⃦⃦2

L2(0,𝑡;V𝑝)
+

⃦⃦
𝑒ℎ
𝜆

⃦⃦2

L2(0,𝑡;Λ𝑝ℎ)
+

⃦⃦
𝑒ℎ
𝜃

⃦⃦2

L2(0,𝑡;Λ𝑠ℎ)

)︂
+
𝐶

𝜖

(︂⃦⃦⃦
𝑒𝐼
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃒⃒⃒
𝑒𝐼
u𝑓
− 𝑒𝐼

𝜃

⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃦⃦⃦
𝑒𝐼
𝑝𝑓

⃦⃦⃦2

L2(0,𝑡;W𝑓 )
+

⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒𝐼
𝜎𝑝

+ 𝛼𝑒𝐼
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
𝑒𝐼
𝛾𝑝

⃦⃦⃦2

L2(0,𝑡;Q𝑝)
+

⃦⃦⃦
𝑒𝐼
u𝑝

⃦⃦⃦2

L2(0,𝑡;V𝑝)

+
⃦⃦
𝑒𝐼
𝜆

⃦⃦2

L2(0,𝑡;Λ𝑝ℎ)
+

⃦⃦
𝑒𝐼
𝜃

⃦⃦2

L2(0,𝑡;Λ𝑠ℎ)

)︁
+

⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁

(0)
⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0

⃦⃦⃦
𝑒ℎ
𝑝𝑝

(0)
⃦⃦⃦2

W𝑝

, (7.16)

Here we also used that the extension of 𝐴 from S to M can be chosen as the identity operator, therefore, cf.
[41], there exists 𝑐 > 0 such that

𝑏sk(𝑒ℎ
𝜎𝑝
, 𝑒𝐼
𝛾𝑝

) =
1
𝑐

(𝑒ℎ
𝜎𝑝
, 𝐴𝑒𝐼

𝛾𝑝
)Ω𝑝

=
1
𝑐

(𝐴1/2𝑒ℎ
𝜎𝑝
, 𝐴1/2𝑒𝐼

𝛾𝑝
)Ω𝑝

≤ 𝑎
1/2
max

𝑐
‖𝐴1/2𝑒ℎ

𝜎𝑝
‖L2(Ω𝑝)‖𝑒𝐼

𝛾𝑝
‖Q𝑝

. (7.17)

On the other hand, from the discrete inf-sup condition (5.6), and using (7.13a) and (7.13f), we have⃦⃦⃦
𝑒ℎ
𝑝𝑓

⃦⃦⃦
W𝑓

+
⃦⃦⃦
𝑒ℎ
𝑝𝑝

⃦⃦⃦
W𝑝

+
⃦⃦
𝑒ℎ
𝜆

⃦⃦
Λ𝑝ℎ

≤ 𝐶 sup
(v𝑓ℎ,v𝑝ℎ)∈V𝑓ℎ×V𝑝ℎ

𝑏𝑓

(︁
v𝑓ℎ, 𝑒

ℎ
𝑝𝑓

)︁
+ 𝑏𝑝

(︁
v𝑝ℎ, 𝑒

ℎ
𝑝𝑝

)︁
+ 𝑏Γ

(︀
v𝑓ℎ,v𝑝ℎ,0; 𝑒ℎ

𝜆

)︀
‖(v𝑓ℎ,v𝑝ℎ)‖V𝑓×V𝑝

= 𝐶 sup
(v𝑓ℎ,v𝑝ℎ)∈V𝑓ℎ×V𝑝ℎ

⎛⎝−𝑎𝑓

(︁
𝑒ℎ
u𝑓
,v𝑓ℎ

)︁
− 𝑎BJS

(︁
𝑒ℎ
u𝑓
, 𝑒ℎ
𝜃; v𝑓ℎ,0

)︁
− 𝑎𝑓

(︁
𝑒𝐼
u𝑓
,v𝑓ℎ

)︁
− 𝑎BJS

(︁
𝑒𝐼
u𝑓
, 𝑒𝐼
𝜃; v𝑓ℎ,0

)︁
‖v𝑓ℎ‖V𝑓

+ ‖v𝑝ℎ‖V𝑝

+
−𝑎𝑝

(︁
𝑒ℎ
u𝑝
,v𝑝ℎ

)︁
− 𝑎𝑝

(︁
𝑒𝐼
u𝑝
,v𝑝ℎ

)︁
− 𝑏𝑓

(︁
v𝑓ℎ, 𝑒

𝐼
𝑝𝑓

)︁
− 𝑏Γ

(︀
v𝑓ℎ,0,0; 𝑒𝐼

𝜆

)︀
‖v𝑓ℎ‖V𝑓

+ ‖v𝑝ℎ‖V𝑝

⎞⎠
≤ 𝐶

(︂⃦⃦⃦
𝑒ℎ
u𝑓

⃦⃦⃦
V𝑓

+
⃒⃒⃒
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

⃒⃒⃒
𝑎BJS

+
⃦⃦⃦
𝑒𝐼
u𝑓

⃦⃦⃦
V𝑓

+
⃒⃒⃒
𝑒𝐼
u𝑓
− 𝑒𝐼

𝜃

⃒⃒⃒
𝑎BJS

+
⃦⃦⃦
𝑒ℎ
u𝑝

⃦⃦⃦
L2(Ω𝑝)

+
⃦⃦⃦
𝑒𝐼
u𝑝

⃦⃦⃦
L2(Ω𝑝)

+
⃦⃦⃦
𝑒𝐼
𝑝𝑓

⃦⃦⃦
W𝑓

+
⃦⃦
𝑒𝐼
𝜆

⃦⃦
Λ𝑝ℎ

)︂
, (7.18)

where we also used (5.1), (7.1) and (7.3). Similarly, the inf-sup condition (5.7) and (7.13c) give

⃦⃦
𝑒ℎ
u𝑠

⃦⃦
V𝑠

+
⃦⃦⃦
𝑒ℎ
𝛾𝑝

⃦⃦⃦
Q𝑝

≤ 𝐶 sup
𝜏𝑝ℎ∈X𝑝ℎ s.t. 𝜏𝑝ℎn𝑝=0 on Γ𝑓𝑝

𝑏𝑠
(︀
𝜏𝑝ℎ, 𝑒

ℎ
u𝑠

)︀
+ 𝑏sk

(︁
𝜏𝑝ℎ, 𝑒

ℎ
𝛾𝑝

)︁
‖𝜏𝑝ℎ‖X𝑝

= 𝐶 sup
𝜏𝑝ℎ∈X𝑝ℎ s.t. 𝜏𝑝ℎn𝑝=0 on Γ𝑓𝑝

⎛⎝−𝑎𝑒

(︁
𝜕𝑡𝑒

ℎ
𝜎𝑝
, 𝜕𝑡𝑒

ℎ
𝑝𝑝

; 𝜏𝑝ℎ, 0
)︁

+ 𝑏𝑝𝑛
(︀
𝜏𝑝ℎ, 𝑒

ℎ
𝜃

)︀
‖𝜏𝑝ℎ‖X𝑝
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+
−𝑎𝑒

(︁
𝜕𝑡𝑒

𝐼
𝜎𝑝
, 𝜕𝑡𝑒

𝐼
𝑝𝑝

; 𝜏𝑝ℎ, 0
)︁
− 𝑏𝑝sk

(︁
𝜏𝑝ℎ, 𝑒

𝐼
𝛾𝑝

)︁
‖𝜏𝑝ℎ‖X𝑝

⎞⎠
≤ 𝐶

(︂⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦

L2(Ω𝑝)
+

⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒𝐼
𝜎𝑝

+ 𝛼𝑒𝐼
𝑝𝑝

I
)︁⃦⃦⃦

L2(Ω𝑝)
+

⃦⃦⃦
𝑒𝐼
𝛾𝑝

⃦⃦⃦
Q𝑝

)︂
, (7.19)

where we also used (5.1) and (7.3). Finally, using the inf-sup condition (5.8) and (7.13c), we obtain

⃦⃦
𝑒ℎ
𝜃

⃦⃦
Λ𝑠ℎ

≤ 𝐶 sup
𝜏𝑝ℎ∈X𝑝ℎ s.t.∇·𝜏𝑝ℎ=0

𝑏𝑝𝑛
(︀
𝜏𝑝ℎ, 𝑒

ℎ
𝜃

)︀
‖𝜏𝑝ℎ‖X𝑝

= 𝐶 sup
𝜏𝑝ℎ∈X𝑝ℎ s.t.∇·𝜏𝑝ℎ=0

⎛⎝𝑎𝑒(𝜕𝑡𝑒
ℎ
𝜎𝑝
, 𝜕𝑡𝑒

ℎ
𝑝𝑝

; 𝜏𝑝ℎ, 0) + 𝑏𝑠
(︀
𝜏𝑝ℎ, 𝑒

ℎ
u𝑠

)︀
+ 𝑏sk

(︁
𝜏𝑝ℎ, 𝑒

ℎ
𝛾𝑝

)︁
‖𝜏𝑝ℎ‖X𝑝

+
𝑎𝑒

(︁
𝜕𝑡𝑒

𝐼
𝜎𝑝
, 𝜕𝑡𝑒

𝐼
𝑝𝑝

; 𝜏𝑝ℎ, 0
)︁

+ 𝑏sk

(︁
𝜏𝑝ℎ, 𝑒

𝐼
𝛾𝑝

)︁
‖𝜏𝑝ℎ‖X𝑝

⎞⎠
≤ 𝐶

(︂
‖𝐴1/2𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁
‖L2(Ω𝑝) +

⃦⃦⃦
𝑒ℎ
𝛾𝑝

⃦⃦⃦
Q𝑝

+
⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒𝐼
𝜎𝑝

+ 𝛼𝑒𝐼
𝑝𝑝

I
)︁⃦⃦⃦

L2(Ω𝑝)
+

⃦⃦⃦
𝑒𝐼
𝛾𝑝

⃦⃦⃦
Q𝑝

)︂
, (7.20)

where we also used (7.1).

We next derive bounds for
⃦⃦⃦
∇ · 𝑒ℎ

u𝑝

⃦⃦⃦
L2(Ω𝑝)

and
⃦⃦⃦
∇ · 𝑒ℎ

𝜎𝑝

⃦⃦⃦
L2(Ω𝑝)

. Due to (5.1), we can choose 𝑤𝑝ℎ = ∇ · 𝑒ℎ
u𝑝

in (7.13g), obtaining⃦⃦⃦
∇ · 𝑒ℎ

u𝑝

⃦⃦⃦2

L2(Ω𝑝)
= −

(︁
𝑠0𝜕𝑡𝑒

ℎ
𝑝𝑝
,∇ · 𝑒ℎ

u𝑝

)︁
Ω𝑝

−
(︁
𝐴𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁
,∇ · 𝑒ℎ

u𝑝

)︁
Ω𝑝

−
(︁
𝐴𝜕𝑡

(︁
𝑒𝐼
𝜎𝑝

+ 𝛼𝑒𝐼
𝑝𝑝

I
)︁
,∇ · 𝑒ℎ

u𝑝

)︁
Ω𝑝

≤
(︂
𝑠0

⃦⃦⃦
𝜕𝑡𝑒

ℎ
𝑝𝑝

⃦⃦⃦
W𝑝

+ 𝑎1/2
max

⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦

L2(Ω𝑝)

+ 𝑎1/2
max

⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒𝐼
𝜎𝑝

+ 𝛼𝑒𝐼
𝑝𝑝

I
)︁⃦⃦⃦

L2(Ω𝑝)

)︂⃦⃦⃦
∇ · 𝑒ℎ

u𝑝

⃦⃦⃦
L2(Ω𝑝)

. (7.21)

Similarly, the choice of v𝑠ℎ = ∇ · 𝑒ℎ
𝜎𝑝

in (7.13d) gives⃦⃦⃦
∇ · 𝑒ℎ

𝜎𝑝
(𝑡)

⃦⃦⃦
L2(Ω𝑝)

= 0 and
⃦⃦⃦
∇ · 𝑒ℎ

𝜎𝑝

⃦⃦⃦
L2(0,𝑡;L2(Ω𝑝))

= 0. (7.22)

Combining (7.16) with (7.18)–(7.22) and choosing 𝜖 small enough, results in⃦⃦⃦
𝑒ℎ
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃒⃒⃒
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃦⃦⃦
𝑒ℎ
𝑝𝑓

⃦⃦⃦2

L2(0,𝑡;W𝑓 )
+

⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁

(𝑡)
⃦⃦⃦2

L2(Ω𝑝)

+
⃦⃦⃦
∇ · 𝑒ℎ

𝜎𝑝

⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
∇ · 𝑒ℎ

𝜎𝑝
(𝑡)

⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦
𝑒ℎ
u𝑠

⃦⃦2

L2(0,𝑡;V𝑠)
+

⃦⃦⃦
𝑒ℎ
𝛾𝑝

⃦⃦⃦2

L2(0,𝑡;Q𝑝)
+

⃦⃦⃦
𝑒ℎ
u𝑝

⃦⃦⃦2

L2(0,𝑡;V𝑝)

+
⃦⃦⃦
𝑒ℎ
𝑝𝑝

⃦⃦⃦2

L2(0,𝑡;W𝑝)
+ 𝑠0

⃦⃦⃦
𝑒ℎ
𝑝𝑝

(𝑡)
⃦⃦⃦2

W𝑝

+
⃦⃦
𝑒ℎ
𝜆

⃦⃦2

L2(0,𝑡;Λ𝑝ℎ)
+

⃦⃦
𝑒ℎ
𝜃

⃦⃦2

L2(0,𝑡;Λ𝑠ℎ)

≤ 𝐶

(︂⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+ 𝑠0

⃦⃦⃦
𝜕𝑡𝑒

ℎ
𝑝𝑝

⃦⃦⃦2

L2(0,𝑡;W𝑝)

+
⃦⃦⃦
𝑒𝐼
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃒⃒⃒
𝑒𝐼
u𝑓
− 𝑒𝐼

𝜃

⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃦⃦⃦
𝑒𝐼
𝑝𝑓

⃦⃦⃦2

L2(0,𝑡;W𝑓 )
+

⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒𝐼
𝜎𝑝

+ 𝛼𝑒𝐼
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
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+
⃦⃦⃦
𝑒𝐼
𝛾𝑝

⃦⃦⃦2

L2(0,𝑡;Q𝑝)
+

⃦⃦⃦
𝑒𝐼
u𝑝

⃦⃦⃦2

L2(0,𝑡;V𝑝)
+

⃦⃦
𝑒𝐼
𝜆

⃦⃦2

L2(0,𝑡;Λ𝑝ℎ)
+

⃦⃦
𝑒𝐼
𝜃

⃦⃦2

L2(0,𝑡;Λ𝑠ℎ)

+
⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁

(0)
⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0

⃦⃦⃦
𝑒ℎ
𝑝𝑝

(0)
⃦⃦⃦2

L2(Ω𝑝)

)︂
, (7.23)

where we also used⃦⃦⃦
𝐴1/2𝑒ℎ

𝜎𝑝

⃦⃦⃦
L2(0,𝑡;L2(Ω𝑝))

≤ 𝐶

(︂⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
𝑒ℎ
𝑝𝑝

⃦⃦⃦
L2(0,𝑡;W𝑝)

)︂
. (7.24)

In order to bound
⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦

L2(0,𝑡;L2(Ω𝑝))
and 𝑠0

⃦⃦⃦
𝜕𝑡𝑒

ℎ
𝑝𝑝

⃦⃦⃦
L2(0,𝑡;W𝑝)

, we differentiate in time (3.4a),

(3.4d), (3.4e), (3.4f), and (3.4i) in the continuous equations and (5.3a), (5.3d), (5.3e), (5.3f), and (5.3i)
in the semi-discrete equations, subtract the two systems, take (v𝑓ℎ, 𝑤𝑓ℎ, 𝜏𝑝ℎ,v𝑠ℎ,𝜒𝑝ℎ,v𝑝ℎ, 𝑤𝑝ℎ, 𝜉ℎ,𝜑ℎ) =(︁
𝑒ℎ
u𝑓
, 𝜕𝑡𝑒

ℎ
𝑝𝑓
, 𝜕𝑡𝑒

ℎ
𝜎𝑝
, 𝑒ℎ

u𝑠
, 𝑒ℎ
𝛾𝑝
, 𝑒ℎ

u𝑝
, 𝜕𝑡𝑒

ℎ
𝑝𝑝
, 𝜕𝑡𝑒

ℎ
𝜆, 𝑒

ℎ
𝜃

)︁
, and add all the equations together to obtain, in a way simi-

lar to (7.15),

1
2
𝜕𝑡𝑎𝑓

(︁
𝑒ℎ
u𝑓
, 𝑒ℎ

u𝑓

)︁
+

1
2
𝜕𝑡𝑎BJS

(︁
𝑒ℎ
u𝑓
, 𝑒ℎ
𝜃; 𝑒ℎ

u𝑓
, 𝑒ℎ
𝜃

)︁
+

⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(Ω𝑝)
+

1
2
𝜕𝑡𝑎𝑝

(︁
𝑒ℎ
u𝑝
, 𝑒ℎ

u𝑝

)︁
+ 𝑠0

⃦⃦⃦
𝜕𝑡𝑒

ℎ
𝑝𝑝

⃦⃦⃦2

W𝑝

= −𝑎𝑓

(︁
𝜕𝑡𝑒

𝐼
u𝑓
, 𝑒ℎ

u𝑓

)︁
− 𝑎BJS

(︁
𝜕𝑡𝑒

𝐼
u𝑓
, 𝜕𝑡𝑒

𝐼
𝜃; 𝑒ℎ

u𝑓
, 𝑒ℎ
𝜃

)︁
− 𝑎𝑒

(︁
𝜕𝑡𝑒

𝐼
𝜎𝑝
, 𝜕𝑡𝑒

𝐼
𝑝𝑝

; 𝜕𝑡𝑒
ℎ
𝜎𝑝
, 𝜕𝑡𝑒

ℎ
𝑝𝑝

)︁
− 𝑎𝑝

(︁
𝜕𝑡𝑒

𝐼
u𝑝
, 𝑒ℎ

u𝑝

)︁
− 𝑏𝑓

(︁
𝑒ℎ
u𝑓
, 𝜕𝑡𝑒

𝐼
𝑝𝑓

)︁
− 𝑏sk

(︁
𝜕𝑡𝑒

ℎ
𝜎𝑝
, 𝑒𝐼
𝛾𝑝

)︁
− 𝑏Γ

(︁
𝑒ℎ
u𝑓
,0, 𝑒ℎ

𝜃; 𝜕𝑡𝑒
𝐼
𝜆

)︁
+ 𝑏Γ

(︁
𝑒𝐼
u𝑓
,0, 𝑒𝐼

𝜃; 𝜕𝑡𝑒
ℎ
𝜆

)︁
. (7.25)

Using integration by parts in time, we obtain∫︁ 𝑡

0

𝑏sk

(︁
𝜕𝑡𝑒

ℎ
𝜎𝑝
, 𝑒𝐼
𝛾𝑝

)︁
d𝑠 = 𝑏sk

(︁
𝑒ℎ
𝜎𝑝
, 𝑒𝐼
𝛾𝑝

)︁⃒⃒⃒𝑡
0
−

∫︁ 𝑡

0

𝑏sk

(︁
𝑒ℎ
𝜎𝑝
, 𝜕𝑡𝑒

𝐼
𝛾𝑝

)︁
d𝑠,∫︁ 𝑡

0

⟨
𝑒𝐼
u𝑓
· n𝑓 , 𝜕𝑡𝑒

ℎ
𝜆

⟩
Γ𝑓𝑝

d𝑠 =
⟨
𝑒𝐼
u𝑓
· n𝑓 , 𝑒

ℎ
𝜆

⟩
Γ𝑓𝑝

⃒⃒⃒𝑡
0
−

∫︁ 𝑡

0

⟨
𝜕𝑡𝑒

𝐼
u𝑓
· n𝑓 , 𝑒

ℎ
𝜆

⟩
Γ𝑓𝑝

d𝑠,∫︁ 𝑡

0

⟨︀
𝑒𝐼
𝜃 · n𝑝, 𝜕𝑡𝑒

ℎ
𝜆

⟩︀
Γ𝑓𝑝

d𝑠 =
⟨︀
𝑒𝐼
𝜃 · n𝑝, 𝑒

ℎ
𝜆

⟩︀
Γ𝑓𝑝

⃒⃒⃒𝑡
0
−

∫︁ 𝑡

0

⟨︀
𝜕𝑡𝑒

𝐼
𝜃 · n𝑝, 𝑒

ℎ
𝜆

⟩︀
Γ𝑓𝑝

d𝑠.

We integrate (7.25) over (0, 𝑡) and apply the coercivity properties of 𝑎𝑓 and 𝑎𝑝, the semi-positive definiteness
of 𝑎BJS (4.5), the Cauchy–Schwarz inequality, the trace inequality (4.2), and Young’s inequality, to obtain⃦⃦⃦
𝑒ℎ
u𝑓

(𝑡)
⃦⃦⃦2

V𝑓

+
⃒⃒⃒(︁
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

)︁
(𝑡)

⃒⃒⃒2
𝑎BJS

+
⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
𝑒ℎ
u𝑝

(𝑡)
⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0

⃦⃦⃦
𝜕𝑡𝑒

ℎ
𝑝𝑝

⃦⃦⃦2

L2(0,𝑡;𝑊𝑝)

≤ 𝜖

(︂⃦⃦⃦
𝑒ℎ
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃒⃒⃒
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))

+
⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
𝐴1/2(𝑒ℎ

𝜎𝑝
+ 𝛼𝑒ℎ

𝑝𝑝
I)(𝑡)

⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦⃦
𝑒ℎ
u𝑝

⃦⃦⃦2

L2(0,𝑡;V𝑝)

+
⃦⃦⃦
𝑒ℎ
𝑝𝑝

⃦⃦⃦2

L2(0,𝑡;W𝑝)
+

⃦⃦⃦
𝑒ℎ
𝑝𝑝

(𝑡)
⃦⃦⃦2

W𝑝

+
⃦⃦
𝑒ℎ
𝜆(𝑡)

⃦⃦2

Λ𝑝ℎ
+

⃦⃦
𝑒ℎ
𝜆

⃦⃦2

L2(0,𝑡;Λ𝑝ℎ)
+

⃦⃦
𝑒ℎ
𝜃

⃦⃦2

L2(0,𝑡;Λ𝑠ℎ)

)︂
+
𝐶

𝜖

(︂⃦⃦⃦
𝜕𝑡𝑒

𝐼
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃒⃒⃒
𝜕𝑡

(︁
𝑒𝐼
u𝑓
− 𝑒𝐼

𝜃

)︁⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃦⃦⃦
𝜕𝑡𝑒

𝐼
𝑝𝑓

⃦⃦⃦2

L2(0,𝑡;W𝑓 )

+
⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒𝐼
𝜎𝑝

+ 𝛼𝑒𝐼
𝑝𝑝

)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
𝜕𝑡𝑒

𝐼
𝛾𝑝

⃦⃦⃦2

L2(0,𝑡;Q𝑝)
+

⃦⃦⃦
𝑒𝐼
𝛾𝑝

(𝑡)
⃦⃦⃦2

Q𝑝

+
⃦⃦⃦
𝜕𝑡𝑒

𝐼
u𝑝

⃦⃦⃦2

L2(0,𝑡;V𝑝)
+

⃦⃦
𝜕𝑡𝑒

𝐼
𝜆

⃦⃦2

L2(0,𝑡;Λ𝑝ℎ)
+

⃦⃦
𝜕𝑡𝑒

𝐼
𝜃

⃦⃦2

L2(0,𝑡;Λ𝑠ℎ)
+

⃦⃦⃦
𝑒𝐼
u𝑓

(𝑡)
⃦⃦⃦2

V𝑓

+
⃦⃦
𝑒𝐼
𝜃(𝑡)

⃦⃦2

Λ𝑠

)︂
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+
⃦⃦⃦
𝑒ℎ
u𝑓

(0)
⃦⃦⃦2

V𝑓

+
⃒⃒⃒(︁
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

)︁
(0)

⃒⃒⃒2
𝑎BJS

+
⃦⃦⃦
𝐴1/2𝑒ℎ

𝜎𝑝
(0)

⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦⃦
𝑒ℎ
u𝑝

(0)
⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦
𝑒ℎ
𝜆(0)

⃦⃦2

Λ𝑝

+
⃦⃦⃦
𝑒𝐼
u𝑓

(0)
⃦⃦⃦2

V𝑓

+
⃦⃦⃦
𝑒𝐼
𝛾𝑝

(0)
⃦⃦⃦2

Q𝑝

+
⃦⃦
𝑒𝐼
𝜃(0)

⃦⃦2

Λ𝑠ℎ
, (7.26)

where we also used 𝑏sk

(︁
𝑒ℎ
𝜎𝑝
, 𝜕𝑡𝑒

𝐼
𝛾𝑝

)︁
≤ 𝐶

⃦⃦⃦
𝐴1/2𝑒ℎ

𝜎𝑝

⃦⃦⃦
L2(Ω𝑝)

⃦⃦⃦
𝜕𝑡𝑒

𝐼
𝛾𝑝

⃦⃦⃦
Q𝑝

, cf. (7.17), and

⃦⃦⃦
𝐴1/2𝑒ℎ

𝜎𝑝
(𝑡)

⃦⃦⃦
L2(Ω𝑝)

≤ 𝐶

(︂⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁

(𝑡)
⃦⃦⃦

L2(Ω𝑝)
+

⃦⃦⃦
𝑒ℎ
𝑝𝑝

(𝑡)
⃦⃦⃦

W𝑝

)︂
.

In addition, the choice of v𝑠ℎ = ∇ · 𝜕𝑡𝑒
ℎ
𝜎𝑝

in the time differentiated version of (7.13) gives⃦⃦⃦
∇ · 𝜕𝑡𝑒

ℎ
𝜎𝑝

(𝑡)
⃦⃦⃦
L2(Ω𝑝)

= 0 and
⃦⃦⃦
∇ · 𝜕𝑡𝑒

ℎ
𝜎𝑝

⃦⃦⃦
L2(0,𝑡;L2(Ω𝑝))

= 0. (7.27)

Thus, combining (7.26) with (7.18), (7.23) and (7.27), and taking 𝜖 small enough, we obtain⃦⃦⃦
𝑒ℎ
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃦⃦⃦
𝑒ℎ
u𝑓

(𝑡)
⃦⃦⃦2

V𝑓

+
⃒⃒⃒
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃒⃒⃒(︁
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

)︁
(𝑡)

⃒⃒⃒2
𝑎BJS

+
⃦⃦⃦
𝑒ℎ
𝑝𝑓

⃦⃦⃦2

L2(0,𝑡;W𝑓 )
+

⃦⃦⃦
𝑒ℎ
𝑝𝑓

(𝑡)
⃦⃦⃦

W𝑓

+
⃦⃦⃦
∇ · 𝑒ℎ

𝜎𝑝

⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
∇ · 𝑒ℎ

𝜎𝑝
(𝑡)

⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦⃦
∇ · 𝜕𝑡𝑒

ℎ
𝜎𝑝

⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
∇ · 𝜕𝑡𝑒

ℎ
𝜎𝑝

(𝑡)
⃦⃦⃦2

L2(Ω𝑝)

+
⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁

(𝑡)
⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦
𝑒ℎ
u𝑠

⃦⃦2

L2(0,𝑡;V𝑠)

+
⃦⃦⃦
𝑒ℎ
𝛾𝑝

⃦⃦⃦2

L2(0,𝑡;Q𝑝)
+

⃦⃦⃦
𝑒ℎ
u𝑝

⃦⃦⃦2

L2(0,𝑡;V𝑝)
+

⃦⃦⃦
𝑒ℎ
u𝑝

(𝑡)
⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦⃦
𝑒ℎ
𝑝𝑝

⃦⃦⃦2

L2(0,𝑡;W𝑝)
+

⃦⃦⃦
𝑒ℎ
𝑝𝑝

(𝑡)
⃦⃦⃦2

W𝑝

+ 𝑠0

⃦⃦⃦
𝜕𝑡𝑒

ℎ
𝑝𝑝

⃦⃦⃦2

L2(0,𝑡;W𝑝)
+

⃦⃦
𝑒ℎ
𝜆

⃦⃦2

L2(0,𝑡;Λ𝑝ℎ)
+

⃦⃦
𝑒ℎ
𝜆(𝑡)

⃦⃦
Λ𝑝ℎ

+
⃦⃦
𝑒ℎ
𝜃

⃦⃦2

L2(0,𝑡;Λ𝑠ℎ)

≤ 𝐶

(︂⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
𝑒𝐼
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃦⃦⃦
𝜕𝑡𝑒

𝐼
u𝑓

⃦⃦⃦2

L2(0,𝑡;V𝑓 )
+

⃦⃦⃦
𝑒𝐼
u𝑓

(𝑡)
⃦⃦⃦2

V𝑓

+
⃒⃒⃒
𝑒𝐼
u𝑓
− 𝑒𝐼

𝜃

⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃒⃒⃒
𝜕𝑡

(︁
𝑒𝐼
u𝑓
− 𝑒𝐼

𝜃

)︁⃒⃒⃒2
L2(0,𝑡;𝑎BJS)

+
⃒⃒⃒(︁
𝑒𝐼
u𝑓
− 𝑒𝐼

𝜃

)︁
(𝑡)

⃒⃒⃒
𝑎BJS

+
⃦⃦⃦
𝑒𝐼
𝑝𝑓

⃦⃦⃦2

L2(0,𝑡;W𝑓 )

+
⃦⃦⃦
𝜕𝑡𝑒

𝐼
𝑝𝑓

⃦⃦⃦2

L2(0,𝑡;W𝑓 )
+

⃦⃦⃦
𝑒𝐼
𝑝𝑓

(𝑡)
⃦⃦⃦2

W𝑓

+
⃦⃦⃦
𝐴1/2𝜕𝑡

(︁
𝑒𝐼
𝜎𝑝

+ 𝛼𝑒𝐼
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
+

⃦⃦⃦
𝑒𝐼
𝛾𝑝

⃦⃦⃦2

L2(0,𝑡;Q𝑝)

+
⃦⃦⃦
𝜕𝑡𝑒

𝐼
𝛾𝑝

⃦⃦⃦2

L2(0,𝑡;Q𝑝)
+

⃦⃦⃦
𝑒𝐼
𝛾𝑝

(𝑡)
⃦⃦⃦2

Q𝑝

+
⃦⃦⃦
𝑒𝐼
u𝑝

⃦⃦⃦2

L2(0,𝑡;V𝑝)
+

⃦⃦⃦
𝜕𝑡𝑒

𝐼
u𝑝

⃦⃦⃦2

L2(0,𝑡;V𝑝)
+

⃦⃦⃦
𝑒𝐼
u𝑝

(𝑡)
⃦⃦⃦
V𝑝

+
⃦⃦
𝑒𝐼
𝜆

⃦⃦2

L2(0,𝑡;Λ𝑝ℎ)
+

⃦⃦
𝜕𝑡𝑒

𝐼
𝜆

⃦⃦2

L2(0,𝑡;Λ𝑝ℎ)
+

⃦⃦
𝑒𝐼
𝜆(𝑡)

⃦⃦
Λ𝑝ℎ

+
⃦⃦
𝑒𝐼
𝜃

⃦⃦2

L2(0,𝑡;Λ𝑠ℎ)
+

⃦⃦
𝜕𝑡𝑒

𝐼
𝜃

⃦⃦2

L2(0,𝑡;Λ𝑠ℎ)
+

⃦⃦
𝑒𝐼
𝜃(𝑡)

⃦⃦2

Λ𝑠ℎ

+
⃦⃦⃦
𝑒ℎ
u𝑓

(0)
⃦⃦⃦2

V𝑓

+
⃒⃒⃒(︁
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

)︁
(0)

⃒⃒⃒2
𝑎BJS

+
⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁

(0)
⃦⃦⃦2

L2(Ω𝑝)
+ 𝑠0

⃦⃦⃦
𝑒ℎ
𝑝𝑝

(0)
⃦⃦⃦2

L2(Ω𝑝)

)︂
+

⃦⃦⃦
𝐴1/2𝑒ℎ

𝜎𝑝
(0)

⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦⃦
𝑒ℎ
u𝑝

(0)
⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦
𝑒ℎ
𝜆(0)

⃦⃦2

Λ𝑝ℎ
+

⃦⃦⃦
𝑒𝐼
u𝑓

(0)
⃦⃦⃦2

V𝑓

+
⃦⃦⃦
𝑒𝐼
𝛾𝑝

(0)
⃦⃦⃦2

Q𝑝

+
⃦⃦
𝑒𝐼
𝜃(0)

⃦⃦2

Λ𝑠ℎ
. (7.28)

We remark that in the above bound we have obtained control on
⃦⃦⃦
𝑒ℎ
𝑝𝑝

(𝑡)
⃦⃦⃦

W𝑝

independent of 𝑠0.

We next establish a bound on the initial data terms above. We recall that (u𝑓 (0), 𝑝𝑓 (0),
𝜎𝑝(0), u𝑝(0), 𝑝𝑝(0), 𝜆(0), 𝜃(0)) = (u𝑓,0, 𝑝𝑓,0,𝜎𝑝,0,u𝑝,0, 𝑝𝑝,0, 𝜆0,𝜃0), cf. Corollary 4.13, and
(u𝑓ℎ(0), 𝑝𝑓ℎ(0),𝜎𝑝ℎ(0),u𝑝ℎ(0), 𝑝𝑝ℎ(0), 𝜆ℎ(0),𝜃ℎ(0)) = (u𝑓ℎ,0, 𝑝𝑓ℎ,0,𝜎𝑝ℎ,0,u𝑝ℎ,0, 𝑝𝑝ℎ,0, 𝜆ℎ,0,𝜃ℎ,0), cf. Theo-
rem 5.3. We first note that, since 𝜃ℎ,0 = 𝑃Λ𝑠

ℎ 𝜃0,

𝑒ℎ
𝜃(0) = 0. (7.29)
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Next, similarly to (6.11), we obtain⃦⃦⃦
𝑒ℎ
u𝑓

(0)
⃦⃦⃦2

V𝑓

+
⃒⃒⃒(︁
𝑒ℎ
u𝑓
− 𝑒ℎ

𝜃

)︁
(0)

⃒⃒⃒2
𝑎BJS

+
⃦⃦⃦
𝐴1/2𝑒ℎ

𝜎𝑝
(0)

⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦⃦
𝑒ℎ
u𝑝

(0)
⃦⃦⃦2

L2(Ω𝑝)
+

⃦⃦⃦
𝑒ℎ
𝑝𝑝

(0)
⃦⃦⃦2

W𝑝

+
⃦⃦
𝑒ℎ
𝜆(0)

⃦⃦2

Λ𝑝ℎ

≤ 𝐶

(︂⃦⃦⃦
𝑒𝐼
u𝑓

(0)
⃦⃦⃦
V𝑓

+
⃒⃒⃒
𝑒𝐼
u𝑓

(0)− 𝑒𝐼
𝜃(0)

⃒⃒⃒2
𝑎BJS

+
⃦⃦⃦
𝑒𝐼
𝑝𝑓

(0)
⃦⃦⃦

W𝑓

+
⃦⃦⃦
𝑒𝐼
𝜎𝑝

(0)
⃦⃦⃦

X𝑝

+
⃦⃦⃦
𝑒𝐼
𝜌𝑝

(0)
⃦⃦⃦

Q𝑝

+
⃦⃦⃦
𝑒𝐼
u𝑝

(0)
⃦⃦⃦
V𝑝

+
⃦⃦⃦
𝑒𝐼
𝑝𝑝

(0)
⃦⃦⃦

W𝑝

+
⃦⃦
𝑒𝐼
𝜆(0)

⃦⃦
Λ𝑝

+
⃦⃦
𝑒𝐼
𝜃(0)

⃦⃦
Λ𝑠ℎ

)︂
. (7.30)

Combining (7.28)–(7.30), using Gronwall’s inequality for
⃦⃦⃦
𝐴1/2

(︁
𝑒ℎ
𝜎𝑝

+ 𝛼𝑒ℎ
𝑝𝑝

I
)︁⃦⃦⃦2

L2(0,𝑡;L2(Ω𝑝))
, the triangle inequal-

ity, and the approximation properties (7.2), (7.4), (7.6), and (7.8), we obtain (7.11). �

8. Numerical results

In this section we present the results from a series of numerical tests illustrating the performance of the
proposed method. We employ the backward Euler method for the time discretization. Let ∆𝑡 = 𝑇/𝑁 be the
time step, 𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 0, · · · , 𝑁 . Let 𝑑𝑡 𝑢

𝑛 := (𝑢𝑛 − 𝑢𝑛−1)/∆𝑡, where 𝑢𝑛 := 𝑢(𝑡𝑛). The fully discrete method
reads: given (p0

ℎ, r
0
ℎ) = (pℎ(0), rℎ(0)) satisfying (5.14), find (p𝑛

ℎ, r
𝑛
ℎ) ∈ Qℎ × Sℎ, 𝑛 = 1, · · · , 𝑁 , such that for all

(qℎ, sℎ) ∈ Qℎ × Sℎ,
𝑑𝑡 ℰ1 (p𝑛

ℎ)(qℎ) +𝒜 (p𝑛
ℎ)(qℎ) + ℬ′ (r𝑛

ℎ)(qℎ) = F(qℎ),
−ℬ (p𝑛

ℎ)(sℎ) = G(sℎ). (8.1)

Our implementation is on triangular grids, and it is based on the FreeFem++ finite element package [36]. We use
a monolithic scheme, in conjunction with the direct solver UMFPACK [27]. We note that iterative solvers suitable
for saddle point problems [29] could also be utilized. It is shown in [19] that block-diagonal preconditioners based
on split schemes involving individual physics solves can be very effective. Another alternative is non-overlapping
domain decomposition methods, see [37] for a recent work on a fully mixed five-field formulation of the Biot
system of poroelasticity. For spatial discretization we use the MINI elements P𝑏

1 − P1 for the Stokes spaces
(V𝑓ℎ,W𝑓ℎ), where P𝑏

1 stands for the space of continuous piecewise linear polynomials enhanced elementwise by
cubic bubbles, the lowest order Raviart–Thomas elements RT0 − P0 for the Darcy spaces (V𝑝ℎ,W𝑝ℎ), and the
BDM1 − P0 − P1 elements [16] for the elasticity spaces (X𝑝ℎ,V𝑠ℎ,Q𝑝ℎ). According to (5.2), for the Lagrange
multiplier spaces we choose piecewise constants for Λℎ and discontinuous piecewise linears for Λ𝑠ℎ. We note
that the choice of the BDM1−P0−P1 spaces for elasticity fits in the framework of the multipoint stress mixed
finite element method [5], where the stress and rotation variables can be locally eliminated, resulting in a very
efficient positive definite cell-centered scheme for the displacement.

We present two examples. Example 1 is used to corroborate the rates of convergence. In Example 2 we present
simulations of the coupling of surface and subsurface hydrological systems, focusing on the qualitative behavior
of the solution.

8.1. Example 1: convergence test

For the convergence study we consider a test case with domain Ω = (0, 1)× (−1, 1) and a known analytical
solution. We associate the upper half with the Stokes flow, while the lower half represents the flow in the
poroelastic structure governed by the Biot system. The physical parameters are K = I, 𝜇 = 1, 𝛼 = 1, 𝛼BJS = 1,
𝑠0 = 1, 𝜆𝑝 = 1, and 𝜇𝑝 = 1. The solution in the Stokes region is

u𝑓 = 𝜋 cos(𝜋𝑡)
(︂
−3𝑥+ cos(𝑦)

𝑦 + 1

)︂
, 𝑝𝑓 = 𝑒𝑡 sin(𝜋𝑥) cos

(︁𝜋𝑦
2

)︁
+ 2𝜋 cos(𝜋𝑡).
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Table 1. Example 1, Mesh sizes, errors and rates of convergences in matching grids.

𝑛 ‖𝑒u𝑓 ‖𝑙2(V𝑓 ) Rate ‖𝑒𝑝𝑓 ‖𝑙2(W𝑓 ) Rate ‖𝑒𝜎𝑝‖𝑙∞(L2(Ω𝑝)) Rate

8 7.731e-03 0.0 2.601e-03 0.0 7.454e-02 0.0
16 3.860e-03 1.0 8.319e-04 1.6 2.572e-02 1.5
32 1.929e-03 1.0 2.759e-04 1.6 8.775e-03 1.6
64 9.640e-04 1.0 9.419e-05 1.6 2.784e-03 1.7
128 4.819e-04 1.0 3.270e-05 1.5 8.224e-04 1.8

𝑛 ‖𝑒∇·𝜎𝑝‖𝑙2(L2(Ω𝑝)) Rate ‖𝑒u𝑠‖𝑙2(V𝑠) Rate ‖𝑒𝛾𝑝‖𝑙2(Q𝑝) Rate ‖𝑒u𝑝‖𝑙2(L2(Ω𝑝)) Rate

8 1.032e-01 0.0 7.141e-02 0.0 1.926e-01 0.0 1.046e-01 0.0
16 5.169e-02 1.0 3.550e-02 1.0 5.171e-02 1.9 5.224e-02 1.0
32 2.586e-02 1.0 1.773e-02 1.0 1.372e-02 1.9 2.612e-02 1.0
64 1.293e-02 1.0 8.862e-03 1.0 3.633e-03 1.9 1.306e-02 1.0
128 6.465e-03 1.0 4.431e-03 1.0 9.497e-04 1.9 6.532e-03 1.0

𝑛 ‖𝑒∇·u𝑝‖𝑙2(L2(Ω𝑝)) Rate ‖𝑒𝑝𝑝‖𝑙2(W𝑝) Rate ‖𝑒𝜆‖𝑙2(Λ𝑝ℎ) Rate ‖𝑒𝜃‖𝑙2(Λ𝑠ℎ) Rate

8 1.223e-01 0.0 1.033e-01 0.0 1.140e-01 0.0 3.232e-02 0.0
16 5.457e-02 1.2 5.172e-02 1.0 5.675e-02 1.0 6.446e-03 2.3
32 2.693e-02 1.0 2.587e-02 1.0 2.835e-02 1.0 1.238e-03 2.4
64 1.442e-02 0.9 1.294e-02 1.0 1.417e-02 1.0 2.328e-04 2.4
128 9.001e-03 0.7 6.468e-03 1.0 7.085e-03 1.0 4.442e-05 2.4

The Biot solution is chosen accordingly to satisfy the interface conditions at 𝑦 = 0:

u𝑝 = 𝜋𝑒𝑡

⎛⎜⎝− cos(𝜋𝑥) cos
(︁𝜋𝑦

2

)︁
1
2

sin(𝜋𝑥) sin
(︁𝜋𝑦

2

)︁
⎞⎟⎠, 𝑝𝑝 = 𝑒𝑡 sin(𝜋𝑥) cos

(︁𝜋𝑦
2

)︁
, 𝜂𝑝 = sin(𝜋𝑡)

(︂
−3𝑥+ cos(𝑦)

𝑦 + 1

)︂
.

The right hand side functions f𝑓 , 𝑞𝑓 , f𝑝, and 𝑞𝑝 are computed using the above solution. The model problem is
complemented with Dirichlet boundary conditions and initial data obtained from the true solution. The total
simulation time for this test case is 𝑇 = 0.01 and the time step is ∆𝑡 = 10−3. The time step is sufficiently small,
so that the time discretization error does not affect the spatial convergence rates.

In Table 1, we report errors on a sequence of refined meshes, which are matching along the interface. We use
the notation ‖ · ‖𝑙∞(𝑉 ) and ‖ · ‖𝑙2(𝑉 ) to denote the time-discrete space-time errors. For all errors we report the
‖ · ‖𝑙2(𝑉 ) norms with the exception of the error 𝑒𝜎𝑝

, for which we have a bound only in 𝑙∞ in time. We observe
at least 𝑂(ℎ) convergence for all norms, which is consistent with the theoretical results stated in Theorem 7.1.
The observed 𝑂(ℎ2) convergence for ‖𝑒𝜎𝑝‖𝑙∞(L2(Ω𝑝)), ‖𝑒𝛾𝑝‖𝑙2(Q𝑝)‖, and ‖𝑒𝜃‖𝑙2(Λ𝑠ℎ) corresponds to the second
order of approximation in the spaces X𝑝ℎ, Q𝑝ℎ, and Λ𝑠ℎ, respectively, and indicates that the convergence rates
for these variables are not affected by the lower rate for the rest of the variables. Next, noting that the analysis
in Theorem 7.1 is not restricted to the case of matching grids, we provide the convergence results obtained
with non-matching grids along the interface. The results in Table 2 are obtained by setting the ratio between

the characteristic mesh sizes to be ℎStokes =
5
8
ℎBiot. The results in Table 3 are with ℎBiot =

5
8
ℎStokes. The

convergence rates in both tables agree with the statement of Theorem 7.1.

8.2. Example 2: coupling of surface and subsurface hydrological systems

In this example, we illustrate the behavior of the method for a problem motivated by the coupling of surface
and subsurface hydrological systems and test its robustness with respect to physical parameters. On the domain
Ω = (0, 2)× (−1, 1), we associate the upper half with surface flow, such as lake or river, modeled by the Stokes



34 T. LI AND I. YOTOV

Table 2. Example 1, Mesh sizes, errors and rates of convergences with non-matching grids,
using finer mesh in the Stokes region.

𝑛 ‖𝑒u𝑓 ‖𝑙2(V𝑓 ) Rate ‖𝑒𝑝𝑓 ‖𝑙2(W𝑓 ) Rate ‖𝑒𝜎𝑝‖𝑙∞(L2(Ω𝑝)) Rate

8 1.171e-02 0.0 8.326e-03 0.0 8.800e-02 0.0
16 5.725e-03 1.0 2.616e-03 1.7 3.220e-02 1.5
32 2.835e-03 1.0 9.239e-04 1.5 1.084e-02 1.6
64 1.411e-03 1.0 3.256e-04 1.5 3.262e-03 1.7
128 7.037e-04 1.0 1.152e-04 1.5 9.161e-04 1.8

𝑛 ‖𝑒∇·𝜎𝑝‖𝑙2(L2(Ω𝑝)) Rate ‖𝑒u𝑠‖𝑙2(V𝑠) Rate ‖𝑒𝛾𝑝‖𝑙2(Q𝑝) Rate ‖𝑒u𝑝‖𝑙2(L2(Ω𝑝)) Rate

8 1.032e-01 0.0 7.632e-02 0.0 2.255e-01 0.0 1.049e-01 0.0
16 5.170e-02 1.0 3.810e-02 1.0 6.617e-02 1.8 5.226e-02 1.0
32 2.587e-02 1.0 1.905e-02 1.0 1.955e-02 1.8 2.613e-02 1.0
64 1.293e-02 1.0 9.524e-03 1.0 5.773e-03 1.8 1.306e-02 1.0
128 6.467e-03 1.0 4.762e-03 1.0 1.638e-03 1.8 6.532e-03 1.0

𝑛 ‖𝑒∇·u𝑝‖𝑙2(L2(Ω𝑝)) Rate ‖𝑒𝑝𝑝‖𝑙2(W𝑝) Rate ‖𝑒𝜆‖𝑙2(Λ𝑝ℎ) Rate ‖𝑒𝜃‖𝑙2(Λ𝑠ℎ) Rate

8 1.323e-01 0.0 1.033e-01 0.0 1.141e-01 0.0 3.272e-02 0.0
16 5.742e-02 1.2 5.172e-02 1.0 5.675e-02 1.0 6.733e-03 2.3
32 2.738e-02 1.1 2.587e-02 1.0 2.835e-02 1.0 1.314e-03 2.4
64 1.448e-02 0.9 1.294e-02 1.0 1.417e-02 1.0 2.502e-04 2.4
128 9.007e-03 0.7 6.468e-03 1.0 7.085e-03 1.0 4.820e-05 2.4

Table 3. Example 1, Mesh sizes, errors and rates of convergences with non-matching grids,
using finer mesh in the Biot region.

𝑛 ‖𝑒u𝑓 ‖𝑙2(V𝑓 ) Rate ‖𝑒𝑝𝑓 ‖𝑙2(W𝑓 ) Rate ‖𝑒𝜎𝑝‖𝑙∞(L2(Ω𝑝)) Rate

8 7.203e-03 0.0 5.066e-03 0.0 1.661e-01 0.0
16 3.561e-03 1.0 1.404e-03 1.9 6.387e-02 1.4
32 1.768e-03 1.0 4.843e-04 1.5 2.298e-02 1.5
64 8.807e-04 1.0 1.697e-04 1.5 7.441e-03 1.6
128 4.396e-04 1.0 5.977e-05 1.5 2.178e-03 1.8

𝑛 ‖𝑒∇·𝜎𝑝‖𝑙2(L2(Ω𝑝)) Rate ‖𝑒u𝑠‖𝑙2(V𝑠) Rate ‖𝑒𝛾𝑝‖𝑙2(Q𝑝) Rate ‖𝑒u𝑝‖𝑙2(L2(Ω𝑝)) Rate

8 1.644e-01 0.0 1.230e-01 0.0 4.521e-01 0.0 1.698e-01 0.0
16 8.264e-02 1.0 6.100e-02 1.0 1.504e-01 1.6 8.374e-02 1.0
32 4.137e-02 1.0 3.048e-02 1.0 4.373e-02 1.8 4.180e-02 1.0
64 2.069e-02 1.0 1.524e-02 1.0 1.293e-02 1.8 2.090e-02 1.0
128 1.035e-02 1.0 7.619e-03 1.0 3.798e-03 1.8 1.045e-02 1.0

𝑛 ‖𝑒∇·u𝑝‖𝑙2(L2(Ω𝑝)) Rate ‖𝑒𝑝𝑝‖𝑙2(W𝑝) Rate ‖𝑒𝜆‖𝑙2(Λ𝑝ℎ) Rate ‖𝑒𝜃‖𝑙2(Λ𝑠ℎ) Rate

8 2.430e-01 0.0 1.649e-01 0.0 1.849e-01 0.0 9.021e-02 0.0
16 1.004e-01 1.3 8.270e-02 1.0 9.101e-02 1.0 1.977e-02 2.2
32 4.474e-02 1.2 4.138e-02 1.0 4.538e-02 1.0 3.990e-03 2.3
64 2.203e-02 1.0 2.070e-02 1.0 2.268e-02 1.0 7.683e-04 2.4
128 1.215e-02 0.9 1.035e-02 1.0 1.134e-02 1.0 1.461e-04 2.4
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Table 4. Set of parameters for the sensitivity analysis.

K 𝑠0 𝜆𝑝 𝜇𝑝

Case 1 I 1 1 1
Case 2 10−4 × I 10−4 106 1
Case 3 10−4 × I 10−4 106 106

Figure 1. Example 2, Case 1, K = I, 𝑠0 = 1, 𝜆𝑝 = 1, 𝜇𝑝 = 1. Computed solution at final
time 𝑇 = 3. Top left: velocities u𝑓 and u𝑝 + 𝜕𝑡𝜂𝑝 (arrows), u𝑓,2 and u𝑝,2 + 𝜕𝑡𝜂𝑝,2 (color). Top
middle and right: stresses −(𝜎𝑓,12,𝜎𝑓,22)t and −(𝜎𝑝,12,𝜎𝑝,22)t (arrows); top middle: −𝜎𝑓,12 and
−𝜎𝑝,12 (color); top right: −𝜎𝑓,22 and −𝜎𝑝,22 (color). Middle: poroelastic stress −(𝜎𝑝,12,𝜎𝑝,22)t
(arrows); middle left: −𝜎𝑝,12 (color); middle right: −𝜎𝑝,22 (color). Bottom left: displacement 𝜂𝑝

(arrows), |𝜂𝑝| (color). Bottom right: Darcy pressure 𝑝𝑝.

equations while the lower half represents subsurface flow in a poroelastic aquifer, governed by the Biot system.
In each subdomain, we construct 64× 64 rectangular grid, which is then sub-divided into triangles, resulting in
8192 finite elements in each region. The appropriate interface conditions are enforced along the interface 𝑦 = 0.
We consider three cases with different values of K, 𝑠0, 𝜆𝑝 and 𝜇𝑝, as described in Table 4, while we set the rest
of the physical parameters to be 𝜇 = 1, 𝛼 = 1, and 𝛼BJS = 1. In the discussion we will also refer to the Young’s
modulus 𝐸 and the Poisson’s ratio 𝜈, which are related to the Lamé coefficients via

𝜈 =
𝜆𝑝

2(𝜆𝑝 + 𝜇𝑝)
, 𝐸 =

(3𝜆𝑝 + 2𝜇𝑝)𝜇𝑝

𝜆𝑝 + 𝜇𝑝
·
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Figure 2. Example 2, Case 2, K = 10−4×I, 𝑠0 = 10−4, 𝜆𝑝 = 106, 𝜇𝑝 = 1. Computed solution at
final time 𝑇 = 3. Top left: velocities u𝑓 and u𝑝+𝜕𝑡𝜂𝑝 (arrows), u𝑓,2 and u𝑝,2+𝜕𝑡𝜂𝑝,2 (color). Top
middle and right: stresses −(𝜎𝑓,12,𝜎𝑓,22)t and −(𝜎𝑝,12,𝜎𝑝,22)t (arrows); top middle: −𝜎𝑓,12 and
−𝜎𝑝,12 (color); top right: −𝜎𝑓,22 and −𝜎𝑝,22 (color). Middle: poroelastic stress −(𝜎𝑝,12,𝜎𝑝,22)t
(arrows); middle left: −𝜎𝑝,12 (color); middle right: −𝜎𝑝,22 (color). Bottom left: displacement 𝜂𝑝

(arrows), |𝜂𝑝| (color). Bottom right: Darcy pressure 𝑝𝑝.

The body forces and external source are zero, as well as the initial conditions. The flow is driven by a parabolic
fluid velocity on the left boundary of fluid region. The boundary conditions are as follows:

u𝑓 = (−40𝑦(𝑦 − 1) 0)t on Γ𝑓,left, u𝑓 = 0 on Γ𝑓,top ∪ Γ𝑓,right,

𝑝𝑝 = 0 and 𝜎𝑝n𝑝 = 0 on Γ𝑝,bottom,

u𝑝 · n𝑝 = 0 and u𝑠 = 0 on Γ𝑝,left ∪ Γ𝑝,right,

The simulation is run for a total time 𝑇 = 3 with a time step ∆𝑡 = 0.06.
For each case, we present the plots of computed velocities, first and second columns of stresses (top plots),

first column components of poroelastic stress (middle plots), displacement and Darcy pressure (bottom plots)
at final time 𝑇 = 3.

Case 1 focuses on the qualitative behavior of the solution. The computed solution at the final time 𝑇 = 3
is shown in Figure 1. On the top left, the arrows represent the velocity vectors u𝑓 and u𝑝 + 𝜕𝑡𝜂𝑝 in the two
regions, while the color shows the vertical components of these vectors. The other two plots on the top show the
computed stress. The arrows in both plots represent the second columns of the negative stresses −(𝜎𝑓,12,𝜎𝑓,22)t

and −(𝜎𝑝,12,𝜎𝑝,22)t. The colors show −𝜎𝑓,12 and −𝜎𝑝,12 in the middle plot and −𝜎𝑓,22 and −𝜎𝑝,22 in the
right plot. Since the Stokes stress is much larger than the poroelastic stress, the arrows in the fluid region are
scaled by a factor 1/5 for visualization purpose and the color scale is more suitable for the Stokes region. The
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Figure 3. Example 2, Case 3, K = 10−4 × I, 𝑠0 = 10−4, 𝜆𝑝 = 106, 𝜇𝑝 = 106. Computed
solution at final time 𝑇 = 3. Top left: velocities u𝑓 and u𝑝+𝜕𝑡𝜂𝑝 (arrows), u𝑓,2 and u𝑝,2+𝜕𝑡𝜂𝑝,2

(color). Top middle and right: stresses −(𝜎𝑓,12,𝜎𝑓,22)t and −(𝜎𝑝,12,𝜎𝑝,22)t (arrows); top middle:
−𝜎𝑓,12 and −𝜎𝑝,12 (color); top right: −𝜎𝑓,22 and −𝜎𝑝,22 (color). Middle: poroelastic stress
−(𝜎𝑝,12,𝜎𝑝,22)t (arrows); middle left: −𝜎𝑝,12 (color); middle right: −𝜎𝑝,22 (color). Bottom left:
displacement 𝜂𝑝 (arrows), |𝜂𝑝| (color). Bottom right: Darcy pressure 𝑝𝑝.

poroelastic stresses are presented separately in the middle row with their own color range. The bottom plots
show the displacement vector and its magnitude on the left and the poroelastic pressure on the right.

From the velocity plot we observe that the fluid is driven into the poroelastic medium due to zero pressure
at the bottom, which simulates gravity. The mass conservation u𝑓 · n𝑓 + (𝜕𝑡𝜂𝑝 + u𝑝) · n𝑝 = 0 on the interface
with n𝑝 = (0, 1)t indicates continuity of second components of these two velocity vectors, which is observed
from the color plot of the velocity. In addition, the conservation of momentum 𝜎𝑓n𝑓 + 𝜎𝑝n𝑝 = 0 implies
that −𝜎𝑓,12 = −𝜎𝑝,12 and −𝜎𝑓,22 = −𝜎𝑝,22 on the interface. These conditions are verified from the two
stress color plots on the top row. We observe large fluid stress near the top boundary, which is due to the no slip
condition there, as well as large fluid stress along the interface, which is due to the slip with friction interface
condition. A singularity in the left lower corner appears due to the mismatch in inflow boundary conditions
between the fluid and poroelastic regions. The bottom plots show that the infiltration of fluid from the Stokes
region into the poroelastic region causes deformation of the medium and larger Darcy pressure. Furthermore,
comparing the right middle and bottom plots, we note the match along the interface between −𝜎𝑝,22 and 𝑝𝑝,
which is consistent with the balance of force and momentum conservation conditions −(𝜎𝑓n𝑓 ) · n𝑓 = 𝑝𝑝 and
𝜎𝑓n𝑓 + 𝜎𝑝n𝑝 = 0, respectively.

In Case 2 we test the model for a problem that exhibits both locking regimes for poroelasticity: (1) small
permeability and storativity and (2) almost incompressible material [53]. In particular, we take K = 10−4 × I
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and 𝑠0 = 10−4. Furthermore, the choice 𝜆𝑝 = 106, 𝜇𝑝 = 1 results in Poisson’s ratio 𝜈 = 0.4999995. The computed
solution does not exhibit locking or oscillations. The behavior is qualitatively similar to Case 1, with larger fluid
and poroelastic stresses and a Darcy pressure gradient, see Figure 2.

In Case 3, the Lamé coefficient 𝜇𝑝 is increased from 1 to 106, resulting in a much stiffer poroelastic medium,
which is typical in subsurface flow applications. The solution is again free of locking effects or oscillations, but
it differs significantly from Case 2, including three orders of magnitude larger stresses and Darcy pressure, as
well as smaller displacement and Darcy velocity, see Figure 3.

9. Conclusions

In this paper we developed and analyzed a new mixed elasticity formulation for the Stokes–Biot problem,
as well as its mixed finite element approximation. We consider a five-field Biot formulation based on a weakly
symmetric stress–displacement–rotation elasticity formulation and a mixed velocity–pressure Darcy formulation.
The classical velocity–pressure formulation is used for the Stokes system. Suitable Lagrange multipliers are
introduced to enforce weakly the balance of force, slip with friction, and continuity of normal flux on the
interface. The advantages of the resulting mixed finite element method, compared to previous works, include
local momentum conservation, accurate stress with continuous normal component, and robustness with respect
to the physical parameters. In particular, the numerical results indicate locking-free and oscillation-free behavior
in the regimes of small storativity and permeability, as well as for almost incompressible media.
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