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Abstract
The repair of wounded tissue during postnatal life could 
be associated with the upregulation of some functions 
characteristic of the initial phases of embryonic devel-
opment. The focusing of these recapitulated systemic 
functions in the interstitial space of the injured tissue is 
established through a heterogeneous endothelial barri-
er which has excretory-secretory abilities which in turn, 
would induce a gastrulation-like process. The repair of 
adult tissues using upregulated embryonic mechanisms 
could explain the universality of the inflammatory re-
sponse against injury, regardless of its etiology. How-
ever, the early activation after the injury of embryonic 
mechanisms does not always guarantee tissue regen-
eration since their long-term execution is mediated by 
the host organism.
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Core tip: In this review, we propose an integrative 
molecular point of view about wound healing. Wound 
healing could be associated with the upregulation of 
functions characteristic of embryonic development. The 
repair of adult tissues using upregulated embryonic 
mechanisms could explain the ubiquity of the inflamma-
tory response against injury, regardless of its etiology. 
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INTRODUCTION
Wound tissue repair can be realized by regeneration and/
or fibrosis. While regeneration describes the specific sub-
stitution of  the injured tissue, tissue fibrosis displays an 
unspecific form of  healing in which the wounded tissue 
heals by scar formation[1,2]. Since repair by fibrosis can 
be considered an unsuccessful attempt of  wound tissue 
repair by regeneration, the fibrotic process supposedly 
represents an insufficient repair method and, therefore, a 
pathological response. This is the reason why the inflam-
matory response associated with scar formation is also 
commonly labeled pathological. In this way, regenerative 
healing has a notable absence of  inflammatory cell activ-
ity[3-5]. Consequently, inflammatory response mediators 
have been a focus of  investigation in studies aiming to 
curtail scarring[5,6].

The standard view of  inflammation as a reaction to 
injury or infection might need to be expanded to account 
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for the inflammatory processes induced by other types 
of  adverse conditions[7]. The human diseases that are as-
sociated with these conditions, including atherosclerosis, 
asthma, type 2 diabetes and neurodegenerative diseases, 
are all characterized by chronic low-grade inflammation[7]. 
However, human aging can be explained by the emerg-
ing concept of  inflamm-ageing, i.e., - a combination of  
inflammation and aging[8]. Inflamm-ageing seems to favor 
the onset of  typical age-related diseases like atheroscle-
rosis, dementia, osteoporosis and cancer[9]. Inflammatory 
mechanisms are also involved in physiological processes, 
like physical exercise, embryonic development and gesta-
tion, and indeed there is the hypotheses that the evolu-
tion of  the living species could be based on inflammatory 
remodeling of  organisms induced by environmental fac-
tors[10]. It has also been proposed that, although fibrosis 
is often initially linked to a strong inflammatory response, 
there are specific mediators and pathways contributing 
to the pathogenesis of  fibrosis that are distinct from the 
mechanisms driving inflammation. Thus, it is assumed 
that to design effective therapy for fibrotic diseases, we 
need to begin viewing fibrosis as a pathological process 
distinct from inflammation[11]. 

PHASES OF THE SKIN WOUND HEALING 
REACTION 
The multiple pathophysiological mechanisms that overlap 
during the progression of  the skin wound healing reac-
tion may explain the lack of  consensus on the number of  
phases involved in this reaction. Thus, the common de-
scription of  the wound healing evolution includes three 
classical stages: the inflammatory phase to contain the 
injury and prevent infection; the proliferative phase char-
acterized by new tissue formation, i.e., granulation and 
epithelial tissues; and the remodeling phase with extracel-
lular matrix reorganization[4,12]. However, some authors 
describe four healing phases: hemostasis and coagulation, 

with the formation of  a provisional wound matrix; in-
flammation with neutrophil and monocyte recruitment; 
proliferation and repair, with the formation of  granula-
tion tissue and the restoration of  the vascular network, 
as well as re-epithelialization; and remodeling that occurs 
from day 21 to up to 1 year after injury. In this phase, col-
lagen Ⅲ, which was produced in the proliferative phase, 
is now replaced by collagen Ⅰ and the acute wound 
metabolic activity slows down and finally stops[1,13]. Ad-
ditionally, five phases of  the wound healing reaction have 
also been described: hemostasis; inflammation; cellular 
migration and proliferation; protein synthesis; and wound 
contraction and remodeling[14]. 

In the above-mentioned descriptions of  the wound 
healing reaction, the role attributed to inflammation is 
very limited and noteworthy. On the contrary, we have 
proposed an inflammatory etiopathogenic hypothesis 
of  the wound healing evolution. According to this idea, 
inflammation could be the basic mechanism that drives 
the nature of  the different stages of  wound repair[15]. 
Likewise, inflammation could facilitate the integration 
of  the pathophysiological mechanisms involved in the 
different phases of  wound repair by scar formation[15,16]. 
In essence, the post-traumatic local acute inflammatory 
response is described as a succession of  three functional 
phases of  possible trophic meaning to the wounded tis-
sue: nervous or immediate with an ischemia-reperfusion 
phenotype; immune or intermediate with a leukocytic 
phenotype; and endocrine or late with an angiogenic phe-
notype[15,16] (Figure 1). 

In turn, we have suggested that these phenotypes 
could represent the expression of  trophic functional sys-
tems of  increasing metabolic complexity[17]. Therefore, it 
could be considered that, after the injury, the metabolic 
ability of  every phenotype would be conditioned by the 
biochemical mechanisms used to provide the energy 
sources for cell functions[15,17]. These three inflammatory 
phenotypes hypothetically expressed in the traumatized 
tissue during tissue repair by scarring could help to inte-
grate the etiopathogenic mechanisms expressed in each 
evolutive phase. In this way, these inflammatory pheno-
types would associate the genetic factors, upregulated 
and/or downregulated, with metabolic, functional and 
histological alterations[17]. 

The interstitial space is the battle field where the in-
flammatory response takes place. In the successive phases 
of  the inflammatory response, the interstitial space of  
the injured tissues is successively occupied by molecules, 
inflammatory cells, bacteria and finally by a mesenchy-
mal-derived tissue, the granulation tissue. In summary, 
the inflammatory response could be viewed as a series 
of  three overlapping successive phases with increasingly 
complex trophic functional systems for using oxygen 
since it evolves from ischemia to neovascularization[15,17]. 

The first or immediate phase has been referred to as 
the nervous phase because sensory (stress, inflammatory, 
pain and analgesia) and motor (contraction and relax-
ation) alterations, including vasomotor changes, respond 
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Figure 1  Schematic representation of the different stages of wound repair. 
During the post-traumatic local inflammatory response three successive and 
overlapped phases: in the arterial side of the microcirculation (red), a nervous 
(N) or immediate phase with ischemia-reperfusion (I/R) occurs; in the post-
capillary venule (blue), an immune (I) or intermediate phase with a leukocytic (L) 
phenotype is expressed; and, finally an endocrine (E) or late with an angiogenic 
(A) phenotype is developed, which implies the capillaries neoformation. 
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to the injury. This early pathological activity of  the body’s 
nociceptor pathways is associated with stress through the 
hypothalamic-pituitary-adrenal and sympathetic-adrenal 
medullary axes, the sympathetic nervous system and the 
renin-angiotensin-aldosterone system. This initial phase 
presents ischemia-reoxygenation, oxidative and nitrosa-
tive stress, and interstitial edema with selective interstitial 
infiltration by mediators of  the stress response, such as 
catecholamines, adrenocorticotrophic hormone, gluco-
corticoids and angiotensin, as well as glucose, amino acids 
and lipids, all of  them derived from earlier metabolic al-
terations, including hyperglycemia, protein catabolism and 
lipolysis. In addition, interstitial edema favors nutrition by 
diffusion through the injured tissue and activation of  the 
lymphatic circulation (circulatory switch)[2,15,17] (Figure 2). 

In the succeeding immune or intermediate phase of  
the acute inflammatory response, the wounded tissue that 
has previously suffered ischemia-reperfusion is infiltrated 
by inflammatory cells and sometimes by bacteria. This 
phase presents enzymatic stress with migration of  mac-
rophages and dendritic cells to lymph nodes, where they 
activate T and B cells, i.e., innate and adaptive immune 
response. Interstitial invasion by leukocytes would create 
a new trophic axis.

Accumulating evidence demonstrates that platelets 
contribute to the initiation and propagation of  the in-
flammatory process. These cells are replete with secre-
tory granules, α-granules, dense granules and lysosomes. 
Platelet α-granules influence inflammation both by 
expressing receptors that facilitate adhesion of  platelets 
to other vascular cells (e.g., P-selectin) and by releasing 
a wide range of  chemokines, among which CXCL4 and 
CLXL7 are the most abundant. Also, platelet α-granules 
contain a variety of  both pro- and anti-angiogenic pro-
teins. Growth factors stored in α-granules include vascu-

lar endothelium growth factor (VEGF), platelet-derived 
growth factor (PDGF), fibroblast growth factor (FGF), 
epidermal growth factor (EGF), hepatocyte growth fac-
tor and insulin-like growth factor (IGF). Platelet dense 
granules, on the other hand, contain high concentrations 
of  low molecular weight compounds that potentiate 
platelet activation (e.g., Adenosine diphosphate, serotonin 
and calcium[18,19] (Figure 3). 

In the post-traumatic local inflammatory response, 
the activation of  the innate immune system is not only 
based on the recognition of  danger signals or danger-
associated molecular patterns (DAMPs), but also relies 
on the presence of  pathogen-associated molecular pat-
terns (PAMPs)[20]. DAMPs and PAMPs are recognized 
by pattern-recognition receptors (PRRs) that are either 
cytoplasmic, membrane-bound or secreted. The most 
intensely studied PRRs are the Toll-like receptors (TLRs), 
in addition to innate immune receptors, the nucleotide-
binding and oligomerization domain (NOD)-like recep-
tors (NLRs) and retinoic acid-inducible gene I (RIG-I)-
like receptors (RLRs)[21]. In particular, NLRs form central 
molecular platforms that organize signaling complexes, 
such as inflammasomes and NOD signalosomes. The 
term inflammasome was coined to describe the high 
molecular weight complex that activates inflammatory 
caspases and cytokine interleukin-1 (IL-1)β[22]. All these 
receptors activate signaling cascades that is based on en-
zymatic intra- and extra-cellular digestion[15,17] and lead 
to activation of  mitogen activated protein kinases and 
nuclear factor kappa B (NF-κB)[21,22]. Once activated, 
TLRs induce different signaling cascades depending on 
the adaptor protein, ultimately leading to the activation 
of  the transcription factors NF-κB, AP-1 and interferon-
regulatory factor[22]. The regulatory event of  NF-κB 
activation is the phosphorylation of  inhibitor of  kappa 
B kinase complex (IKB) proteins by the IKB kinase 
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Figure 2  First or immediate phase of the acute inflammatory response. 
On the left side, a schematic representation in which the tissue suffers the 
injury and therefore necrosis of the epithelial cells are produced. In turn, on 
the right side, the beginning of the tissue inflammatory response in response 
to necrosis is shown. This initial phase presents ischemia-reoxygenation 
and interstitial edema (E) with interstitial infiltration of mediators of the stress 
response as well as substrates including glucose, amino acids and lipids. In 
addition, the lymphatic circulation (L) is activated. A: Arterial microcirculation; V: 
Post-capillary venous circulation. 

Figure 3  Immune or intermediate phase of the post-traumatic acute in-
flammatory response. Interstitial infiltration by platelets and leukocytes, all 
of them entrapped in the provisional extracellular matrix (left). Underlying the 
wound crust (Cr) that is formed later, the leukocytes change their phenotype to 
promote the resolution of the inflammatory response and wound repair by re-
epithelization and scar formation (right). C: Coagulation with fibrin-platelet clot. 
A: Arterial microcirculation; V: Post-capillary venous circulation; L: Lymphatic 
circulation.
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susceptive (nonsprouting) microvascular growth[31]. How-
ever, angiogenesis can also result from the recruitment 
of  several cell populations or selected subpopulations 
of  bone marrow-derived endothelial progenitor cells[32]. 
Angiogenesis is regulated by numerous “classic” factors, 
including VEGF, FGF-2, transforming growth factor 
(TGFs) angiopoietins, PDGF, thrombospondin-1 and 
angiostatin. Non-classic endogenous stimulators of  an-
giogenesis include erythropoietin, angiotensin Ⅱ, endo-
thelins, adrenomedulin, adipokines, neuropeptide-Y, va-
soactive intestinal peptide and substance P[31]. VEGF and 
FGF-2 occupy the center stage in the angiogenesis field. 
They act in synergy to stimulate endothelial cell function 
during angiogenesis in tissue repair[33]. In this last phase, 
the endocrine phenotype favors nutrition mediated by 
the blood capillaries. Through initial and excessive pro-
liferation, the endothelial cells could play a key role in 
the previous phase as antioxidant and anti-enzymatic 
cells, including induction of  the acute phase response, 
considered the humoral arm of  innate immunity[15,16]. 
Angiogenesis is closely associated with granulation tissue 
formation and remodeling. As granulation tissue forms in 
the healing wound, the vascular cells intermingle with the 
provisional matrix, which is composed mainly of  fibrin, 
fibronectin and vitronectin[33]. Then, the new blood ves-
sels associated with fibroblasts and macrophages replace 
the fibrin matrix with granulation tissue, forming a new 
substrate for keratinocyte migration[34] (Figure 1). 

The resolution of  the inflammatory response is 
mainly mediated by families of  local-activity mediators 
that are biosynthesized from the essential fatty acids 
eicosapentaenoic acid and docosahexaenoic acid. These 
resolution mediators are termed resolvins, maresins and 
protectins[35]. Inflammation resolution is also mediated 
by lipoxins that are generated through platelet-leukocyte 
interactions[36] (Figure 3). It has been also proposed that 
regulatory T cells (Treg cells) have evolved to provide a 
complementary immunological arm to a physiological 
tissue-protecting mechanism driven by low oxygen ten-
sion, i.e., hypoxia, in the inflamed tissues. The hypoxia-
adenosinergic pathways might govern the production of  
immunosuppressive molecules that have already been 
implicated in the activities of  Treg cells[37]. In this way, 
Treg cells could exert their suppressive function with lo-
cal downregulation of  immune response, inducing “immu-
nodormancy” and protecting tissues from collateral tissue 
damage, thus improving healing[37]. The progressive reso-
lution of  inflammation favors wound re-epithelization. 
Fibroblasts can also contribute to the resolution of  in-
flammation by withdrawing survival signals and normaliz-
ing chemokine gradients, thereby allowing infiltrating leu-
kocytes to undergo apoptosis or leave the tissues through 
the draining lymphatics[38]. Remodeling begins two to 
three weeks after injury and lasts for a year or more. Most 
of  the endothelial cells, macrophages and myofibroblasts, 
undergo apoptosis, leaving a mass that contains few cells 
and consists mostly of  collagen and other extracellular-
matrix proteins[34]. However, the prognosis of  extensive 
and deep wounds is not entirely satisfactory because of  

complex, which leads to IKB protein ubiquitylation and 
subsequent degradation. This results in the release of  
cytoplasmic NF-κB complexes, which then translocate 
to the nucleus and drive the expression of  target genes[23] 

. Thus, the expression of  inducible genes leading to the 
synthesis of  cytokine receptors, adhesion molecules and 
autacoids in the traumatized tissue is induced[24] .

Leukocytes transverse the subendothelial basement 
membrane during their immunological surveillance pa-
trol through tissues. This process, called diapedesis, is 
strongly enhanced under the influence of  inflammation. 
The preferred extravasation sites of  leukocytes are the 
venules[25]. Immediately after injury, extravasated neu-
trophils are entrapped in the fibrin-platelet clot. In the 
interstitium, the recruited and activated neutrophils begin 
the debridement of  devitalized tissue and attack infec-
tious agents. To perform this task, they release a large 
variety of  active antimicrobial substances (ROS, cationic 
peptides, eicosanoids) and proteases (elastase, cathepsin 
G, proteinase 3 and urokinase-type plasminogen activa-
tor)[12]. Neutrophils also store pentraxins 3 and release it 
in response to inflammatory signals because it is an acute 
phase reactant[26] (Figure 3). 

As monocytes extravasate from the blood vessel they 
become activated and differentiate into mature tissue 
macrophages. This transformation implies major changes 
in gene expression and cell function. The differential 
activation of  macrophages is involved in many facets 
of  tissue injury and inflammation. M1 macrophages 
express pro-inflammatory cytokines, such as IL-1, IL-6, 
IL-23 and interferon (IFN)-γ, as well as reactive oxygen 
and nitrogen species, which are involved in phagocy-
tosis and the killing of  microbes. They also promote 
type Ⅰ immune responses[27]. M2 or alternatively activated 
macrophages fail to express pro-inflammatory mediators 
and are involved in angiogenesis, tissue remodeling and 
the resolution of  inflammation. Therefore, they are sup-
posed to promote repair functions[12,27]. T-helper cells play 
critical roles in modulating the differential activation of  
type 2 macrophages. T-helper (Th1) cells produce pro-
inflammatory cytokines, i.e., IFN-γ and TNF-α, which 
skew macrophages into the M1 phenotype. In contrast, 
type 2 T-helper (Th2) cells produce IL-4, IL-5, IL-13 and 
IL-10, which are responsible for inducing the alternatively 
activated macrophages or M2 macrophages[28]. Finally, it 
has been speculated that metabolic changes in the local 
milieu may program dendritic cells and other innate cells 
at the site of  inflammation to induce a heterogeneous 
Th2 response[29]. Although neutrophils, macrophages and 
T lymphocytes are considered central in the pathogen-
esis of  post-traumatic inflammation, recent studies also 
imply the involvement of  mast cells and B lymphocytes 
as modulators of  the inflammatory response and wound 
healing[12,30] .

In the final and lasting phase of  the wound healing 
reaction, the angiogenic phenotype is predominant be-
cause angiogenesis permits numerous substances, includ-
ing hormones, to be transported by the blood circulation. 
Angiogenesis is based on endothelial sprouting or intus-
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scar formation and loss of  normal function and skin ap-
pendages. Therefore, reducing the formation of  scars 
and re-establishing the normal anatomy and function of  
the skin and its appendages have become the aim of  re-
generative medical research[39,40].

WOUND HEALING REPAIR USING 
EMBRYONIC MECHANISMS 
Inflammation, whether acute or chronic, produces tis-
sue remodeling[9]. In this way, it has been proposed that 
the inflammatory response has features in common with 
tissue development, which requires involution of  pre-
existing tissue elements[15,16]. The ability of  the tissues to 
involute or dedifferentiate could represent a return to 
early stages of  development[41]. Particularly, involution or 
dedifferentiation could form an effective defense mecha-
nism to escape death after injury. Thus, this mechanism 
could make retracing an ancient, efficient and well-known 
route possible for repairing the injured tissue, just like the 
initial phases of  embryonic development[2,41]. The cor-
relation that can be established between the embryonic 
and the inflammatory events suggests that the results 
obtained from research into both great fields of  knowl-
edge would favor each other and promote their develop-
ment[41].

In the adult body, many pathways that play an es-
sential role during embryological development are in-
activated later in life, although some of  them may be 
transiently expressed during the adult repair process[41,42]. 
This ability of  the tissues to involute or dedifferentiate 
could constitute an effective solution against any type of  
injury. Through dedifferentiation, tissues have the chance 
to reform and remodel themselves according to the new 
environmental situation imposed on them[10] .

The fetus is uniquely capable of  healing skin wounds 
without scar formation and provides a model of  ideal 
tissue repair. Understanding the biology of  this process 
may allow us to modulate wound healing in children and 
adults to become more fetal-like[43-45]. Tissue repair in the 
embryo and to a certain extent in adults too, appears to 
recapitulate those cell machineries used by embryos to 
undergo the natural tissue movements of  morphogenesis, 
such as gastrulation and neural tube closure[41,46]. One key 
difference between embryonic and adult repair, which 
may explain why one heals perfectly and the other scars, 
is the presence of  an inflammatory response at sites of  
adult repair while there is none in the embryo. However, 
total knockdown of  inflammation is clearly not going to 
be an optimal treatment for post-natal scarring[46]. The 
infiltration of  platelets, mast cells, neutrophils and mac-
rophages which characterizes the early postnatal wound 
is greatly diminished in fetal wounds[43,47]. However, fetal 
wound healing is additionally characterized by a distinct 
extracellular matrix, anti-inflammatory and growth factor 
profile and a more important role for stem cells[5,6]. If  so, 
we could hypothesize that to promote adult wound repair 
by regeneration, current therapies need to be attempted 
to recapitulate singular aspects of  the fetal regenerative 
phenotype[5]. The evidence suggests that there may be an 
early critical window in postnatal wound healing that may 
be amenable to manipulation so as to provide a permis-
sive environment for scarless wound healing to proceed[5].

In this way, the early post-traumatic inflammatory re-
sponse could recapitulate ontogeny by re-expressing two 
hypothetical extra-embryonic trophic axes, that is amni-
otic and yolk sac or vitelline in the interstitial space of  
the injured tissue[41] (Figure 4). Likewise, the body could 
be repaired according to embryonic biochemical patterns 
through the expression of  extra-embryonic functions. If  
so, the early inflammatory steps could represent the post-
natal debut of  ancestral biochemical mechanisms that 
were used for normal embryonic development. The re-
expression of  these ancient mechanisms is perhaps hard 
to recognize because they are anachronistic during post-
natal life and are established in a different environmental 
medium[41,48] (Table 1).

After fertilization, the first stage of  embryogenesis is 
the zygote, which undergoes cleavage by mitosis. When 
the morula stage is reached, the embryo establishes 
polarity. The cells bind tightly to each other, forming a 
compact sphere with two cell layers. The outer most layer 
becomes the trophoblast, giving rise to the placenta, and 
the inner cells become the inner cell mass, giving rise to 
the embryo and the remaining structures, including the 
amnion, yolk sac and allantoids[49] (Figure 4). The mo-
lecular and cellular contributions of  the extra-embryonic 
tissues surrounding the fetus, namely the exocoelomic 
cavity, the amnion, the trophoblast and the yolk sac, to 
the interstitial space located between them, the meso-
derm, are essential for organogenesis. In fact, the intra-
embryonic mesoderm generated during gastrulation may 
represent the internalization of  the functions that charac-

Coelomic-amniotic axis

Electrolytes, metals,albumin,
aminoacids, anti-oxidants, cytokines,

pluripotent stem cells

Trophoblastic-vitelline axis

Carbohydrates, proteins and lipids storage,
complement-coagulation system, acute

phase proteins, immune response, 
endocytosis/phagocytosis, hematopoiesis, 

angiogenesis, invasiveness

Figure 4  Hypothesized functions by ontogenic recapitulation in the 
traumatized tissue. These functions could be similar to the extra-embryonic 
coelomic-amniotic and trophoblastic-vitelline functions during early embryonic 
development. The extra-embryonic coelom or exocoelomic cavity surrounds 
the blastocyst, which is composed of the amnion and the primary yolk sac. EC: 
Exocoelomic cavity; A: Amnion; T: Trophoblast; Y: Yolk sac or vitellum.

Y
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A
T
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terize these extra-embryonic functions[50] .
The hypothetical recapitulation of  these initial phases 

of  the embryonic development during the early surgical 
inflammatory response would imply the expression of  
functions similar to the extra-embryonic structures. Ac-
cordingly, the phenotype that could be adopted by the in-
flamed interstitium may induce the accumulation of  fluid 
with similar characteristics to coelomic fluid. In essence, 
interstitial edema with high levels of  proteins, in particu-
lar albumin, as well as electrolytes, metals, amino acids, 
antioxidants, cytokines and cholesterol-derived hormone, 
would be produced in the inflammatory exudates[51,52]. 
Amnion-derived multipotent progenitor cells also secrete 
a unique combination of  cytokines and growth factors 
called the “amnion-derived cellular cytokine solution” which es-
tablishes a connection between mesenchymal and epithe-
lial cells during embryo development[53]. In this sense, the 
amniotic fluid surrounding the fetus may therefore be an 
extension of  the extracellular space of  the fetal tissues[54]. 
The amniotic-like phenotype could also offer the stem 
cell a hypoxic and hydrated interstitial axis with cytokines 
and growth factors, favoring not only nutrition by diffu-
sion, but also transport, excretion and bacteriostatic and 
anti-inflammatory protection[54,55] (Figure 4). 

The wall of  the secondary yolk sac is formed by an 
external mesothelial layer, a vascular mesenchyme, with 
blood islands that promote the development of  hema-
topoiesis and angiogenesis[56] and an endodermal layer 
facing the yolk sac cavity[53]. The mesothelial and endo-
dermal layers have absorptive functions and are active in 
endocytosis/digestion[56,57]. In addition, the endodermal 
layer is the source of  several proteins including acute 
phase proteins[58]. A major function of  the yolk sac is 
carbohydrate, protein and lipid accumulation for embryo 
nutrition (vitellum)[57]. In addition, through the synthesis 
and release of  acute phase proteins, this extra-embryonic 
phenotype reduces oxidative, nitrosative and enzymatic 
stress, activates the complement-coagulation system, 
regulates the lipid metabolism and favors phagocytosis[59]. 

During trophoblast differentiation, trophoblastic cells 

also exhibit intense phagocytic activity leading to events 
as diverse as engulfment and destruction of  extracellular 
material and the production of  inflammatory mediators 
that may modulate both the immune and trophoblast in-
vasiveness[60,61] (Figure 4). 

The molecular and cellular contribution made by 
the above-mentioned extra-embryonic membranes, i.e., 
exocoelomic cavity, amnion, yolk sac and trophoblast 
to the intra-embryonic mesoderm, could be essential 
for embryo development and organogenesis. Moreover, 
these primitive extra-embryonic structures can be inter-
nalized by the embryo at early development stages[50]. 
Consequently, the hypothesized re-expression of  these 
extra-embryonic functions after injury during postnatal 
life could be a key process needed to repair the injured 
organism[2,41]. If  so, the recapitulation of  extra-embryonic 
functions through the organism could be internalized 
into the injured interstitium, thus inducing a process 
similar to the early embryonic process for tissue repair by 
regeneration and/or fibrosis. 

INFLAMMATORY ENDOTHELIAL EGG 
It could be proposed that recapitulation of  extra-embryonic 
functions during wound repair is made up through the 
activation of  two functional axes, namely: the coelomic-
amniotic axis and the trophoblastic-vitelline axis. Both 
axes would polarize in the interstitium of  the wounded 
tissue, thus promoting the development of  a new tissue 
(Figure 4). 

In surgical-related inflammation, the interstitium is 
surrounded by an inflamed heterogeneous endothelium. 
Thus, this inflammatory endothelium would get cellular 
and molecular mediators through the post-capillary ven-
ule endothelium, the high endothelial venule endothelium 
in the lymph nodes and, to a lesser degree, through the 
capillary endothelium. Ultimately, the lymphatic endothe-
lium has a basic excretory function. The complex made 
up by this inflamed heterogeneous endothelium and the 
interstitial space of  the injured tissue surrounded by it 

  Phenotypes Embryonic
functions

Phases of the
inflammatory

response

Phases of the wound healing reaction

  Extraembryonic
  phenotypes

 Coelomic-amniotic axis Nervous phase Neurogenic systemic 
response

Stress response - Biogenic amines release
Sensitive and motor alterations
Ischemia-reperfusion - Local oxidative and nitrosative stress
Hydroelectrolytic alterations - Edema
Inflammation blood cells - Coagulation

Trophoblastic-vitelline 
axis

 Immune phase Bone-marrow
related response

Enzymatic stress
Corticosuprarenal hormones - Local storage
Hematopoietic stem cells
Mesenchymal stem cells
Endothelial progenitor cells

  Embryonic
  phenotypes

Gastrulation Angiogenic phase
 

Remodeling response Myofibroblasts
Angiogenesis
Endothelial egg
Re-epithelization
Fibrosis

Table 1  Upregulation of extraembryonic phenotypes that could be involved in the different types of the wound healing reaction
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has been compared with an “endothelial egg”[62] (Figures 5 
and 6). Thus, in the interior of  this heterogeneous endo-
thelial sheath, the successive evolutive phases of  wound 
repair with interstitial edema, activation of  the lymphatic 
circulation and a hypoxic environment that could be an 
ideal stem cell niche, can be represented. Then, hemosta-
sis by the formation of  a platelet-fibrin clot occurs. After 
that, neutrophils, monocytes and lymphocytes are recruit-
ed and finally, new tissue is formed by regeneration, i.e., 
keratinocytes and granulation tissue, i.e., fibroblasts and 
endothelial cells, which form a substrate to complete the 
wound repair by fibrosis[12,14,30,34] (Figures 6 and 7). 

However, cutaneous wound healing is not only a local 
process, but also a complex process involving systemic 
inflammatory alterations related to the stress response[2,62]. 
The magnitude of  this systemic response may reflect 
the demands of  the “endothelial egg” required for wound 
repair (Figure 7). In this sense, we have been trying to 
establish similarities between the complex pathophysi-
ological mechanisms developed in wound healing and the 
pluripotential extra-embryonic pathways during embry-
onic development[2,10,41,62]. In this way, the recapitulation 
of  coelomic-amniotic and trophoblast-vitelline functions 
is selectively integrated into the injured area. The reca-

pitulation of  the extra-embryonic coelomic and amniotic 
functions could be represented by initially activating the 
systemic neurogenic axis, while the latter recapitulation of  
the trophoblast and yolk sac functions would be carried 
out by activating the systemic bone-marrow axis (Figure 7). 

RECAPITULATED COELOMIC-AMNIOTIC 
FUNCTIONS: A NEUROGENIC SYSTEMIC 
RESPONSE 
The pathological neuromuscular response secondary to 
a wound induces sensory changes (stress, inflammatory 
pain, analgesia) and motor alterations (fight-to-flight and 
withdrawal reflexes, tachycardia and vasoconstriction-va-
sodilation). This upregulated extra-embryonic phenotype 
would induce a sudden and early neurogenic response 
with systemic cardiovascular, hemodynamic and hydro-
electrolytic alterations[2,62]. Systemic and local ischemia-
reperfusion produce sudden hydroelectrolytic changes 
associated with abnormal ion transport[63]. In this early 
response, cells that produce substances for export first 

Figure 5  Figurative representation of a skin wound. The wound (A) is sur-
rounded by different types of inflammatory venous, arterial and lymphatic endo-
thelia (B). This heterogeneous inflammatory endothelium could be represented 
like a sheath of the inflamed interstitium that surrounds in turn the wound or 
broken tissue (C).

Figure 6  Schematic representations of the heterogeneous endothelium 
that surrounds the wounded tissue. A: The endothelium that cover the 
wound (W) and the damaged interstitium (it) are made up by the post-capillary 
venous endothelium (pcve), the high endothelial venular endothelium (heve), 
the lymphatic endothelium (le) and the blood capillary endothelium (bce); B: 
The inflammatory response is produced into the injured interstitium. The inflam-
matory mediators, molecules and cells, invade this interstitial space crossing 
through a sheath of heterogeneous endothelia.
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synthesize and then store large amounts of  molecules, 
such as biogenic amines and neuropeptides in secretory 
vesicles ready for rapid release[64]. In this early neurogenic 
response, the activation of  the hypothalamic-pituitary-
adrenocortical, sympathetic-adrenal medullary and renin-
angiotensin-aldosterone axes occur, with the release of  
catecholamines, glucocorticoids and mineralocorticoids. 
Consequently, selective accumulation of  these mediators 
in the “endothelial inflammatory egg” is produced because en-
dothelial permeability is increased, especially in postcapil-
lary venules[2,62] (Figure 7). 

RECAPITULATED TROPHOBLASTIC-
VITELLINE FUNCTIONS: A BONE-
MARROW-RELATED RESPONSE 
The inflammatory bone marrow-related response in-
duced by wounds could be considered both a key and 
complementary arm of  the systemic response to injury. 
The inflammatory activation of  the bone marrow stem 
cell niche indicates the stimulation of  hematopoietic 
stem cells and mesenchymal stem cells, both which are 
multipotent stem cells[65-67]. Hematopoietic stem cells are 
the progenitors of  all blood and immune cells. Macro-
phages generated from hematopoietic stem cells are the 
dominant phagocytes at wound-healing sites. Profibrotic 
macrophages, in particular, are intimately involved in 
wound healing through the production of  mediators 
that directly activate fibroblasts, including transforming 
growth factor-beta (TGF-β), PDGF and IGF-1[28]. Never-
theless, although macrophages are required for the initia-

tion and maintenance of  fibrosis, they are also involved 
in its suppression, resolution and reversal[28,68]. Therefore, 
macrophage activation is best considered as a continuous 
spectrum of  phenotypic characteristics[69]. In this context, 
circulating endothelial cells have also proved to be an 
important marker of  vascular remodeling associated with 
wound healing. Angiogenesis is needed during embryonic 
development and plays important roles in wound healing 
and tissue ischemia throughout postnatal life[62]. Although 
the major physiological role of  circulating endothelial 
progenitor cells is to maintain vascular integrity, they can 
also participate in revascularization of  ischemic wounded 
tissues[70]. 

Furthermore, the upregulated trophoblastic-vitelline 
phenotype could mediate the inflammatory response 
through a lipid metabolic switch linked to steroid and 
acute phase response protein synthesis, respectively[2]. 
This slower response would therefore be developed by 
steroidogenic cells that store very little steroid hormones, 
in which case a rapid steroidogenic response would re-
quire immediate synthesis of  new steroids, such as cor-
tisol. The increase of  the acute phase protein synthesis, 
i.e., innate immunity, by the gut-liver axis is linked with 
the acute phase response and follows the upregulation of  
pro-inflammatory cytokines and chemokines[2,41,62]. 

COUPLING THE RECAPITULATED 
EXTRA-EMBRYONIC AXES IN THE 
“INFLAMMATORY ENDOTHELIAL EGG” 
The systemic recapitulated extra-embryonic axes, i.e., 
coelomic-amniotic and trophoblastic-vitelline, are fo-
cused and coupled in the endothelial inflammatory egg. 
This interstitial integration of  both pathological axes, i.e., 
neurogenic and bone-marrow-related in the wounded 
tissue, could finally induce a gastrulation-like process[41] 

(Figures 6 and 7). Gastrulation, which involves the “de 
novo” formation of  reparative tissue, is based on the reca-
pitulation of  the intra-embryonic mesenchyme formation 
process[41]. In essence, the integration of  both extrae-
mbryonic-related phenotypes coelomic-amniotic and 
trophoblastic-vitelline by the multipotent mesenchymal 
stem/stromal cells[67,71,72] would support the functional 
and metabolic heterogeneity needed for successively 
modulating their injured microenvironment during em-
bryo development[50]. Therefore, the interaction of  extra-
embryonic functional axes recapitulated after injury in the 
interstitium of  the damaged tissue allows for the recapit-
ulation of  the mechanisms characteristic of  gastrulation, 
subsequently forming a mesenchyme in the endothelial 
inflammatory egg similar to that present in the early de-
velopment phases[2,62]. 

Therefore, the early post-injury induction of  extra-
embryonic mechanisms that favors the beginning of  the 
repair process[1] is undermined throughout the evolution 
of  the wound healing reaction. In this way, the tissue that 
initiates its development inside the hypothesized endothe-

Figure 7  Neurogenic and bone marrow-related axes coupled in the 
inflamed endothelial egg, after wound. The upregulated extra-embryonic 
functions, i.e., coelomic-amniotic or neurogenic, and trophoblastic-vitelline or 
bone marrow-related, are focused in the endothelial inflammatory egg, favor-
ing the induction of a gastrulation-like phenotype, which evolves towards re-
epithelization and fibrosis (scar) in post-natal life. NA: Neurogenic axis; AG: 
Adrenal gland; BMA: Bone marrow-related Axis; c: Coagulation; sc: Stem cell; 
mc: Mast cell. R: Regeneration; f: Fibrosis; l: Leukocytes; M: Microbiome. ve: 
Post-capillary venous endothelium; heve: High endothelial venular endothelium; 
le: Lymphatic endothelium; bce: Blood capillary endotelium; pcve: Psot capillary 
venous endothelium.
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lial egg seems to suffer an immunological injury from the 
host organism. This reaction, similar to what takes place 
in organ transplantation, i.e., host-versus-graft reaction, 
would explain the involution of  the newly formed tissue 
until constructing, in the long term, the devitalized scar 
tissue. The study of  those factors that induce this switch 
in the host organism, by which it gives up its gestating 
role and adopts a rejection attitude against already newly 
formed tissue, would explain why some authors consider 
that, in order to achieve tissue repair, inflammation is not 
needed[11]. 

CONCLUSION
In the current review, the wound healing reaction is con-
sidered a systemic inflammatory response made up by 
upregulated extra-embryonic functions, i.e., coelomic-
amniotic and trophoblastic-vitelline. The confluence 
and overlapping of  these functions produce an injured 
tissue that would adopt an egg-like configuration that is 
one mainly made up of  two structures: a round intersti-
tial space surrounded by a heterogeneous endothelium. 
Therefore, cellular and molecular mediators from the 
extra-embryonic functions recapitulated by the injured 
organisms would induce a gastrulation-like process in this 
inflammatory endothelial egg from which tissue repair is 
produced either by regeneration and/or fibrosis.
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