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Inclusion of stiffness nonlinearity in a vibration isolator has been shown to exhibit some advantages such as an
increase in the frequency range of isolation. In some engineering applications, it is common to design the vibration
isolator such that the stiffness in one direction is significantly different from the stiffness in other directions. Such
a design is commonly used for vibration isolators in applications where the packaging and performance require-
ments along different axes are drastically different. One such example is the vibration isolator for a motorcycle
powertrain. This study proposes a design that incorporates stiffness nonlinearities into the vibration isolator along
two axes to complement the spring-damper system along the axis of displacement of the single degree-of-freedom
system. These stiffness nonlinearities are incorporated into the Maxwell-Voigt (MV) and Maxwell-Maxwell-Voigt
(MMV) models for elastomeric isolators. The proposed design is expected to increase the range of vibration iso-
lation and allow some design flexibility in placing the natural frequency of the system while satisfying the specific
requirements of a range of products. Results from all the models investigated in this study indicate that adding
stiffness nonlinearity, in the form of spring elements along the non-isolating axes, can provide a designer with
additional flexibility in placing the natural frequency of the isolation system while enhancing the overall isolation
range.

NOMENCLATURE
F Amplitude of external excitation force.
X Amplitude of base displacement.
Y , Y1, Y2 Amplitude of displacement of the isolated

mass and the nodes of the Maxwell
elements.

ϕ, ϕ1, ϕ2 Phase angles for the displacement of the
mass and the nodes.

kh, khx, khz Stiffness of horizontal spring element.
l0, l Free length and compressed length of

spring element.
x(t) Base displacement.
fy External excitation force.
y, y1, y2 Displacement of the isolated mass and

the nodes of the Maxwell elements.
c0, c1, c2 Damping constants.
k0, k1, k2 Stiffness constants.
m Mass.

1. INTRODUCTION

The use of passive vibration isolators is widespread in mul-
tiple engineering applications.1 Designers have been increas-
ingly investigating the use of stiffness and damping nonlin-
earities to overcome some of the constraints posed by linear
vibration isolators.2–4 These nonlinearities are specifically in-
corporated as per design intent; however, there are multiple
aspects of a passive elastomeric isolator such as cyclical soft-
ening, temperature dependent behavior, etc. that make the
behavior inherently nonlinear.1 Nonlinearities that have been
investigated in the literature include attributes resulting from
smart material elements, X-shape structured lever-type design,
scissor-like structured platform, etc.1, 5, 6 Passive isolators ex-
hibit a complex behavior that needs to be modeled in order

to accurately predict system response before undertaking de-
tailed design of the isolation system. There are multiple mod-
els with varying characteristics in the existing literature that
have been used to represent specific features of a vibration iso-
lation system, one such example is the use of Maxwell-Voigt
and Maxwell Ladder models for multi-degree-of-freedom iso-
lation systems.7

Some of the recent literature on nonlinear vibration isola-
tion includes discussion on negative stiffness mechanisms,8, 9

quasi-zero-stiffness,10, 11 high-static-low-dynamic stiffness,12

among other possible designs that take advantage of nonlinear
behavior. The negative frequency mechanism is reported to in-
crease the frequency range of vibration isolation,8 and such a
mechanism is also found to significantly mitigate the response
at resonance.9 The quasi-zero-stiffness design is found to
be particularly beneficial for low frequency response,10 while
a multi-direction quasi-zero-stiffness isolator is found to im-
prove the isolation effect in multiple directions simultaneously
in addition to providing design flexibility.11

Nonlinear designs and nonlinear design attributes have been
found to be particularly appealing since they can offer de-
sign flexibility in a passive vibration isolator and allow the
isolation system to overcome some of the trade-offs associ-
ated with the use of a passive isolator. Nonlinearities have
been specifically used for designing high-static-low-dynamic
stiffness isolators,12 for modeling hysteretic behavior,13 etc.
Many quasi-zero-stiffness isolators have been observed to pos-
sess high-static-low-dynamic stiffness characteristics, the ex-
isting literature provides examples of isolator designs with
both characteristics.12 Alternative models have also been pro-
posed in the literature to identify the viscoelastic behavior of
an elastomeric isolator by developing a generalized Maxwell
model,14 or by developing a constitutive model that repre-
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Figure 1. Passive vibration isolators: a) multi-axial vibration isolator, b)
multi-axial isolator in shear with test fixture.

sents pre-deformation as well as frequency and amplitude de-
pendence of viscoelastic material.15 The constitutive model
is shown to be applicable to relatively small as well as large
strain amplitudes.15 Mechanical designs such as a scissor-like
design have also been investigated in the literature for vibra-
tion isolation, the scissor-like design is seen to possess inher-
ent nonlinear characteristics and simulations indicate that this
design is capable of enhancing some of the isolation charac-
teristics while allowing a designer an ability to adjust stiffness
and damping characteristics.6, 16 Optimization algorithms have
often been used to determine adequate parameters of an iso-
lation system to mitigate vibrational response, the use of op-
timization is useful due to a high number of design variables
and constraints associated with the isolation system.17, 18 Most
common design variables that have been used for optimization
include stiffness, damping, isolator location, loss factor, elas-
tomer geometry, etc.

In some applications, the vibration isolator is required to
exhibit significantly different stiffness and damping proper-
ties along different axes in order to meet multiple design cri-
teria. Two such commercially available passive isolators are
shown in Fig. 1, the radial stiffness of these isolators is signif-
icantly lower than the axial stiffness. The design presented in
this study incorporates stiffness nonlinearities into the vibra-
tion isolator along two axes to complement the spring-damper
system along the third (isolating) axis, which is the axis of dis-
placement of the single degree-of-freedom system.

The design proposed in this paper is expected to augment
the tri-axial model commonly used in the existing literature to
represent an isolator for three-dimensional models.17 This is
specifically because the tri-axial model assumes that the stiff-
ness along multiple axes of a passive isolator is independent.
Assuming independence of the three axes of stiffness may be
accurate only when three separate isolators are being used that
are not interconnected in any way. The model presented in
this paper, instead, is suitable for any isolator with a three-
dimensional geometry that is used for vibration isolation in
one direction while supporting a six degree-of-freedom sys-
tem in space. The model developed in this study incorporates
spring elements to represent pre-compression as well as rel-
atively higher stiffness along the non-isolating axes. Analy-
sis results from a few different models of the proposed design
are presented by using two methods for analysis. The main
contribution of this study is the presentation of a model that

would be useful for applications in which significantly differ-
ent stiffness parameters are required in different planes to sat-
isfy performance criteria. The models proposed in this study
demonstrate an enhancement of the frequency range of vibra-
tion isolation while allowing a designer some more control in
placing the natural frequencies of the isolated system and satis-
fying the specific requirements of a range of products that use
passive vibration isolators. The proposed models are presented
in Section 2 and simulation results are discussed in Section 3.
Overall conclusions are presented in Section 4.

2. MODEL

The governing equations of motion (EOM) for the models
presented in this section are nonlinear; as a result, two methods
have been used for analysis. The first method is the Harmonic
Balance Method (HBM), with the underlying assumption that a
harmonic input yields a harmonic output that may contain one
or more harmonics.19, 20 HBM is used as the primary method
for analysis in this study. HBM has been used in multiple stud-
ies in the literature for the analysis of nonlinear vibration iso-
lation, one such example is the analysis of cubic damping in a
vibration isolator.21 For all the derivations from the HBM in
this section, only the first harmonic is used and the higher or-
der harmonics have been ignored. The system of equations has
been derived by substituting for the higher powers of trigono-
metric ratios and also by making use of the Binomial theorem.
The second method used for computing the system response
is numerical, using a variable-step, variable-order solver, and
has been used to check the validity of the solution. The numer-
ical method has been primarily used for computing the time
response.

The first model presented in this section for a single degree-
of-freedom (DOF) system incorporates a horizontal spring el-
ement into the Maxwell-Voigt (MV) model. A generalized
model with multiple Maxwell elements and multiple spring
elements is shown in Fig. 2. Similar models such as the
Generalized-2 Maxwell model have been used in the litera-
ture to represent the viscoelastic behavior of elastomeric iso-
lators.22 For the MV model with horizontal spring elements,
k2 = c2 = 0 (also y2 = 0), khz = 0, and khx = kh while
using the generalized model in Fig. 2. In Fig. 2, the vertical
(y) axis represents the direction of motion and the governing
EOM for this model are derived as follows:

mÿ+k0y+c0ẏ+k1(y−y1)+2kh

(
1− l0√

l2 + y2

)
y = fy;

(1)
k1(y − y1) = c1ẏ1. (2)

In Eqs. (1) and (2), k0 and c0 are the spring and damping
constants in the vertical (y) direction of motion, y1 is the dis-
placement at the node of the Maxwell element. In Eq. (1), kh
is the stiffness of the horizontal spring element, l is the com-
pressed length of the spring, and l0 is the free-length of the hor-
izontal spring before assembly. Furthermore, m is the mass of
the single DOF system and fy is the external excitation force.
In Eq. (2), k1 and c1 are the spring and damping constants of
the Maxwell element in the MV model.
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Figure 2. Generalized MMV model with multi-axial spring elements.

Using the Binomial theorem, the first equation-of-motion
from Eq. (1) can be expressed as:

mÿ + k0y + c0ẏ + k1(y − y1)

+2kh

[
1− l0

l

(
1− 1

2

y2

l2
+

3

8

y4

l4
− 5

16

y6

l6
+ · · ·

)]
y = fy.

(3)

In Eq. (3), higher order terms have been ignored. Further-
more, it may be noted that Eq. (3) holds for −l2 < y2 < l2, this
is a reasonable assumption since the response of the system is
expected to be small and can be verified from the simulation
results in Section 3. Using the HBM, for a sinusoidal input of
fy = F sin(ωt−ϕ) with an amplitude F and phase ϕ, the out-
put displacements are y = Y sinωt with an amplitude Y and
y1 = Y1 sin(ωt−ϕ1) with an amplitude Y1 and a phase of ϕ1.
Substituting these expressions in Eq. (3) and equating the sine
and cosine coefficients between the two sides from Eq. (2) and
Eq. (3) yields the following:

−mω2Y + k0Y + k1Y − k1Y1 cosϕ1

+2kh

[
1− l0

l

(
1− 1

2

Y 2

l2
1

2
+

3

8

Y 4

l4
3

8
− 5

16

Y 6

l6
5

16

)]
Y

= F cosϕ;
(4a)

c0ωY + k1Y1 sinϕ1 = −F sinϕ; (4b)

c1ωY1 sinϕ1 = k1Y − k1Y1 cosϕ1; (4c)

c1ωY1 cosϕ1 = k1Y1 sinϕ1. (4d)

The system of equations in Eq. (4) results from the com-
parison of first harmonic coefficients from Eq. (2) and Eq. (3).
It may be noted that all higher order harmonics have been ig-
nored.

For the Maxwell-Maxwell-Voigt (MMV) model in conjunc-
tion with a horizontal spring element, Fig. 2 can be used for
reference with khz = 0 and khx = kh. It may be noted that
the use of two Maxwell elements has been found to enhance
the capability of the model by allowing the model to predict
dynamic stiffness and loss angle through the entire frequency

range.22 The governing EOM for this model are as follows:

mÿ + k0y + c0ẏ + k1(y − y1) + k2(y − y2)

+2kh

(
1− l0√

t2 + y2

)
y = fy; (5)

k1(y − y1) = c1ẏ1; (6)

k2(y − y2) = c2ẏ2; (7)

In Eq. (5), y1 and y2 are the displacements at the two nodes
of the Maxwell elements shown in Fig. 2. Using similar steps
to the ones used for the MV model along with the use of the
Binomial theorem and the HBM, the following system of equa-
tions can be derived for the MMV model with horizontal spring
elements:

−mω2Y + k0Y + k1Y − k1Y1 cosϕ1 + k2Y − k2Y2 cosϕ2

+2kh

[
1− l0

l

(
1− 1

2

Y 2

l2
1

2
+

3

8

Y 4

l4
3

8
− 5

16

Y 6

l6
5

16

)]
Y

= F cosϕ;
(8a)

c0ωY + k1Y1 sinϕ1 + k2Y2 sinϕ2 = −F sinϕ; (8b)

c1ωY1 sinϕ1 = k1Y − k1Y1 cosϕ1; (8c)

c1ωY1 cosϕ1 = k1Y1 sinϕ1; (8d)

c2ωY2 sinϕ2 = k2Y − k2Y2 cosϕ2; (8e)

c2ωY2 cosϕ2 = k2Y2 sinϕ2. (8f)

It may be noted that the following responses have been as-
sumed for the rigid body and the two nodes to derive the
system in Eq. (8): y = Y sinωt, y1 = Y1 sin(ωt − ϕ1),
y2 = Y2 sin(ωt − ϕ2), for an input of fy = F sin(ωt − ϕ).
In Eq. (8), Y1 and Y2 are the displacement amplitudes of the
two nodes respectively, and ϕ1 and ϕ2 are the phase angles
associated with the motion of the two nodes respectively.

The MV model with two horizontal stiffness elements along
x and z axes is specifically used to incorporate the need for
different stiffness properties along the non-isolating axes. Fig-
ure 2 can be used for reference with k2 = c2 = 0 (also y2 = 0).
The governing EOM for this model are derived to be as fol-
lows:

mÿ + k0y + c0ẏ + k1(y − y1)

+2khx

(
1− l0x√

l2x + y2

)
y + 2khz

(
1− l0z√

l2z + y2

)
y

= fy; (9)

k1(y − y1) = c1ẏ1. (10)

In Eq. (9), khx and khz represent the stiffness elements along
x and z axes, respectively. The free-length of the two springs
is l0x and l0z , and lx and lz are the compressed lengths of the
two springs respectively at assembly. The rest of the variables
in Eq. (9) and Eq. (10) are identical to the other MV model in
Fig. 2.
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The following system of equations is derived for the MV
model with two horizontal stiffness elements by using the
HBM:

−mω2Y + k0Y + k1Y − k1Y1 cosϕ1

+2khx

[
1− l0x

lx

(
1− 1

2

Y 2

l2x

1

2
+

3

8

Y 4

l4x

3

8
− 5

16

Y 6

l6x

5

16

)]
Y

+2khz

[
1− l0z

lz

(
1− 1

2

Y 2

l2z

1

2
+

3

8

Y 4

l4z

3

8
− 5

16

Y 6

l6z

5

16

)]
Y

= F cosϕ;
(11a)

c0ωY + k1Y1 sinϕ1 = −F sinϕ; (11b)

c1ωY1 sinϕ1 = k1Y − k1Y1 cosϕ1; (11c)

c1ωY1 cosϕ1 = k1Y1 sinϕ1. (11d)

The last model investigated in this study is represented by
the complete model shown in Fig. 2, this model consists of
two horizontal stiffness elements along the x and z directions
incorporated into the MMV model. The derived EOM for this
model are as follows:

mÿ + k0y + c0ẏ + k1(y − y1) + k2(y − y2)

+2khx

(
1− l0x√

l2x + y2

)
y + 2khz

(
1− l0z√

l2z + y2

)
y

= fy;
(12)

k1(y − y1) = c1ẏ1; (13)

k2(y − y2) = c2ẏ2. (14)

For this model, using the HBM for the EOM in Eqs. (12),
(13) and (14) yields the following system of equations:

−mω2Y + k0Y + k1Y − k1Y1 cosϕ1 + k2Y − k2Y2 cosϕ2

+2khx

[
1− l0x

lx

(
1− 1

2

Y 2

l2x

1

2
+

3

8

Y 4

l4x

3

8
− 5

16

Y 6

l6x

5

16

)]
Y

+2khz

[
1− l0z

lz

(
1− 1

2

Y 2

l2z

1

2
+

3

8

Y 4

l4z

3

8
− 5

16

Y 6

l6z

5

16

)]
Y

= F cosϕ;
(15a)

c0ωY + k1Y1 sinϕ1 + k2Y2 sinϕ2 = −F sinϕ; (15b)

c1ωY1 sinϕ1 = k1Y − k1Y1 cosϕ1; (15c)

c1ωY1 cosϕ1 = k1Y1 sinϕ1; (15d)

c2ωY2 sinϕ2 = k2Y − k2Y2 cosϕ2; (15e)

c2ωY2 cosϕ2 = k2Y2 sinϕ2. (15f)

The system of equations in Eq. (15) needs to be solved for
the displacement amplitude of the rigid body, Y , and the dis-
placement amplitudes of the nodes, Y1 and Y2. The corre-
sponding phase angles, ϕ, ϕ1, and ϕ2, associated with the
input force and the displacement of the two nodes are also
calculated from the system of equations in Eq. (15). A non-
linear least-squares based method is used to solve the system
of equations derived in this section for all the models. This

method is primarily based on Newton’s method in conjunction
with the Powell Dogleg procedure.23 This method is reported
to be robust and capable of overcoming problems related to
singularities and convergence.23

For the MV model with horizontal spring elements along x
and z axes, a base excitation of x = X sin(ωt − ϕ) is used to
compute the displacement transmissibility and the effect of the
parameters associated with the horizontal stiffness elements.
Substitution of base excitation and the use of the HBM results
in the following system of equations for base excitation for this
model:

−mω2Y + k0Y + k1Y − k1Y1 cosϕ1

+2khx

[
1− l0x

lx

(
1− 1

2

Y 2

l2x

1

2
+

3

8

Y 4

l4x

3

8
− 5

16

Y 6

l6x

5

16

)]
Y

+2khz

[
1− l0z

lz

(
1− 1

2

Y 2

l2z

1

2
+

3

8

Y 4

l4z

3

8
− 5

16

Y 6

l6z

5

16

)]
Y

= k0X cosϕ+ c0ωX sinϕ;
(16a)

c0ωY + k1Y1 sinϕ1 = −k0X sinϕ+ c0ωX cosϕ; (16b)

c1ωY1 sinϕ1 − c1ωX sinϕ = k1Y − k1Y1 cosϕ1; (16c)

c1ωY1 cosϕ1 − c1ωX cosϕ = k1Y1 sinϕ1. (16d)

All the variables in Eq. (16) are shown in the model in Fig. 1.
The displacement transmissibility for this model is the ratio
Y/X for a known amplitude, X , of the base excitation with the
corresponding phase angle being ϕ. The system of equations
in Eq. (16) is solved for four unknowns — Y , Y1, ϕ, and ϕ1

for a unit displacement amplitude of base excitation.
For computing the displacement transmissibility for the

MMV model with horizontal spring elements along x and z
axes, a base excitation of x = X sin(ωt − ϕ) yields the fol-
lowing system of equations:

−mω2Y + k0Y + k1Y − k1Y1 cosϕ1 + k2Y − k2Y2 cosϕ2

+2khx

[
1− l0x

lx

(
1− 1

2

Y 2

l2x

1

2
+

3

8

Y 4

l4x

3

8
− 5

16

Y 6

l6x

5

16

)]
Y

+2khz

[
1− l0z

lz

(
1− 1

2

Y 2

l2z

1

2
+

3

8

Y 4

l4z

3

8
− 5

16

Y 6

l6z

5

16

)]
Y

= k0X cosϕ+ c0ωX sinϕ;
(17a)

c0ωY + k1Y1 sinϕ1 + k2Y2 sinϕ2

= −k0X sinϕ+ c0ωX cosϕ; (17b)

c1ωY1 sinϕ1 − c1ωX sinϕ = k1Y − k1Y1 cosϕ1; (17c)

c1ωY1 cosϕ1 − c1ωX cosϕ = k1Y1 sinϕ1; (17d)

c2ωY2 sinϕ2 − c2ωX sinϕ = k2Y − k2Y2 cosϕ2; (17e)

c2ωY2 cosϕ2 − c2ωX cosϕ = k2Y2 sinϕ2. (17f)

The variables in Eq. (17) correspond to the model in Fig. 1.
For this model, displacement transmissibility is calculated by
computing Y/X for a unit amplitude of base excitation, X ,
with a displacement of Y1 sin(ωt−ϕ1) and Y2 sin(ωt−ϕ2) at
the two nodes of the MMV model. The system of equations in
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Figure 3. Frequency response — MV Model with one horizontal spring ele-
ment at 10% pre-compression.

Eq. (17) is solved for six unknowns — Y , Y1, Y2, ϕ, ϕ1, and
ϕ2 for a unit displacement amplitude of base excitation.

The models presented in this section have been used for mul-
tiple simulations in Section 3. All the variables associated with
the model are identified by using load-deflection characteris-
tics from a commercially available vibration isolator, shown in
Figure 1a, that has been tested for this study.

3. RESULTS

The simulation results for the models of the proposed de-
sign are presented in this section. Test results from an elas-
tomeric isolator are used to characterize the MV and MMV
models along the isolating axis. The vibration isolator shown
in Fig. 1a has been used for characterization. The load-
deflection data is collected from a single-axis test for the
elastomeric isolator at multiple frequencies, and an optimiza-
tion program is used to identify the variables associated with
each model. It may be noted that the variables associated
with the horizontal spring elements have not been deter-
mined from model characterization. The variables for the MV
model are as follows: k0 = 251.26 N/mm, c0 = 3.23 N-
s/mm, k1 = 237.38 N/mm, c1 = 121.92 N-s/mm. The
variables for the MMV model are found to be as follows:
k0 = 251.26 N/mm, c0 = 3.23 N-s/mm, k1 = 237.38 N/mm,
c1 = 121.92 N-s/mm, k2 = 180.59 N/mm, c2 = 1.89 N-s/mm.
A mass of 125 kg is used for the single DOF system and a
free length of 50 mm is used for the horizontal spring elements
in all the simulations in this section. The three variables as-
sociated with the horizontal spring element — stiffness, free
length and pre-compression — have been varied in order to
understand the influence of these variables on the frequency
response as well as the time response.

Figure 3 shows the frequency response of the MV model
with one horizontal spring element at varying levels of hori-
zontal stiffness (kh) for 10% pre-compression. It may be noted
that the output is derived for a sinusoidal input with unit am-
plitude. Also, kh = 0 corresponds to a conventional Maxwell-
Voigt model without any horizontal spring elements.

Increasing horizontal stiffness is seen to result in a slight re-
duction in the natural frequency, but the response is seen to

Figure 4. Frequency response — MV Model with two horizontal spring ele-
ments at 10% pre-compression.

Figure 5. Frequency response — MV Model with two horizontal spring ele-
ments at 40% pre-compression.

increase at lower frequencies without significantly influencing
the response at higher frequencies. Also, the peak response
shows an increasing trend with an increase in stiffness. How-
ever, the response at lower frequencies does not show a trend.
Adding a horizontal spring element along another axis to the
MV model exhibits similar results for 10% pre-compression,
leading to a reduction in the natural frequency. However, the
shift in the natural frequency is seen to be accentuated and the
frequency response is seen to significantly reduce at lower fre-
quencies for a substantial increase in stiffness. This can be
seen from Fig. 4 for the response of the MV model with two
horizontal spring elements along the two non-isolating axes,
it can be seen that the response is reduced through the entire
frequency range for kh = 8k0. It may be noted that kh indi-
cates the stiffness of the springs in both directions (x and z),
even though the model is capable of accommodating different
stiffness along the two non-isolating axes.

Pre-compression of the horizontal spring elements is seen to
significantly influence the frequency response, this can be seen
from the response in Fig. 5 and Fig. 6. In Fig. 5, increase in
stiffness is seen to significantly reduce the response through
the entire frequency range at 40% pre-compression of the two
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Figure 6. Frequency response at kh = 8k0 — MV Model with one horizontal
spring element.

Figure 7. Frequency response — MMV Model with one horizontal spring
element at 40% pre-compression.

horizontal spring elements, this can be directly compared to the
results in Fig. 4. This phenomenon can be further observed in
Fig. 6 as the pre-compression is changed from 10% to 40% at a
constant level of horizontal stiffness for the MV model. Over-
all, the results for the MV model indicate that an incorporation
of horizontal stiffness and pre-compression of the horizontal
spring elements can be successfully used to adjust the natu-
ral frequency of the system and control the response amplitude
with limited trade-offs. Particularly, significant benefits are ob-
served at high levels of stiffness in conjunction with high levels
of pre-compression.

The MMV model exhibits characteristics that are simi-
lar to the observations from the response of the MV model.
The MMV model exhibits a significant reduction in response
through the entire frequency range with the increasing stiff-
ness of the horizontal elements in conjunction with a rela-
tively higher pre-compression. One such result for the MMV
model can be seen in Fig. 7 and Fig. 8 with the amplitude and
phase response at 40% pre- compression. The amplitude re-
sponse is seen to reduce through the entire frequency range for
kh > 2k0, as seen in Fig. 7.

Another result for the MMV model can be seen in Fig. 9

Figure 8. Phase angle — MMV Model with one horizontal spring element at
40% pre-compression.

Figure 9. Frequency response — MMV Model with two horizontal spring
elements at 40% pre-compression.

and Fig. 10 for a pre-compression of 40% with two horizontal
spring elements, the response is seen to decrease with increas-
ing stiffness for all levels of horizontal stiffness with limited
trade-offs at lower frequencies. The results for the MV and
MMV models are similar to the results reported for the Voigt
model in the existing literature.2 Figure 10 shows the phase
angle associated with the response shown in Fig. 9. The phase
angle for kh = 0 is similar to a damped system with a very
low damping ratio, but the phase angle remains lower than
20 deg. through the entire frequency range for all non-zero
values of horizontal stiffness. This indicates that the change
in the frequency response resulting from increasing horizon-
tal stiffness or pre-compression is not analogous to an increase
in the damping ratio. Instead, the parameters of the horizon-
tal spring elements significantly reduce the phase lag between
excitation input and the system response, as seen in Fig. 10.

Time response of the models has been investigated by us-
ing a quasi-constant step implementation of the backward dif-
ference method.23 In the algorithm, the time step is reduced
only if convergence is not achieved initially and the Jacobian
is updated if the problem is found to be significantly stiff.23

The time response has been used to compare the results of the
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Figure 10. Phase angle — MMV Model with two horizontal spring elements
at 40% pre-compression.

HBM with numerical integration and to determine the step re-
sponse for the models discussed in this paper. The step re-
sponse of the MV model with one horizontal spring element at
10% pre-compression is shown in Fig. 11. An increase in hori-
zontal stiffness is seen to result in an increase in the amplitude
of the step response. A similar step response is exhibited by
the MMV model with one or two horizontal spring elements.
Figure 12 shows the transient force transmitted by the isola-
tor due to a step input acting on the rigid body supported by
the isolator. The transmitted force in the transient response
is seen to reduce with an increase in horizontal stiffness. All
MV and MMV models investigated in this study are seen to
exhibit similar trends for transmitted force due to a step input.
The trends of the results from the time response correspond to
the results seen from the frequency response. This can be ob-
served by comparing the results from Fig. 3 and Fig. 11. For
instance, the increase in rise time, as defined by the time taken
for the response to reach 90% of the steady state value, cor-
responds to a decrease in the natural frequency, as seen from
Fig. 3 for increasing horizontal stiffness at the same level of
pre-compression. The numerical solution was not able to con-
verge to a solution for higher levels of stiffness, this needs to
be investigated further.

The models proposed in this study have also been investi-
gated for base excitation. It can be seen from the results in
Fig. 13 and Fig. 14 that an increasing stiffness of the horizon-
tal spring elements results in shifting the peak transmissibility
to a lower frequency, and this shift is accompanied by an in-
crease in displacement transmissibility at lower frequencies.
However, a substantial increase in stiffness (kh = 8k0) results
in a reduction in displacement transmissibility through the en-
tire frequency range. This is consistent with the results derived
from the frequency response.

In order to compare the capability of the models discussed
in this study with a commonly used model, the displacement
transmissibility of the MV model with two horizontal spring
elements at 10% pre-compression is compared with the results
from a Voigt model (one spring and one damper element in par-
allel along the isolating axis). The results from this comparison
are shown in Fig. 15. The advantages of the model proposed in
this study are expected to be similar to the quasi-zero-stiffness

Figure 11. Step response — MV Model with one horizontal spring element at
10% pre-compression.

Figure 12. Transmitted force — Step input — MMV Model with one hori-
zontal spring element at 10% pre-compression.

Figure 13. Displacement Transmissibility — MV Model with two horizontal
spring elements at 10% pre-compression.
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Figure 14. Displacement Transmissibility — MMV Model with two horizon-
tal spring elements at 10% pre-compression.

Figure 15. Displacement Transmissibility — Model Comparison.

(QZS) mechanism that has been investigated in the literature.24

Direct numerical comparisons with the QZS mechanism have
not been performed in this study since the results for both the
models depend on a large number of variables.24, 25 However,
the trends exhibited by the models discussed in this section are
similar to the QZS models, this includes the ability of the iso-
lation system to mitigate the response over a larger frequency
range and the ability of the isolation system to reduce the re-
sponse at relatively lower frequencies.

As can be seen from the results in Fig. 15, the MV model
with horizontal spring elements along x and z axes is able
to significantly mitigate the transmissibility at resonance and
at lower frequencies, as compared to the Voigt model. How-
ever, it is important to note that these results may vary with
the choice of variables associated with the MV model. In
general, the simulation results have pinpointed the use of pre-
compression and stiffness of the horizontal spring elements as
important variables that can be used in the design of the isola-
tion system. This is particularly important for applications that
have significantly different stiffness requirements in different
planes, as discussed earlier in the paper. The models discussed
in this study will be specifically relevant to such applications.

4. CONCLUSIONS

In this paper, the effect of stiffness nonlinearity has been
investigated by incorporating stiffness elements along non-
isolating axes into the MV and MMV models for a vibration
isolator. An alternative design of a vibration isolator is investi-
gated in this study with significantly different stiffness proper-
ties along multiple axes of the isolator. The main advantage of
this design is an ability to control the frequency response over
a relatively larger frequency range. Such a design could miti-
gate some of the trade-offs typically associated with the design
of a passive isolator. This design can also be used to accom-
modate multiple performance constraints posed on an isolation
system while requiring the system to effectively mitigate vibra-
tion response. These performance constraints are important in
applications such as motorcycles where the stiffness require-
ments of the isolation system are significantly different along
the non-isolating axes due to handling and packaging require-
ments.17 A drawback of the proposed design is a significant
enhancement of design complexity and related challenges as-
sociated with manufacturing the vibration isolator.

Results indicate that the incorporation of stiffness nonlin-
earity, as investigated in this study, can be useful in enhancing
vibration isolation characteristics of a passive isolator while
allowing the design to meet other performance criteria that
the isolation system may be required to satisfy. Specifically,
the stiffness nonlinearity is seen to significantly reduce the re-
sponse amplitude at lower frequencies with limited trade-offs
for relatively higher frequencies. The stiffness of the hori-
zontal spring elements in conjunction with the level of pre-
compression are found to be critical in controlling the fre-
quency response, time response as well as displacement trans-
missibility. The simulation results do not vary much between
the MV and the MMV models, and the MMV model is not seen
to exhibit any specific advantages for the models investigated
in this study.

As a follow up to this study, the coupled influence of stiff-
ness and damping nonlinearities will be investigated in the fu-
ture for the models analyzed in this paper. The numerical solu-
tion will be investigated further to compute the time response
at higher levels of stiffness and to comprehend whether the as-
sumptions associated with the HBM are appropriate for all the
configurations investigated in this study. The output frequency
response function (OFRF) approach will be used to account for
the influence of higher harmonics in future work.2 The models
discussed in this paper will also be numerically compared to
other similar models in the literature such as the QZS model.
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