
Vol.:(0123456789)

Information Retrieval Journal (2023) 26:12
https://doi.org/10.1007/s10791-023-09428-z

1 3

Privacy‑aware document retrieval with two‑level inverted
indexing

Yifan Qiao1 · Shiyu Ji1 · Changhai Wang1 · Jinjin Shao1 · Tao Yang1

Received: 27 March 2023 / Accepted: 20 October 2023
© The Author(s) 2023

Abstract
Previous work on privacy-aware ranking has addressed the minimization of information
leakage when scoring top k documents, and has not studied on how to retrieve these top
documents and their features for ranking. This paper proposes a privacy-aware document
retrieval scheme with a two-level inverted index structure. In this scheme, posting records
are grouped with bucket tags and runtime query processing produces query-specific tags in
order to gather encoded features of matched documents with a privacy protection during
index traversal. To thwart leakage-abuse attacks, our design minimizes the chance that a
server processes unauthorized queries or identifies document sharing across posting lists
through index inspection or across-query association. This paper presents the evaluation
and analytic results of the proposed scheme to demonstrate the tradeoffs in its design con-
siderations for privacy, efficiency, and relevance.

Keywords Document search with ranking · Privacy protection · Retrieval efficiency

1 Introduction

As sensitive information is increasingly stored on the cloud, privacy concerns on unauthor-
ized data access or inferences have been a critical factor for individuals or corporations
to adopt cloud-based information retrieval services. A dilemma considered is that a user
wants to take full advantage of the cloud resource to search a large hosted dataset quickly
with an index stored together on the cloud, but this user may not fully trust this cloud on

 * Yifan Qiao
 yifanqiao@cs.ucsb.edu

 * Shiyu Ji
 shiyuji@google.com

 * Tao Yang
 tyang@cs.ucsb.edu

 Changhai Wang
 changhai_wang@cs.ucsb.edu

 Jinjin Shao
 jinjinshao@google.com

1 Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-023-09428-z&domain=pdf

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 2 of 31

data privacy. This is because a cloud server may be honest-but-curious and can observe the
client-initiated query processing flow, and reason about client’s data. Consequently, user
data leakage may occur accidentally if not intentionally. The previous work in searchable
encryption (Song et al., 2000; Curtmola et al., 2006; Kamara et al., 2012; Cash et al., 2013,
2014; Kamara & Moataz, 2017; Lai et al., 2018) has been proposed to identify documents
that match a user query from the encrypted index with minimized information leakage.
None of these papers has considered ranking of the matched results. Privacy issues have
also attracted research interests in the information retrieval community and SIGIR held
several privacy workshops on this subject (Yang & Soboroff, 2015; Yang et al., 2016).

This paper studies privacy-enhanced document matching and feature access to facili-
tate top-k search with ranking over an encrypted index. Privacy-aware ranking solutions (Ji
et al., 2018; Shao et al., 2019) with tree ensembles and neural networks have studied how
to avoid the leakage of privacy-sensitive feature information during ranking computation
with ranking feature encoding and obfuscation, but they do not address how to retrieve top
matched documents and gather their features safely for ranking. Thus this paper studies this
open problem. The work in Agun et al. (2018) studies additive ranking with retrieval, but
a server needs to send a large amount of data back to a client to complete ranking, and the
work in Xu et al. (2021) furthers pushes for client-side search by securely fetching index
data from a server. These studies do not support full server-side ranking.

Document retrieval for search often uses an inverted index in which each searchable
term is associated with a list of posting records containing document ID and its term-based
features. For privacy protection, document IDs and their ranking features of an index are
encoded or encrypted when hosted on a cloud server. The challenge in designing such a
search index is that a server adversary can inspect the index, observe the query process-
ing flow, and learn some sensitive patterns, which may recover document plaintext even
partially. Thus a document retrieval solution needs to minimize the chance that a server
processes unauthorized queries or learn sensitive information from query processing. The
previous studies on privacy-abuse attacks (Islam et al., 2012; Cash et al., 2015; Wang et al.,
2018; Pouliot & Wright, 2016) show the leakage of the information about term co-occur-
rence in a document can yield a plaintext attack. For example, if an adversary knows word
“new” appears in a document and can estimate its co-occurrence probability with another
word x in the same index. Then this adversary may be able to recover x as “york” appeared
in this document by comparing against some known knowledge on the co-occurrence prob-
abilities of pair “new” and “york”, and other word pairs. Notice that the co-occurrence
probability of two terms is computed as being proportional to the number of documents
shared between the posting lists of these two terms. Thus avoiding leakage of document
sharing among posting lists is our key consideration in privacy protection.

When designing an index for privacy-aware search that retrieves and ranks documents
with their features, one challenge faced is how to associate term-specific features distrib-
uted in different online data structures with a document that owns these features, without
leaking document sharing patterns among posting lists. If such a document ID is encrypted
with a fixed static value, this value does not change from one query to another. Then a
server adversary can observe the document sharing pattern among two posting lists based
on static document IDs, and can estimate the co-occurrence probability of these two terms
appearing in the same document in this index. Following the discussion in the previous
paragraph, the risk of a privacy attack or leakage that successfully recovers some plaintext
exists. On the other hand, if the encrypted value of the same document ID is non-determin-
istic in posting lists of different terms, the server is unable to recognize term-based fea-
tures belonging to the same matched document and conduct effective ranking. The existing

Information Retrieval Journal (2023) 26:12

1 3

Page 3 of 31 12

searchable encryption studies use non-deterministic document IDs and cannot be easily
extended for a search system that gathers ranking features and computes preliminary scores
during document retrieval. Another challenge faced is that cryptographic computing opera-
tors used in searchable encryption techniques involve very long bits of integers, which is
expensive and becomes a performance bottleneck for a reasonable query response time
even for a modestly large dataset.

The contribution of this paper is to address this open problem of privacy-aware docu-
ment retrieval with ranking by introducing a two-level inverted index and query-specific
tagging called QDT. QDT gathers encoded ranking features of matched documents with
privacy-protection to facilitate document ranking. During index traversal, QDT generates
query-specific tags to correctly recognize the term-specific ranking features of matched
documents and uses a two-level index structure to strike a trade-off of privacy and effi-
ciency for ensuring a reasonable query response time. The design of QDT minimizes the
chance that a server conducts unauthorized search with ranking or learns document sharing
patterns of posting lists when processing a sequence of client-authorized queries. Our eval-
uation indicates that adding privacy protection for document retrieval does incur significant
cost compared to the well-known retrieval baselines without privacy constraints, and the
result demonstrates the importance of our two-level design in optimizing the use of cryp-
tographic computation under privacy requirement. Another contribution of this paper is to
show that a leakage-abuse attack is still possible in a naive version of the above design, and
the guided fake document padding in QDT thwarts such an attack. Our evaluation validates
its compatibility with ranking and its effectiveness in attack prevention.

The rest of this paper is organized as follows. Section 2 provides the background infor-
mation of the problem focused in this paper and the related work. Section 3 discusses the
design considerations and the proposed two-level index data structure, document-specific
tagging, and guided fake document padding. Section 4 provides an evaluation of the pro-
posed QDT scheme in terms of time efficiency, and its compatibility with ranking and its
effectiveness in attack prevention. Appendix 1 discusses a design consideration of QDT
in preventing an attack based on document-pair ID mapping. Appendix 2 provides several
privacy properties of QDT. Appendix 3 lists the leakage profile of QDT following an ana-
lytic framework of the previous work.

2 Background and related work

Search systems for text documents often employ multi-stage ranking in practice (e.g. (Mat-
veeva et al., 2006; Wang et al., 2011)). The first retrieval stage extracts top candidate docu-
ments matching a query from a large search index with a fast and simple ranking method.
The second stage or a later stage uses a more complex machine learning algorithm to re-
rank top results thoroughly. Following the disjunctive query semantics widely used in the
previous work (e.g. (Broder et al., 2003; Ding & Suel, 2011)), this paper is focused on
the problem of document retrieval that identifies documents matching at least one search
term, and aggregates their term features for ranking in privacy-aware cloud search. This
extra privacy protection constraint requires the minimization of the information leakage to
a cloud server and the threat model is discussed below. This paper assumes that document
search returns a list of document IDs ranked on the top for a client to make further data
fetching.

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 4 of 31

Traditional retrieval algorithms in IR often use an inverted index (Baeza-Yates &
Ribeiro-Neto, 2011) which contains a set of terms and each term points to a list of docu-
ment IDs that possess a feature for such a term. This list is called a posting list. Each record
in this list containing a document ID and its term-specific feature is called a posting record.

Privacy and threat model There are three entities in a cloud system: data set owner, a
search user, and a cloud server. We assume a client owns a collection of private documents
and outsources the encrypted data to a cloud server. The client builds an encrypted search-
able index, lets a server host such index, and only this client or the other users author-
ized by this client can search the hosted data. We assume that a client can periodically
overwrite the index on the cloud to include new content. Dynamic index update (Kamara
et al., 2012) is not considered in this paper. The server is allowed to access this hosted
index for client query processing only, and it is honest-but-curious, i.e., the server will hon-
estly follow the client’s protocol, but will also try to learn some information based on what
can be observed from the index and during query processing. Multi-round communication
between the server and client (e.g. (Naveed et al., 2014; Hu et al., 2011; Lai et al., 2018)),
client–server collaborative ranking (Agun et al., 2018), and securely fetching index data
from a server to a client for client-side search (Xu et al., 2021) are not considered in this
paper because they incur high client–server communication cost for large datasets or low-
bandwidth platforms, and they represent an orthogonal approach.

For privacy protection, document IDs and index information in a search system are
encrypted or encoded. The biggest threat to search privacy is the leakage of document/
term-related statistical information induced from an index and access patterns within a
query or across queries. From the above information, a server can launch a privacy attack
and reveal document content partially (Islam et al., 2012; Cash et al., 2015; Wang et al.,
2018). Specifically, Islam et al. (2012) proposed a query recovery attack to identify the
plaintext of some words, assuming that a server adversary knows about a subset of plaintext
of some words, and the co-occurrence probability of two words in a document. Through
intensive guessing and validation computation, an adversary attack may estimate the co-
occurrence probability of words in a hosted index, derive a mapping from word IDs to
English words that closely matches the known co-occurrence probability, which reveals the
plaintext of some words as a privacy breach. Cash et al. (2015) improved the above work
by exploiting extra information such as the length of the posting list of each searchable
term. There are also attacks exploiting leaked document similarities (Wang et al., 2018).

The above attacks only work if the adversary knows co-occurrence probability of tar-
geted keywords in the document set, which is proportional to the count of shared docu-
ments among the posting lists of these keywords. By preventing the leakage of the docu-
ment sharing information of documents among posting lists in a hosted index, threats from
these attacks can be greatly alleviated.

Blackstone et al. (2019) introduces attacks based on volume information (document
length). This paper assumes the server only needs to return the encrypted document IDs
of top results but not the text of each document, and a client may find document text from
another place later with these IDs. Thus, these volume attacks would not be applicable in
our case.

Document retrieval with privacy-aware ranking The previous work on document
retrieval (e.g. (Broder et al., 2003; Ding & Suel, 2011)) often selects top k results based
on a simple additive formula as the first stage of search and it computes the rank score
of each document d as: RankScore(d) =

∑
t∈Q wt where Q is the set of all search terms

and wt is a term-specific weight of this document. An example of such additive formula
is BM25 (Jones et al., 2000) which is widely used. This paper assumes the disjunctive

Information Retrieval Journal (2023) 26:12

1 3

Page 5 of 31 12

query semantics, motivated by the above formula which implies any document that con-
tains a query term accumulates some score and is a candidate for the top results. Notice
that relevant text documents may not contain any query term in many applications, and
recent advancement in document term expansion through a deep neural model addresses
document-query vocabulary mismatch (Formal et al., 2021; Mallia et al., 2021; Lin & Ma,
2021). Thus the use of disjunctive semantics can still be applied widely by coupling with
such techniques.

To conduct additive scoring like BM25, a server needs to decrypt the encrypted features
before computation, that results in the leakage of sensitive ranking features. Homomorphic
encryption (Gentry, 2009; Paillier, 1999) can let the server perform arithmetic calculations
without decrypting the underlying data. But such a scheme does not have the ability of
comparing two results using scores computed with homomorphic encryption at the server
side, and it is also very time consuming and computationally non-scalable when many
numbers are involved in ranking computation. Dense matrix multiplication is used in Cao
et al. (2014), Sun et al. (2014), Xia et al. (2016) for additive ranking, and its complexity
is proportional to the number of documents multiplied by the number of distinct words,
which is not scalable for a large data collection. The evaluation of this paper adopts a sim-
ple obfuscation-based approach to improve privacy protection by mapping each BM25
term feature into a set of non-uniform partitions to hide privacy-sensitive true values. This
follows the value partitioning technique (Hacigümüş et al., 2002) as extreme downsam-
pling (Ryoo et al., 2017) to mask privacy-sensitive feature details with obfuscation.

Our scheme can also be used for more complex ranking. For example, one may opt to
directly adopt a tree ensemble or neural ranking method without going through the first-
stage BM25 for a relatively small or medium-sized document collection for which such a
method can be efficient enough. Privacy-aware tree ensemble ranking with feature encod-
ing is studied by Ji et al. (2018) and neural ranking with feature obfuscation is proposed
by Shao et al. (2019) based on KNRM and ConvKNRM ranking (Xiong et al., 2017; Dai
et al., 2018). None of the above work addresses how to safely gather ranking features dur-
ing document retrieval. The techniques developed in this paper to gather ranking features
in a privacy-aware manner can be applicable when such a ranking method is used. The
transformer-based ranking models with contextual embeddings outperform KNRM and
ConvKNRM on relevance (e.g. (Lin et al., 2020; MacAvaney et al., 2020; Khattab & Zah-
aria, 2020; Yang et al., 2022; Li et al., 2023)). This paper does not use transformer-based
models in the evaluation because there are no studies on how to address privacy issues for
such complex ranking models. Since the work in Shao et al. (2019) provides a privacy-
aware neural re-ranking even it is based on static document embeddings, this paper lever-
ages Shao et al. (2019) to demonstrate safe top result retrieval and feature aggregation,
and conducts an end-to-end neural ranking under privacy constraints. Recent optimization
studies on learned sparse representation of documents using BERT have shown strong rel-
evance and efficiency results (Formal et al., 2022; Qiao et al., 2023; Thakur et al., 2023),
and these techniques are orthogonal optimization that our work can leverage in the future.

Searchable encryption, query authorization, and document identification The previous
work on searchable encryption has not addressed ranking issues including feature gather-
ing. However the searchable encryption techniques can be leveraged to help solving our
problem with the disjunctive query search semantics.

Although OXT (Cash et al., 2013, 2014) does not support disjunctive query semantics, it
provides a searchable encryption mechanism that a server can extract relevant information
from an index and process a query only with an authorization from a client. A client sends
a start-up term token and additional intersection tokens acting as a mean of authorizing

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 6 of 31

conjunctive search on the encoded index hosted on a server. Lai et al. developed the HXT
scheme (Lai et al., 2018) that improves the security of OXT using hidden vector encryption
and a Bloom filter with extra communication overhead in multi-round client–server com-
munication. The work by Agun et al. (2018) extends OXT for additive ranking but it only
supports partial server-side ranking and large client–server communication is needed, and
thus it does not scale well for a large dataset. All of the above works require one of terms
to lead the flow of conjunction handling. and cannot be extended easily and efficiently to
support disjunctive semantics.

In a traditional inverted index, it is natural and straightforward to store a feature in a
posting record of a term, and use a document ID to show the ownership of this feature.
The above natural way of associating a term feature with a deterministic and static docu-
ment ID would not work for the privacy-sensitive index. That is because a server can easily
count that the number of common static document IDs shared among the posting lists of
two terms, to compute the co-occurrence probability of targeted words, defined as the num-
ber of documents that appear in two corresponding posting lists divided by the number of
documents. The above action can lead to the plaintext attack as mentioned above.

The IEX scheme introduced by Kamara and Moataz (2017) supports disjunctive que-
ries, where the same document ID that appears in different posting records has a different
encrypted value with non-deterministic encryption. Thus document sharing patterns among
posting lists are not leaked explicitly. Because of the above non-deterministic encryption,
the server cannot figure out features of the same document appearing in different posting
records and thus it is difficult to extend IEX to support ranking feature gathering.

Static index vs. dynamic update Recent studies on searchable encryption for conjunc-
tive queries have proposed ODXT (Patranabis & Mukhopadhyay, 2021) and ESP-CKS (Xu
et al., 2023) for the dynamic update of a database and its index, which is the main advance-
ment compared to OXT and HXT, but server side ranking is not addressed. Our work on
the other hand, does not support dynamic document addition and deletion to an existing
search index, but focuses on ranking with a static index. We assume the search index in a
hosted server can be refreshed periodically with a new or updated index. Thus the above
dynamic index update work is orthogonal to this paper.

Fake document padding, obfuscation, and differential privacy The leakage of the posting
list length can further aid text-revealing privacy attacks together with term co-occurrence
leakage as shown in Islam et al. (2012), Cash et al. (2015), Pouliot and Wright (2016). To
avoid this, padding fake documents in a posting list is proposed in Islam et al. (2012), Patel
et al. (2019), Kamara and Moataz (2019) for searchable encryption. A bucket-based pad-
ding technique is proposed in Kamara and Moataz (2019), but it is not extensible for rank-
ing because it cannot identify the same documents referenced in different posting records.
Also to store ranking features in this scheme, excessive feature duplication is needed and
the space cost is very expensive.

Padding with fake documents in the index can be viewed as an obfuscation strategy.
Obfuscating search queries has been studied to achieve user anonymity (Ahmad et al.,
2018, 2016). There is a line of work with data perturbation or obfuscation for differential
privacy in classification (e.g. (Jagannathan et al., 2009; Liu et al., 2017)) and in neural
model or representation learning (Chase et al., 2017; Habernal, 2022). Chen et al. (2018)
introduced a differentially private obfuscation framework to mitigate access pattern leak-
age in searchable encryption and it intentionally includes false positives and false negatives
in the index while adding redundancy by encoding a document into multiple shards based
on erasure coding. Shang et al. (2021) proposes obfuscated searchable encryption to
improves Chen et al.’s scheme by a fresh obfuscation per query with a tradeoff at a larger

Information Retrieval Journal (2023) 26:12

1 3

Page 7 of 31 12

search cost. Its query processing has a time complexity of O(n log n

log log n
) where n is the number

of documents in the index and that is not scalable for a large dataset. Both of these two
papers do not address document ranking, and they deal with single-word queries only while
this paper addresses document retrieval in a more complex disjunctive multi-keyword
query setting.

ORAM and hardware enclaves Garg et al. (2015) proposed search encryption based
on oblivious RAM (ORAM) to avoid the access-pattern leakage at a cost of high search
overhead for a large dataset. Document retrieval leveraging hardware technologies such as
Intel SGX and/or ORAM is studied in Sun et al. (2018), Mishra et al. (2018), Hoang et al.
(2019), Shao et al. (2020), Vo et al. (2021). ORAM techniques are extremely expensive
without such hardware (Mishra et al., 2018). On the other hand, the risk of privacy-sensi-
tive attacks exists on such a platform (Costan & Devadas, 2016; Brasser et al., 2017; Xu
et al., 2015) and a client may not fully trust such hardware owned by servers. This paper
does not use such a hardware.

3 Indexing and query processing

To allow a server to gather meaningful feature information from the hosted index in a pri-
vacy-aware manner with client authorization, we propose a retrieval scheme with query-
specific document tagging and will call it QDT. QDT leverages a cryptographic technique
for information blinding used in OXT (Cash et al., 2013, 2014), but revises it for disjunc-
tive query processing. The long-bit arithmetic is required for the involved cryptographic
operations, which is expensive and significantly slows down query processing time. With
this in mind, QDT adopts a two-level index structure using a two-dimensional representa-
tion of document IDs and derives a query-specific document tag to identify a document
that appears in multiple accessed posting lists. This two-level structure helps QDT to con-
trol the time complexity of runtime tag computation. We also further develop guided pad-
ding of fake documents to enhance hiding of statistical term co-occurrence information in
the index.

Like OXT, the formula of QDT employs pseudo-random functions (PRF), denoted as
Hi(x) , which are either AES-256 (Dworkin, 2001) or a cryptographic hash function such
as SHA-3 (Dworkin, 2015). They use the secret key called ki , only known by the client.
A PRF function is applied to search terms, document IDs and other index information for
privacy protection. The formula in the rest of this section involves modular arithmetic of
integers and will use a Diffie-Hellman Group (Boneh & Shoup, 2015) of size q defined as
the integer set {1, g, g2 mod Q,⋯ , gq−1 mod Q} , where g is called a generator, and both
q and Q are large primes satisfying gq mod Q ≡ 1 and q < Q . The security assumption
of the Diffie-Hellman group is based on the fact that given gx mod Q , it is computation-
ally hard to infer any useful information of x, even g, q, and Q are public. More details
on this subject and typical parameter values can be found in Section 10.4.2 of an online
book (Boneh & Shoup, 2023) and in Appendix 4 of an NIST standard (Barker et al., 2018)
and related RFCs (Kojo & Kivinen, 2003; Gillmor, 2016). Note that while q and Q can be
typically in 2024 bits or more, a Diffie-Hellman group can also be built and represented
using Elliptic Curve arithmetic with a pair of two numbers in a relatively smaller number
of bits such as 224 bits (Boneh & Shparlinski, 2001) to speed up calculation.

Table 1 lists frequently used notations through this paper, and it does not include some
symbols that are used locally.

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 8 of 31

3.1 Bucketed posting lists

Our scheme divides all private documents into groups and a document ID d is represented
as d = (gid,mid) where gid is its group ID and mid is a member ID in such a group. By
using group IDs, a posting list is decomposed into a set of buckets, and each bucket only
contains documents of the same group ID. Thus the inverted index is structured in two
levels: a term points to buckets of documents, and each bucket captures a subset of a docu-
ment group. The inverted index of QDT does not reveal group IDs directly. Instead, the p-
th bucket with group ID gid in a posting list of term w is marked by a bucket tag defined as

where bucket position p is an integer counted from 1. Pseudo-random functions H1 or H2
use secret keys k1 and k2 respectively. Expression (H2(x))

−1 means the modular multipli-
cative inverse of integer H2(x) , namely, H2(x) ⋅ (H2(x))

−1 ≡ 1 mod q . Symbol ⋅ denotes
modular multiplication. We adopt this inverse operator, inspired by OXT (Cash et al.,
2013, 2014) for blinding, so that a server cannot learn blinded information from the index
without client authorization. That is because the above expression for each bucket tag is
computed during index generation before the index is outsourced to a server. Such a server

(1)B(gid,w, p) = H1(gid) ⋅ (H2(w||(p mod P)))−1 mod q

Table 1 Frequently used notations

Symbols Explanations

m Number of search terms in a query
w A query term
k Number of top ranked results needed for document retrieval
H

i
() Pseudo random function (PRF) using the i-th secret key

k0 Secret key used to encode terms as posting lists keys
k1 Secret key used to encode group IDs
k2 Secret key used to encode positions for the buckets in the index
k3 Secret key used to encode document member IDs
gid Group ID of a document with a 2D ID representation
mid Member ID of a document with a 2D ID representation
|G| The number of document groups with a 2D ID representation
p The position of a bucket in a posting list
B(⋅) The tag of a bucket in a posting list
P Modulus of modulo positioning
������(⋅) The deblinding token from a client as an authorization
���� A query-specific group tag for a matched document
(����,H3(mid)) A query-specific document tag for a matched document
R Random integer sampled for each query independently
|| Concatenation in binary presentation
Q Diffie-Hellman group modulus
q Diffie-Hellman group size
g Generator of a Diffie-Hellman group
E(⋅) Symmetric encryption with a random seed, e.g., AES256
U The average of the maximum padding ratio in posting lists

Information Retrieval Journal (2023) 26:12

1 3

Page 9 of 31 12

only knows the final value of a bucket tag and does not know its integer factors includ-
ing H1(gid) . As discussed in Sect. 3.2, a deblinding token is sent from a client as a piece
of query-specific authorization information to remove this blinding factor during query
processing.

Notice that in the above expression, the modulo operator is applied to p as we adopt a
modulo positioning technique (Lipmaa et al., 2000; Cash et al., 2013) which allows the
cyclic re-use of the deblinding tokens from a client during query processing. Its impact on
complexity control will be further discussed in Sect. 3.3. Symbol || denotes concatenation
between two integers in binary representation, e.g., 11b||01b = 1101b.

Each bucket contains a number of posting records and each of them represents a docu-
ment containing the targeted term w with the same group ID. The key to each posting list
is encoded by a PRF called H0(w) using secret k0 . Each posting record for each document
d = (gid,mid) is a tuple (E(d),H3(mid),F(d,w)) where

• E(d) is a symmetric encryption result of document ID d, e.g., AES-256 with CBC
mode (Dworkin, 2001). A document d may appear in different posting records and we
use different seeds to compute the corresponding E(d) values. Notice that this field E(d)
is needed only for a unigram term. The posting records that refer to the same document
will be recognized with a query-specific document tag, and only one of these records
needs to host the encrypted document ID, and this will be discussed in Sect. 3.2.

• H3(mid) is the hashed member ID using a PRF function with secret key k3 . Note that
tuple (B(gid,w, p),H3(mid)) uniquely identifies a document within the posting list of
a term, but this bucket tag paired with mid is not sufficient to identify a document
that appears in different posting lists, because the same document can have a different
bucket tag in different posting lists.

• F(d, w) is the encrypted or encoded element-based or vector-based feature of document
d under feature key w. Ranking feature encoding and obfuscation are addressed in Ji
et al. (2018), Shao et al. (2019) for tree based and neural ranking. Section 4 discusses
feature value partitioning based obfuscation (Hacigümüş et al., 2002) used in our evalu-
ation.

Figure 1 illustrates an example of the inverted index where the original posting list of
term w has four real documents d1 , d2 , d5 , and d6 . Under QDT, the corresponding two-level
index is organized with 3 group buckets. These buckets contain the above 4 real documents
and also have padded extra 4 fake documents marked with symbol ⊥ . Fake document

Fig. 1 An example of two-level
inverted index with 3 group
buckets

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 10 of 31

padding will be explained in Sect. 3.4. The first bucket contains 3 posting records. There
are two real documents d1 (with member ID mid1) and d2 (with member ID mid2) contain-
ing term w in Group ga . Similarly, the second bucket contains 3 posting records while the
third bucket contains 2 posting records. Modulo positioning uses P = 2 and thus the third
bucket has a bucket tag B(gc,w, 3) = B(gc,w, 1).

3.2 Online query processing with QDT

Figure 2 shows the flow of query processing with QDT. Given a query with m terms as
H0(w1),⋯ ,H0(wm) , a client samples a random integer R, and computes a deblinding token
at p-th bucket for each of search terms w as:

Number P in the above expression limits the maximum number of tokens needed and this
client sends all m terms H0(w1),⋯ ,H0(wm) and all m ⋅ P authorization deblinding tokens
������(wi, p) for 1 ≤ i ≤ m and 0 ≤ p < P to the server.

After the client sends the above encoded terms and tokens to a server, this server line-
arly visits the bucketed posting lists of the searched terms one by one in the hosted inverted
index. It computes a query-specific group tag at bucket position p for term w as

which is considered as a group tag for all documents in this posting bucket. Expanding the
value of ������(w, p)B(gid,w,p) using Expression 1, we have:

which is unique based on the group ID gid for the given query since value R is the same
for different search terms of this query. This group tag is query specific, since R is chosen
randomly for each query. Appendix 1 discusses this design further on preventing an attack.

Within a bucket, for each posting record, the server fetches its member ID information.
The pair (����,H3(mid)) acts as a query-specific document tag and uniquely identifies a
matched document that owns the feature stored in this record. Using this query-specific
document tag, the runtime system builds a query-specific in-memory key-value hash table
with this document tag as a key. The value of this key represents the corresponding set of
features.

As the above index traversal linearly visits all posting records of multiple search
terms, the features for the same document that appears in multiple posting records are

(2)������(w, p) = gR⋅H2(w||(p mod P)) mod Q.

(3)���� = ������(w, p)B(gid,w,p) mod Q,

(4)
���� = gR⋅H2(w||(p mod P))⋅H1(gid)⋅(H2(w||(p mod P)))−1 mod q mod Q

= gR⋅H1(gid) mod Q,

Fig. 2 The flow of privacy-aware
search with QDT

Information Retrieval Journal (2023) 26:12

1 3

Page 11 of 31 12

added to the hashtable gradually with the same query-specific document tag. Then the
ranking features of this document can be recognized and aggregated.

The outcome of the above traversal is a set of matched documents and the features
for each document accumulated in the above hashtable. This outcome can be incremen-
tally injected as an input to a privacy-aware ranking scheme. As discussed in Sect. 2,
our evaluation paper uses a simple obfuscation-based additive ranking which hides true
BM25 values. Alternatively, one can opt to apply privacy-aware tree ensemble or neu-
ral ranking (Ji et al., 2018; Shao et al., 2019). Finally the server sends the ranked and
encrypted document IDs to the client as shown in Fig. 2. The client will decrypt and
may filter out some fake IDs to be discussed in Sect. 3.4.

To optimize time efficiency, the previous retrieval work with additive ranking has
developed index skipping methods called WAND (Broder et al., 2003), BMW (Ding &
Suel, 2011) and its variants (e.g. (Mallia et al., 2017; Shao et al., 2021)). These optimi-
zation methods avoid the processing of low-scoring documents below a top-k threshold
to reduce the retrieval latency. We do not use such an optimization method because it
requires that each posting list is presorted by static and deterministic document IDs to
guide skipping. In our problem context with privacy protection requirement, document
IDs in a search index are encrypted non-deterministically and the same document has
different encrypted ID values in the different lists. Similarly, other optimization on list
intersection (Culpepper & Moffat, 2010) that requires document pre-sorting cannot be
leveraged. This represents an efficiency tradeoff for privacy.

3.3 Time cost of query processing with QDT

Having the two-level index design does not affect the effectiveness of document retrieval
in terms of ranking quality. The main motivation of having this design is to control the
time complexity. Assume that client–server communication cost is less significant to
transmit encoded query terms and tokens, and top k results with relatively small k value.
We assume to use the aforementioned obfuscated BM25 ranking, which is relatively fast
and its cost is less significant compared to the other items listed below. Then the time
complexity of query processing with QDT is dominated by the following expression:

where

• m is the number of search terms derived from a given query;
• P is the modulus used in modulo positioning;
• Ttoken is the client-side time to generate one deblinding token;
• Tkvstore is the average server-side time to access a posting list from a key-value store

hosted on a disk drive;
• Tgtag is the server-side time to compute the group tag of a posting bucket;
• C is the average number of posting buckets in a posting list;
• L is the average total number of documents in the posting list per term;
• Thashtb is the server-side time to perform a hash table lookup and/or insertion using

a query specific document tag, and then combine the features of the corresponding
document in this hash table.

m ⋅ P ⋅ Ttoken + m ⋅ [Tkvstore + C ⋅ Tgtag + L ⋅ Thashtb],

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 12 of 31

Notice that cost parameter Ttoken is much larger than Tkvstore , and L is fixed. As shown
below, controlling of parameters C and P is critical for a reasonable response time.

Cost parameter Tgtag is for computing a group tag with Expression (3) and involves
integer exponentiation with a Diffie-Hellman group. Integers involved need to be in
2048 bits or more to be secure as a common cryptographic practice (Boneh & Shoup,
2015), and such exponentiation is extremely expensive. We use an elliptic curve based
optimization to re-formulate exponentiation computation, represent each long-bit num-
ber with a pair of two numbers, and reduce the number of bits needed as 224 (Boneh
& Shparlinski, 2001) instead of 2048 to speed up calculation, and it is still time-con-
suming. In our evaluation, Tgtag ≈ 0.13ms while Thashtb = 0.001ms using 256-bit elliptic
curve-based modular exponentiation. With a standard one-level approach where C = L ,
the cost of tag computation would dominate. For 10,000 buckets and 5 search terms,
group tag computation in processing a query would take around 6.5 s, and it is too slow
for an interactive response. Our two-level design can allow C << L , which makes the
tag computing time more affordable.

It is expensive for a client to compute deblinding tokens because token computation
involves modular exponentiation, and in our evaluation, Ttoken ≈ 0.13ms . The use of mod-
ulo positioning (Lipmaa et al., 2000; Cash et al., 2013) reduces the client token generation
time because ������(w, p) = ������(w, p mod P) , and parameter P limits the number of
deblinding tokens computed at a client. Without limiting P, P = L and client-side token
computation would become a bottleneck.

With the above design consideration with C << L and limited P value, the dominating
part of query processing time cost of QDT is proportional to m ⋅ L . Under a typical term
distribution in an inverted index, L ≪ n where n is the total number of documents in a
dataset. QDT can take advantages of an inverted index data structure for time efficiency
like a traditional retrieval algorithm while there is still a performance gap due to the cryp-
tographic operations used, which will be evaluated in Sect. 4.

A comparison with the previous work in design considerations While QDT adopts
inverse-based blinding, following OXT (Cash et al., 2013), there is a major design differ-
ence of QDT compared to OXT for supporting the disjunctive query semantics while col-
lecting ranking features correctly and efficiently. OXT combines a blinded static document
ID d with a term ID w as a lookup key in a pre-computed static hash table, to check if doc-
ument d contains term w in an index. This is designed for conjunctive query handling and
may leak the cross-query two-term co-occurrence information. In comparison, QDT uses
Expression (4) as the part of a query-specific hash table key which is term-independent
and contains a query-dependent random number, and this is helpful in reducing inter-query
information leakage of document sharing among posting lists involved in different queries.

For time efficiency, there is a significant difference between OXT and QDT due to
the above design. OXT’s list intersection scans the posting list of the first search term.
For each document d in the first list, OXT uses key (d, w) to check if d contains w in
a hash table for another term w. OXT’s time complexity is dominated by expression
Θ(m ∗ L ∗ (Tkeycomp + Tlookup)) where m is the number of search terms, L is the average
posting list length, Tkeycomp is time to compose a key involving the exponentiation of long-
bit integers, and Tlookup is the time to perform a hash table lookup. Parameter Tkeycomp is
as expensive as Tgtag in QDT, and thus there is a large cost difference between the values
of m ∗ L ∗ Tkeycomp in OXT and m ∗ C ∗ Tgtag in QDT because L >> C due to the two-
level design in QDT. The hashtable tag lookup cost in QDT is less significant, because this
query-specific hash table is small, while the hashtable involved in OXT is huge, and typi-
cally does not fit in memory.

Information Retrieval Journal (2023) 26:12

1 3

Page 13 of 31 12

Partial server additive ranking in Agun et al. (2018) uses the OXT’s technique of
inverse-based blinding, and thus can leak the cross-query two-term co-occurrence infor-
mation. It follows the OXT’s hashtable structure and lookup method driven by the first
search term, requiring a large server memory to host its hash table. In addition, it does not
allow multi-stage search with complex neural re-ranking conducted at the server side, and
the server has to send a large amount of un-ranked results to the client-side with a signifi-
cant communication overhead, which is not scalable for a large dataset with many results
matching a query.

The HXT work in Lai et al. (2018) improves the security of OXT for conjunctive que-
ries using hidden vector encryption and a Bloom filter with substantial overhead in multi-
round client–server communication. Adopting HXT’s encryption design with client–server
collaborative communication at least would increase communication overhead by a fac-
tor proportional to the number of search terms. Multi-round communication between the
server and client used in HXT and the previous work (e.g. (Naveed et al., 2014; Hu et al.,
2011)) or extensive communication to rely more on clients (Agun et al., 2018; Xu et al.,
2021) is not considered in this paper because they incur high communication cost and do
not scale well for large datasets or a low-bandwidth platform. Like HXT, the work in Cash
et al. (2013) also discusses the use of a Bloom filter to improve efficiency. Our work does
not adopt the idea of a Bloom filter because with that, documents that do not satisfy query
semantic may be matched due to false positives and wrong feature aggregation for some
documents is possible, which yields incorrect ranking results.

3.4 Guided padding with fake documents

We adopt the idea of Kamara and Moataz (2019), Patel et al. (2019) to pad fake docu-
ments, which hides the length of real posting lists. We add a flag to a fake document ID
before its encryption, thus a server is unable to detect fake documents added in an index
and only a client can filter out fake document IDs mixed in the returned query results after
ID decryption. A naive padding method based the idea of the previous work is to randomly
add fake documents to each posting list and select the group ID and member ID of these
fake documents from a large integer value space. This naive method can still leak docu-
ment sharing patterns in an index and the reason is that an adversary server can identify
a document approximately using its encoded member ID value when such values are rela-
tively unique among documents, sampled from a large integer space, which is of size 264
bits in our implementation.

There are three additional considerations. (1) The ranking feature values of fake docu-
ments cannot look dissimilar to real documents so that the server would not be able to
detect fake documents easily. (2) The existence of fake documents should not affect the
effectiveness of top candidate selection in ranking. (3) We want to add fake documents to
the existing groups as much as possible because online computing of group tags is expen-
sive and the addition of new groups needs to be avoided.

With the above considerations, we need a padding strategy different from that
of Kamara and Moataz (2019), Patel et al. (2019). Our goal is to not only hide the distribu-
tion of the posting list lengths but also make padded documents indistinguishable from real
documents while limiting the addition of new group IDs. Our idea is to use ID information
and the feature value distribution of real documents to guide fake document generation,
and also obfuscate these hashed member IDs with k-anonymity (Sweeney, 2002; Di Castro
et al., 2016). Namely, each real member ID corresponds multiple documents appearing in

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 14 of 31

a posting list. That is accomplished by mixing this member ID with k − 1 randomly chosen
fake member IDs and any attacker cannot distinguish. The example in Fig. 1 illustrates the
inclusion of 4 fake documents where value mid1 appears 3 times, and Document d1 cannot
be distinguished well by only using value mid1.

Let U be the maximum padding factor. Given a posting list of term w with length r, we
select a random number u in interval [1,U ⋅ r] and u represents the total number of fake
documents to be added. Let G′ be the set of all possible group IDs available to choose for a
fake document, and our guided padding algorithm to add u fake documents to this posting
list repeats the following steps:

1. Let G memorize all group IDs used so far. Initially G contains all group IDs used in this
given posting list. The algorithm gradually expands G towards G′ to cover more valid
group IDs when needed. This allows the distribution of fake member IDs to be about
the same as that of real member IDs.

2. Randomly sample mid′ from Dmid and feat′ from Dfeat . Here Dmid is the distribution of
the member IDs of real documents in the entire index and Dfeat is the distribution of the
ranking features of the real documents in the entire index.

3. Randomly sample gid′ from G such that (gid�,mid�) has not been appeared in this posting
list. Add (gid�,mid�, feat�) as a new fake document with feature feat′ to this posting list.

Since ranking features of fake documents follow the real feature distributions in our pad-
ding method, fake documents have an equal chance to be selected on the top in ranking.
With an average of maximum padding ratio being U, the number of fake documents added
is about U

2
 in the top results, an earlier stage ranking algorithm should enlarge search scope

proportionally and submit about K�(1 +
U

2
) top results to the next-stage ranking.

4 Evaluation

Datasets and setting We use the following TREC test collections for evaluations because
they are widely adopted for ad-hoc keyword search studies (e.g. (Guo et al., 2016; Xiong
et al., 2017; Dai et al., 2018; Ji et al., 2018; Shao et al., 2019)): (1) Robust04 uses TREC
Disks 4 & 5 (excluding Congressional Records), which has about 0.5M news articles.
(2) ClueWeb09-Cat-B uses ClueWeb09 Category B of 50 M web pages (Jamie Callan’s
research group, 2020). Spam filtering is applied on ClueWeb09-Cat-B using Waterloo
spam score with threshold 60. For ClueWeb, we have further divided the dataset into 60
partitions for parallel query processing thus the report time is the parallel time with 60
cores. For Robust04, the average number of documents for each posting list is 9789, while
the average number of buckets is 355. For ClueWeb, the average number of documents for
each posting list is 15,462, while the average number of buckets is 394.

The relevance features include BM25 term scores for single words and word pairs in
the title and body sections. To control the number of word-pair terms, we limit word pairs
under distance 3 in indexing and query term generation. BM25 features are obfuscated by
50 non-uniform value partitioning with extreme down-sampling (Hacigümüş et al., 2002;
Ryoo et al., 2017) to hide privacy-sensitive details. We leveraged Indri (Strohman et al.,
2005) to generate the posting lists and produce a two-level index. We have used 256-bit
elliptic curve optimization instead of using 2048 bit long integers (Boneh & Shparlinski,
2001) as discussed in Sect. 3.3. The majority of indexing time comes from encryption of

Information Retrieval Journal (2023) 26:12

1 3

Page 15 of 31 12

document IDs and bucket tag computations with 256-bit elliptic curves, which is still slow.
For example, it takes about 960 CPU hours to generate the encrypted index for ClueWeb,
and this is about 64x slower than traditional indexing with Indri (Strohman et al., 2005)
without encryption.

Our evaluation uses 250 queries with average query length 2.64 from TREC Robust
2004 and 2005, and 200 queries with average query length 2.48 from TREC Million Query
2009 to 2012 for ClueWeb. Experiments are conducted on Linux servers and each has Intel
i5-8259U 2.3GHz, 32GB DDR4 memory and NVMe solid-state drives (SSD). We have
implemented QDT in C++ and the code is compiled with flag -O3. We report the average
response time in query processing and the relevance score which includes the normalized
discounted cumulative gain (NDCG) (Järvelin & Kekäläinen, 2002) and the precision of
the top results (Baeza-Yates & Ribeiro-Neto, 2011). NDCG@p with a value between 0
and 1 measures the quality of a ranking result against ideal ranking for top p positions. All
reported query time numbers x are within 95% confidence interval x ± 0.01 by gathering
data through multiple runs.

4.1 Time efficiency and ranking relevance

Search relevance in the presence of fake documents Table 2 lists the relevance score of
QDT in NDCG and precision (Järvelin & Kekäläinen, 2002) for Robust04 and ClueWeb
after filtering out padded fake documents. It also lists the relevance scores of several up-
to-date baselines for ranking with and without privacy constraints in searching the tested
TREC datasets. Row 3 is for QDT with BM25-based ordering without using fake doc-
uments and feature obfuscation. Row 4 is for QDT with BM25 ranking with obfuscated
features and fake documents. Row 5 is for re-ranking with a privacy-aware neural model
called ConvKNRM/TOC (Shao et al., 2019; Dai et al., 2018) after QDT retrieval and
obfuscated BM25 first-stage ranking. Since final results received by a client contain fake
documents, the server needs to send more top results than needed, depending on the maxi-
mum padding ratio. Ranking selects top 1000 documents when no fake documents are pad-
ded, and top 1500 documents when the maximum padding ratio is 1. The result shows that
our padding of fake documents has no visible impact on relevance score for Robust04.
We have performed a pairwise t-test on the retrieval with and without fake documents,

Table 2 Client-side view of relevance for ranking with and without privacy constraints

Robust04 ClueWeb

P@20 NDCG@10 P@20 NDCG@10

Privacy-aware ranking
 QDT/BM25 w/o fake docs 0.346 0.428 0.280 0.210
 QDT/BM25 w. fake docs 0.346 0.428 0.274 0.204
 QDT + ConvKNRM/TOC w. fake 0.395 0.449 0.399 0.310
 PAR: Partial server-side additive ranking (Agun et al., 2018) – 0.412 – 0.255
 ConvKNRM/TOC re-ranking (Shao et al., 2019) – 0.450 – 0.310

BERT-based neural ranking with no privacy constraints
 SPLADE sparse retrieval (Formal et al., 2022; Thakur et al.,

2023)
– 0.468 – –

 BECR: Composite re-ranking (Yang et al., 2022) 0.401 0.491 0.399 0.342

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 16 of 31

which shows that there is no statistically significant difference at the 95% confidence level.
For ClueWeb, although there is a small relevance degradation during retrieval, almost all
desired documents still appear in top retrieved results.

Table 2 compares QDT with two baselines for privacy-aware ranking. Row 7 is for par-
tial server-side additive ranking with a linear combination (Agun et al., 2018) (we call it
PAR). PAR underperforms QDT with neural ranking due to two reasons: (1) It does not use
semantic matching with neural embeddings. (2) It uses conjunctive query semantic, reduc-
ing the chance of finding semantically-relevant documents that do not contain all query
keywords. Row 8 is the relevance result of ConvKNRM/TOC published in Shao et al.
(2019), which assumes the top results and their ranking features are fetched safely with
a privacy protection. Its result is comparable on average to Row 5. Thus QDT provides a
privacy-aware proper retrieval support for neural re-ranking with ConvKNRM/TOC.

As a reference, Table 2 lists the relevance score of two recent BERT-based ranking
methods without privacy constraints. Row 10 is for SPLADE v2 (Formal et al., 2022,
2021) with a learned sparse index and knowledge distillation. Its Robust04 performance
is collected from Thakur et al. (2023). Row 11 is for BECR composite re-ranking (Yang
et al., 2022) which uses transformer-based contextual embeddings for document and query
representation. These latest methods without privacy constraints outperform QDT in Row 5
that uses static neural embedding while the gap is modest with 4% and 9.4% for Robust04,
and 9.4% for ClueWeb. They represent complementary and orthogonal optimizations and
leveraging such optimization in QDT will be a future work to exploit. Addressing privacy
in transformer-based models is still an open problem in general, and their query processing
is much more expensive due to their complexity. Thus our current work represents a trade-
off in advancing the state of the art on privacy-aware ranking.

Time cost breakdown in query processing with QDT Table 3 lists the average query pro-
cessing time and its cost breakdown when the number of query words varies. Row 1 is
the query length and the number of query words used for each length. For both datasets,
the maximum padding ratio is 1 and on average 33% of documents are fake. The query
response time breakdown is listed as follows. Rows marked “Client” are client-side pre-
processing time mainly dominated by token generation; Rows marked “Comm.” means

Table 3 Query time in seconds
with max padding ratio 1

#Query words 1 2 3 4–5 Average

Robust04 Client – 0.04 0.07 0.11 0.06
Comm 0.020 0.02 0.02 0.02 0.02
KV-store 0.008 0.02 0.04 0.06 0.04
Tag comp – 0.16 0.30 0.50 0.25
Hash table – 0.04 0.18 0.30 0.11
Decrypt 0.020 0.02 0.02 0.02 0.02
Total (s) 0.048 0.30 0.63 1.01 0.50

ClueWeb Client – 0.03 0.06 0.10 0.05
Comm 0.020 0.02 0.02 0.02 0.02
KV-store 0.012 0.03 0.06 0.09 0.06
Tag comp – 0.19 0.38 0.60 0.29
Hash table – 0.11 0.30 0.44 0.19
Decrypt 0.020 0.02 0.02 0.02 0.02
Total (s) 0.052 0.40 0.84 1.27 0.63

Information Retrieval Journal (2023) 26:12

1 3

Page 17 of 31 12

the client–server communication of sending tokens and encoded terms, and receiving the
top ranked results, and we have assumed networking speed of 10ms latency and 5Mbits/s
bandwidth; Rows marked “Tag comp.” are the server-side time for group tag computation;
Rows marked “Hash table” are the server-side time to combine features by document tags
through a hash table; Rows marked “Decrypt” are the client-side post-processing time to
decrypt ranked document IDs and filter out fake documents.

Table 3 shows that the client-side cost of computing deblinding tokens is not significant
with the use of modulo positioning. The group tag computation takes a significant por-
tion on the server side, and this server-side cost is proportional to the number of buckets.
Thus two-level indexing is effective to control this portion of the cost. As the query length
increases, the number of deblinding tokens and involved posting lists increases, and thus
there is an increasing amount of client-side token computation and server-side group tag
computation. The cost of hash table operations for feature aggregation is relatively small.
The time on posting list access from the SSD-based key-value store is small as the number
of store lookups is equal to the number of search terms.

Impact of two-level indexing on retrieval time Table 4 shows the query time in three set-
tings when maximum padding ratio 1: (1) one-level index with no group buckets (Column
3); (2) two-level index with 1024 groups but without using modulo positioning (Column
4); (3) two-level index with 1024 groups and modulo positioning with P = 128 (Last col-
umn). Only the cost of client-side token computation, client–server communication, and
server-side tag computation is listed as grouping only affects these three items significantly.
Without two-level indexing, there is much more cost in client-side token computation and
server-side tag computation. For ClueWeb, two-level indexing without modulo positioning
reduces the average number of deblinding tokens needed per term from about 15,462 to
1,024 in this case. Modulo positioning furthers reduces the number of tokens to 128, but
the number of bucket group tags to compute does not change. The communication cost is
also reduced proportionally with fewer deblinding tokens. The overall speedup is up to
130x after the use of the two-level design from the ungrouped setting. Modulo positioning
brings an additional 1.8x speedup. The speedup for Robust04 is 131x with the two-level
design.

Impact of padding on query time and storage cost Table 5 lists the query time and stor-
age space cost without padding, and with maximum padding ratio of 0, 1, 2, and 3. For
ClueWeb, the storage cost listed is the total gigabytes for all partitions. Impact of add-
ing fake documents to buckets on the query time is mainly on hash table operations since
this mainly enlarges the number of posting records per list randomly. The storage space

Table 4 Query time with or
without two-level indexing

Grouping method Ungrouped 1K groups
w/o modulo pos.

1K groups
P = 128

Robust04 Client 6.38 0.47 0.06
Comm 0.38 0.10 0.02
Tag comp 123 0.25 0.25
Total (s) 129.93 0.99 0.50

ClueWeb Client 9.27 0.47 0.05
Comm 0.53 0.11 0.02
Tag comp 138 0.29 0.29
Total (s) 148.07 1.14 0.63

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 18 of 31

proportionally increases when the maximum padding ratio increases since the posting lists
consume a majority portion of space.

Storage cost 32 bytes are used for the ID of a posting bucket. Each posting record for
a unigram takes 38 bytes, which includes 32 bytes encryption of document ID (initializa-
tion vector and one AES block, each of which needs 16 bytes), 2-byte hashed member
ID, and 4-bytes for basic features. For a word pair, the document ID field is not needed as
explained in Sect. 3.1. Since values of document ID encryptions and bucket tags generated
are uniformly distributed long-bit random integers following the standard cryptographic
requirement, the index of QDT cannot be significantly compressed. In comparison, the tra-
ditional index produced by Indri (Strohman et al., 2005) takes about 107GB for ClueWeb
and hence the QDT index without no padding (U = 0) has about 4.8x more space cost. This
is mainly caused by the non-compressibility of random integers with long bits in our index
and the use of word-pair-based terms.

Comparisons of retrieval time with and without privacy constraints Table 6 lists a
baseline comparison of document retrieval time without or with privacy constraints.
Indri (Strohman et al., 2005) is an open-source search engine. Each of VBMW/p and
DBMW/p (Shao et al., 2021) is a recent variant of BMW (Ding & Suel, 2011; Mallia
et al., 2017), which optimizes index navigation by retrieving documents in blocks to skip
low-score documents. The above retrieval methods do not consider privacy. In compari-
son, QDT response time is 0.50s and 0.63s respectively where the hash-table based feature
gathering during list traversal costs around 0.11s and 0.19s as shown before in Table 3.
The higher latency in QDT compared to VBMW/p and DBMW/p represents a tradeoff
for privacy. As discussed in Sect. 3.2, we do not use BMW-based optimization in Shao
et al. (2021), Ding and Suel (2011), Mallia et al. (2017) because it requires each posting
list to be presorted by static and deterministic document IDs, which is not possible in our
privacy-aware setting where the same document has different encrypted ID values in the
different posting lists.

Excluding tag computing cost, the list traversal of QDT is dominated by the conver-
sion from a 512-bit document tag to a 32-bit hash-table key (∼ 70%), and without index

Table 5 Impact of padding on
query time and space cost

Max padding ratio U=0 U=1 U=2 U=3

Robust04 Hash table 0.07 0.11 0.16 0.20
Total query time (s) 0.46 0.50 0.55 0.59
Index storage (GB) 5.8 8.6 11.4 14.2

ClueWeb Hash table 0.11 0.19 0.26 0.34
Total query time (s) 0.55 0.63 0.70 0.78
Index storage (GB) 510 762 1008 1260

Table 6 Retrieval time in seconds with and without privacy constraints

Dataset Indri (Strohman
et al., 2005)

DBMW/p (Shao
et al., 2021)

VBMW/p (Shao
et al., 2021)

PAR (Agun
et al., 2018)

PAR/D (Agun
et al., 2018)

QDT

Robust04 0.032 0.014 0.011 0.60 1.1 0.50
ClueWeb 0.071 0.025 0.019 0.87 4.3 0.63

Information Retrieval Journal (2023) 26:12

1 3

Page 19 of 31 12

skipping, it is slower than VBMW/p and DBMW/p while gaining privacy. Excluding
these two factors, our list traversal time is on a par with the existing work. This compari-
son reconfirms that the price paid for supporting privacy is significant because of expen-
sive cryptographic computation with very long bits. That also means optimization studied
in this paper is necessary to bring down the cost. Our scheme can deliver a sub-second
response time after using the proposed optimization, otherwise, the cost would be about
130x bigger as shown in Table 4.

Table 6 also lists the retrieval time of PAR ranking (Agun et al., 2018) under the same
setting with privacy-aware partial server ranking. PAR is an extension and improvement
over OXT (Cash et al., 2013) for ranking with conjunctive queries. QDT is faster than PAR,
even excluding the client-side communication cost incurred in PAR. Notice that PAR has a
lower relevance as discussed in Table 2, partially because of its conjunctive constraint. The
extension of PAR (called PAR/D) to follow disjunctive query semantics is listed in Table 6
as well. The result shows that QDT is 2.20x faster than PAR/D for Robust04 and is 6.83x
faster for ClueWeb. PAR/D converts a disjunctive query as several conjunctive subquer-
ies with different s-terms. For each subquery, PAR/D calculates the union of documents
that match such a subquery and aggregates ranking features for the same document IDs
using OXT-based hashtable lookups. Since PAR with partial server-side ranking requires
a client to conduct final ranking, there is a large amount of data sent from the server to the
client. The test setup in this evaluation has 100 megabits per second communication band-
width between the server and a client, which is reasonable on average with a home cable or
5 G cellular Internet connection in USA. The client–server communication in PAR/D takes
0.03 s for Robust04 and increases to 2.7 s for ClueWeb. This large communication cost
increase is caused by the fact that ClueWeb dataset is 100x larger than Robust04. Exclud-
ing this client–server communication overhead, QDT is still 60% faster for Robust04 and
2.54x faster for ClueWeb compared to PAR/D. In general, QDT provides more flexibility to
reach a higher relevance score with a lower cost because PAR or PAR/D does not conduct
full server ranking and it pays a significant communication overhead to let a client collect
a large amount of data for further ranking, in addition to the hashtable cost issue explained
in the end of Sect. 3.3.

4.2 Guided padding for attack prevention

We demonstrate a plaintext-recovery attack exploiting the co-occurrence leakage (Islam
et al., 2012) of two or three words to recover the plaintext of encoded word IDs appeared
in a hosted index and examine how guided padding in QDT discussed in Sect. 3.4 thwarts
such an attack. This 2-word attack makes the following assumptions:

1. A server hosts the index for dataset D (Robust04 in this case) and knows the plaintext of
a set of English words included in D, called E. We assume 10% of documents in D are
public or injected by the server adversary by some means and the server can use them
to approximate the co-occurrence probability of two words in E among documents of
D. The corresponding co-occurrence matrix is called M. Recall that the co-occurrence
probability of two words w1 and w2 is the number of documents in D that contain both
w1 and w2 , divided by |D|. The server does not know the IDs of English words in E and
it wants to recover plaintext-to-ID mappings for some of these words.

2. The server estimates the co-occurrence probability of two word IDs using one of the
two methods below and the corresponding probability matrix is called M′:

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 20 of 31

• A) Observe processing of some 2-word queries without knowing their plaintext, and
these query word IDs form Set E′ . We assume E′ ⊆ E . By observing the execu-
tion of QDT, the server can guess two matched documents for a query in different
postings are the same if their query-specific document tags are the same, even such
a document could be fake. Let Y be the fraction of all possible word pairs formed
from E′ whose co-occurrence can be estimated using Method A.

 Initially, Y = 1 , namely all pairs of two words in E′ appear in these observed que-
ries. We will vary Y value to assess if our finding is similar when not all pairs of the
two words in E′ appear in these queries.

• B) Inspect the inverted index, and guess two documents appeared in the postings are
the same if their group member IDs are equal.

3. The server has already obtained a mapping from word IDs to the plaintext for a small
number (X) of English words in E′ . The goal of server attack is to recover the ID map-
ping of plaintext for the English word IDs in subset E′ . In our evaluation, |E�| = 150 and
we vary the value of parameter X from 20 to 0 and parameter Y from 1 to 0.1.

Attack method The server approximates the co-occurrence probability matrix M′ for set E′
using the above Method A or B. Next, the attack algorithm follows the simulated annealing
technique (Kirkpatrick et al., 1983) used in Islam et al. (2012) to find a mapping from the
word IDs in matrix M′ to the plaintext words of a sub-matrix of matrix M with a minimized
co-occurrence matching error.

Table 7 shows the number of recovered English words in Set E′ in Columns from 2 to 4
marked “Eq. member ID guess” by using Method B based on equal member ID values to
guess the term co-occurrence probability. X varies from 20 to 0 in these 3 cases. The rest of
the columns uses Method A by collecting which documents have the equal query-specific
document tags during query processing under various values of X and Y. The attack com-
puting time for each configuration setting takes a few hours. It should be noted that the
server does not know if the recovered word mapping from an ID to a plaintext is correct or
not, and thus entry value 14 means that the server’s plaintext recovering accuracy is 14 out
of 130 unknown words given |E�| − X = 130.

The first column from Row 2 in Table 7 lists the different padding methods used as
discussed in Sect. 3.4. We explain the second column with X = 20 as follows. If there is
no padding of fake documents (Row 2), Though matrix M is approximated, the recovery
accuracy of this attack is 14 out of 130, given 20 known mappings. When the naive pad-
ding method is used, the selection of random IDs for fake documents is unbiased and these
IDs are unlikely to collide. Therefore, this strategy does not obfuscate the co-occurrence

Table 7 Recover 150 words under various padding strategies

Method Eq. member ID guess Eq. document tags; X=20 X = 10 X = 1 X = 0

X = 20 X = 1 X = 0 Y = 1 Y = 0.5 Y = 0.1 Y = 1

No padding 14 2 0 15 2 1 7 2 0
Naive pad 13 2 0 9 2 1 7 2 0
Guided, U=1 2 0 0 1 0 0 1 0 0
Guided, U=2 0 0 0 0 0 0 0 0 0
Guided, U=3 0 0 0 0 0 0 0 0 0

Information Retrieval Journal (2023) 26:12

1 3

Page 21 of 31 12

information, and the server can still recover 13 English words in E′ . By applying the guided
padding with padding ratio U = 1 , the recovery accuracy decreases to 2 out of 130. As U
goes higher, M′ is totally different from M with much more noise. As a result, no words are
recovered. Table 7 also varies X and Y values. As X becomes smaller, less known ID-to-
word mappings are available to guide the attack to perform successfully. For each setting,
guided padding decreases the server’s recover accuracy significantly and it becomes zero
when U ≥ 1 or U ≥ 2 . As Y becomes smaller, less information is available to guide simu-
lated annealing in finding a good word matching, and less words are recovered.

Our attack using 3-word co-occurrence leakage is similar as above with a 3D co-occur-
rence matrix. Following a similar setting as Table 7, we find that a server adversary can
recover up-to 3 words by exploiting the 3-word co-occurrence with naive padding or with-
out padding, and our guided padding strategy effectively decreases the number of recov-
ered words to zero with U ≥ 1.

We have also evaluated QDT under a count attack (Cash et al., 2015) which further
exploits the use of a posting list length under a slightly different co-occurrence assumption.
The results show that guided padding is still effective and decreases the number of recov-
ered words to zero with U ≥ 1 or 2.

5 Concluding remarks

The contribution of this paper is a privacy-aware document retrieval scheme with query-
specific tagging and two-level indexing to minimize the leakage of sharing patterns when
matching documents and gathering their features for ranking. Our evaluation shows that
two-level indexing in QDT can control query processing cost with up-to 131x time speed-
ups in the tested cases compared to a single-level design, and guided padding can effec-
tively thwart leakage-abuse plaintext attacks that exploit word co-occurrence information.
Compared to a traditional retrieval scheme with no privacy constraints, QDT does pay a
significant space and time cost for enhancing privacy protection with the use of crypto-
graphic operations on long-bit numbers, and this also demonstrates the importance of effi-
ciency optimization proposed in QDT.

Appendix 1: Document‑pair ID mapping attacks

Our group tag design in Sect. 3 intends to prevent the following attacks based on map-
ping of exposed document-pair ID information including group tags. As defined in Cash
et al. (2015), given an inverted index with m terms, let C be the m × m co-occurrence count
matrix where each entry Ci,j is the number of documents in which terms wi and wj both
occur. This matrix can be normalized as a co-occurrence probability matrix, assisting a
plaintext recovery attack (Cash et al., 2015).

ProPosition on document-Pair id maPPing attacks. Assume that any entry in a co-
occurrence count matrix C is no less than 2. In an inverted index without fake document
padding, let z(d) be the observed information regarding document d during search. If there
exists mapping function f where f (z(d1), z(d2)) is unique and query-independent for any
pair of documents d1 and d2 , this server could derive matrix C for plaintext recovering in
some cases.

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 22 of 31

Attack sketch Notice that each entry Ci,j of co-occurrence count matrix C is the intersec-
tion count of two posting lists for wi and wj . Consider a case that Ci,j ≥ 2 . Let y be the num-
ber of pairs of documents which appear in both posting lists of wi and wj , then

If value y can be estimated by the server adversary, Ci,j can be solved from the above equa-
tion. Now we describe how the server can estimate this y value. Since the server can com-
pute and observe the value of f (z(d1), z(d2)) when visiting term wi during search. As such
a value is unique, the server can observe if this mapped value appears when visiting the
posting list of another term wj , and it can estimate y value by looking at the f value of all
document pairs in the posting lists of wi and wj . To derive all entries in matrix C, all pos-
sible terms need to appear in multiple queries so that a server can observe their processing,
and such a case may exist. ▪

Discussion If the uniqueness of f value is approximately true, the server can still esti-
mate y with a reasonable accuracy. In QDT, a server can observe a group tag valued as
gR⋅H1(gid) mod Q and the member ID for each matched document. Since it is computation-
ally hard to infer R ⋅ H1(gid) from such a group tag and R is a query-specific random num-
ber, the chance that the condition specified in the above proposition is true is negligible.
If the group tag formula were designed as gH1(gid) mod Q or just R ⋅ H1(gid) mod Q , the
group tag ratio of two documents could satisfy the condition of the above proposition, and
thus we do not accept such a design.

Appendix 2: Properties of QDT

We discuss the properties of QDT on its correctness in handling authorized or unauthor-
ized queries for document retrieval with ranking, and on information protection and leak-
age related to document sharing patterns among posting lists.

Property 1 For a query authorized by a client, a server with QDT can correctly follow the
disjunctive query semantic, and gather the term features for each matched document. For
an un-authorized query and document d containing two query search terms w1 and w2 , if
one of w1 and w2 is not seen in the query history or both of them only appear in two past
queries with no overlapping terms, then this server cannot recognize the term features of
w1 and w2 belonging to document d for any document d matches this query.

Proof For a query authorized by a client, it is straightforward to show that QDT gath-
ers term features correctly based on group tag Expression (3) in Sect. 3.2. Given docu-
ment d = (gid,mid) that appears in some or all posting lists of the multiple search terms,
the features of posting records in different lists belonging to d are recognized based on
the same group tag and member ID pair as all of them have the same group tag value
gR⋅H1(gid) mod Q with the same number R.

When a query is un-authorized, a server may try to use the past queries to gather term
features for a document. Given document d containing two search terms w1 and w2 , there
are two cases to analyze. Case 1: assume w1 is not seen in the past queries. Given a bucket
stored in the hosted index and its bucket tag computed based on Expression 1, it is compu-
tationally hard for a server to remove integer factor H2(w||(p mod P)))−1 because such an
integer uses a very large number of bits, and its randomness is guaranteed by definition of

y = Ci,j(Ci,j − 1)∕2.

Information Retrieval Journal (2023) 26:12

1 3

Page 23 of 31 12

PRF H2 . By inspecting an index without authorization tokens, a server is unable to com-
pute the group tag for document d in the posting list of term w1 , and cannot recognize the
two features under w1 and w2 belonging to the same document d.

Case 2. When w1 appears in past query Q1 , w2 appears in past query Q2 , and Q1 and Q2
do not overlap, this means the server accesses completely different posting lists when pro-
cessing Q1 and Q2 and there is no common memory address that can be used to associate
the posting records accessed when processing Q1 and Q2 . Since these group tags produced
for d in above process involve a query-dependent random number, the server is unable to
infer two posting records of w1 and w2 have features belonging to the same document.
 ◻

Note that when an un-authorized query Q contains two past sub-queries with overlapping
terms such as “ w1w2 ” and “ w2w3 ”, and document d contains w1 , w2 and w3 , a server could
infer that their corresponding posting records belong to d through common term w2 , and thus
gather d’s features together correctly for Q. However the server does not know if d is fake or
not.

Is it possible that a server adversary inspects the inverted index and uses member IDs to
guess the equality of two documents in two posting lists to derive the two-term co-occurrence?
The following property shows that the chance is small. Considering a server needs to derive
the co-occurrence probability for many term pairs in order to launch a successful attack, it is
unlikely that this server can succeed. Section 4.2 gives an evaluation.

Property 2 Given a two-level inverted index with |G| groups, for any two documents with
the same member ID that appear in two different posting lists, the probability that they
refer to the same real document is at most 1

|G|.

Proof Suppose we have two different non-empty posting list: one is for term w1 with r1
real documents, and the other is for term w2 with r2 real documents. For the posting list of
term wi where i = 1 or 2, ui fake documents are padded where ui is uniformly sampled from
the interval [1,Ui ⋅ ri] . Following the proof idea in Cash et al. (2013) which is based on
security assumptions of Diffie-Hellman group in Sect. 3, any server cannot efficiently find
overlapping documents between two posting lists offline, and thus the probability that two
documents with identical member ID from different posting lists refer to the same docu-
ment (real or fake) is at most 1/|G|. Note that since any server cannot efficiently distinguish
symmetric encryption of document IDs, and all fake member IDs and ranking features are
sampled from the real distributions, any server cannot efficiently distinguish fake docu-
ments and real documents in the encrypted index. Hence given ui fake documents padded
to a posting list with ri real documents, the probability that any document selected by the
server is real is ri∕(ri + ui).

Let Pad(x,w) denote the event that the posting list of term w is padded with x fake docu-
ments. Following the padding method described in Sect. 3.4, the probability that any docu-
ments d1 from posting list of w1 and d2 from posting list of w2 with the same group member
ID refer to the same real document is

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 24 of 31

The last step uses the fact that ln(1 + x) ≤ x for any x > 0 . ◻

Can a server learn some document sharing patterns of posting lists across queries?
That is a hard problem, and even without ranking support, under the single-round cli-
ent–server communication protocol, IEX and OXT designs leaks document sharing pat-
terns in certain cases when executing a sequence of queries, which can lead to an attack
concern. The following property examines what is protected and what is leaked in QDT
with ranking support in terms of document sharing patterns among posting lists during
the execution of a sequence of queries. While the design in QDT with query-specific
document tagging tries to minimize the chance of learning from tags across queries,
QDT is not perfect because there exists some special cases that some document sharing
pattern among posting lists can leak. We discuss below the likelihood a server can take
advantages to launch an attack and how to mitigate.

Definition Given a query history, two terms w0 and wk+1 have transitively co-appeared in
the query history if there exists a term sequence k terms w1 , w2 , ⋯ , wk such that wi and wi+1
both appear in a query in the history for all integers i from 0 to k.

Property 3

1. For any two terms w0 and wk that have transitively co-appeared in a query history
through a term sequence w1 , w2 , ⋯ , wk , a QDT-based server can detect if a document
has appeared in all posting lists of these k + 2 terms from w0 to wk+1 while the server
does not know if this document is real or fake.

2. For any two terms w and w′ that have not transitively co-appeared in the given history,
a QDT-based server is unable to gain additional information through online query
processing compared to offline index inspection to correctly detect document sharing
of the posting lists of w and w′.

Proof For Statement (1) in this property, there are two cases to analyze.

Pr[(d1 is real) ∧ (d2 is real) ∧ (d1 = d2)]

=

U1⋅r1∑

x=1

U2⋅r2∑

y=1

Pr[Pad(x,w1)]Pr[d1 is real|Pad(x,w1)]⋅

Pr[Pad(y,w2)]Pr[d2 is real|Pad(y,w2)]⋅

Pr[d1 = d2|d1, d2 are real]

≤
U1⋅r1∑

x=1

U2⋅r2∑

y=1

1

U1r1

r1

r1 + x
⋅

1

U2r2

r2

r2 + y
⋅

1

|G|

≤ 1

U1r1U2r2 ⋅ |G| �
U1⋅r1+1

1 �
U2⋅r2+1

1

r1

r1 + x − 1

r2

r2 + y − 1
dxdy

=
r1 ln(1 + U1)r2 ln(1 + U2)

U1r1U2r2 ⋅ |G|
≤ 1

|G|
.

Information Retrieval Journal (2023) 26:12

1 3

Page 25 of 31 12

• Case 1.1. For a single query that contains w1and w2 , a server that uses QDT to process
this query can use the posting record positions to identify different documents, observe
the hash-table based feature aggregation for the same documents that appear in posting
lists of the two terms.

• Case 1.2. If a document has appeared the posting lists of all terms w0 , ⋯ , wk+1 , and
terms wi and wi+1 have appeared pairwise in a query in the history for all integers i from
0 to k, then the server would know such a document by connecting the QDT-based pro-
cessing history of these queries and using the posting position to identify such a docu-
ment in the corresponding posting lists in a pairwise manner.

For Statement (2) of this property, there are two cases to analyze.

• Case 2.1. When these two terms w and w′ have not appeared in the same query, or tran-
sitively co-appeared in a query sequence the result from Statement (1) of this property
would not apply.

• Case 2.2. There are two sub-cases.

– When any of these two terms, say w, has never appeared in any query, query pro-
cessing does not visit the posting list of w, and thus no information is gained by a
server in observing query processing.

– When term w has appeared in query Q, and w′ has appeared in another query Q′ , a
document tag is generated for every document in the posting list of w during pro-
cessing of Q. Such a tag is query specific due to the use of a random number in the
tag generation formula. Notice transitively there exists no sequence of queries that
allows the positions of posting listings can be associated from one query to another
with respect to w and w′ like Case 2.1. Any document tag produced in processing Q
cannot be associated with another document tag produced in processing Q′ . Thus
the server cannot gain additional information such as ID equality during query pro-
cessing on the document sharing of posting lists of w and w′.

 ◻

The above property shows that there are some special cases that a server can learn the
document sharing of the posting lists of two terms if these two terms appear in the same
query or transitively co-appear in a sequence of queries. But even that occurs, QDT does
not reveal such a document shared is real or fake, and thus the term co-occurrence prob-
ability estimated by such document sharing patterns is still incorrect. As demonstrated
in Islam et al. (2012), Cash et al. (2015) and Sect. 4.2, to successfully form an attack,
enough client-authorized queries that leak the document co-occurrence probability of
many two-term pairs. This is less likely to happen based on the above analysis. In prac-
tice, we can install a mechanism at the client side to detect and warn if the query history
becomes too big, and a client can periodically re-generate the QDT-based index with dif-
ferent fake document padding and PRF keys.

Appendix 3: Leakage profile

This appendix gives the leakage profile of document retrieval with QDT and this leak-
age profile is a summary of information leaked to a server during query processing. The
previous work (Cash et al., 2013; Kamara & Moataz, 2017) studies such a leakage profile

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 26 of 31

by considering a searchable encryption system is semantically secure if the information
that any adversary can acquire during the execution of the real search protocol can be well
simulated by an interactive experiment between this adversary and a simulation algorithm
which only knows the leakage of this search system. To follow the above framework, we
descibe the basic notation in details below.

Notion: Let Π be a searchable symmetric encryption scheme (Cash et al., 2013; Kamara
& Moataz, 2017), which consists of two algorithms: EDBSetup distributes the keys to
the client and server and encrypts inverted index; Search executes the search protocol
between the client and server. Let L be a leakage profile function, which takes the inverted
index (in plaintext) and the encrypted queries as input, and outputs the leakage information
of the whole system. For a security parameter � (roughly related to the number of bits in
the key), for two efficient algorithms A (for Adversary) and S (for Simulator), Experiments
RealΠ

A
(�) and IdealΠ

A,S
(�) are defined as follows:

• RealΠ
A
(�) : A(1�) chooses the plaintext inverted index �� and a list of queries q . The

experiment runs (K,𝖤𝖣𝖡) ← 𝖤𝖣𝖡𝖲𝖾𝗍𝗎𝗉(𝖣𝖡) , where K is the secret set of keys only
known to the client, and ��� is the encrypted index. For each i ∈ {1,⋯ , |q|} , it runs
the algorithm ������ with client input (K, q[i]) and server input ��� and stores the
transcript (i.e., all the communications between the client and server) in t[i] . Then the
experiment gives ��� and transcript t to A, which returns a Boolean value b ∈ {0, 1}
answering whether t is produced by real search protocol or simulator. Finally the exper-
iment outputs b.

• IdealΠ
A,S

(�) : A(1�) chooses �� and a list of queries q . The experiment runs S(L(��, q))
and gives its output to A, which returns a Boolean b ∈ {0, 1} answering whether this
output is produced by the real search protocol or simulator. Finally the experiment out-
puts b.

Definition Π is L-semantically-secure against non-adaptive attacks if for any effi-
cient adversary A there exists an algorithm S such that the probability difference
Pr[RealΠ

A
(�) = 1] − Pr[IdealΠ

A,S
(�) = 1] is negligible, i.e., asymptotically less than �−c for

any integer c.

A key point in the above framework is that attacker A is unable to tell apart the com-
munications of the real secure protocol and the communications between the client and
the simulator S. This notion is only for non-adaptive attacks, since in each experiment the
attacker can only choose the queries at the beginning, and can never change the chosen
queries during the interaction with the server. This assumption fits most scenarios since
often a third-party attacker has little control over the queries that the search users would
like to ask. The only thing the attacker can know is the distribution of the queries. With the
above definition and standard cryptographic assumptions, we can show the leakage profile
of QDT as follows.

Leakage profile of QDT The QDT document retrieval scheme specified in Sect. 3 is
semantically secure against non-adaptive attackers with the following leakage profile (i.e.,
the information leaked to the attacker):

• (1) The total number of searchable terms in an index and the length of each posting list
after padding;

Information Retrieval Journal (2023) 26:12

1 3

Page 27 of 31 12

• (2) The number of terms for each query, and the sharing of terms among queries;
• (3) The patterns of accessing posting lists for searched terms and the number of

documents that match each query;
• (4) The occurrence pattern of the produced group tags, and the encoded member IDs

of documents in posting lists;
• (5) The encoded features for encrypted document IDs.

To validate the above leakage profile, we can follow the analysis in Cash et al. (2013),
Kamara and Moataz (2017) that the data that any attacker (server) can acquire during
the execution of the real search protocol cannot be distinguished from the data output
by a simulation algorithm which only takes as input the above leakage profile of QDT.

The previous work in OXT/IEX or their extensions (Cash et al., 2013; Kamara &
Moataz, 2017; Agun et al., 2018; Lai et al., 2018) also leaks items (1), (2) and (3). Item
(5) is necessary as we have to support ranking. Item (4) is introduced by QDT, and
Property 2 in Appendix 2 addresses the leakage of member IDs. The guided padding in
Sect. 3.4 thwarts a related attack.

Acknowledgements We thank Stefano Tessaro for his critical advice and help, and the anonymous refer-
ees for their valuable comments. This work was supported in part by U.S. National Science Foundation
(NSF) 2040146/2225942 and by a Google faculty research award. It has used the computing resource of the
XSEDE and ACCESS programs supported by NSF. Any opinions, findings, conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect the views of these
sponsors.

Author Contributions The authors have contributed to design, implementation, evaluation, and/or writing.
They have read and approved the final manuscript.

Funding This work was supported in part by U.S. National Science Foundation (NSF) and by a Google
faculty research award.

Availability of data and materials Related code will be made available from the project website.

Declarations

Conflict of interest Not applicable.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agun, D., Shao, J., Ji, S., Tessaro, S., & Yang, T. (2018). Privacy and efficiency tradeoffs for multiword
top k search with linear additive rank scoring. In Proceedings of the 2018 world wide web confer-
ence) (pp. 1725–1734). International World Wide Web Conferences Steering Committee.

http://creativecommons.org/licenses/by/4.0/

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 28 of 31

Ahmad, W.U., Chang, K.-W., & Wang, H. (2018). Intent-aware query obfuscation for privacy protection
in personalized web search. In The 41st international ACM SIGIR conference on research & devel-
opment in information retrieval (pp. 285–294). ACM.

Ahmad, W.U., Rahman, M.M., & Wang, H. (2016). Topic model based privacy protection in personal-
ized web search. In Proceedings of the 39th international ACM SIGIR conference on research and
development in information retrieval (pp. 1025–1028). ACM.

Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern information retrieval (2nd ed.). New Jersey: Addi-
son Wesley.

Barker, E., Roginsky, L.C.A., Vassilev, A., & Davis, R. (2018). Recommendation for pair-wise key-estab-
lishment schemes using discrete logarithm cryptography. NIST, US Department of Commerce. https://
doi. org/ 10. 6028/ NIST. SP. 800- 56Ar3

Blackstone, L., Kamara, S., & Moataz, T. (2019). Revisiting leakage abuse attacks. Cryptology ePrint
Archive,

Boneh, D., & Shoup, V. (2015). A graduate course in applied cryptography. Draft 0.2
Boneh, D., & Shoup, V. (2023). A graduate course in applied cryptography. https:// toc. crypt obook. us.

Online.
Boneh, D., & Shparlinski, I.E. (2001). On the unpredictability of bits of the elliptic curve diffie-hellman

scheme. In Annual international cryptology conference (pp. 201–212). Springer.
Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., & Sadeghi, A.-R. (2017). Software

grand exposure: Sgx cache attacks are practical. In 11th USENIX workshop on offensive technologies
(WOOT 17).

Broder, A.Z., Carmel, D., Herscovici, M., & Soffer, A., Zien, J. (2003) Efficient query evaluation using a
two-level retrieval process. In Proceedings of the twelfth international conference on information and
knowledge management (pp. 426–434).

Cao, N., Wang, C., Li, M., Ren, K., & Lou, W. (2014). Privacy-preserving multi-keyword ranked search
over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems, 25(1), 222–233.

Cash, D., Grubbs, P., Perry, J., & Ristenpart, T. (2015). Leakage-abuse attacks against searchable encryp-
tion. In CCS’15 (pp. 668–679). ACM.

Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.-C., & Steiner, M. (2014) Dynamic
searchable encryption in very-large databases: Data structures and implementation. In NDSS (Vol. 14,
pp. 23–26). Citeseer.

Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., & Steiner, M. (2013) Highly-scalable searchable
symmetric encryption with support for boolean queries. In CRYPTO 2013 (pp. 353–373).

Chase, M., Gilad-Bachrach, R., Laine1, K., Lauter, K., & Rinda, P. (2017) Private collaborative neural net-
work learning. https:// eprint. iacr. org/ 2017/ 762. pdf

Chen, G., Lai, T.-H., Reiter, M.K., & Zhang, Y. (2018). Differentially private access patterns for searchable
symmetric encryption. In IEEE INFOCOM 2018 - IEEE conference on computer communications (pp.
810–818). https:// doi. org/ 10. 1109/ INFOC OM. 2018. 84863 81

Costan, V., & Devadas, S. (2016). Intel sgx explained. IACR Cryptology ePrint Archive, 2016, 86.
Culpepper, J. S., & Moffat, A. (2010). Efficient set intersection for inverted indexing. ACM Transaction

Information System, 29(1), 1–1125.
Curtmola, R., Garay, J., Kamara, S., & Ostrovsky, R. (2006). Searchable symmetric encryption: Improved

definitions and efficient constructions. In ACM CCS (pp. 79–88).
Dai, Z., Xiong, C., Callan, J., & Liu, Z. (2018). Convolutional neural networks for soft-matching n-grams in

ad-hoc search. In Proceedings of the eleventh ACM international conference on web search and data
mining (pp. 126–134). ACM.

Di Castro, D., Lewin-Eytan, L., Maarek, Y., Wolff, R., & Zohar, E. (2016). Enforcing k-anonymity in web
mail auditing. In Proceedings of the ninth ACM international conference on web search and data min-
ing (pp. 327–336). ACM.

Ding, S., & Suel, T. (2011). Faster top-k document retrieval using block-max indexes. In Proceedings of the
34th international ACM SIGIR conference on research and development in information retrieval (pp.
993–1002).

Dworkin, M. (2001) Recommendation for block cipher modes of operation. methods and techniques. Tech-
nical report, National Inst of Standards and Technology Gaithersburg MD Computer security Div

Dworkin, M. J. (2015). Sha-3 standard: Permutation-based hash and extendable-output functions. Technical
Report.

Formal, T., Lassance, C., Piwowarski, B., & Clinchant, S. (2021) Splade v2: Sparse lexical and expansion
model for information retrieval. SIGIR 2021. ArXiv: 2109. 10086

Formal, T., Lassance, C., Piwowarski, B., & Clinchant, S. (2022). From distillation to hard negative sam-
pling: Making sparse neural IR models more effective. In SIGIR.

https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://toc.cryptobook.us
https://eprint.iacr.org/2017/762.pdf
https://doi.org/10.1109/INFOCOM.2018.8486381
http://arxiv.org/abs/2109.10086

Information Retrieval Journal (2023) 26:12

1 3

Page 29 of 31 12

Garg, S., Mohassel, P., & Papamanthou, C. (2015). Tworam: Round-optimal oblivious ram with applica-
tions to searchable encryption. IACR Cryptol. ePrint Arch., 2015, 1010.

Gentry, C. (2009) Fully homomorphic encryption using ideal lattices. In ACM STOC ’09 (pp. 169–178).
Gillmor, D.K. (2016). Negotiated finite field Diffie-Hellman ephemeral parameters for transport layer secu-

rity (TLS). RFC Editor, https:// doi. org/ 10. 17487/ RFC79 19.
Guo, J., Fan, Y., Ai, Q., & Croft, W.B. (2016). A deep relevance matching model for ad-hoc retrieval. In

Proceedings of CIKM’16 (pp. 55–64). ACM.
Habernal, I. (2022). How reparametrization trick broke differentially-private text representation learning.

In Proceedings of the 60th annual meeting of the association for computational linguistics (Volume
2: Short Papers, pp. 771–777). Association for Computational Linguistics, Dublin, Ireland. https:// doi.
org/ 10. 18653/ v1/ 2022. acl- short. 87

Hacigümüş, H., Iyer, B., Li, C., & Mehrotra, S. (2002) Executing sql over encrypted data in the database-
service-provider model. In SIGMOD ’02 (pp. 216–227). ACM.

Hoang, T., Ozmen, M. O., Jang, Y., & Yavuz, A. A. (2019). Hardware-supported oram in effect: Practical
oblivious search and update on very large dataset. Proceedings on Privacy Enhancing Technologies,
2019(1), 172–191.

Hu, H., Xu, J., Ren, C., & Choi, B. (2011). Processing private queries over untrusted data cloud through
privacy homomorphism. In ICDE (pp. 601–612).

Islam, M.S., Kuzu, M., & Kantarcioglu, M. (2012) Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In NDSS 2012.

Jagannathan, G., Pillaipakkamnatt, K., & Wright, R.N. (2009). A practical differentially private random
decision tree classifier. In 2009 IEEE international conference on data mining workshops (pp. 114–
121). IEEE.

Jamie Callan’s research group. (2020). The ClueWeb09 Dataset. http:// boston. lti. cs. cmu. edu/ Data/ cluew
eb09. Carnegie Mellon University’s Language Technologies Institute.

Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM Transactions
on Information Systems (TOIS), 20(4), 422–446.

Ji, S., Shao, J., Agun, D., & Yang, T. (2018). Privacy-aware ranking with tree ensembles on the cloud. In
The 41st international ACM SIGIR conference on research & development in information retrieval
(pp. 315–324). ACM.

Jones, K.S., Walker, S., & Robertson, S.E. (2000). A probabilistic model of information retrieval: Develop-
ment and comparative experiments. In Information processing and management (pp. 779–840).

Kamara, S., & Moataz, T. (2017). Boolean searchable symmetric encryption with worst-case sub-linear
complexity. In Annual international conference on the theory and applications of cryptographic tech-
niques (pp. 94–124). Springer.

Kamara, S., & Moataz, T. (2019). Computationally volume-hiding structured encryption. In Annual interna-
tional conference on the theory and applications of cryptographic techniques (pp. 183–213). Springer.

Kamara, S., Papamanthou, C., & Roeder, T. (2012). Dynamic searchable symmetric encryption. In Proceed-
ings of the 2012 ACM conference on computer and communications security (pp. 965–976). ACM.

Khattab, O., & Zaharia, M. A. (2020). Colbert: Efficient and effective passage search via contextualized late
interaction over bert. In SIGIR.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science,
220(4598), 671–680.

Kojo, M., & Kivinen, T. (2003). More Modular Exponential (MODP) Diffie-Hellman groups for internet
key exchange (IKE). RFC Editor. https:// doi. org/ 10. 17487/ RFC35 26.

Lai, S., Patranabis, S., Sakzad, A., Liu, J.K., Mukhopadhyay, D., Steinfeld, R., Sun, S.-F., Liu, D., & Zuo, C.
(2018) Result pattern hiding searchable encryption for conjunctive queries. In Proceedings of the 2018
ACM SIGSAC conference on computer and communications security. CCS ’18 (pp. 745–762). ACM.

Li, M., Lin, S.-C., Ma, X., & Lin, J. (2023). SLIM: Sparsified late interaction for multi-vector retrieval with
inverted indexes. In SIGIR.

Lin, J.J., & Ma, X. (2021) A few brief notes on deepimpact, coil, and a conceptual framework for informa-
tion retrieval techniques. ArXiv: 2106. 14807

Lin, J., Nogueira, R., & Yates, A. (2020) Pretrained transformers for text ranking: Bert and beyond. ArXiv:
2010. 06467

Lipmaa, H., Rogaway, P., & Wagner, D. (2000) Ctr-mode encryption. In First NIST workshop on modes of
operation (vol. 39).

Liu, X., Li, Q., Li, T., & Chen, D. (2017). Differentially private classification with decision tree ensemble.
Applied Soft Computing.

MacAvaney, S., Nardini, F., Perego, R., Tonellotto, N., Goharian, N., & Frieder, O. (2020). Efficient docu-
ment re-ranking for transformers by precomputing term representations. In SIGIR.

https://doi.org/10.17487/RFC7919
https://doi.org/10.18653/v1/2022.acl-short.87
https://doi.org/10.18653/v1/2022.acl-short.87
http://boston.lti.cs.cmu.edu/Data/clueweb09
http://boston.lti.cs.cmu.edu/Data/clueweb09
https://doi.org/10.17487/RFC3526
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2010.06467
http://arxiv.org/abs/2010.06467

 Information Retrieval Journal (2023) 26:12

1 3

 12 Page 30 of 31

Mallia, A., Khattab, O., Suel, T., & Tonellotto, N. (2021). Learning passage impacts for inverted indexes. In
Proceedings of the 44th international ACM SIGIR conference on research and development in infor-
mation retrieval (pp. 1723–1727).

Mallia, A., Ottaviano, G., Porciani, E., Tonellotto, N., & Venturini, R. (2017). Faster blockmax wand with
variable-sized blocks. In Proceedings of the 40th international ACM SIGIR conference on research
and development in information retrieval (pp. 625–634).

Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with
multiple nested ranker. In Proceedings of SIGIR’06 (pp. 437–444). ACM.

Mishra, P., Poddar, R., Chen, J., Chiesa, A., & Popa, R.A. (2018) Oblix: An efficient oblivious search
index. In 2018 IEEE symposium on security and privacy (SP) (pp. 279–296).

Naveed, M., Prabhakaran, M., & Gunter, C.A. (2014). Dynamic searchable encryption via blind storage.
In 2014 IEEE symposium on security and privacy (pp. 639–654). IEEE.

Paillier, P. (1999) Public-key cryptosystems based on composite degree residuosity classes. In EURO-
CRYPT ’99 (pp. 223–238).

Patel, S., Persiano, G., Yeo, K., & Yung, M. (2019) Mitigating leakage in secure cloud-hosted data struc-
tures: volume-hiding for multi-maps via hashing. CCS 2019.

Patranabis, S., & Mukhopadhyay, D. (2021) Forward and backward private conjunctive searchable sym-
metric encryption. In Proceedings of NDSS 2021.

Pouliot, D., & Wright, C.V. (2016). The shadow nemesis: Inference attacks on efficiently deployable,
efficiently searchable encryption. In CCS’16 (pp. 1341–1352). ACM.

Qiao, Y., Yang, Y., He, S., & Yang, T. (2023). Representation sparsification with hybrid thresholding for
fast splade-based document retrieval. In Proceedings of the 46th international ACM SIGIR confer-
ence on research and development in information retrieval. SIGIR ’23 (pp. 2329–2333). Associa-
tion for Computing Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 35396 18. 35920 51

Ryoo, M.S., Rothrock, B., Fleming, C., & Yang, H.J. (2017) Privacy-preserving human activity recogni-
tion from extreme low resolution. In Proceedings of AAAI’17 (pp. 4255–4262).

Shang, Z., Oya, S., Peter, A., & Kerschbaum, F. (2021). Obfuscated access and search patterns in search-
able encryption. In Proceedings of NDSS 2021. https:// doi. org/ 10. 14722/ ndss. 2021. 23041.

Shao, J., Ji, S., & Yang, T. (2019). Privacy-aware document ranking with neural signals. In The 42st
international ACM SIGIR conference on research & development in information retrieval. ACM.

Shao, J., Ji, S., Glova, A.O., Qiao, Y., Yang, T., & Sherwood, T. (2020). Index obfuscation for oblivious
document retrieval in a trusted execution environment. In Proceedings of the 29th ACM interna-
tional conference on information and knowledge management. CIKM ’20 (pp. 1345–1354). Asso-
ciation for Computing Machinery, New York, NY, USA https:// doi. org/ 10. 1145/ 33405 31. 34120 35

Shao, J., Qiao, Y., Ji, S., & Yang, T. (2021) Window navigation with adaptive probing for executing
blockmax wand. In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval (pp. 2323–2327).

Song, D. X., Wagner, D., & Perrig, A. (2000). Practical techniques for searches on encrypted data. IEEE
SP, ’00.

Strohman, T., Metzler, D., Turtle, H., & Croft, W.B. (2005). Indri: A language model-based search
engine for complex queries. In Proceedings of the international conference on intelligent analysis
(Vol. 2, pp. 2–6). Amherst, MA, USA.

Sun, W., Zhang, R., Lou, W., & Hou, Y.T. (2018). Rearguard: Secure keyword search using trusted hard-
ware. In IEEE INFOCOM 2018-IEEE conference on computer communications (pp. 801–809).
IEEE.

Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y. T., & Li, H. (2014). Verifiable privacy-preserving
multi-keyword text search in the cloud supporting similarity-based ranking. IEEE Transactions on
Parallel and Distributed Systems, 25(11), 3025–3035.

Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10(05), 557–570.

Thakur, N., Wang, K., Gurevych, I., & Lin, J. (2023) Sprint: A unified toolkit for evaluating and demys-
tifying zero-shot neural sparse retrieval. In Proceedings of the 46th international ACM SIGIR con-
ference on research and development in information retrieval. SIGIR ’23 (pp. 2964–2974). Asso-
ciation for Computing Machinery, New York, NY, USA.

Vo, V., Lai, S., Yuan, X., Nepal, S., & Liu, J.K. (2021) Towards efficient and strong backward private
searchable encryption with secure enclaves. In Sako, K., & Tippenhauer, N.O. (eds.) Applied cryp-
tography and network security (pp. 50–75).

Wang, L., Lin, J., & Metzler, D. (2011) A cascade ranking model for efficient ranked retrieval. In ACM
SIGIR (pp. 105–114).

https://doi.org/10.1145/3539618.3592051
https://doi.org/10.14722/ndss.2021.23041
https://doi.org/10.1145/3340531.3412035

Information Retrieval Journal (2023) 26:12

1 3

Page 31 of 31 12

Wang, G., Liu, C., Dong, Y., Choo, K.-K.R., Han, P., Pan, H., & Fang, B. (2018). Leakage models
and inference attacks on searchable encryption for cyber-physical social systems. IEEE Access, 6,
21828–21839.

Xia, Z., Wang, X., Sun, X., & Wang, Q. (2016). A secure and dynamic multi-keyword ranked search scheme
over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems, 27(2), 340–352.

Xiong, C., Dai, Z., Callan, J., Liu, Z., & Power, R. (2017). End-to-end neural ad-hoc ranking with kernel
pooling. In SIGIR (pp. 55–64). ACM.

Xu, Y., Cui, W., & Peinado, M. (2015). Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In 2015 IEEE symposium on security and privacy (pp. 640–656). IEEE.

Xu, M., Namavari, A., Cash, D., & Ristenpart, T. (2021). Searching encrypted data with size-locked
indexes. In Bailey, M., & Greenstadt, R. (eds.) 30th USENIX security symposium, USENIX security
2021 (August 11-13, pp. 4025–4042). USENIX Association.

Xu, C., Wang, R., Zhu, L., Zhang, C., Lu, R., & Sharif, K. (2023). Efficient strong privacy-preserving con-
junctive keyword search over encrypted cloud data. IEEE Transactions on Big Data, 9(03), 805–817.
https:// doi. org/ 10. 1109/ TBDATA. 2022. 32056 68

Yang, H., & Soboroff, I. (2015). Privacy-preserving ir 2015: When information retrieval meets privacy and
security. In Proceedings of the 38th international ACM SIGIR conference on research and develop-
ment in information retrieval. SIGIR ’15 (pp. 1157–1158). ACM, New York, NY, USA https:// doi. org/
10. 1145/ 27664 62. 27678 57

Yang, Y., Qiao, Y., Shao, J., Yan, X., & Yang, T. (2022) Lightweight composite re-ranking for efficient key-
word search with BERT. In: Proceedings of the fifteenth ACM international conference on web search
and data mining. WSDM ’22 (pp. 1234–1244). ACM, New York, NY, USA.

Yang, H., Soboroff, I., Xiong, L., Clarke, C.L.A., & Garfinkel, S.L. (2016). Privacy-preserving ir 2016:
Differential privacy, search, and social media. In Proceedings of the 39th international ACM SIGIR
conference on research and development in information retrieval. SIGIR ’16 (pp. 1247–1248). ACM,
New York, NY, USA https:// doi. org/ 10. 1145/ 29114 51. 29177 63

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/TBDATA.2022.3205668
https://doi.org/10.1145/2766462.2767857
https://doi.org/10.1145/2766462.2767857
https://doi.org/10.1145/2911451.2917763

	Privacy-aware document retrieval with two-level inverted indexing
	Abstract
	1 Introduction
	2 Background and related work
	3 Indexing and query processing
	3.1 Bucketed posting lists
	3.2 Online query processing with QDT
	3.3 Time cost of query processing with QDT
	3.4 Guided padding with fake documents

	4 Evaluation
	4.1 Time efficiency and ranking relevance
	4.2 Guided padding for attack prevention

	5 Concluding remarks
	Appendix 1: Document-pair ID mapping attacks
	Appendix 2: Properties of QDT
	Appendix 3: Leakage profile
	Acknowledgements
	References

