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1 INTRODUCTION

In general, not only correctness, but also the complexity of algorithms is important. While it is obvious that the
performance observed during experiments is essential to solve practical problems eiciently, also the theoretical
worst-case complexity of algorithms is crucial: a good worst-case complexity avoids timing regressions when
hitting worst-case input, and, even more important, prevents denial of service attacks that intentionally produce
worst-case scenarios to overload critical computing infrastructure.

For example, the C++ standard requires implementations of std::sort to have worst-case complexity O (n logn)
[8]. Note that this rules out quicksort [16], which is very fast in practice, but has quadratic worst-case complexity.
Nevertheless, some standard libraries, most prominently LLVM’s libc++ [27], still use sorting algorithms with
quadratic worst-case complexity.1

A practically eicient sorting algorithm with O (n logn) worst-case complexity is Musser’s introsort [30].
It combines quicksort with the O (n logn) heapsort algorithm, which is used as fallback when the quicksort
recursion depth exceeds a certain threshold. It allows to implement standard-compliant, practically eicient
sorting algorithms. Introsort is implemented by, e.g., the GNU C++ Library (libstdc++) [10].

In this paper, we present techniques to formally verify both, correctness andworst-case complexity of practically
eicient implementations. Our approach seamlessly works for both, standard and amortized analysis. We build
on two previous lines of research by the authors.

1See, e.g., https://bugs.llvm.org/show_bug.cgi?id=20837.
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On the one hand, we have the Isabelle Reinement Framework [26], which allows for a modular top-down
veriication approach. It utilizes stepwise reinement to separate the diferent aspects of an eicient implementa-
tion, such as algorithmic idea and low-level optimizations. It provides a nondeterminism monad to formalize
programs and reinements, and the Sepref tool to automate canonical data reinement steps. Its recent LLVM back
end [22] allows to verify algorithms with competitive performance compared to (unveriied) highly optimized
C/C++ implementations. The Reinement Framework has been used to verify the functional correctness of an
implementation of introsort that performs on par with libstdc++’s implementation [24].
On the other hand, we already have extended the Reinement Framework to reason about complexity [14].

However, the cost model used there limits the natural structuring of the cost analysis in reinement proofs.
Moreover, it only supports the Imperative HOL back end [23], which generates functional code that is inherently
less eicient than imperative code.

This paper extends our conference paper [15] by adding amortized analysis and a case study on dynamic arrays,
complexity analysis of string sorting, and more in-depth explanations of the design choices of our framework.
We also make the paper more self-contained by including material from [14]. Our main contributions are.

• We present a generalized nondeterminism monad with resource cost, apply it to resource functions to
model ine-grained currencies (Section 2), and show how they can be used to naturally structure reinement.
• We extend the LLVM back end [22] with a cost model, and amend its basic reasoning infrastructure
(Section 3).
• We extend the Sepref tool (Section 4) to synthesize executable imperative code in LLVM, together with a
proof of correctness and complexity.
• We show how to integrate the analysis of amortized data structures with our reinement approach (Section 5).
• We extend the veriication of introsort to also show a worst-case complexity ofO (n logn), thus meeting the
C++11 stdlib speciication [8] (Section 6). Our methodology also works for sorting data (e. g. strings) with a
comparison operation that does not have constant running time. The performance of our implementation
is still on par with libstdc++. We believe that this is the irst time that both, correctness and complexity of a
sorting algorithm have been formally veriied down to a competitive implementation.

Our formalization is available at https://www21.in.tum.de/~haslbema/llvm-time.

2 SPECIFICATION OF ALGORITHMS WITH RESOURCES

We use the formalism of monads [35] to elegantly specify programs with resource usage. We irst describe a
framework that works for a very generic notion of resource, and then instantiate it with resource functions, which
model resources of diferent currencies. We then describe a reinement calculus and show how currencies can be
used to structure stepwise reinement proofs. Finally, we report on automation and discuss alternatives to our
modelling of programs with resources.
In this section, we consider purely functional programs. In Section 4, these will be reined to imperative

programs.

2.1 Nondeterministic Computations With Resources

Let us examine the features we require for our computation model.
First, we want to specify programs by their desired properties, without having to ix a concrete implementation.

In general, those programs have more than one correct result for the same input. Consider, e.g., sorting a
list of pairs of numbers by the irst element. For the input [(1, 2), (2, 2), (1, 3)], both [(1, 2), (1, 3), (2, 2)] and
[(1, 3), (1, 2), (2, 2)] are valid results. Formally, this is modelled as a set of possible results. When we later ix an
implementation, the set of possible results may shrink. For example, the (stable) insertion sort algorithm always
returns the list [(1, 2), (1, 3), (2, 2)]. We say that insertion sort reines our speciication of sorting.
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Second, we want to deine recursion by a standard ixed-point construction over a lat lattice. The bottom of
this lattice must be a dedicated element, which we call fail. It represents a computation that may not terminate.

Finally, we want to model the resources required by a computation. For nondeterministic programs, these may
vary depending on the nondeterministic choices made during the computation. As we model computations by
their possible results, rather than by the exact path in the program that leads to the result, we also associate
resource cost with possible results. When more than one computation path leads to the same result, we take
the supremum of the used resources. The notion of reinement is now extended to a subset of results that are
computed using less resources.

We now formalize the above intuition: the type

(α , γ ) NREST = fail | res (α → γ option)

models a nondeterministic computation with results of type α and resources of type γ .2 That is, a computation is
either fail, or res M, whereM is a partial function from possible results to resources.

Example 2.1. The computation res [a 7→ 5, b 7→ 3] either returns a using 5 resources, or b using 3 resources.
Here, the notation [a1 7→ t1, . . . , an 7→ tn] deines a function mapping each ai to Some ti , and any other argument
to None.

We deine spec Φ T as a computation of any result r that satisiesΦ r using T r resources: spec Φ T = res (λr. if Φ r then Some (T r)
By abuse of notation, we write spec x t for spec (λr. r = x) (λ_. t).
Based on an ordering on the resources γ , we deine the reinement ordering on NREST, by irst lifting the

ordering to option with None as the bottom element, then pointwise to functions and inally to (α , γ ) NREST,
setting fail as the top element. This matches the intuition of reinement: m ≤ m′reads as m reines m′, i.e., m
has less possible results than m′, computed with less resources.
We require the resources γ to have a complete lattice structure, such that we can form suprema over the

(possibly ininitely many) paths that lead to the same result. Then, also NREST with the reinement ordering forms
a complete lattice. The top element is fail, it satisies no speciication. The bottom element is res (λ_. None), it
satisies all speciications, but has no implementation.

Moreover, when sequentially composing computations, we need to add up the resources. This naturally leads
to a monoid structure (γ , 0,+), where 0, intuitively, stands for no resources. We call such types γ resource types, if
they have a complete lattice and monoid structure. Note that, in an earlier iteration of this work [14], the resource
type was ixed to extended natural numbers (enat = N ∪ {∞}), measuring the resource consumption with a single
number. Also note that (α , unit) NREST is isomorphic to our original nondeterministic result monad without
resources [26].

If γ is a resource type, so is η→ γ . Intuitively, such resources consist of coins of diferent resource currencies η,
the amount of coins being measured by γ .3

If not indicated otherwise, we use the resource type ecost = string→ enat, i.e., we have currencies described by
a string, whose amount is measured by extended natural numbers, where∞ models arbitrary resource usage.
Note that, while the resource type string→ enat guides intuition, most of our theory works for general resource
types of the form η→ γ or even just γ .

We deine the function $s n to be the resource function that uses n coins of the currency s, where n is of type
enat, and s is of type string. We write $s as shortcut for $s 1.

Example 2.2. A program that sorts a list in O (n2) can be speciied by:

sortspec xs = spec (λxs′. sorted xs′∧ mset xs′= mset xs) (λ_. $q |xs|2 + $c )

2The name NREST abbreviates Nondeterministic RESult with Time, and has been inherited from our earlier formalizations.
3Typically, only initely many coins have a positive amount.
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That is, a list xs can result in any sorted list xs ′ with the same elements, and the computation takes (at most)
quadratically many q coins in the list length, and one c coin, independently of the list length. Intuitively, the
q and c coins represent the constant factors of an algorithm that implements that speciication and are later
elaborated by exchanging them into several coins of more ine-grained currencies, corresponding to the concrete
operations in the algorithm, e.g., comparisons and memory accesses. Abstract currencies like q and c only łhave
valuež if they can be exchanged to meaningful other currencies, and inally pay for the resource costs of a concrete
implementation.

2.2 Atomic Operations and Control Flow

In order to conveniently model actual computations, we deine some combinators. The elapse m t combinator
adds the (constant) resources t to all results ofm:

elapse :: (α , γ ) NREST→ γ → (α , γ ) NREST

elapse fail t = fail

elapse (res M) t = res (λx. case M x of None⇒ None

| Some t ′⇒ Some (t + t ′))

The program4 return x computes the single result x without using any resources:

return :: α → (α , γ ) NREST

return x = res [ x 7→ 0 ]

The combinator bind m f models the sequential composition of computationsm and f , where f may depend on
the result ofm:

bind :: (α , γ ) NREST→ (α → (β , γ ) NREST) → (β , γ ) NREST

bind fail f = fail

bind (res M) f = Sup { elapse (f x) t |x t. M x = Some t }

If the irst computation m fails, then also the sequential composition fails. Otherwise, we consider all possible
results x with resources t of m, invoke f x, and add the cost t for computing x to the results of f x. The supremum
aggregates the cases where f yields the same result, via diferent intermediate results of m, and also makes the
whole expression fail if one of the f x fails.

To improve readability of programs, we write x← m; f x for bind m (λx. f x) and,m1; m2 for bind m1 (λ_. m2).

Example 2.3. We now illustrate an efect that stems from our decision to aggregate the resource usage of
diferent computation paths that lead to the same result. Consider the program

res (λn::nat. Some ($c n)); return 0

It irst chooses an arbitrary natural number n consuming n coins of currency c, and then returns the result 0. That
is, there are arbitrarily many paths that lead to the result 0, consuming arbitrarily many c coins. The supremum of
this is∞, such that the above program is equal to elapse (return 0) ($c ∞). Note that none of the computation
paths actually attains the aggregated resource usage. We will come back to this in Section 4.5.

Finally, we use Isabelle/HOL’s if-then-else and deine a recursion combinator rec via a ixed-point construction
[19], to get a complete set of basic combinators. As these combinators also incur cost in the target LLVM, we
deine resource aware variants:

4Note that our shallow embedding makes no formal distinction between syntax and semantics. Nevertheless, we refer to an entity of type
NREST, as program to emphasize the syntactic aspect, and as computation to emphasize the semantic aspect.

ACM Trans. Program. Lang. Syst.
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ifc b then c1 else c2 = elapse (r← b; if r then c1 else c2) $if
recc F x = elapse (rec (λD x. F (λx. elapse (D x) $call ) x) x) $call

Here, the guard of ifc is a computation itself, and we consume an additional if coin to account for the conditional
branching in the target model. Similarly, every recursive call consumes an additional call coin. Furthermore we
also derive a while combinator:

whilec b f s = recc (λD s. ifc b s then s← f s; D s else return s) s

While the NREST type allows to specify arbitrary higher-order functions, e.g., a computation that returns a com-
putation (typeα → ((β , γ ) NREST, γ ) NREST), in this paper we only regard non-nested NREST types. This includes
irst-order computations like return :: α → (α , γ ) NREST, and combinators like if :: (bool, γ ) NREST→ (α , γ ) NREST→ (α , γ ) NREST
This is suicient to express the programs we are interested in, and closer to the LLVM back end (Section 3), which
only supports the if, rec, and while combinators.

2.3 Specifications

An NREST program of the form assert P; spec Q T is a speciication with precondition P, postcondition Q, and
resource usage T. Here, an assertion is used to express preconditions of a program. It fails if its condition is not
met, and returns unit otherwise:

assert P = if P then return () else fail

A classical Hoare triple for program m, with precondition P, postcondition Q and a resource usage t (not
depending on the result) can be written as a reinement m ≤ assert P; spec Q (λ_. t).

Example 2.4. Comparison of two list elements at a cost of t can be speciied by:

idxs_cmpspec xs i j (t) = assert (i < |xs| ∧ j < |xs|); spec (xs!i < xs!j) (

Here, the term xs!i is the ith element of list xs. Instead of ixing the cost for speciications, we pass them as
parameter t. This allows us to reine diferent instances of abstract data types (here lists) by diferent concrete
data structures with diferent costs. To make bigger programs more readable, we note the cost parameter in
parenthesis at the end of the line, as, e.g., in Example 2.7.

Example 2.5. Consider the amortized constant time push operation of dynamic arrays. Abstractly, we specify
appending an element at the end of a list.

list_pushspec xs x (t) = spec [(xs · [x]) 7→ t ]

Here, the term xs · ys denotes appending of two lists and we leave the amount of consumed resource t as a
parameter. This speciication has no precondition.
As a running example throughout the paper, we reine this speciication to an LLVM implementation using

dynamic arrays. Table 1 lists the most important intermediate steps along the reinement chain: irst we reine
lists with dynamic lists (dl_pushspec ), then phrase the abstract algorithm (dl_push), and reine it to only use basic
operations (da_push). Finally we synthesize executable LLVM code (da_push†). Note that the NREST-monad is
used to model both, speciications and programs. Only in the last step, where imperative data structures are
introduced, we switch to (deterministic) LLVM programs. We will come back to this table after we have completed
the reinement in Section 5.5.

2.4 Refinement on NREST

We have used the reinement ordering to express Hoare triples. Two other applications of reinement are data
reinement and currency reinement.

ACM Trans. Program. Lang. Syst.



111:6 • Haslbeck and Lammich

Table 1. This table shows the refinement steps in the refinement of list_pushspec down to an implementation using dynamic

arrays.

Program Formalism Currencies Data Structure Reference

list_pushspec NREST speciication $l ist_push list Example 2.5
dl_pushspec NREST speciication $l ist_push dynamic list Example 2.6
dl_push NREST program abstract currencies dynamic list ğ 5.1
da_push NREST program LLVM currencies dynamic list ğ 5.4
da_push† LLVM program LLVM currencies dynamic array ğ 5.4

2.4.1 Data Refinement. A typical use-case of reinement is to implement an abstract data type by a concrete data
type. For example, we could implement (inite) sets of numbers by sorted distinct lists. We deine a reinement
relation R between a concrete and an abstract data type. A concrete computation m then reines an abstract
computation m′, if every possible concrete result is related to a possible abstract result. Formally, m ≤ ⇓DR m′,
where the operator ⇓D is deined, for arguments R and m′, by the following two rules.

⇓DR (res M) = res (λc. Sup {M a | a. (c, a) ∈ R}) ⇓DR fail = fail

Again, we use the supremum to aggregate the costs of all abstract results that are related to a concrete result. As in
Example 2.3, this leads to the possibility that the supremum cost is not attained, which we discuss in Section 4.5.

Example 2.6. Recall the example of the dynamic array. Wemodel dynamic arrays (da) irst abstractly by dynamic
lists (dl). They consist of a carrier list cs and two numbers l and c representing the length and the capacity of the
dynamic list. A list as is reined by a dynamic list (cs, l, c), if the irst l elements of cs form the list as. Furthermore,
in a valid dynamic list the length is at most the capacity and the capacity is the length of the carrier list. Formally:

((cs, l, c), as) ∈ Rl ist
dynlist

←→ take l cs = as ∧ l ≤ c ∧ c = |cs|

Using this representation, we can now specify a push operation on dynamic lists. A push of an element x to a
dynamic list (cs, l, c) will result in a valid dynamic list that contains the same elements as before and adds the
element x at the end. As the dynamic list may have reached its capacity, it may be necessary to increase the
capacity. We can state the intuition in the following NREST speciication:

dl_pushspec (cs, l, c) x (t) = spec (λ(cs ′, l ′, c ′). take l cs ′ = take l cs ∧ cs ′ ! l = x

∧ l ′ ≤ c ′ ∧ c′= |cs ′ | ∧ l ′ = l + 1 ∧ c′≥ c) (λ_. t)

Here, we irst only specify the functional correctness, and leave the cost t as a parameter. We already ix that
the program has constant cost, independent from the result and the input. The speciication requires that the
resulting dynamic list contains all the elements as before and adds x at the end. It is not speciied whether or how
much the carrier list has to increase.

We can now show that the push operation on dynamic lists reines the list_pushspec operation on lists:

((cs, l, c), as) ∈ Rl ist
dynlist

∧ (x, x′) ∈ Id

=⇒ dl_pushspec (cs, l, c) x (t) ≤ ⇓D Rl ist
dynlist

(list_pushspec as x
′ (t))

2.4.2 Currency Refinement. In Example 2.4 we have speciied how to compare two list elements. We now reine
this into a program that irst accesses the elements and then compares them.

Example 2.7. We reine idxs_cmpspec ($idxs_cmp ) from Example 2.4 as follows:

ACM Trans. Program. Lang. Syst.
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idxs_cmp xs i j =

assert (i < |xs| ∧ j < |xs|);

xsi← list_getspec xs i; ($lookup )
xsj← list_getspec xs j; ($lookup )
return (xsi < xsj) ($less )

Where list_getspec xs i (t) = assert (i < |xs|); spec (xs!i) (λ_. t) and return x (t) returns the result x incurring
cost t.

Note that idxs_cmp and idxs_cmpspec use diferent, incompatible currency systems. To compare them, we need
to exchange coins: one idxs_cmp coin will be traded for two lookup coins and one less coin.

Tomake that happenwe introduce the currency reinement ⇓CE m. Here, for a programm of type (α , ηa → γ ) NREST,
the exchange rate E :: ηa → ηc → γ speciies for each abstract currency ca :: ηa how many of the coins of the
concrete currency cc :: ηc are needed. Note that, in general, one abstract coin may be exchanged into multiple
coins of diferent currencies. For a resource type γ that provides a multiplication operation (∗) we deine the
operator ⇓C with the following two rules:

⇓CE (res M) = res (λ r. case M r of None⇒ None |

Some t⇒ Some (λcc .
∑
ca t ca ∗ E ca cc ))

⇓CE fail = fail

The reined computation has the same results as the original. To get the amount of a concrete coin cc for some
result r with resource function t, we sum, over all abstract coins ca , the amount of abstract coins needed in the
original computation (t ca ) weighted by the exchange rate (E ca cc ).
The sum only makes sense, if there are initely many abstract coins ca with t ca ∗ E ca cc , 0. This can be

ensured by restricting the resource functions t of the computation to use initely many diferent coins, or by
restricting the exchange rate E accordingly. The latter can be checked syntactically in practice.

Example 2.8. For reining idxs_cmpspec we deine an exchange rate that does the correct exchange for currency
idxs_cmp and is zero everywhere else. Formally: E1 = ↑↓[idxs_cmp := $lookup 2 + $less ]. Here,+ is lifted to functions
in a pointwise manner and ↑↓[c0:=t0, . . . , cn :=tn] denotes a function that maps the elements ci to ti and all other
elements to 0. We can now prove:

idxs_cmp xs i j ≤ ⇓CE1 (idxs_cmpspec xs i j ($idxs_cmp ))

2.5 Notation for Refinement

When considering data reinement, we will often see propositions of the form

∀x x′. P x x′∧ (x, x′) ∈ R =⇒ f x ≤ ⇓DS ( f
′ x)

This states that f reines f ′ w. r. t. relation R for the arguments and relation S for the result, if the additional
precondition P holds for the arguments. To write those propositions more conveniently, we use the following
notation5:

(f, f ′) ∈ [P] R→ S = (∀x x′. P x x′∧ (x, x′) ∈ R =⇒ f x ≤ ⇓DS ( f
′ x′))

If the precondition is always true, we just write (f, f ′) ∈ R→ S. For the sake of readability, we will identify
curried and uncurried functions and write (f, f ′) ∈ R1 → . . . → Rn → S for programs with n arguments that are
reined by R1, . . . , Rn .

5This notation was irst described in [21, ğ2.2].
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The above form of those propositions is called the parametric form. It brings to mind relational parametricity
by Wadler [34].

Example 2.9. Using that notation, the reinement from Example 2.6 reads as follows:

(dl_pushspec (t), list_pushspec (t)) ∈ Rl ist
dynlist

→ Id→ Rl ist
dynlist

That is, if the parameters are related by Rl ist
dynlist

and the identity relation Id, then the result of dl_pushspec reines

the result of list_pushspec w. r. t. relation Rl ist
dynlist

.

2.6 Refinement Paterns

In practice, we encounter certain recurring patterns of reinement, which we describe in this section.

Reinement of Speciications. A common application is to show that a program m satisies a speciication res Q,
formally m ≤ res Q. For example, in Section 6.2 we show that the introsort program reines the speciication of
sorting a slice of a list. Such proofs are usually done by a veriication condition generator (VCG), that decomposes
the programm according to its syntactic structure.

In a traditional settingwithout resources, wewould use a notion of weakest precondition (wp m Q = m ≤ res Q),
and deine rules that syntactically decompose goals of the form wp m Q. For example, for sequential composition
we have the rule:

wp m (

In a setting with time6, however, this approach does not work, as the speciication Q is not a predicate but
a deadline of type α → γ option that assigns any result a maximum allowed time, or None if that result is not
possible.

We solve that problem by generalizing the concept of weakest preconditions from the qualitative to the quantita-
tive domain: instead of only askingwhether a programm satisies a speciication res Q, we ask howmuch it satisies
the speciication, i. e. what is the latest feasible time at which we can start m to still match the deadline Q. We
denote this by gwp m Q :: γ option (generalized weakest precondition). If the speciication is not satisied, we have
gwp m Q = None. In particular, we have the following equalities:m ≤ res Q⇔ gwp m Q , None⇔ Some 0 ≤ gwp m Q.
Our VCG now operates on goals of the form Some t ≤ gwp m Q, and the sequential composition rule reads:

Some t ≤ gwp m (

Formally, we deine the generalized weakest precondition as follows:

gwp fail Q = None

gwp (res M) Q = Inf r. minus (Q r) (M r)

That is, if the program fails, no starting time is feasible, as expressed by None. Otherwise, we use the most
conservative starting time over all possible results, expressed by the inimum (In f ). For a single result, the latest
feasible starting time is expressed by the diference of the resources speciied and actually used. The diference
operator minus :: γ option→ γ option→ γ option lifts the diference on resources7 to option types. Note that, if
the speciication cannot be met due to a single result r, the diference is None, causing the inimum to be None.
Formally, we distinguish the following cases:

ś minus (Some t′) (Some t) = if t′≥ t then Some (t′− t) else None: if the diference is not negative, we return
it. Otherwise, the program consumes more resources than speciied and does not meet the speciication.

6To guide the intuition, we will use time as resource here.
7This requires γ to provide a diference operator, dual to its + operator. It is a straightforward generalization of the concept deined in [14].
We note that the resource types unit , enat , and ecost provide a suitable diference operator.

ACM Trans. Program. Lang. Syst.
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ś minus None (Some t) = None: the result is not covered by the speciication, hence the speciication cannot
be met.

ś minus _ None = Some ⊤: the result is not produced by the program, thus it does not contribute to the latest
feasible starting time. Accordingly, we return the top element Some ⊤.

It is straightforward to deine gwp rules for our monad operations, and construct the desired syntax driven
VCG. For details, we refer the reader to [14].

Lockstep Reinement. We often reine a compound program by reining some of its components. For example,
in Section 6.3, we replace the speciication of the fallback sorting within the abstract introsort algorithm by
heapsort.
Let A and C be two structurally equal programs (i.e., they have the same structure of combinators ifc ,

recc , bind, etc.), and let Ai and Ci be the pairs of corresponding basic components, for i ∈ {0, . . . , n}. Provided
with reinement lemmas (Ci , λx. ⇓CE (Ai x)) ∈ [Φi ] Ri → Si for each of those pairs,8 an automatic procedure
walks through the program and establishes a reinement (C, λx. ⇓CE (A x)) ∈ [Φ] R→ S . This process generates
veriication conditions for ensuring the preconditions Φi , which can be discharged automatically or, if required,
via interactive proof.

Note that, while the data reinements Ri can be diferent for each component i, the exchange rate E must be
the same for all components. Currently, we align the exchange rates by manually deriving specialized versions of
the component reinement lemmas. While those lemmas are not hard to prove, they are cumbersome to write
down. However, we believe that this can be automated in many practical cases, by collecting constraints on the
exchange rate during the lockstep reinement, which are solved afterwards to obtain a uniied exchange rate. We
leave the implementation of this idea to future work.

Separating Analysis of Resource Usage and Correctness. We can disregard resource usage and only focus on
reinement of functional correctness, and then add resource usage analysis later. This is useful to separate the
concerns of functional correctness and resource usage proof. We will describe a practical example in Section 6.5.
Here, we only present an alternative way to prove the reinement from Example 2.7:

First, for functional correctness, we use the speciication idxs_cmpspec (∞) and a program idxs_cmp∞ similar to
idxs_cmp but with all the costs replaced by∞. Proving the reinement idxs_cmp∞ xs i j ≤ idxs_cmpspec xs i j (∞)

only requires showing veriication conditions that correspond to functional properties and termination, in
particular those from assertions and annotated invariants in the concrete program. Proof obligations on resource
usage, however, collapse into the trivial t ≤ ∞. For the same reason, we get idxs_cmp xs i j ≤ idxs_cmp∞ xs i j,
and, by transitivity:

idxs_cmp xs i j ≤ idxs_cmpspec xs i j (∞)

Next, we prove idxs_cmp xs i j ≤n spec (λ_.True) (λ_. $lookup 2 + $less ). Here, the reinement relationm ≤n m′ = (m , fail =⇒ m ≤
assumes that the concrete program does not fail. This has the efect that, during the reinement proof, assertions
and annotated invariants in the concrete program can be assumed to hold, and we can focus on the resource
usage proof.

Finally, the following lemma is used to combine the two reinements:

m ≤ spec P (

Thus, for our example, we get

idxs_cmp xs i j ≤ idxs_cmpspec xs i j ($lookup 2 + $less )

8The reinement relations Ri and Si relate the parameters and respectively the result of those components.
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2.7 Alternatives to NREST

In the beginning of this section we stated our motivations and design goals for NREST. To model nondeterminism
and resources, we used partial functions that map results to resource elements. To motivate this design, we
discuss some seemingly obvious alternatives.

A result set and a resource. An alternative would be to deine an NREST program being a set of results together
with a single resource element for all possible results:

(α , γ ) NREST1 = fail | res (α set × γ )

However, this modelling is too coarse: consider a program that modiies a set of natural numbers by repeating
the following step until the set is empty: pick and remove a number n from the set, then consume n resources.
Say we start with a set {1, 2}. Then, the result after the irst step is res ({ {1}, {2} }, 2), as there are two

possibilities which element was removed from the set, and the upper bound of both outcomes is 2. After the
second step the result must be res ({ ∅ }, 4), as in both cases the remaining element is removed, but again the
upper bound on the running time of that second step is 2. This yields a total running time of 4, which is not tight.

In order to use nondeterminism efectively, we need a iner assignment of resources to results.

A set of pairs. Another alternative is to regard the resource usage just as part of the result. Thus, a set of results
with resource usage would be modeled as (α × γ ) set. Note that this is isomorphic to α → γ set, which suits our
presentation better. So we deine the following alternative to NREST:

(α , γ ) NREST2 = fail | res (α → γ set)

On the one hand, this deinition certainly allows to model the two stage process from above adequately.
Depending on which number out of {1, 2} was chosen we can specify a diferent resource consumption for the
intermediate results, and in the end model a tight running time of 3.

On the other hand, the reinement relation cannot just be the natural subset relation, because we would like to
have e.g. {(x, 3), (x, 4)} ≤ {(x, 4)}, in order to allow reinement with programs with less resource consumption.
Formally, we can use a downward closure (·↓) to express reinement:

S↓ = {s | ∃s′∈ S . s ≤ s ′}

res M ≤ resM ′ = ∀x. M x ⊆ (M ′ x )↓

That is, the computation res M reines resM ′ if for all results x inM the set of possible resource costs is bounded
by some possible resource bound for x inM ′.
In our initial design considerations for NREST we dropped that approach because it felt unnatural and the

alternative to map results to single resource elements worked out more smoothly. In the following we present
some results of a later efort to use the łset of pairsž approach.

First, we note that the reinement deined with the downward closure as above is not antisymmetric, and thus
yields no complete lattice structure. This problem, however, can be easily solved by identifying sets with the
same downward closure. Technically, we use the quotient type γ dclosed = γ set / (λs1 s2. s1

↓ = s2
↓), and deine a

new variant of NREST accordingly:

(α , γ ) NREST3 = fail | res (α → γ dclosed)

For this, we straightforwardly get the desired complete lattice structure on NREST3. We even get a more elegant
formalization, as the empty set (∅↓) naturally models the case where no result is present, and the universal set
(UNIV ↓) is the greatest element. In our original NREST, we had to use partial functions to model absence of
results, and add artiicial greatest elements to the resource type (e.g.,∞ in enat).
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For a resource type that provides a neutral element 0 and addition + with a monoid structure, we further can
deine the monadic operators return, bind and elapse as expected. The lifting of + to downward closed sets, as
required for deining bind, is straightforward.

However, we got stuck when we tried to deine generalized weakest preconditions (cf. Section 2.6) in NREST3,
more precisely, the underlying diference operator on resources. For example, consider the following scenario
where resources have more than one extreme point: we assume resources with two currencies, expressed as pairs
of amounts. Let { (2, 0), (0, 2) }↓ be the speciied resources for some result and {(1, 0), (0, 1)}↓ the ones actually
required by the program. In order to determine gwp, we would have to take the diference of these two downward
closed sets. However, it is unclear to us how to deine the diference in a sensible way.
In our actual NREST design, however, we aggregate the cost into one element. We would obtain (2, 2) and

(1, 1) respectively, and the diference operator can easily be deined pointwise. We have to note that the overap-
proximation of { (2, 0), (0, 2) } to (2, 2) does cause a problem, which we will treat in Section 4.5.
In summary, our choice of modeling NREST by one resource element per possible result seems to be a sweet

spot: it is ine enough to model nondeterminism efectively and coarse enough to deine generalized weakest
preconditions.

3 LLVM WITH COST SEMANTICS

The NREST-monad allows to specify programs with their resource usage in abstract currencies. Those currencies
only have a meaning when they inally can be exchanged for the costs of concrete computations. In the following
we present such a concrete computation model, namely a shallow embedding of the LLVM semantics into
Isabelle/HOL. The embedding is an extension of our earlier work [22] to also account for costs. In Section 4 we
will then report on linking the LLVM back end with the NREST front end.

3.1 Basic Monad

At the basis of our LLVM formalization is a monad that provides the notions of non-termination, failure, state,
and execution costs.

α mres = NTERM | FAIL | SUCC α cost state

α M = state→ α mres

Here, cost is a type for execution costs, which forms a monoid with operation + and neutral element 0, and state
is an arbitrary type.9

The type α M describes a program that, when executed on a state, either does not terminate (NTERM), fails
(FAIL), or returns a result of type α , its execution costs, and a new state (SUCC).

It is straightforward to deine the monad operations return and bind, as well as a recursion combinator rec
over M. Thanks to the shallow embedding, we can also use Isabelle HOL’s if-then-else to get a complete set of
basic operations. As an example, we show the deinition of the bind operation, in the case that both arguments
successfully compute a result:

Assume m s = SUCC x c1 s1 and f x s1 = SUCC r c2 s2
then we have bind m f s = SUCC r (c1+c2) s2

That is, the result x and state s1 after the irst operation m is passed into the second operation f, and the result
and state after the bind is what emerges from f. The cost for the bind is the sum of the costs for both operations.

9Note that this difers from the NREST monad in Section 2.1: it is deterministic, and provides a state. Because of determinism, we never need
to form a supremum, and thus can base our cost model on natural numbers rather than enats. We leave a uniication of the two monads to
future work.
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The basic monad operations do not cost anything. To account for execution costs, we deine an explicit
operation consume c s = SUCC () c s.10

3.2 Shallowly Embedded LLVM Semantics

The formalization of the LLVM semantics is organized in layers. At the bottom, there is a memory model that
stores deeply embedded values, and comes with basic operations for allocation/deallocation, loading, storing,
and pointer manipulation. Also the basic arithmetic operations are deined on deeply embedded integers. These
operations are phrased in the basic monad, but consume no costs. This way, we could take them unchanged
from our original LLVM formalization without cost [22]. For example, the low-level load operation has the
signature raw_load :: raw_ptr→ val M. Here, raw_ptr is the pointer type of our memory model, consisting of a
block address and an ofset, and val is our value type, which can be an integer, a pointer, or a pair of values.

On top of the basic layer, we deine operations corresponding to the actual LLVM instructions. Here, we map
from deeply to shallowly embedded values, and add the execution costs.

For example, the semantics of LLVM’s load instruction is deined as follows:

ll_load :: α ptr→ α M

ll_load p =

consume $load ;
r← raw_load (the_raw_ptr p);

checked_from_val r

It consumes the cost11 for the operation, and then forwards to the raw_load operation of the lower layer, where
the_raw_ptr and checked_from_val convert between the shallow and deep embedding of values.
Like in the original formalization12, an LLVM program is represented by a set of monomorphic constant

deinitions of the shape def, deined as follows:

def = proc_name var∗ ≡ block

block = var← cmd; block | return var

cmd = ll_<opcode> arg∗ | ll_call proc_name arg∗ | llc_if arg block block

| llc_while block block

arg = var | number | null | init

The code generator checks that the set of deinitions is complete and adheres to the required shape. It then
translates them into LLVM code, which merely amounts to pretty printing and translating the structured control
low by if and while13 statements to the unstructured control low of LLVM. A powerful preprocessor can
convert a more general class of terms to the restricted shape required by the code generator. This conversion
is done inside the logic, i.e., the processed program is proved to be equal to the original. Preprocessing steps
include monomorphization of polymorphic constants, extraction of ixed-point combinators to recursive func-
tion deinitions, and conversion of tuple constructors and destructors to LLVM’s insertvalue and extractvalue
instructions.

10For NREST, we deined a higher-order operation elapse, while we use the irst-order operation consume here. This is for historical reasons.
Note that elapse can be deined in terms of consume, and vice versa.
11See Section 3.3 for an explanation of our cost model.
12Actually, the only change to the original formalization [22] is the introduction of the ll_call instruction, to make the costs of a function call
visible.
13Primitive while loops are not strictly required, as they can always be replaced by tail recursion. Indeed, our code generator can be conigured
to not accept while loops, and our preprocessor can automatically convert while loops to tail-recursive functions. However, the eiciency of
the generated code then relies on LLVM’s optimization pass to detect the tail recursion and transform it to a loop again.
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In summary, the layered architecture of our LLVM formalization allowed for a smooth integration of the cost
aspect, reusing most of the existing formalization nearly unchanged. Note that we opted to integrate the cost
aspect into the existing top layer, which converts between deep and shallow embedding. Alternatively, we could
have added another layer on top of the shallow embedding. While the latter would have been the cleaner design,
we opted for the former approach to avoid the boilerplate of adding a new layer. This was feasible as the original
top layer was quite thin, such that adding another aspect there did not result in excessive complexity.

3.3 Cost Model

As a cost model for running time, we chose to count how often each instruction is executed. That is, we set
cost = string→ nat, where the string encodes the name of an instruction. It is straightforward to deine 0 and +
such that (cost, 0, +) forms a monoid. It is thus a valid cost model for our monad.
But how realistic is our cost model, counting LLVM instructions? During compilation, LLVM text will be

transformed by LLVM’s optimizer, and inally, the LLVM back end will translate LLVM instructions to machine
instructions. Moreover, the actual running time of a machine program does not only depend on the number
of executed instructions, but efects like pipeline lushes and cache misses also play an important role. Thus,
without factoring in the details of the optimization passes and the target machine architecture, our cost model
can, at best, be a rough approximation of the actual running time.
However, we do assume that a single instruction in the original LLVM text will result in at most a (small)

constant number of machine instructions, and that each machine instruction has a constant worst-case execution
time. Thus, the steps counted by our model linearly correlate to an upper bound of the actual execution time,
though the exact correlation depends on the actual program, optimizer passes, and target architecture. Hence,
while our cost model cannot be used for precise statements about execution time, it can be used to prove worst-
case complexity. That is, a program that we have proved eicient will be compiled to an eicient machine program.
Moreover, we can hope that the constant factors in the proved complexity are related to the actual constant
factors in the machine program, i.e., an LLVM program with small constant factors will compile to a machine
program with small constant factors.

The above discussion justiies the following design choices: The insertvalue and extractvalue instructions, which
are used to construct and destruct tuple values, have no associated costs. The main reason for this design is to
enable transparent use of tupled values, e.g., to encode the state of a while loop. We expect LLVM to translate the
members of the tuple to separate registers anyway, such that no real costs are associated with tupling/untupling.
We deine the malloc instruction to take cost proportional to the number of allocated elements14. Note that

LLVM itself does not provide memory management, and our code generator forwards memory management
instructions to the libc implementation of the target platform. We use the calloc function here, which is supposed
to initialize the allocated memory with zeros. While the exact costs of that are implementation dependent, they
certainly will depend on the size of the allocated block.

Charguéraud and Pottier [7, ğ2.7] discuss the adequacy of abstract cost models in a functional setting. In their
classiication, our abstraction would be on Level 2, as we count (almost) all kinds of operations on an intermediate
language level.

3.4 Reasoning Setup

Once we have deined the semantics, we need to set up some basic reasoning infrastructure. The original Isabelle-
LLVM already comes with a quite generic separation logic and veriication condition generation framework.
Here, we report on our extensions to resources using time credits.

14Note that we restrict malloc to positive block sizes in our semantics.
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Separation Logic with Time Credits. Our reasoning infrastructure is based on separation logic with time credits
[1, 7, 13]. We follow the algebraic approach of Calcagno et al. [3], using an earlier extension [22] of Klein et
al. [25].
A separation algebra on type α induces a separation logic on assertions that are predicates over α . To guide

intuition, elements of α are called heaps here. We use the following separation logic operators: The assertion ↑Φ
holds for an empty heap if Φ holds, @ = ↑True describes the empty heap, and ∃A is the existential quantiier lifted
to assertions. The separating conjunction P ⋆Q describes a heap comprised from two disjoint parts, one described
by P and the other described by Q, and entailment P ⊢ Q states that Q holds for every heap described by P.
Separation algebras naturally extend over product and function types, i.e., for separation algebras α , β , and

any type γ , also α × β and γ → α are separation algebras, where the operations are lifted pointwise.
Note that enat forms a separation algebra, where elements, i.e. time credits, are always disjoint. Hence, also

ecost = string→ enat, and amemory × ecost are separation algebras, where amemory is the separation algebra that
we already used in [22] to describe the abstract memory of LLVM. Thus, amemory × ecost induces a separation
logic with time credits that match our cost model. The time credit assertion $ t = (λa. a = (0, t)) describes an empty
memory (0) and precisely the time t.15 The primitive assertions on amemory are lifted analogously to describe no
time credits.

Weakest Precondition and Hoare Triples. We start by deining a concrete state cstate that describes the memory
content and the available resources:

cstate = memory × ecost

where memory is the memory type from our original LLVM formalization. Based on this, we deine the weakest
precondition predicate:

wp :: α M→ (α → cstate→ bool) → cstate→ bool

wp m Q (s, cc) = (∃r c s′. m s = SUCC r c s′∧ c ≤ cc ∧ Q r (s′, cc − c)).

Intuitively, the costs cc stored in the state is the credit available to the program. The weakest precondition holds
if the program runs with real costs c that are within the available credit, and Q holds for the result r, the new
memory s′, and the new credit, cc − c, which is the old credit reduced by the actually required costs. Note that
actual costs have type cost = string→ nat, i.e., are always inite, while the credits have type ecost = string→ enat,
i.e., there can be ininite credits. Setting the credit to be ininite for all instruction types yields the classical
weakest precondition that requires termination, but enforces no time limit.

Our concrete state type, in particular the memory, does not form a separation algebra, as the natural memory
model of LLVM has no notion of partial memories. Thus, we deine an abstraction function that maps a concrete
state to an abstract state astate, which forms a separation algebra:

astate = amemory × ecost abs (m, c) = (absm m, c)

Again, amemory and absm are the abstract state and abstraction function from the original LLVM formalization.
The costs already form a separation algebra, so we do not abstract them further.

With this, we can instantiate a generic VCG infrastructure: let cstate be the type of concrete states,wp :: α M→ (α → cstate→ bool) →
be a weakest precondition predicate, and astate the type of abstract states, linked to concrete states via an ab-
straction function abs :: cstate→ astate. In order to weaken postconditions, we assume that wp is monotone,
i.e.

(∀x. Q x =⇒ Q′x) =⇒ wp c Q s =⇒ wp c Q′ s

15Beware of the notation $ $c , which asserts one coin of the currency c.
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Finally, let ⊤⊤ be an aine top [5], i.e., an assertion with @ ⊢ ⊤⊤ and ⊤⊤ ⋆⊤⊤ = ⊤⊤, which captures resources that
can be safely discarded. We deine the Hoare triple {P} c {Q} to hold if:

∀F s. (P ⋆ F) (abs s) =⇒ wp c (λr s′. (Q r ⋆⊤⊤ ⋆ F) (abs s′)) s

Intuitively, {P} c {Q} holds if, for all states that contain a part described by assertion P, command c terminates
with result r and a state where that part is replaced by a part described by Q r ⋆⊤⊤, and the rest of the state has
not changed. Here, Q r is the postcondition of the Hoare triple, and ⊤⊤ describes resources that may be left over
and can be discarded.

In our case, we set ⊤⊤ to describe the empty memory and any amount of time credits. This matches the intuition
that a program must free all its memory, but may run faster than estimated, i.e., leave over some time credits.
Note that our wp is monotone.
The generic VCG infrastructure now provides us with a syntax driven VCG with a simple frame inference

heuristics.

3.5 Primitive Setup

Once we have deined the basic reasoning infrastructure, we have to prove Hoare triples for the basic LLVM
instructions and control low combinators. As we have added the cost aspect only at the top level of our semantics,
we can reuse most of the material from our original LLVM formalization without time. Technically, we instantiate
our reasoning infrastructure with a weakest precondition predicate wpn, which only holds for programs that
consume no costs. We deine:

wpn m Q s = wp m (FST ◦ Q) (s, 0) where FST P = λ(s, c). P s ∧ c = 0

Here FST lifts an assertion on the irst component to an assertion on a pair.
The resulting reasoning infrastructure is identical with the one of our original formalization, most of which

could be reused. Only for the topmost level, i.e., for those functions that correspond to the functional semantics
of the actual LLVM instructions, we lift the Hoare triples over wpn to Hoare triples over wp:

{P} c {Q}wpn = {FST P} c {FST ◦ Q}

Example 3.1. Recall the low-level raw_load and the high-level ll_load instruction from Section 3.2. The raw_load
instruction consumes no costs, and our original LLVM formalization provides the following Hoare triple:

{raw_pto p x} raw_load p {λr. ↑(r = x) ⋆ raw_pto p x}wpn

This can be transferred to a Hoare triple over wp:

{FST (raw_pto p x)} raw_load p {λr. ↑(r = x) ⋆ FST (raw_pto p x)}

which is then used to prove the Hoare triple for the program ll_load

{pto p x ⋆ $ $load } ll_load p {λr. ↑(r = x) ⋆ pto p x}

where pto p x = FST (raw_pto (the_raw_ptr p) (to_val x)).

Using the VCG and the Hoare triples for the LLVM instructions, we can now deine and prove correct data
structures and algorithms. While this works smoothly for simple data structures like arrays, it does not scale to
more complex developments. In contrast, NREST does scale, but lacks support for the low-level pointer reasoning
required for basic data structures. In Section 4, we show how to combine both approaches, with the LLVM level
providing basic data structures and the NREST level using them as building blocks for larger algorithms.
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3.6 Free for Free

Note that in our semantics, both memory allocation and memory deallocation consume costs of currenciesmalloc
and free respectively. However, the automatic data reinement tool we are going to design (see Section 4.2) has
to automatically insert destructors, which free memory. A destructor d that destroys an object described by
assertion A is characterized in the following way:

destructor A d = (∀a c. {A a c} d c {@})

In particular, all costs required for destruction must already be contained in the assertion A. In practice, this
means that we pay for the destruction of an object upon its allocation. Thus, we prove the following Hoare triples
for allocation and deallocation:

{ $ ($malloc n + $free) ⋆ ↑(n > 0)}

ll_malloc α n

{λp. range {0..<n} (λ_. init) p ⋆malloc_tag n p}

{range {0..<n} blk ⋆malloc_tag n p} ll_free p {@}

Intuitively, to allocate a block of size n, one has to pay n units of malloc and 1 unit of free. To free a block, no
explicit costs have to be paid.

Note that the malloc_tag assertion in the original formalization expresses ownership on the whole block and is
a prerequisite for freeing a block. Thus, it was natural to add the required time credits for freeing to this assertion,
when extending the original formalization with time:

malloc_tag n p = FST (raw_malloc_tag n (the_raw_ptr p)) ⋆ $ $f r ee

where raw_malloc_tag is the ownership assertion from our low-level memory model.
Note how amortization arguments like the above are seamlessly supported by separation logic with time

credits [1]. Later in this paper (Section 5) we also show how to combine amortization with reinement.
In practice, themalloc_tag assertion is usually hidden in the assertion for a data structure, and thus not directly

visible to the user.

3.7 Modelling Data Structures

An imperative data structure is described by a reinement assertion that relates it to a functional model. The
reinement assertion usually contains the addresses and block ownership (malloc_tag) for all memory used to
represent the data structure. For each operation, a Hoare triple is proved that relates the concrete operation on
the heap to the corresponding abstract operation on the functional model.

For example, the assertion arrayA xs p relates the array pointed to by p to the list xs of its elements:

arrayA xs p = range {0..<|xs|} (λi. xs ! i) p ⋆malloc_tag |xs| p

Note that we sometimes use the suix A to make clear that a name refers to an assertion.
The following Hoare triples relate the standard array operations to the corresponding operations on lists:

{ $ ($malloc n + $free) ⋆ ↑(n > 0)} array_new α n {λp. arrayA (replicate n init) p}

{arrayA xs p} array_delete p {@}

{arrayA xs p ⋆ $ ($ofs_ptr + $load) ⋆ ↑(i < |xs|)} array_get p i {λr. arrayA xs p ⋆ ↑(r = xs ! i)}

{arrayA xs p ⋆ $ ($ofs_ptr + $store) ⋆ ↑(i < |xs|)} array_set p i x {λr. arrayA (xs[i:=x]) r}

Users of the array data structure only need to use this interface, and never have to look into the details of the
implementations or the reinement assertion.
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Note that, as described in Section 3.6, we pay the cost for destruction already upon construction. For a simple
array, the destructor only invokes ll_free, whose costs are already contained in malloc_tag. More complicated
data structures, however, may require additional costs for destruction (e.g. to traverse a list of allocated arrays).
These can also be hidden in the reinement assertion.

4 AUTOMATIC REFINEMENT

In this section we describe a tool to synthesize a concrete program in the LLVM-monad from an abstract algorithm
in the NREST-monad. It can automatically reine abstract functional data structures to imperative heap-based
ones. We will describe the synthesis predicate hnr that connects the two monads, the synthesis tool, and a way to
extract Hoare triples from hnr predicates. Finally, we will discuss an efect that prevents combining hnr with data
reinements in the NREST-monad in the general case.

4.1 Heap nondeterminism refinement

The heap nondeterminism reinement predicate hnr Γ m† Γ
′A m intuitively expresses that the concrete program

m† computes a concrete result that relates, via the reinement assertion A, to a result in the abstract program
m, using at most the resources speciied by m for that result. A reinement assertion describes how an abstract
variable is reined by a concrete value on the heap. It can also contain time credits. The assertions Γ and Γ′

constitute the heaps before and after the computation and typically are a separating conjunction of reinement
assertions for the respective parameters of m† and m. Formally, we deine:

hnr Γ m† Γ
′A m =

m , fail =⇒

(∀F s c. (Γ ⋆ F) (absm s, c) =⇒

(∃ra ca . elapse (return ra ) ca ≤ m

∧ wp m† (λr (s
′, c′). (Γ′⋆ A r ra ⋆ F ⋆⊤⊤) (absm s′, c′)) (s, c + ca )))

The predicate holds if either the abstract program fails or if, for all heaps and resources (s, c) that satisfy the
pre-assertion Γ with some frame F, there exists an abstract result and cost (ra , ca ) that reinem, andm† terminates
with concrete result r in a state s′where Γ′with the frame holds, and r relates to the abstract result via assertion
A. The execution costs of m† and the time credits c′ required by the post-assertion Γ′are paid for by the speciied
cost ca and the time credits c described by the pre-assertion Γ. Thus, the real costs are paid by a combination
of the advertised costs in the abstract program and the potential diference of Γ′and Γ, allowing to seamlessly
model amortized computation costs.
The aine top ⊤⊤ allows the program to throw away portions of the heap. Note that our ⊤⊤ can only discard

time credits. Memory must be explicitly freed by the concrete program m†.
Also note that hnr is not tied to the LLVM semantics speciically. It actually is a general pattern for combining

the NREST-monad with any other program semantics that provides a weakest precondition and a separation
algebra for data and resources.

4.2 The Sepref Tool

The Sepref tool [20, 22] automatically synthesizes a concrete program in the LLVM-monad from an abstract
algorithm in the NREST-monad. It symbolically executes the abstract program while maintaining reinements
for the abstract variables to a concrete representation and generates a concrete program as well as a valid hnr
predicate. Proof obligations16 that occur during this process are discharged automatically, guided by user-provided
hints where necessary.

16E.g. from implementing mathematical integers with ixed-bit machine words.
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The synthesis requires rules for all abstract combinators. For example, bind is processed by the following rule:

1 ( hnr Γ m† Γ
′ Ax m ∧

2 (∀x x†. hnr (Ax x† x ⋆ Γ′) (f† x†) (A
′
x x† x ⋆ Γ′′) Ay (f x)) ∧

3 destructor A′x free ) =⇒

4 hnr Γ (x† ← m†; r† ← f† x†; free x†; return r†) Γ
′′ Ay (x← m; f x)

To reine x← m; f x, we irst execute m, synthesizing the concrete program m† (line 1). The state after m is
Ax x† x ⋆ Γ′, where x is the result created by m. From this state, we execute f x and synthesize f† x† (line 2). The
new state is A′x x† x ⋆ Γ′′ ⋆ Ay y† y, where y is the result of f x. Now, the intermediate variable x goes out of
scope and has to be deallocated. The predicate destructor A′x free (line 3) states that free is a deallocator for data
structures implemented by reinement assertion A′x . Note that free can only use time credits that are stored in A′x .
Typically, these are payed for during creation of the data structure (cf. Section 3.6). This way amortization can be
used efectively to hide the necessary free operation and its costs in the abstract program.
All other combinators (recc , ifc , whilec , etc.) have similar rules that are used to decompose an abstract

program into parts, synthesize corresponding concrete parts recursively and combine them afterwards with the
respective combinators from LLVM. At the leaves of this decomposition, atomic operations need to be provided
with suitable synthesis predicates.

An example is a list lookup that is implemented by an array:

hnr (arrayA p xs ⋆ snatA i† i)

(array_get p i†)

(arrayA p xs ⋆ snatA i† i) idA (list_getspec xs i (λ_. array_getcost ))

Here, the assertions arrayA, snatA and idA relate a list with an array, an unbounded natural number with a bounded
signed word and identical elements respectively. With an array at address p holding the list xs and an index i†
that is a bounded signed word representing an unbounded natural number i, array_get leaves the parameters
unchanged and extracts the element speciied by list_getspec incurring costs array_getcost = $ofs_ptr + $load.
Ideally, each operation has its own currency (e.g. list_get). However, as our deinition of hnr does not sup-

port currency reinement, the basic operations must use the currencies of the LLVM cost model. To still
obtain modular hnr rules, we encapsulate speciications for data structures with their cost, e.g. by deining
array_getspec = list_getspec (λ_. array_getcost ). These can easily be introduced in an additional reinement step.
Automating this process, and possibly integrating currency reinement into hnr is left to future work.

4.3 Notation for Refinement

Synthesis rules typically have the following general form:

P (x1†,. . . , xn†) (x1,. . . , xn ) =⇒

hnr (A1 x1† x1 ⋆ . . . ⋆An xn† xn ) (f† (x1†, . . . , xn†))

(A′1 x1† x1 ⋆ . . . ⋆A
′
n xn† xn ) A (f (x1, . . . , xn ))

That is, if we have concrete parameters x1†, . . . , xn† that reine the abstract parameters x1, . . . , xn , wrt. reinement
assertionsA1, . . . , An , and, additionally, the precondition P holds for the parameters, then the result of the concrete
function f† applied to the concrete parameters reines the result of the abstract function applied to the abstract
parameters, with assertion A. Moreover, after executing the function, some parameters xi † may still be valid, e.g.,
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if they are only read. In this case, we have Ai
′= Ai . For parameters that are deleted by the function, or whose

ownership is transferred (e.g. into the result), we have Ai
′= del Ai .17

We introduce a more succinct notation for synthesis rules of the above form:18

(f†, f) ∈ [P] A1
p1 → . . . → An

pn → A

The notation is inspired by relational parametricity rules. The superscripts of the reinement assertions indicate
whether the parameter will be kept on the heap (Ai

′= Ai ) or destroyed (Ai
′= del Ai ).

Example 4.1. Given assertions LA and EA, the following expresses the correctness of an implementation push†
of list_pushspec :

(push†, list_pushspec (t)) ∈ LA
d → EA

k → LA

That is, the irst parameter (the list) is reined by the assertion LA. The ·d annotation expresses that our im-
plementation destructively updates the list, i.e., ownership of the list is transferred into the result. The second
parameter (the element) is reined by the assertion EA. The ·k annotation expresses that our implementation does
not change the parameter19. Finally, the result list is, again, reined by the assertion LA.
In Section 5 we will provide such an implementation with dynamic arrays.

4.4 Extracting Hoare Triples

Note that hnr predicates cannot always be expressed as Hoare triples, as the running time bound of the abstract
program may depend on the result, which we cannot refer to in the precondition of a Hoare triple, where we
have to express the allowed running time as time credits.20

hnr Γ m† Γ
′A (spec Φ (λ_.t)) = {$t ⋆ Γ} m† {λr. Γ

′
⋆ ∃Ara . A r ra ⋆ ↑(Φ ra )}

While intermediate components might not be of this form, inal algorithms typically are. At the end of a
development, this rule allows to extract a Hoare triple in the underlying LLVM semantics, cutting out the NREST-
monad. For validating the correctness claim of an algorithm, only the inal Hoare triple needs to be inspected,
which only uses concepts of the underlying semantics.

Note that the above rule is an equivalence. Thus, it can also be used to obtain synthesis rules from Hoare
triples provided by the basic VCG infrastructure.

4.5 Atain Supremum

We comment on a problem that arises when composing hnr predicates and data reinement in the NREST monad.
Consider the following programs and relations:

m′= res [x 7→ $a , y 7→ $b ] R = {(z, x), (z, y)}
m = res [z 7→ $a + $b ] A = idA
m† = consume ($a + $b ); return z

17Here, del A x† x = ↑(∃h. A x† x h) just retains the information that the assertion is true for some heap (e.g. the original one). Our framework
uses this information to restore the parameter in case the reinement assertion is pure, i.e., does not depend on the heap.
18The notation is introduced by Lammich e. g. in [23, ğ5.1].
19Note that this requires the implementation to copy the element into the array rather than to just transfer its ownership.
20Guéneau et al. [11, 13] resolve that limitation by the introduction of possibly-negative time credits. However, the crucial equivalence of
positive credits in the precondition with negative credits in the postcondition does not hold when allowing ininite credits. As ininite credits
are important for our approach, and the low-level deinition of hnr is viable (though less aesthetic), we did not pursue this further.
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The speciicationm′ returns the abstract result x at cost $a or y at cost $b . The program m returns the concrete
result z at cost $a + $b . The LLVM program m† also returns z at cost $a + $b . The relation R relates z with both, x
and y. The assertion A relates identical elements.
Data reinement deines the resource bound for a concrete result (here z) as the supremum over all bounds

of related results (here x, y). Thus, we have m ≤ res [z 7→ $a + $b ] = ⇓DR m′. Moreover, we trivially have
hnr @ m† @ A m. Intuitively, we want to compose these two reinements, to obtain hnr @ m† @ (A ◦ R) m′. How-
ever, as our deinition of hnr does not form a supremum, this would require $a + $b ≤ $a or $a + $b ≤ $b , which
obviously does not hold.

We have not yet found a way to deine hnr or ⇓D in a form that does not exhibit this efect. Instead, we explicitly
require that the supremum of the data reinement has a witness. The predicate attains_sup m m′R characterizes
that situation: it holds, if for all results r of m the supremum of the set of all abstractions (r , r ′) ∈ R applied to m′

is in that set. This trivially holds if R is single-valued, i.e. any concrete value is related with at most one abstract
value, or if m′ is one-time, i.e. assigns the same resource bound to all its results.

In practice we do encounter non-single-valued relations21, but they only occur as intermediate results where
the composition with an hnr predicate is not necessary. Also, collapsing synthesis predicates and reinements in
the NREST-monad typically is performed for the inal algorithm whose running time does not depend on the
result, thus is one-time, and ultimately attains_sup.

5 CASE STUDY: DYNAMIC ARRAYS IN THE ABSTRACT

In this section, we present a case study that shows that amortized data structures can be proven correct on the
abstract NREST level. We verify the amortized-constant-time push operation of dynamic arrays in the abstract
NREST formalism and then synthesize LLVM code from it using the automatic method from the previous section.
We focus on the resource consumption and the amortization argument in particular. For presentation purposes
we omit functional correctness and some size side conditions that are vital for the implementation in LLVM. We
will comment on that towards the end of this section.

5.1 Dynamic Lists

In Example 2.6 we introduced dynamic lists, which model dynamic arrays as a triple of a carrier list, its length
and its capacity. We have shown that dl_pushspec on dynamic lists reines list_pushspec on lists (Example 2.9).
The next step in reining the push operation is to add the abstract algorithmic idea: If we run out of capacity, we
double the size of the carrier list and push the element afterwards.

dl_push (cs, l, c) x =

ifc l < c then ($less )
dl_push_basicspec (cs, l, c) x ($dl_push_basic )

else

(cs′, l′, c′) ← dl_doublespec (cs, l, c); ($dl_doublec c)
dl_push_basicspec (cs′, l′, c′) x ($dl_push_basic )

Here, the program dl_push_basicspec pushes an element at the end of the list, assuming that there is enough ca-
pacity; and the program dl_doublespec doubles the capacity of the dynamic list. The abstract currency dl_push_basic
represents the costs incurred to push an element and the abstract currency dl_doublec represents the costs to
double the dynamic array per element in the carrier list.

21The relation oarr, described in earlier work [24, 4.2] by one of the authors, is used to model ownership of parts of a list on an abstract level
and is an example for a relation that is not single-valued.
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Let us examine the raw, i. e. non-amortized, costs of the operation. If there is capacity left, we have to pay for
the if-branch and its guard, as well as the basic push operation. This can be summarized in the constant cost
dl_push incurs: dl_push_overheadcost = $less + $if + $dl_push_basic . In the other case, we have to additionally pay
for the doubling: push_overheadcost + $dl_doublec c. Thus, the worst-case cost of the operation is not constant,
but rather linear in c because of the double operations.

As a next step we will see how we can formalize the potential method on the NREST level and prove that the
abstract push operation has amortized constant time.

5.2 Amortized Analysis

The potential method for amortized complexity has the following well-known inequality that relates the raw
cost of an operation with its advertised cost and the potential of the data structure before and after an operation.

raw_costi ≤ (Φi + advertised_costi ) − Φi+1

Before executing an operation we can get the resource credits from the potential of the data structure and add it
to the cost that is advertised to the caller of the operation. Then, we execute the operation incurring the raw
costs, and afterwards we need to give back the resource credits for the potential of the resulting data structure.
Finally, we can execute several operations on the data structure one after the other and use telescoping to obtain
the following inequality
∑

0≤i<n raw_costi ≤
∑

0≤i<n advertised_costi

Here, we assume that each raw_costi and Φi is non-negative and the potential Φ0 is initially zero. The inequality
expresses that the real costs are upper bounded by the sum of the advertised costs.

We cannot use elapse to model the subtraction in the amortization inequality, as this would require negative
costs.22 Instead, we introduce a new combinator reclaim and formulate the amortization inequality in the
NREST-monad with an amortization reinement lemma:

mraw ds ≤ reclaim (elapse (madv ds) (Φ ds)) (λds′. Φ ds ′)

Here the raw monadic program mraw executed on some data structure ds has to reine the program that irst
consumes the potential of the data structure, then executes the monadic program with advertised costs, and in
the end reclaims as much costs as the resulting data structure ds ′ needs for its potential.

The combinator reclaim subtracts cost from a monadic program, and fails if it would get negative. Note that
this approach only works if the resource type provides a minus operator, as ecost does in our case. Here is the
formal deinition:

reclaim :: (α , ecost) NREST→ (α → ecost) → (α , ecost) NREST

reclaim fail T = fail

reclaim (res M) T = Sup { if T x ≤ t′then res [x 7→ t′− T x] else fail | t′x. M x = Some t′ }

For each possible result x ofM the combinator checks whether the consumed time t′ is at least the reclaimed time
T x for that result. This ensures not falling into the negative when subtracting. If one of the inequalities does not
hold, the whole program reclaim m t fails.
Using reclaim we can state the amortization reinement lemma for dl_push:

dl_push dl x ≤ reclaim (elapse (dl_pushspec dl x (push_advcost )) (Φdl dl)) (

22Extending NREST to allow negative costs might streamline the theory. We leave further investigation to future work.
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Setting Φdl (cs, l, c) = $dl_doublec (2∗l − c) and push_advcost = push_overheadcost + $dl_doublec 2, our VCG can au-
tomatically prove this lemma23.

In particular, we have shown that dl_push has amortized constant time, as its advertised cost only consumes the
push_overheadcost and two additional $dl_doublec coins for loading the potential. This argument is independent
from how exactly dl_double is implemented and how the currency $dl_doublec is reined later. That way we
achieved to separate the amortization argument from the implementation details.

This already concludes the veriication on the NREST-level. We have shown that we can use the potential Φdl

to prove dl_push having amortized constant time. We can go on proving correct other operations on the data
structure with amortization, e. g. lookup, write within bounds, initialization, and destruction. That includes to
show that they respect the change of potential. We can also apply telescoping on this level and sequentially
compose several reclaimśelapse pairs on the same data structure following the intuition above.

It is left to show that we can actually implement the operation with a concrete program and obtain the desired
synthesis rule mentioned in Example 4.1.

5.3 Moving Potential to Time Credits

Now we have obtained a reinement in the reclaimśelapse pattern. In order to obtain the desired synthesis
rule, we will move the potential from the abstract NREST-program into the pre- and post-heap in the synthesis
rule. This will only leave the advertised cost in the abstract program.
On the separation logic level we can augment assertions representing raw data structures with time credits

representing their potential. The operator [Φ]A r ra = $Φ ra ⋆ A r ra adds the potential as time credits depending
on the abstract result to an assertion.
Given a synthesis rule that reines a reclaimśelapse pattern we can move the consumed prepotential into

the precondition and the reclaimed postpotential into the assertion of the result.

(m†, λ(x, r). reclaim (consume (m x r) (Φ x)) Φ) ∈ Ad → AR
k → A

=⇒ (m†, m) ∈ ([Φ]A)d → AR
k → [Φ]A

Here, the irst parameter (called x in the abstract program) is the amortized data structure that is altered and
returned as the result. The second parameter (called r in the abstract program) represents the rest of the parameters.
They are not modiied in this case and do not contribute with amortized potential. We call this rule an amortization
synthesis rule. Note that, for simplicity, we have not shown the side conditions that ensure initeness of the
potential and non-failure of the abstract program.

Using that rule the amortization can be moved from the NREST level into the separation logic assertion. The
synthesis rule now directly relates the implementation m† and the monadic program m. In the following we will
explain how this is applied to our example.

5.4 Obtaining a Synthesis Rule

In order to obtain a synthesis rule for list_push, we irst need to provide an implementation and connect it to the
program dl_push. Observe that dl_push lives in the currency system of dynamic lists and not of LLVM currencies.
We need to reine it to some abstract program da_push that ixes the way we implement the carrier list to arrays
and reines all operations to operations we have synthesis rules for. This involves exchanging the currencies
from dynamic lists to LLVM currencies via some exchange rate Eda . In particular Eda has to specify how the coin
$dl_doublec must be exchanged. Those costs will contain the costs for allocating the new carrier list and copying
the elements to the new carrier list. Note that those costs need to be speciied per element of the original carrier

23To help us with inding the correct terms for Φdl and push_advcost , we can run our VCG with symbolic variables irst, and examine the
generated proof obligations, which show us the constraints that Φdl and push_advcost must satisfy.
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list. For presentation purposes we skip the details of that part and assume we come up with a program da_push
and a suitable reinement da_push dl x ≤ ⇓C Eda (dl_push dl x).

Furthermore, let da_rawA be the reinement assertion that relates a concrete representation of a dynamic array
with a dynamic list holding natural numbers. While the theory is not dependent on the type of the payload, we
choose a ixed one here for presentation purposes. We later want to model strings of characters with the dynamic
array. So, the concrete part of the assertion da_rawA is a triple, consisting of an array of 8 bit integers (⟨8⟩unatA)
and two 64 bit integers (⟨64⟩snatA) for the length and capacity. Further, we assume that we have synthesized an
LLVM program da_push† that reines da_push, with the following synthesis rule:

(da_push†, da_push) ∈ (da_rawA)
d → ⟨8⟩unatA

k → da_rawA

Now we can combine the currency reinement rule for da_push and the amortization reinement rule for
dl_push and obtain to the following reinement:

da_push dl x ≤ reclaim (elapse (dl_pushspec dl x (push_concrete_advcost )) (Φda dl)) Φda

Here, the currency reinement was already distributed over reclaim and elapse. This yields the following
two cost functions: push_adv′cost = ↓C Eda push_advcost and Φda dl = ↓C Eda (Φdl dl). Here, the operation ↓CE t
applies an exchange rate to a resource function. In particular, as the exchange rate Eda is independent of the
dynamic list and push_advcost is constant, also the advertised cost push_adv′cost is constant.

We can now combine that reinement rule with the synthesis rule from above. Note that the reinement does
not involve data reinement, and thus does not have any attains_sup side conditions (cf. Section 4.5). We obtain
the following synthesis rule:

(λ(da, x†). da_push† da x†,

λ(dl, x). reclaim (elapse (dl_pushspec dl x (push_adv′cost )) (Φda dl)) Φda)

∈ da_rawA
d → ⟨8⟩unatA

k → da_rawA

This form its the precondition of the amortization synthesis rule, and we can apply it to move the elapsed and
reclaimed resources to the pre-heap and the reinement assertion for the result respectively.

(λ(da, x†). da_push† da x†, λ(dl, x) dl_pushspec dl x (push_adv′cost ))

∈ ([Φda]da_rawA)
d → ⟨8⟩unatA

k → [Φda]da_rawA

At this point we already have established a reinement between the push operation on dynamic lists dl_pushspec
and the implementation on dynamic arrays da_push†. We could extract a Hoare triple from the synthesis rule
that shows the correctness of the implementation and the amortized constant running time.
As a last step, we hide the intermediate concept of dynamic lists and obtain a reinement between the list

operation and the implementation on dynamic arrays. First, consider the data reinement between dl_push and
list_pushspec . We repeat it here:

(dl_pushspec (t), list_pushspec (t)) ∈ Rl ist
dynlist

→ Id → Rl ist
dynlist

We can apply this data reinement to the synthesis rule above, and use the fact that Rl ist
dynlist

is single-valued24 to

solve the sup-attains side condition. Then, we obtain the inal synthesis rule:

(da_push†, list_pushspec (push_adv′cost )) ∈ daA
d → ⟨8⟩unatA

k → daA

Where daA relates a list with a dynamic array. This reinement assertion combines the reinement relation Rl ist
dynlist

,

the raw reinement assertion da_rawA and the augmentation with the time credits containing the potential.
Formally we deine:

24That is, every dynamic list has at most one corresponding abstract list.
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daA as al = ∃Adl. [Φda](da_rawA) dl al ⋆ ↑((dl, as) ∈ R
l ist
dynlist

)

As mentioned at the beginning of this section, for presentation purposes we have left out size constraints
that are necessary to avoid overlows in the LLVM implementation. When doubling the list we have to make
sure that the multiplication of the capacity with 2 does not lead to an overlow. We can restrict this by adding a
size constraint to the synthesis rule demanding the length of the list may at most be half of MAX_INT before
pushing an element to it. In a program that uses that operation, one then has to add assertions before those
invocations that help the Sepref tool to discharge the respective size constraints. Those size constraints then can
be propagated to the precondition of the program. For example, a depth-irst search that uses a dynamic array to
represent its waiting list might have an additional size constraint restricting the number of edges in the graph to
MAX_INT / 2.

Once we have the last synthesis rule, we can cut out the whole reasoning with the combinators reclaim and
elapse and inspect the rule on its own. The reinement assertion daA serves as a black box for the user. For a
user of the rule, only the constant advertised cost is visible in push_adv′cost and the whole amortization is hidden
and happens under the hood, such that this amortized data structure behaves like any other data structure.

5.5 Discussion

Previously, we had to prove amortized data structures on the low-level separation logic (e. g. [14, ğ5.1]), while we
can now structure our proofs using the same top-down reinement approach as for non-amortized complexity
analysis.
While we have demonstrated our method for the quite simple dynamic array data structure, we believe that

more involved amortized analyses can also proit from this technique. A next step would be to modularize the
veriication of Union-Find [6, 28].

Another advantage of performing the analysis on the abstract NREST-level is the independence from the actual
back end. E.g., we could25 use the same abstract proof to verify implementations in LLVM and Imperative HOL.

To summarize the reinement process for this case study reconsider Table 1. We started from a speciication of
the abstract operation (list_pushspec ), which can be expressed in the NREST-monad. Then, we data-reined lists
to dynamic lists (dl_pushspec ). We introduced the algorithmic idea as an NREST program dl_push using only the
speciication of abstract operations like dl_doublespec . Proving the algorithmic idea and amortization argument
happens on that level of abstraction. Towards implementing the algorithm, we then reined the abstract operations
to basic operations that have available synthesis rules. In that process we had to use currency reinements to
exchange to LLVM currencies in the program da_push. Finally, we used the Sepref tool to synthesize an LLVM
implementation da_push†, which uses imperative arrays. By transitivity, the reinement chain yields the inal
synthesis rule relating list_pushspec and da_push†. The reinement approach allows to separate concerns and
address proof obligations on the most abstract and appropriate level.

6 CASE STUDY: INTROSORT

In this section, we apply our framework to the introsort algorithm [30]. We build upon the veriication of its
functional correctness [24] to verify its running time analysis and synthesize competitive eicient LLVM code
for it. Following the łtop-downž mantra, we use several intermediate steps to reine a speciication down to an
implementation.

6.1 Specification of Sorting

We start with the speciication of sorting a slice of a list:

25In practice, we have to copy and slightly adjust the proof, as the front-ends for LLVM and Imperative HOL are not yet uniied.
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slice_sortspec xs0 l h (t) =

assert (l ≤ h ∧ h ≤ |xs0 |);

spec (λxs. slice_sort_aux xs0 l h xs) (λ_. t)

Where slice_sort_aux xs0 l h xs states that xs is a permutation of xs0, xs is sorted between l and h and equal to xs0
anywhere else.

6.2 Introsort’s Idea

The introsort algorithm is based on quicksort. Like quicksort, it inds a pivot element, partitions the list around
the pivot, and recursively sorts the two partitions. Unlike quicksort, however, it keeps track of the recursion
depth, and if it exceeds a certain value (typically ⌊2 logn⌋), it falls back to heapsort to sort the current partition.
Intuitively, quicksort’s worst-case behaviour can only occur when unbalanced partitioning causes a high recursion
depth, and the introsort algorithm limits the recursion depth, falling back to the O (n logn) heapsort algorithm.
This combines the good practical performance of quicksort with the good worst-case complexity of heapsort.

Our implementation of introsort follows the implementation of libstdc++, which includes a second optimization:
a irst phase executes quicksort (with fallback to heapsort), but stops the recursion when the partition size falls
below a certain threshold τ . Then, a second phase sorts the whole list with one inal pass of insertion sort. This
exploits the fact that insertion sort is actually faster than quicksort for almost-sorted lists, i.e., lists where any
element is less than τ positions away from its inal position in the sorted list. While the optimal threshold τ needs
to be determined empirically, it does not inluence the worst-case complexity of the inal insertion sort, which is
O (τn) = O (n) for constant τ . The threshold τ will be an implicit parameter from now on.

While this seems like a quite concrete optimization, the two phases are already visible in the abstract algorithm,
which is deined as follows in NREST:

introsort xs l h =

assert (l ≤ h);

n← return h − l; ($sub )
ifc n > 1 then ($lt)
xs← almost_sortspec xs l h; ($almost_sort)
xs← inal_sortspec xs l h ($inal_sort)
return xs

else return xs

Here, almost_sortspec (t) speciies an algorithm that almost-sorts a list, consuming at most t resources and
inal_sortspec (t) speciies an algorithm that sorts an almost-sorted list, consuming at most t resources.
The program introsort leaves trivial lists unchanged and otherwise executes the irst and second phase. Its

resource usage is bounded by the sum of the irst and second phase and some overhead for the subtraction,
comparison, and if-then-else. Using the veriication condition generator we prove that introsort is correct, i.e.,
reines the speciication of sorting a slice:

introsort xs l h ≤ ⇓CEis (slice_sortspec xs l h ($sor t ))

Where Eis = ↑↓[sort := introsortcost ] is the exchange rate used at this step and the total allotted cost for introsort
is introsortcost = $sub + $if + $lt + $almost_sor t + $inal_sort.

6.3 Introsort Scheme

The irst phase can be implemented in the following way:
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1 introsort_aux µ xs l h =

2 d← depthspec l h; ($depth )
3 recc (λintrosort_rec (xs,l,h,d).

4 assert (l ≤ h);

5 n← h − l; ($sub )
6 ifc n > τ then ($lt)
7 ifc d = 0 then ($eq )
8 slice_sortspec xs l h ($sor tc (µ (h - l)))
9 else

10 (xs, m) ← partitionspec xs l h; ($par tit ionc (h - l))
11 d′← d − 1; ($sub )
12 xs← introsort_rec (xs, l, m, d′);

13 xs← introsort_rec (xs, m, h, d′);

14 return xs

15 else return xs

16 ) (xs, l, h, d)

Where partitionspec partitions a slice into two non-empty partitions, returning the start indexm of the second
partition, and depthspec speciies ⌊2 log(h − l )⌋.
Let us irst analyze the recursive part: if the slice is shorter than the threshold τ , it is simply returned (line

15). Unless the recursion depth limit is reached, the slice is partitioned using h − l partitionc coins, and the
procedure is called recursively for both partitions (lines 10-14). Otherwise, the slice is sorted at a price of µ (h − l)
sortc coins (line 8). The function µ here represents the leading term in the asymptotic costs of the used sorting
algorithm, and the sortc coin can be seen as the constant factor. This currency will later be exchanged into the
respective currencies that are used by the sorting algorithm. Note that we use currency sortc to describe costs per
comparison of a sorting algorithm, while currency sort describes the cost for a whole sorting algorithm.
Showing that the procedure results in an almost-sorted list is straightforward. The running time analysis,

however, is a bit more involved. We presume a function µ that maps the length of a slice to an upper bound on
the abstract steps required for sorting the slice. We will later use heapsort with µnloдn n = n logn.
Consider the recursion tree of a call in introsort_rec: We pessimistically assume that for every leaf in the

recursion tree we need to call the fallback sorting algorithm. Furthermore, we have to partition at every inner
node. This has cost linear in the length of the current slice. For each following inner level the lengths of the slices
add up to the current one’s, and so do the incurred costs. Finally we have some overhead at every level including
the inal one. The cost of the recursive part of introsort_aux is:

introsort_reccost µ (n, d) = $sor tc (µ n) + $par tit ionc d ∗ n
+ ((d+1)∗n)∗($if 2 + $call 2 + $eq + $lt + $sub 2)

The correctness of the running time bound is proved by induction over the recursion of introsort_rec. If the
recursion limit is reached (d = 0), the irst summand pays for the fallback sorting algorithm. If d > 0, part of the
second summand pays for the partitioning of the current slice, then the list is split into two and the recursive
costs are payed for by parts of all three summands. To bound the costs for the fallback sorting algorithm, µ needs
to be superadditive: µ a + µ b ≤ µ (a + b). In both cases, the third summand pays for the overhead in the current
call.
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For d = ⌊2 logn⌋ and anO (n logn) fallback sorting algorithm (µ = µnloдn ), introsort_reccost µnloдn is inO(n logn).
26

In fact, any d ∈ O (logn) would do.
Before executing the recursive method, introsort_aux calculates the depth limit d. The correctness theorem

then reads:

introsort_aux µnloдn xs l h ≤ ⇓C (Eisa (h − l)) (almost_sortspec xs l h ($almost_sor t ))

Where Eisa n = ↑↓[almost_sort := $depth + introsort_reccost µnloдn (n, ⌊2 logn⌋)].
Note that speciications typically use a single coin of a speciic currency for their abstract operation, which is

then exchanged for the actual costs, usually depending on the parameters.
This concludes the interesting part of the running time analysis of the irst phase. It is now left to plug in an

O (n logn) fallback sorting algorithm, and a linear partitioning algorithm.

Heapsort. Independently of introsort, we have proved correctness and worst-case complexity of heapsort,
yielding the following reinement lemma:

heapsort xs l h ≤ ⇓C (Ehs (h − l)) (slice_sortspec xs l h ($sor t ))

Where Ehs n = ↑↓[sort := c1 + log n ∗ c2 + n ∗ c3 + (n ∗ log n) ∗ c4] for some constants ci :: ecost.
Assuming that n ≥ 2,27 we can estimate Ehs n sort ≤ µnloдn n ∗ c, for c = c1 + c2 + c3 + c4, and thus get, for

Ehs ′ = ↑↓[sortc := c]:

⇓C (Ehs (h − l)) (slice_sortspec xs l h ($sor t ))
≤ ⇓CEhs ′ (slice_sortspec xs l h ($sor tc (µnloдn (h − l))))

and, by, transitivity

heapsort xs l h ≤ ⇓CEhs ′ (slice_sortspec xs l h ($sor tc (µnloдn (h − l))))

Note that our framework allowed us to easily convert the abstract currency from a single operation-speciic sort
coin to a sortc coin for each comparison operation.

Partition and Depth Computation. We implement partitioning with the Hoare partitioning scheme using the
median-of-3 as the pivot element. Moreover, we implement the computation of the depth limit (2⌊log(h − l )⌋) by
a loop that counts how often we can divide by two until zero is reached. This yields the following reinement
lemmas:

pivot_partition xs l h ≤ ⇓CEpp (partitionspec xs l h ($par tit ionc (h − l)))

calc_depth l h ≤ ⇓C (Ecd (h − l)) (depthspec l h ($depth ))

Combining the Reinements. We replace slice_sortspec , partitionspec and depthspec by their implementations
heapsort, pivot_partition and calc_depth. Finally, we call the resulting implementation introsort_aux2, and prove

introsort_aux2 xs l h ≤ ⇓C (Eaux (h − l)) (introsort_aux µnloдn xs l h)

Where the exchange rate Eaux combines the exchange rates Ehs ′ , Epp and Ecd for the component reinements.
Transitive combination with the correctness lemma for introsort_aux then yields the correctness lemma for

introsort_aux2:

introsort_aux2 xs l h ≤ ⇓C (Eisa2 (h − l)) (almost_sortspec xs l h ($almost_sor t ))

Where Eisa2 n = ↑↓[almost_sort := ↓C (Eaux n) (introsort_auxcost n)] and the operation ↓CE t applies an exchange
rate to a resource function.
26More precisely, the sum over all (initely many) currencies is in O (n logn).
27Note that this is a valid assumption, as heapsort will never be called for trivial slices.
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Reining Resources. The stepwise reinement approach allows to structure an algorithm veriication in a way
that correctness arguments can be conducted on a high level and implementation details can be added later.
Resource currencies permit the same for the resource analysis of algorithms: they summarize compound costs,
allow reasoning on a higher level of abstraction and can later be reined into ine-grained costs. For example,
in the resource analysis of introsort_aux the currencies sortc and partitionc abstract the cost of the respective
subroutines. The abstract resource argument is independent from their implementation details, which are only
added in a subsequent reinement step, via the exchange rate Eaux .

6.4 Final Insertion Sort

The second phase is implemented by insertion sort, repeatedly calling the subroutine insert. The speciication
of insert for an index i captures the intuition that it goes from a slice that is sorted up to index i − 1 to one that
is sorted up to index i. Insertion is implemented by moving the last element to the left, as long as the element
left of it is greater (or the start of the list has been reached). Moving an element to its correct position takes
at most τ steps, as after the irst phase the list is almost-sorted, i.e., any element is less than τ positions away
from its inal position in the sorted list. Moreover, elements originally at positions greater τ will never reach the
beginning of the list, which allows for the unguarded optimization. It omits the bounds check for those elements,
saving one index comparison in the innermost loop. Formalizing these arguments yields the implementation
inal_insertion_sort that satisies

inal_insertion_sort xs l h ≤ ⇓C (Eis (h − l)) (inal_sortspec xs l h ($inal_sort))

Where Eis n = ↑↓[inal_sort := inal_insertioncost n], and inal_insertioncost n is linear in n.
Note that inal_insertion_sort and introsort_aux2 use the same currency system. Plugging both reinements

into introsort yields introsort2 and the lemma

introsort2 xs l h ≤ ⇓C (Eis2 (h − l)) (introsort xs l h)

Where the exchange rate Eis2 combines the rates Eisa2 and Eis.

6.5 Separating Correctness and Complexity Proofs

A crucial function in heapsort is sift_down, which restores the heap property by moving the top element down in
the heap. To implement this function, we irst prove correct a version sift_down1, which uses swap operations
to move the element. In a next step, we reine this to sift_down2, which saves the top element, then executes
upward moves instead of swaps, and, after the last step, moves the saved top element to its inal position. This
optimization spares half of the memory accesses, exploiting the fact that the next swap operation will overwrite
an element just written by the previous swap operation.
However, this reinement is not structural: it replaces swap operations by move operations, and adds an

additional move operation at the end. At this point, we chose to separate the functional correctness and resource
aspect, to avoid the complexity of a combined non-structural functional and currency reinement. It turns out
that proving the complexity of the optimized version sift_down2 directly is straightforward. Thus, as sketched in
Section 2.6, we irst prove28 sift_down2 ≤ sift_down1 ≤ sift_downspec (∞), ignoring the resource aspect. Separately,
we prove sift_down2 ≤n spec (λ_. True) sift_downcost , and combine the two statements to get the inal reinement
lemma:

sift_down2 ≤ sift_downspec (sift_downcost )

28Note that we have omitted the function parameters for better readability.
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6.6 Refining to LLVM

To obtain an LLVM implementation of our sorting algorithm, we have to specify an implementation for the
data structure that holds the elements, and for the comparison operator on elements. We use arrays for the
data structure, and parameterize over the comparison function (see Section 6.7). Let E3 be the correspond-
ing exchange rate from abstract data structure access and comparison to actual LLVM operations. We obtain
introsort3 xs l h ≤ ⇓CE3 (introsort2 xs l h), and can automatically synthesize an LLVM program introsort† that
reines introsort3, i.e., satisies the theorem:

(introsort†, introsort3) ∈ arrayA
d → snatA

k → snatA
k → arrayA

Combination with the reinement lemmas for introsort3, introsort2, and introsort, followed by conversion to a
Hoare triple, yields our inal correctness statement:

l ≤ h ∧ h < |xs0 | =⇒

{$(introsort†cost (h − l)) ⋆ arrayA p xs0 ⋆ snatA l† l ⋆ snatA h† h}

introsort† p l† h†
{λr. ∃Axs. arrayA r xs ⋆ ↑(slice_sort_aux xs0 l h xs) ⋆ snatA l† l ⋆ snatA h† h}

Where introsort†cost :: nat→ ecost is the cost bound obtained from applying the exchange rates Eis , then Eis2,
and inally E3 to $sor t .

Note that this statement is independent of the Reinement Framework. Thus, to believe in its meaningfulness,
one has to only check the formalization of Hoare triples, separation logic, and the LLVM semantics.

To formally prove the statement łintrosort† has complexity O (n logn)ž, we irst observe that introsort†cost uses
only initely many currencies, and only initely many coins of each currency. Then, we deine the overall number
of coins as

introsort†allcost n = Σc. introsort†cost n c

which expands to

introsort†allcost n = 4693 + 5 ∗ log n + 231 ∗ n + 455 ∗ (n ∗ log n)

which, in turn, is routinely proved to be in O(n logn).
Finally, instantiating the element type and comparison operation yields a complete LLVM program, that our

code generator can translate to actual LLVM text and a corresponding header ile for interfacing our sorting
algorithm from C or C++. For example, with LLVM’s i64 type and the unsigned compare operation ll_icmp_ult,
we get a program that sorts unsigned 64 bit integers in ascending order.

As LLVM does not support generics, we cannot implement a replacement for C++’s generic std::sort. However,
by repeating the instantiation for diferent types and compare operators, we can implement a replacement for
any ixed element type.

6.7 Sorting Strings

We now elaborate on the parameterization over element types that we described in the last section, and also
show how to sort elements with non-constant-time compare operations, such as strings.

To parameterize over the element type, we deine the introsort3 and introsort† functions inside a locale. Locales
in Isabelle ix parameters with assumptions that can be instantiated later.

locale sort_impl_context = . . .

ixes (<†) :: α† → α† → 1 word M

and c :: ecost

and A :: α → α† → assn

ACM Trans. Program. Lang. Syst.



111:30 • Haslbeck and Lammich

assumes ((<†), consume c (return oo (<) )) ∈ Ak → Ak → bool1A
and inite_cost c

. . .

Here, α is the abstract element type, α† is the concrete element type, <† is the implementation of the compare
function that requires cost c, and A is the reinement relation for elements. The assumptions state that <† actually
implements the comparison, and that the required costs are inite.
This locale can now be instantiated for diferent element types. For example, the instantiation to uint64Ðas

described in the previous sectionÐis done as follows:

global_interpretation sort_impl_context . . . ll_icmp_ult $icmp_ult ⟨64⟩unatA

A more complex element datatype is string. It can be implemented by dynamic arrays29 (cf. Section 5). In
the original formalization without costs, it is straightforward to implement a lexicographic compare operator
on dynamic arrays (strcmp†), to show that it reines the lexicographic ordering on lists, and to instantiate the
parameterized sorting algorithm.
However, when adding costs, the costs of comparing two strings depend on the lengths of the strings. In our

implementation, comparison is linear in the length of the shorter string. This dependency on the input parameters
poses a challenge to the analysis of the algorithm. In our formalization, we simply over-estimate the cost for a
comparison by the longest string in the array to be sorted. While more precise analyses might be possible, this
approach integrates nicely into our existing formalization infrastructure, and still yields usable upper bounds for
not too extreme length distributions. To integrate our over-estimation into the existing formalization, we deine
an element assertion that contains a maximum length parameter N , constraining the length of the strings in the
array to at most N:

bstringA N = boundA (daA) (

Here, the assertion boundA A P c a = A c a ⋆ ↑(P a) restricts an assertion A by a predicate P on the abstract values.
Using this assertion, we can estimate the cost of a string comparison (strcmpc N) to only depend on N , and

instantiate the algorithm as follows:

global_interpretation sort_impl_context . . . strcmp† (strcmpc N) (bstringA N) for N

While this instantiation is still parametric in N, the parameter N does not occur in the implementation, such that
we get a fully instantiated implementation which we can export to actual LLVM text. In the inal correctness
statement, the costs are parameterized over N, and we get the estimation:

introsort†allcost N n ∈ O (N ∗ n ∗ logn)

Discussion. Thanks to Isabelle’s locale mechanism, instantiation of our algorithm to an element relation that
depends on an extra parameter is pretty straightforward, thus allowing us to also estimate running times for
element types with more complex comparison functions, like strings.
Instead of reining the abstract currency for comparing elements to a parametric currency, and then further

instantiating the parameters with a concrete implementation, we could also have done the instantiation to
element types on the abstract level, and then reined the algorithm to LLVM for each element type. However, our
parametric approach saves the overhead of duplicating these reinement steps for each element type.

29In C++, the string datatype is typically implemented by a dynamic array, too, however, with some optimizations for short strings, which we
omit here.
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6.8 Benchmarks

In this section we present benchmarks comparing the code extracted from our formalization with the real world
implementation of introsort from the GNU C++ Library (libstdc++). Also, as a regression test, we compare with
the code extracted from an earlier formalization of introsort [24] that did not verify the running time complexity
and used an earlier iteration of the Sepref framework and LLVM semantics without time.
Ideally, the same algorithm should take exactly the same time when repeatedly run on the same data and

machine. However, in practice, we encountered some noise up to 17%. Thus, we have repeated each experiment at
least ten times, and more often to conirm outliers where the veriied and unveriied algorithms’ run times difer
signiicantly. Assuming that the noise only slows down an algorithm, we take the fastest time measured over
all repetitions. The results are shown in Figure 1. As expected, all three implementations have similar running
times. We conclude that adding the complexity proof to our introsort formalization, and the time aspect to our
reinement process has not introduced any timing regressions in the generated code. Note, however, that the
code generated by our current formalization is not identical to what the original formalization generated. This is
mainly due to small changes in the formalization introduced when adding the timing aspect.

7 CONCLUSIONS

We have presented a reinement framework for the simultaneous veriication of functional correctness and
complexity of algorithm implementations with competitive practical performance.
We use stepwise reinement to separate high-level algorithmic ideas from low-level optimizations, enabling

convenient veriication of highly optimized algorithms. The novel concept of resource currencies allows struc-
turing of the complexity proofs along the reinement chain. Reinement also works seamlessly for amortized
data structures. Our framework reines down to the LLVM intermediate representation, such that we can use a
state-of-the-art compiler to generate performant programs.

As a case study, we have proved the functional correctness and complexity of the introsort sorting algorithm.
Our design supports arbitrary element types, even those with non-constant-time compare operations, like strings.
Our veriied implementation performs on par with the (unveriied) state-of-the-art implementation from the GNU
C++ Library. It also provably meets the C++11 standard library [8] speciication for std::sort, which in particular
requires a worst-case time complexity of O(n logn). We are not aware of any other veriied implementations of
real-world sorting algorithms that come with a complexity analysis.
Our work is a combination and substantial extension of an earlier reinement framework for functional

correctness [22] which also comes with a veriication of introsort [24], and a reinement framework for a single
enat-valued currency [14]. In particular, we have generalized the reinement framework to arbitrary resources,
applied it to amortized analysis, introduced currencies that help organizing reinement proofs, extended the
LLVM semantics and reasoning infrastructure with a cost model, connected it to the reinement framework via a
new version of the Sepref tool, and, inally, added the complexity analysis for introsort.

7.1 Related Work

Nipkow et al. [31, ğ4.1] collect veriication eforts concerning sorting algorithms. We add a few instances verifying
running time: Wang et al. use TiML [36] to verify correctness and asymptotic time complexity of mergesort
automatically. Zhan and Haslbeck [37] verify functional correctness and asymptotic running time analysis of
imperative versions of insertion sort and mergesort. We build on earlier work by Lammich [24] and provide the
irst veriication of functional correctness and asymptotic running time analysis of heapsort and introsort.

The following are the most complex algorithms and data structures with veriied running time analysis using
time credits and separation logic we are aware of: a linear time selection algorithm [37], an incremental cycle
detection algorithm [13], Union-Find [7], Edmonds-Karp and Kruskal’s algorithm [14].
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Fig. 1. Comparison of the running time measured for the code generated by the formalization described in this paper

(Isabelle-LLVM), the original formalization from [24] (notime), and the libstdc++ implementation. Arrays with 108 uint64s and
107 strings with various distributions were sorted, and we display the smallest time of 10 runs. The programs were compiled

with clang-10 -O3, and run on an Intel XEON E5-2699 with 128GiB RAM and 256K/55M L2/L3 cache.

The idea to generalize the nres monad [26] to resource types originates from Carbonneaux et al. [4]. They
use potential functions (state→ enat) instead of predicates (state→ bool), present a quantitative Hoare logic,
and extend the CompCert compiler to preserve properties of stack-usage from programs in Clight to compiled
programs. Observe, that the step from qualitative [9] to quantitative weakest preconditions (cf. Section 2.6) is
similar to the weakest preexpectation transformer by Kozen [18], and the expected running time transformer ert
by Kaminski et al. [17].
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Rajani et al. [33] present a unifying type-theory λamor for higher-order amortized cost analysis, which in-
volves a cost monad similar to NREST without nondeterminism. The introduction of the elapse combinator is
straightforward, but the reclaim operator in NREST seems to be related to their type constructor [p]τ . That
constructor is central to their paper. Rajani [32] applies type-theoretic approach to Information Flow Control
and generalizes the theory to allow any commutative monoid in the cost monad. It would be interesting to see
whether their cost monad can be extended to nondeterminism.

We see our paper in the line of research concerning simultaneously verifying functional correctness and worst-
case time complexity of algorithms. Atkey [1] pioneered resource analysis with separation logic. Charguéraud
and Pottier [6, 7] present a framework that uses time credits in Coq and apply it to the Union-Find data structure.
Guéneau et al. extend that framework with big-O style speciications [12] and possibly negative time credits, and
apply it to involved algorithms and data structures [13]. We further develop their work in three ways: First, while
time credits usually are natural numbers [1, 7, 12, 29, 37] or integers [13], we generalize to an abstract resource
type and speciically use resource currencies for a ine-grained analysis. Second, we use stepwise reinement
to structure the veriication and make the resource analysis of larger use-cases manageable. Third, we provide
facilities to automatically extract eicient competitive code from the veriication.

7.2 Future Work

A veriied compiler down to machine code would further reduce the trusted code base of our approach. While that
is not expected to be available soon for LLVM in Isabelle, the NREST-monad and the Sepref tool are general enough
to connect to a diferent back end. Formalizing one of the CompCert C semantics [2] in Isabelle, connecting it to
the NREST-monad and then processing synthesized C code with CompCert’s veriied compiler would be a way to
go.
In this paper we apply our framework to verify an involved algorithm that only uses basic data structures,

i.e. arrays. A next step is to verify more involved data structures, e.g. by porting existing veriications of the
Imperative Collections Framework [23] to LLVM. We do not yet see how to reason about the running time of
data structures like hash maps, where worst-case analysis would be possible but not useful. In general, extending
the framework to average-case analysis and probabilistic programs are exciting roads to take.

We plan to implement more automation, saving the user from writing boilerplate code when handling resource
currencies and exchange rates.

Neither the LLVM nor the NREST level of our framework is tied to running time. Applying it to other resources
like maximum heap space consumption might be a next step.
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