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Abstract—The theoretical analysis of multiclass classification
has proved that the existing multiclass classification methods can
train a classifier with high classification accuracy on the test set,
when the instances are precise in the training and test sets with
same distribution and enough instances can be collected in the
training set. However, one limitation with multiclass classification
has not been solved: how to improve the classification accuracy
of multiclass classification problems when only imprecise obser-
vations are available. Hence, in this article, we propose a novel
framework to address a new realistic problem called multiclass
classification with imprecise observations (MCIMO), where we
need to train a classifier with fuzzy-feature observations. First,
we give the theoretical analysis of the MCIMO problem based
on fuzzy Rademacher complexity. Then, two practical algorithms
based on support vector machine and neural networks are con-
structed to solve the proposed new problem. The experiments
on both synthetic and real-world datasets verify the rational-
ity of our theoretical analysis and the efficacy of the proposed
algorithms.

Index Terms—Classification, fuzzy vector, machine learning.

I. INTRODUCTION

MACHINE learning methods for the multiclass classi-
fication problem have gained great achievements in

many areas, including medical imaging [1], natural language
processing [2], biology [3], and computer vision [4]. The
theoretical analysis of existing well-known multiclass classi-
fication machine learning algorithms, such as support vector
machine (SVM) [5] and neural networks [6], has been well
researched [7]. Recently, many researchers considered using
different measures to give the estimation error bounds for clas-
sification problems that can guarantee the rationality of these
algorithms. These measures include the Rademacher complex-
ity [7]–[9], VC-dimension [10], [11], stability and probably
approximately correct (PAC)-Bayesian [12], [13], and local
Rademacher Complexity [14], [15].
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The Rademacher complexity is a crucial tool to derive gen-
eralization bounds, which measure how well a given hypothe-
sis set can fit random noise. A Rademacher complexity-based
bound was first proposed by Koltchinskii and Panchenko [8].
Subsequently, this bound was improved in [7]. Then,
Maximov et al. [9] presented a new estimation error bound
using Rademacher complexity for multiclass classification
issues. In addition, to ensure multiclass PAC learnability, a
series of estimation error bounds based on VC-dimension and
Natarajan dimension was proposed in [10] and [11]. Because
of the dependence on dimensions, these VC-dimension-based
bounds rarely apply to large-scale issues. To conduct theoret-
ical analysis of neural networks for multiclass classification
problems, Hardt et al. [12] and McAllester [13] intro-
duced the new bounds based on stability and PAC-Bayesian.
Furthermore, tighter and sharper bounds were proposed in [14]
and [15] by using local Rademacher complexity. According
to these theoretical analyses, it illustrates that we can always
learn a good classifier for multiclass classification problems
to predict the test set when the instances are precise in the
training and test sets with the same distribution and enough
instances can be collected in the training set.

However, there is one limitation with multiclass classifi-
cation that the existing methods cannot handle the scenario
that only imprecise observations are available. For example,
the readings on many measuring devices are not exact num-
bers but intervals because there are only a limited number of
decimals available on most of these measuring devices. Thus,
this scenario has inspired us to consider a further realistic
problem called multiclass classification with imprecise obser-
vations (MCIMO). With the MCIMO problem, we aim to train
a classifier with high classification performance for multiclass
classification problems when the features of all the instances
in both training and test sets are imprecise (e.g., fuzzy-valued
or interval-valued features).

The main challenge to solving the MCIMO problem is how
to handle observations with fuzzy-valued or interval-valued
features. The existing well-known machine learning meth-
ods cannot be directly used to address the MCIMO problem.
Recently, combining fuzzy techniques with machine learning
methods (especially for transfer learning methods [16]–[20])
has drawn increasing attention. In the literature review sec-
tion, we will give a brief review of these machine learning
methods with fuzzy techniques [21]–[26]. According to these
fuzzy-based methods, it demonstrates that fuzzy techniques
are powerful tools to analyze imprecise observations and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0003-0690-4732
https://orcid.org/0000-0002-5005-9129
https://orcid.org/0000-0003-3960-0583


2 IEEE TRANSACTIONS ON CYBERNETICS

provide better interpretability to handle the uncertainty of dif-
ferent issues. Therefore, we consider using fuzzy techniques
to address the MCIMO problem because they can represent
the imprecise features of the instances in both training and
test sets and can handle different types of uncertainty issues.

In this article, we consider using the fuzzy random vari-
able, which was proposed in [27] and [28], to represent the
imprecise feature of the instances. Then, we give the the-
oretical analysis and obtain the estimation error bounds for
the MCIMO problem. In the MCIMO problem, these bounds
are really important as it ensures that we can always train
a fuzzy classifier with high classification accuracy when the
instances are drawn from the same fuzzy distribution and
enough fuzzy-feature instances can be collected.

Subsequently, we construct two fuzzy technique-based algo-
rithms, which combine fuzzy techniques with SVM and
neural networks to analyze fuzzy data. The proposed algo-
rithms contain two main parts. The first part aims to extract
the most significant crisp-valued information from imprecise
observations, which is the main difficulty of the proposed
algorithms. In this article, we compare the performance of
different defuzzification methods on synthetic datasets to find
the optimal defuzzification function for the proposed algo-
rithms. The second part is to classify the extracted crisp-valued
information by two well-known machine learning methods:
1) SVM and 2) neural networks. In addition, interval-valued
data are also a common type of imprecise data in real-world
scenarios. In this article, we give one approach to apply the
proposed methods to analyze interval-valued data. Finally,
experimental results on both synthetic and real-world datasets
reveal the superiority of the proposed algorithms and demon-
strate that the proposed fuzzy-based methods can obtain better
performance to analyze fuzzy data or interval-valued data than
nonfuzzy methods through comparisons with seven baselines.
The main contributions of this article are as follows.

1) We identify a novel problem called MCIMO, which con-
siders addressing the multiclass classification problem
when only imprecise observations are available, and we
propose a framework to handle this problem. Based
on this framework, two fuzzy technique-based machine
learning algorithms called defuzzified SVM (DF-SVM)
and defuzzified multilayer perception (DF-MLP) are
constructed, which combine fuzzy techniques with SVM
and neural networks. These algorithms significantly
improve classification accuracy since they use fuzzy
vectors to express the distribution of imprecise data
and apply different defuzzification methods to extract
crisp-valued information from imprecise observations.

2) We give the theoretical analysis of the MCIMO problem
based on the fuzzy Rademacher complexity, which
ensures that we can always train a fuzzy classifier
with high classification accuracy. This theory provides
a theoretical basis for fuzzy data analysis.

3) By comparing the performance of different defuzzifica-
tion methods on synthetic datasets, we find the optimal
defuzzification function for the fuzzy technique-based
SVM and neural networks algorithms. Through exper-
imental comparisons with several baselines on both

synthetic and real-world datasets, it demonstrates the
superiority of the proposed algorithms to analysis fuzzy
data and interval-valued data.

The remainder of this article is structured as follows.
Section II presents a brief review of the methods, which
combine fuzzy techniques with machine learning methods.
Section III introduces the related definitions. Section IV intro-
duces and gives a formal definition of the MCIMO problem.
Section V gives the theoretical analysis of the MCIMO
problem. Section VI proposes a novel framework to address
the MCIMO problem and constructs two algorithms based
on this framework to analyze fuzzy-feature observations. In
Sections VII and VIII, the experiments on both synthetic and
real-world datasets are constructed to show the superiority of
the proposed algorithms. Section IX concludes this article and
outlines future work.

II. LITERATURE REVIEW

In this section, a brief review of the methods, which com-
bine fuzzy techniques with machine learning methods, is
presented.

On the one hand, for classification tasks, Colubi et al. [21]
integrated fuzzy L2 metrics [29] with the discriminant analysis
approach to analyze fuzzy data. Yang et al. [30] proposed a
novel fuzzy SVM algorithm based on a kernel fuzzy c-means
clustering method to deal with the classification problems
with outliers or noises. Rong et al. [31] introduced a new
classification method, which applies the defuzzified Choquet
integral to address heterogeneous fuzzy data classification
issues. Wang et al. [22] presented a novel deep-ensemble-
level-based Takagi–Sugeno–Kang (TSK) fuzzy classifier to
address imbalanced data classification tasks, which achieved
both promising classification performance and high inter-
pretability of zero-order TSK fuzzy classifiers. Liu et al. [32]
used fuzzy vectors to model imprecise observations of distri-
butions and help address the two-sample testing problem that
is a core problem in the machine learning field [33]–[35].

In addition, in the area of transfer learning,
Behbood et al. [36], [37] proposed a series of novel
fuzzy-based transfer learning methods for long-term bank
failure prediction, which use the fuzzy sets and the concepts
of similarity and dissimilarity to modify the labels of the
target instances. Deng et al. [38]–[41] proposed several new
approaches that integrate TSK fuzzy system (TSK-FS) with
transfer learning to recognize epileptic electroencephalogram
signals. To solve the heterogeneous unsupervised domain
adaptation (HeUDA) problems for classification tasks,
Liu et al. [42] introduced a novel HeUDA approach utilizing
shared fuzzy equivalence relations via fuzzy geometry,
which can measure the similarity between the features of
the instances in the source and target domain. Furthermore,
Liu et al. [23] enhanced this method, which called the
shared-fuzzy-equivalence-relations neural network to analyze
another challenging problem called the multisource HeUDA.

In contrast, for regression tasks, Deng et al. [43], [44]
proposed several novel transfer learning approaches uti-
lizing the Mamdani–Larsen fuzzy systems and TSK-FS.
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Furthermore, Deng et al. [45] improved the above model
to construct a new transfer learning model that uses two
knowledge-leverage strategies, learning from the TSK-FS
model, to enhance the two types of parameters for the tar-
get domain. In addition, Zuo et al. [46] applied granular
computing techniques to transfer learning and proposed a com-
prehensive domain adaptation framework based on the T–S
fuzzy model. Subsequently, Zuo et al. [24] presented a novel
fuzzy rule-based transfer learning model, which integrates an
infinite Gaussian mixture model with active learning. Applying
these two techniques, researchers can identify the data struc-
ture and select an appropriate source domain when multisource
domains are available, and choose labeled data for the target
model with high efficiency when the target domain contains
insufficient data. Hence, Lu et al. [25] presented a novel fuzzy
rule-based transfer learning approach that merges fuzzy rules
from multisource domains in both homogeneous and hetero-
geneous scenarios. Besides, some new fuzzy-based clustering
methods were presented in [47] and [48] to analyze fuzzy data.

In our previous work [26], we proposed one algorithm to
solve a novel classification problem that the instances in train-
ing and test sets are all imprecise and we give the theoretical
analysis of this problem. However, there are two drawbacks
in our previous works. First, one gap has not be solved that
there is no research to explore properties of different defuzzi-
fication methods. Second, we only verified the performance
of the proposed algorithm on the synthetic dataset, while the
performance of the proposed algorithm on real-world datasets
is indispensable. In this article, we address both drawbacks in
our previous work.

III. PRELIMINARY

In this section, some related definitions are introduced,
including the definitions of fuzzy probability density function
and fuzzy probability distribution.

Definition 1 [28]: Let R be the universal set and ˜X be a
fuzzy random variable. Suppose f

˜Xα
(x) is the probability den-

sity function of ˜XL
α and ˜XU

α , where [˜XL
α,˜XU

α ] is the α-cut of ˜X.
We define˜f (̃x) as the fuzzy probability density function of ˜X.
Then, the membership function of˜f (̃x) is defined as

μ̃f (̃x)(r) = sup
0≤α≤1

α1Aα (r) (1)

where

Aα =
[

min
x∈[̃xL

α ,̃xU
α ]

f
˜Xα

(x), max
x∈[̃xL

α ,̃xU
α ]

f
˜Xα

(x)

]

=
[

min

{

min
α≤β≤1

f
˜Xα

(

x̃L
β

)

, min
α≤β≤1

f
˜Xα

(

x̃U
β

)

}

max

{

max
α≤β≤1

f
˜Xα

(

x̃L
β

)

, max
α≤β≤1

f
˜Xα

(

x̃U
β

)

}]

.

Definition 2 [26]: We denote ˜D as the fuzzy probability
distribution of ˜X ∈ FR (denoted as ˜X ∼ ˜D), which contains
the value range and fuzzy probability density function of ˜X,
where D represents the value range of real-valued variable x
that induce all fuzzy real numbers in ˜D.

Let ˜X = (̃x1, x̃2, . . . , x̃p) ∈ Fp
Rp be the p-fuzzy random

vector, where x̃1, x̃2, . . . , x̃p ∈ FR are i.i.d fuzzy random vari-
ables. Suppose the probability density function of x̃j is ˜fj(̃x),
j = 1, . . . , p. We denote the joint probability density function
of ˜X as ˜f

˜X (̃x) = ˜f1(x̃1)
⊗ · · ·⊗˜fp(̃xp) and its membership

function is defined by

ξ̃f
˜X (̃x)(r) = sup

0≤α≤1
1[
˜f
˜X (̃x)

]

α
(r) (2)

where
[

˜f
˜X (̃x)

]

α

=
⎡

⎣

p
∏

j=1

min
xj∈
[

x̃j
L
α,x̃j

U
α

]

fx̃jα
(xj),

p
∏

j=1

max
xj∈
[

x̃j
L
α,x̃j

U
α

]

fx̃jα
(xj)

⎤

⎦

=
⎡

⎣

p
∏

j=1

min

{

min
α≤β≤1

fx̃jα

(

x̃j
L
β

)

, min
α≤β≤1

fx̃jα

(

x̃j
U
β

)

}

p
∏

j=1

max

{

max
α≤β≤1

fx̃jα

(

x̃j
L
β

)

, max
α≤β≤1

fx̃jα

(

x̃j
U
β

)

}

⎤

⎦.

Then, we denote ˜D as the fuzzy distribution over ˜X ⊂ Fp
Rp ,

where ˜D contains the value range and the joint probability
density function of any fuzzy vector belongs to ˜X .

IV. MULTICLASS CLASSIFICATION WITH

IMPRECISE OBSERVATIONS

In this section, we introduce the MCIMO problem. Let ˜X ⊂
Fp
Rp be the input space and Y = [1, K] be the output space,

and let ˜D be an unknown fuzzy distribution over ˜X . Suppose
˜S = {(˜Xi, yi)}m

i=1 be a sample drawn from ˜X ×Y , where ˜Xi =
(̃xi1, x̃i2, . . . , x̃ip), i = 1, 2, . . . , m drawn i.i.d. from ˜D and yi =
f (˜Xi) is the ground-truth function denoted as

f : ˜X → Y
(

x̃i1, x̃i2, . . . , x̃ip
)→ k.

We noticed that if ˜Xi ∈ X belongs to the kth class, then
f (˜Xi) = k. Let H ⊂ {h : ˜X → R

K} be the hypothesis set
of the MCIMO problem and ∀h ∈ H

h : ˜X → R
K

(

x̃i1, . . . , x̃ip
)→ (

h1
(

˜Xi
)

, . . . , hK
(

˜Xi
))

where each hk(˜Xi), k = 1, . . . , K represents the probability of
the instance ˜Xi belongs to the kth category. Then, we give the
definition of the loss function with respect to h

l : RK × Y → R+.

Let LH = {l(h(˜X), y)|˜X ∈ ˜X , h ∈ H, y ∈ Y} be the class of
loss functions associated with H.

The traditional multiclass classification problems aim to use
the sample ˜S to find a hypothesis h ∈ H, which can cause as
small as possible risk R(h) with respect to f . In the MCIMO
problem, the purpose is similar to traditional multiclass clas-
sification problems. Then, we give the definition of the risk
with respect to h

R
˜D(h) � R

(

l
(

h
(

˜X
)

, y
)) = E

˜X∼˜D
[

l
(

h
(

˜X
)

, y
)]

(3)

where the notion of E
˜X∼˜D[l(h(˜X), y)] can be found in [26].
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Thus, to address the MCIMO problem, we are committed to
find the optimal hypothesis function h∗ to minimize the risk,
that is, h∗ = arg minh∈H R

˜D(h).

V. THEORETICAL ANALYSIS OF THE MCIMO PROBLEM

In this section, the theoretical analysis of the MCIMO
problem is presented. First, the notion of fuzzy Rademacher
complexity is introduced. Then, we obtain the estimation error
bounds of the MCIMO problem, which guarantees that we
can always obtain a fuzzy classifier with high classification
accuracy when infinite fuzzy-feature instances are available.

Definition 3 [26]: Let LH be a family of loss functions and
˜S = {(˜Xi, yi)}m

i=1 be a sample drawn from Fp
Rp ×Y . Then, the

empirical fuzzy Rademacher complexity of LH and H with
respect to the sample ˜S and ˜SX = {˜Xi}m

i=1 is defined as

̂R
˜S(LH) = E	σ

[

sup
l∈LH

1

m

m
∑

i=1

σil
(

h
(

˜Xi
)

, yi
)

]

̂R
˜SX

(H) = E	σ

[

sup
h∈H

1

m

m
∑

i=1

K
∑

k=1

σikhk
(

˜Xi
)

]

(4)

where 	σ = (σ1, . . . , σm)T , with σis independent random
variables drawn from the Rademacher distribution, that is,
Pr(σi = +1) = Pr(σi = −1) = (1/2), i = 1, . . . , m.

Definition 4 [26]: Let ˜D′ � ˜D × Y and ˜D denote the
fuzzy distribution according to ˜S and ˜SX . Then, the fuzzy
Rademacher complexity of LH and H is defined as follows:

˜R
˜S∼˜D′(LH) = E

˜D′
[

̂R
˜S(LH)

]

˜R
˜SX∼˜D(H) = E

˜D
[

̂R
˜SX

(H)
]

. (5)

Using related lemmas and theorems (shown in [26]) and
the theoretical analysis of traditional multiclass classifica-
tion algorithms (shown in [7]–[10] and [15]), the estimation
error bounds with hypotheses H} are shown in the following
theorem.

Theorem 1 [26]: Let ˜S = {(˜Xi, yi)}m
i=1 and ˜SX =

{˜Xi}m
i=1,

˜Xi ∼ ˜D ∈ ˜X , yi = f (˜Xi), and suppose that
there are Cl, Ch > 0 such that suph∈H ‖h‖∞ ≤ Ch and
sup‖h‖∞≤Ch

maxy l(t, y) ≤ Cl, and ∀l ∈ LH is Ll-Lipschitz
functions. For any δ > 0, with fuzzy probability at least 1−δ,
each of the following holds for all l ∈ LH:

∣

∣

∣

∣

∣

E
˜X∼˜D

[

l
(

h
(

˜X
)

, y
)]− 1

m

m
∑

i=1

l
(

h
(

˜Xi
)

, yi
)

∣

∣

∣

∣

∣

≤ 2˜R
˜S(LH) + Cl

√

2 log(1/δ)

m
∣

∣

∣

∣

∣

E
˜X∼˜D

[

l
(

h
(

˜X
)

, y
)]− 1

m

m
∑

i=1

l
(

h
(

˜Xi
)

, yi
)

∣

∣

∣

∣

∣

≤ 2̂R
˜S(LH) + 3Cl

√

2 log(2/δ)

m
. (6)

Because ∀l ∈ LH is Ll-Lipschitz functions, we have

̂R
˜S(LH) ≤ √

2Ll̂R˜SX
(H)

˜R
˜S(LH) ≤ √

2Ll˜R˜SX
(H). (7)

Then

∣

∣R
˜D(h) −̂R

˜D(h)
∣

∣ ≤ 2
√

2Ll˜R˜SX
(H) + Cl

√

2 log(1/δ)

m
∣

∣R
˜D(h) −̂R

˜D(h)
∣

∣ ≤ 2
√

2Ll̂R˜SX
(H) + 3Cl

√

2 log(2/δ)

m
.

(8)

The detailed proof of Theorem 1 can be found in [26].
In Section VI, we decompose the hypothesis function into

the defuzzification function and optimization function. We
let the loss function l(h(˜Xi), yi) = l(g(M(˜Xi)), yi), where
g is a optimization function that maps R

p into R
K . Let

M ⊂ {M : ˜X → R
p} be the class of defuzzification func-

tions, GM ⊂ {g(M(˜X)) : R
p → R

K |M ∈ M, y ∈ Y} be
the class of optimization functions associated with M, and
LG = {l(g(M(˜Xi)), y)|M ∈ M, g ∈ G, y ∈ Y} be the class of
loss functions associated with G. Then, we have

̂R
˜S(LG) = E	σ

[

sup
l∈LG

1

m

m
∑

i=1

σil
(

g
(

M
(

˜Xi
))

, yi
)

]

̂R
˜SX

(GM) = E	σ

[

sup
g∈G

1

m

m
∑

i=1

K
∑

k=1

σikgk
(

M
(

˜Xi
))

]

̂R
˜SX

(M) = E	σ

⎡

⎣ sup
M∈M

1

m

m
∑

i=1

K
∑

k=1

p
∑

j=1

σikjM
(

x̃ij
)

⎤

⎦. (9)

Then, we can obtain the following theorem using theorem 1.
Theorem 2 [26]: Let ˜S = {(˜Xi, yi)}m

i=1 and ˜SX =
{˜Xi}m

i=1,
˜Xi ∼ ˜D ∈ ˜X , yi = f (˜Xi), and suppose that

there are C, Cl > 0 such that supg∈G ‖g‖∞ ≤ C and
sup‖g‖∞≤C maxy l(t, y) ≤ Cl, and ∀l ∈ LG is Ll-Lipschitz func-
tions. For any δ > 0, with fuzzy probability at least 1−δ, each
of the following holds for all g ∈ LG :

∣

∣

∣

∣

∣

E
˜X∼˜D

[

l
(

g(M(˜X)), y
)]− 1

m

m
∑

i=1

l
(

g(M(˜Xi)), yi
)

∣

∣

∣

∣

∣

≤ 2˜R
˜S(LG) + Cl

√

2 log(1/δ)

m
∣

∣

∣

∣

∣

E
˜X∼˜D

[

l(g(M(˜X)), y)
]− 1

m

m
∑

i=1

l
(

g(M(˜Xi)), yi
)

∣

∣

∣

∣

∣

≤ 2̂R
˜S(LG) + 3Cl

√

2 log(2/δ)

m
. (10)

Because ∀l ∈ LG is Ll-Lipschitz functions, we have

̂R
˜S(LG) ≤ √

2Ll̂R˜SX
(GM)

˜R
˜S(LG) ≤ √

2Ll˜R˜SX
(GM). (11)

Then

∣

∣R
˜D(h) −̂R

˜D(h)
∣

∣ ≤ 2
√

2Ll˜R˜SX
(GM) + Cl

√

2 log(1/δ)

m
∣

∣R
˜D(h) −̂R

˜D(h)
∣

∣ ≤ 2
√

2Ll̂R˜SX
(GM) + 3Cl

√

2 log(2/δ)

m
.

(12)

The proof of Theorem 3 is similar to Theorem 1.
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Next, we consider the estimation error bounds for kernel-
based optimization functions such as SVM. Let K : Rp×R

p →
R be a PDS kernel function, � : Rp → H be a feature mapping
associated to K, and w1, . . . , wK ∈ H are weight vectors. For
any p ≥ 1, the family of kernel-based hypotheses is denoted as

GK,p =
{

g : M(˜X) → (

wT
1 �(M(˜X)), . . . , wT

K�(M(˜X))
)

W = (wT
1 , . . . , wT

K

)T
, ||W||H,p ≤ �

}

where ||W||H,p = (
∑K

l=1 ||wl||pH)1/p. Hence, the fuzzy
Rademacher complexity of GK,p can be bounded as follows.

Lemma 1: Let K : Rp × R
p → R be a PDS kernel func-

tion and � : Rp → H be a feature mapping associated to K.
Assume that there exists r > 0 such that K(M(˜X), M(˜X)) ≤ r2

for all ˜X ∈ ˜X . Let ˜SX = {˜Xi}m
i=1,

˜Xi ∼ ˜D ∈ ˜X . Then, for any
m ≥ 1

˜R
˜SX∼˜D(GK,p) ≤ K

√

r2�2

m
. (13)

Proof: For all l ∈ [1, K], ||wl||H ≤ (
∑K

l=1 ||wl||pH)1/p =
||W||H,p holds. Thus, as ||W||H,p ≤ �, we have ||wl||H ≤ �

for all l ∈ [1, K]. Then, the fuzzy Rademacher complexity of
the hypothesis set GK,p can be bounded as follows:

˜R
˜SX∼˜D(GK,p)

= 1

m
E
˜D,	σ

[

sup
||W||≤�

m
∑

i=1

K
∑

k=1

σikgk
(

M(˜Xi)
)

]

= 1

m
E
˜D,	σ

[

sup
||W||≤�

m
∑

i=1

K
∑

k=1

σikwT
k �
(

M(˜Xi)
)

]

≤ K

m
E
˜D,	σ

[

sup
k∈[K],||W||≤�

〈

wk,

m
∑

i=1

σik�
(

M(˜Xi)
)

〉]

(using Cauchy-Schwarz inequality)

≤ K

m
E
˜D,	σ

[

sup
k∈[K],||W||≤�

||wk||H
∥

∥

∥

∥

∥

m
∑

i=1

σik�
(

M(˜Xi)
)

∥

∥

∥

∥

∥

H

]

≤ K�

m
E
˜D,	σ

[

sup
k∈[K]

∥

∥

∥

∥

∥

m
∑

i=1

σik�
(

M(˜Xi)
)

∥

∥

∥

∥

∥

H

]

(using Jensen’s inequality)

≤ K�

m

⎡

⎣E
˜D,	σ

⎡

⎣ sup
k∈[K]

∥

∥

∥

∥

∥

m
∑

i=1

σik�
(

M(˜Xi)
)

∥

∥

∥

∥

∥

2

H

⎤

⎦

⎤

⎦

1/2

(

i �= j ⇒ E	σ
[

σikσjk
] = 0

)

= K�

m

[

E
˜D

[

m
∑

i=1

∥

∥�
(

M(˜Xi)
)∥

∥

2
H

]]1/2

= K�

m

[

E
˜D

[

m
∑

i=1

K
(

M(˜Xi), M(˜Xi)
)

]]1/2

≤ K

√

r2�2

m

which yields the result.

Fig. 1. Framework of the proposed algorithms.

Next, combining Theorem 2 and Lemma 1 directly yields
the following generalization bound.

Theorem 3: Let K : Rp × R
p → R be a PDS kernel func-

tion and � : Rp → H be a feature mapping associated to K.
Assume that there exists r > 0 such that K(M(˜X), M(˜X)) ≤ r2

for all ˜X ∈ ˜X . Let ˜SX = {˜Xi}m
i=1,

˜Xi ∼ ˜D ∈ ˜X and suppose
that there are C, Cl > 0 such that supg∈GK,p

‖g‖∞ ≤ C and
sup‖g‖∞≤C maxy l(t, y) ≤ Cl, and ∀l ∈ LGK,p is Ll-Lipschitz
functions. For any δ > 0, with fuzzy probability at least 1−δ,
each of the following holds for all h ∈ GK,p:

∣

∣R
˜D(h) −̂R

˜D(h)
∣

∣ ≤ 2KLl

√

2r2�2

m
+ Cl

√

2 log(1/δ)

m
.

(14)

According to (8), (12), and (14), we notice that fix some
constants, as m → ∞, R

˜D(h) → ̂R
˜D(h). Therefore, these

bounds demonstrate that we can always obtain a fuzzy clas-
sifier with high classification accuracy when enough fuzzy-
feature instances can be collected. These theoretical analyses
reveal that fuzzy classifiers can be constructed to effectively
and accurately handle the MCIMO problem.

VI. CONSTRUCT FUZZY CLASSIFIERS FOR

SOLVING MCIMO PROBLEM

In this section, two fuzzy classifiers are constructed to han-
dle the MCIMO problem. The framework of the proposed
algorithms is shown in Fig. 1. In the MCIMO problem, we aim
to train a fuzzy classifier for fuzzy-feature input prediction. Let
˜Xi = (̃xi1, x̃i2, . . . , x̃ip), i = 1, . . . , m be a fuzzy-feature input,
where x̃ij, i = 1, . . . , m, j = 1, . . . , p are the fuzzy number.
The commonly used fuzzy numbers include Gaussian fuzzy
numbers, trapezoidal fuzzy numbers, and triangular fuzzy
numbers. First, a Gaussian fuzzy number x̃ can be charac-
terized by (c, δ) and the membership function is given in the
following equation:

μ̃x(t) = exp(−(t − c)/2δ)2.
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A trapezoidal fuzzy number x̃ can be characterized by
(a1, b1, b2, a2) and the membership function of a trapezoidal
fuzzy number x̃ is shown as follows:

μ̃x(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, t < a1
t−a1

b1−a1
, a1 ≤ t < b1

1, b1 ≤ t < b2
t−a2

b2−a2
, b2 ≤ t < a2

0, t ≥ a2.

Finally, when b1 = b2, a trapezoidal fuzzy number is become
a triangular fuzzy number. Thus, a triangular fuzzy number x̃
can be characterized by (a1, b1, a2).

To address the MCIMO problem, we need to construct a
hypothesis function h ∈ H, which mapping the input space
˜X ⊂ Fp

Rp into R
K . A hypothesis function h can be decom-

posed into a composition of two functions. The first function
M, called the defuzzification function, is defined as follows:

M : ˜X → R
p

(

x̃i1, x̃i2, . . . , x̃ip
)→ (

M(̃xi1), . . . , M
(

x̃ip
))

.

Next, four different defuzzification methods are introduced.
1) The first method is called mean/middle of maxima

(MOM) [49], which is widely used due to its calculation
simplicity. MOM is defined as

MOM(̃x) = Mean
(

t = arg max
t

μ̃x(t)
)

. (15)

2) Centre of Gravity (COG) [50] is another widely used
defuzzification method. The definitions of COG for
discrete and continuous situations are shown as follows:

COG(̃x) =
∑

tμ̃x(t)
∑

μ̃x(t)
(discrete) (16)

=
∫

tμ̃x(t)dt
∫

μ̃x(t)dt
(continuous). (17)

3) The third approach, called averaging level cuts
(ALC) [51], is defined as the flat averaging of all
midpoints of the α-cuts. ALC is defined as

ALC(̃x) = 1

2

∫ 1

0

(

x̃L
α + x̃U

α

)

dα. (18)

4) The final method is called value of a fuzzy number
(VAL) [52], which uses α-levels as weighting factors
in averaging the α-cut midpoints. VAL is defined as

VAL(̃x) =
∫ 1

0
α
(

x̃L
α + x̃U

α

)

dα. (19)

In Section VII, we compare the performance of different
defuzzification methods on synthetic datasets. The experi-
mental results illustrate that VAL outperforms than other
three defuzzification methods. Therefore, (19) is used as the
defuzzification function in all subsequent experiments.

Through the first progress, the initial issue becomes a
traditional multiclass classification problem with crisp data.
Therefore, the second function, called the optimization func-
tion, is a hypothesis function that maps Rp into R

K to solve the
traditional multiclass classification problem. Since SVM and

Algorithm 1 DF-SVM
1: Input training data Dtr , selected appropriate regularization param-
eter C and kernel function ;
2: Initial Preprocessing the training data Dtr;
3: Defuzzification Using equation (19) to transform ˜Dx =
(˜X1, · · · ,˜XN) into Dx = (X1, · · · , XN);
4: Optimization
Solving K optimization problems in (20);
5: Output −→α ∗

l = (α∗
1l, · · · , α∗

Nl)
T , l = 1, 2, · · · , K and the decision

function in (22).

neural networks have gained great achievements on multiclas-
sification problems, we decide to apply both algorithms as the
optimization method. Next, we will introduce both algorithms
for multiclassification problems.

A. Defuzzified Support Vector Machine

First, SVM (one-versus-rest SVM [53]) with the PDS kernel
function is used as the optimization function to solve the
MCIMO problem. Suppose Dtr = ((˜X1, y1), . . . , (˜XN, yN)) is
the training data, where ˜Xi ∈ ˜X ⊂ Fp

Rp, yi ∈ {−l,+l}, l =
1, 2, . . . , K, i = 1, 2, . . . , N. The −l indicates that ˜Xi does not
belong to category l, and +l represents that ˜Xi belongs to cat-
egory l. In the first step, defuzzification function (19) is used
to transform fuzzy input ˜Dx = (˜X1, . . . ,˜XN) to crisp input
denoted as Dx = (X1, . . . , XN). Let K : X × X → R be a
PDS kernel function. Hence, we need to solve K optimization
problems separately, and the lth problem is shown as follows:

min
α

1

2

N
∑

i=1

N
∑

j=1

αilαjlyiyjK(Xi, Xj) −
N
∑

i=1

αil

s.t
N
∑

i=1

αilyi = 0

0 ≤ αil ≤ C, i = 1, 2, . . . , N. (20)

The optimal solution is −→α ∗
l = (α∗

1l, . . . , α
∗
Nl)

T , l =
1, 2, . . . , K. Then, choose a positive component 0 ≤ α∗

jl ≤ C
of −→α ∗

l , and calculate

b∗
l = yj −

N
∑

i=1

α∗
ilyiK(Xi, Xj). (21)

Finally, the decision function is given as follows:

h(X) = arg max
l∈[K]

(

N
∑

i=1

α∗
ilyiK(X, Xi) + b∗

l

)

. (22)

The following algorithm called DF-SVM is shown in
Algorithm 1.

B. Defuzzified Multilayer Perception

Second, a multilayer perception model, which contains two
hidden layers and an output layer (softmax), is used as the
optimization function to complete the second progress. We
denote the parameters of the two hidden layers are W1, b1 and
W2, b2, respectively, and the parameters of the output layer are
W0, b0, respectively, and the activation function is φ. Then, the
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Algorithm 2 DF-MLP [26]
1: Input training data Dtr , learning rate η, fixed epoch Tmax, loss
function (cross-entropy loss function is selected) and optimization
algorithm (Adam algorithm [54] is selected);
2: Initial W0

0 , W0
1 , W0

2 , b0
0, b0

1, b0
2;

for T = 1, 2, . . . , Tmax do
3: Fetch mini-batch Ďtr from Dtr;
4: Calculate
L = loss(h(˜X; WT−1

0 , WT−1
1 , WT−1

2 , bT−1
0 , bT−1

1 , bT−1
2 ), ŷ)

according to Eqs. (19) and (23);
5: Update WT

0 , WT
1 , WT

2 , bT
0 , bT

1 , bT
2 = Adam(L);

end
6: Output WTmax

0 , WTmax
1 , WTmax

2 , bTmax
0 , bTmax

1 , bTmax
2 .

outcome of the constructed multilayer perception model can
be expressed as when we obtain a fuzzy-feature input ˜X

O
(

˜X
) = φ

(

φ
(

M(˜X)W1 + b1
)

W2 + b2
)

W0 + b0

ŷ = arg max
k∈{1,2,...,K}

(

hk(˜X)
)

(23)

where

h(˜X) = (h1(˜X), . . . , hK(˜X)
) = softmax

(

O(˜X)
)

.

The following algorithm called DF-MLP is shown in
Algorithm 2.

VII. EXPERIMENTS ON SYNTHETIC DATASETS

In this section, we first compare the performance of differ-
ent defuzzification methods on synthetic datasets to select the
optimal defuzzification function for the proposed algorithms.
Then, we verify the efficacy of the proposed algorithms for
solving the MCIMO problem by comparing seven baselines
in terms of classification accuracy on synthetic datasets.

A. Dataset Generation

In this section, we introduce how to construct the synthetic
dataset (balanced data), which contains N fuzzy instances
distributed in five categories. Each instance has 20 fuzzy
features. First, we generate the real-valued vectors Xi =
(xi1, . . . , xi20), i = 1, . . . , N in five categories by a random
number generator as the true value of the instance. Then, we
use the generated real-valued vectors to construct the observa-
tion datasets {˜Xi = (̃xi1, . . . , x̃i20)}N

i=1. Each x̃ij is a triangular
fuzzy number characterized by (xij−aij, xij+bij, xij+cij) where
aij ∼ U[1.5, 3], bij ∼ U[ − 0.5, 0.5], cij ∼ U[2, 4] and U[a, b]
denotes the uniform distribution over [a, b].

B. Experimental Setup

In this section, baselines and experimental details of all
baselines, DF-SVM and DF-MLP, are introduced.

1) Baselines: First, we introduce the first five
baselines, which called Meanlogistic, MeanSVM,
MeanDecisiontree, MeanRandomForest, and MeanMLP.
For the fuzzy-feature dataset, a fuzzy feature is
denoted as x̃ = (inf P0, sup P0, inf P1, sup P1). We use
M1(̃x) = (inf P0 + sup P0 + inf P1 + sup P1)/4 to transfer
fuzzy features to crisp features. For interval-valued datasets,

x = [A, B] is denoted as an interval-valued feature. Similarly,
M2(x) = (A + B)/2 is used to transfer interval-valued
features to crisp features. Then, those baselines apply five
well-known machine learning methods (logistic regression,
SVM, decision trees, random forests, and neural networks) to
classify crisp-valued data obtained with the above-mentioned
methods. Second, the last two baselines called DCCF and
BCCF are presented in [21].

2) Experimental Details: For DF-MLP, we let
momentum = 0.9 and weight decay = 0.0001. Finally,
for the DCCF and BCCF algorithms, ϕ is selected
to be the Lebesgue measure on [0, 1] and θ = 1/3,
K(u) = (15/8)(1 − u2)2I(u∈[0,1]) is used as the kernel
function. All these settings of DCCF and BCCF algorithms
can obtain the best performance from [21]. However, DCCF
and BCCF algorithms can only process the fuzzy data with
one fuzzy feature, whereas the generated synthetic datasets
contain multiple fuzzy features. Therefore, we consider using
the average distance between each fuzzy feature to represent
the distance between the fuzzy feature vectors in the DCCF
and BCCF algorithms.

For each algorithm on each dataset, we randomly divide
each dataset into the training set, the validation set, and the
test set, which contain 60%, 20%, and 20% of the data, respec-
tively. First, we select the hyperparameters that can obtain the
highest average classification accuracy on the validation set.
The average classification accuracy on the validation set is the
average of the results of ten repeated experiments on the val-
idation set. The hyperparameters that need to be selected are
shown in Table I. Then, the selected optimal hyperparameters
are used to test the performance of each algorithm on the test
set. We repeat the entire experiment process 20 times. Thus,
the final results are shown in the form of “mean± standard
deviation.” To avoid random errors, we randomly scramble
the data before each experiment. Classification accuracy is
used to evaluate the performance of the proposed model. The
definition of classification accuracy is shown as follows:

Accuracy =
∣

∣˜X ∈ ˜X : f (˜X) = h(˜X)
∣

∣

∣

∣˜X ∈ ˜X ∣∣

where f (˜X) is the ground-truth label of ˜X, while h(˜X) is the
label predicted by the presented algorithms and the baselines.

In the first experiment, we compare the performance of
the proposed two algorithms with different defuzzification
functions on the test set when the number of synthetic data
increases. The number of synthetic data N is selected from
{200, 400, . . . , 3000, 3500, 4000}. In the second experiment,
we generated 2000 synthetic data and analyzed them using the
proposed methods and baselines, respectively. In addition, the
Wilcoxon rank-sum test results of the method, which obtains
the best performance, with other methods are given.

C. Experimental Results Analysis

The results of the first experiment are shown in Fig. 2. From
Figs. 2(a) and (b), we find that COG and VAL have better
performance than another two methods in terms of conver-
gence speed and classification error and VAL is more stable
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TABLE I
HYPERPARAMETERS FOR THE PROPOSED ALGORITHMS AND SEVEN BASELINES

Fig. 2. Classification error rate on the test set varies with the number of synthetic data. (a) DF-SVM with four defuzzification functions. (b) DF-MLP with
four defuzzification functions. (c) DF-SVM and DF-MLP with VAL.

Fig. 3. Accuracy curve on the synthetic datasets versus the number of epochs.

than the other three methods. The reason why VAL can achieve
better performance than other methods is that VAL uses all
information from fuzzy sets so that some key information is
not discarded. In addition, VAL gives less importance to the
lower levels of fuzzy sets, which is reasonable from the per-
spective of the concept of the membership function. Therefore,
we use VAL as the defuzzification method in the following
experiments. Moreover, from Fig. 2(c), it illustrates that the
convergence rate of the two proposed algorithms with VAL
defuzzification method is O(1/

√
m). Therefore, we confirmed

the theoretical analysis results in Section V that we can always
obtain a fuzzy classifier with high classification accuracy when
sufficient fuzzy-feature observations are available.

The results of the second experiment are illustrated in
Table II, and Fig. 3 shows the classification accuracy curve

TABLE II
EXPERIMENT RESULT OF SYNTHETIC DATASET

of Algorithm 2 on the synthetic datasets versus the number
of epochs. From the results, DF-SVM and DF-MLP obtain
better performance than the most other baselines on the syn-
thetic dataset. Furthermore, the results of the statistic test show
that DF-SVM outperforms other methods significantly at the
0.05 significance level, which demonstrates the superiority of
the proposed algorithms. In addition, we present the exper-
imental running times for the proposed algorithms and all
baselines.
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Fig. 4. Software to evaluate the visual perception of a line segment.

VIII. EXPERIMENTS ON REAL-WORLD DATASETS

In this section, five real-world datasets are used to verify
the efficacy of proposed algorithms for solving the MCIMO
problem by comparing with seven baselines in terms of classi-
fication accuracy. Besides, we show how to apply the proposed
algorithms to analyze interval-valued datasets.

A. Real-World Datasets

In this section, we briefly introduce the five real-world
datasets used in the experiments.

1) Perceptions Experiment Dataset: The 1st dataset, called
the perceptions experiment dataset, contains 551 observations
with one fuzzy feature. The fuzzy feature is a trapezoidal fuzzy
number characterized by (inf P0, sup P0, inf P1, sup P1). Each
observation is the perceptions experiment result for one per-
son. The description of perceptions experiment can be found in
the following URL: http://bellman.ciencias.uniovi.es/SMIRE/
Perceptions.html. In the perceptions experiment, the one black
line that people will see is shown in Fig. 4. Once partici-
pants see a black line, they will be asked to give a trapezoidal
fuzzy number characterized by (inf P0, sup P0, inf P1, sup P1)

to describe it.
For the first dataset, we consider using the fuzzy feature

(i.e., the trapezoidal fuzzy number) to predict the category
(very small; small; medium; large or very large), which will
be selected by the participants according to their perception
of the black line.

2) Mushroom Dataset: The 2nd dataset is the California
mushroom dataset1 that contains 245 instances in 17 fungi
species categories. There are five interval-valued variables: the
pileus cap width (X1), the stipe length (X2), the stipe thickness
(X3), the spores major axis length (X4), and the spores minor
axis length (X5). Some instances of the mushroom dataset are
shown in Table III. The goal of our experiment on this dataset
is to predict the species category of the California mushroom
using five interval-valued features.

3) Letter Recognition Dataset: The 3rd dataset is the let-
ter recognition dataset, selected from UCI machine learning
repository (https://archive-beta.ics.uci.edu/), which contains
20 000 instances in 26 categories. This dataset contains 16

1See https://www.mykoweb.com/CAF/ for more details.

TABLE III
SOME INSTANCES OF THE MUSHROOM DATASET

TABLE IV
SOME INSTANCES OF THE LONDON WEATHER DATA

integer features extracted from raster scan images of the let-
ters. We use the same methods described in Section VII to
transfer integer features into fuzzy features. Then, we obtain
one real-world dataset with fuzzy-valued features. The goal of
our experiment on this dataset is to identify each of a large
number of black-and-white rectangular pixel displays as one
of the 26 capital letters in the English alphabet.

4) London Weather Dataset: The 4th dataset is the
meteorological data of London (from March 1, 2016 to
December 31, 2021), provided by the “Reliable Prognosis”
site (https://rp5.ru/), which contains 2131 instances. Each
instance is meteorological data of one day in London, which
described by five interval-valued variables (air temperature
T , atmospheric pressure at weather station level P0, atmo-
spheric pressure reduced to main sea level P, humidity U,
and dew-point temperature Td) and one category variable
(Precipitation or not: 0 ≡ No Precipitation, 1 ≡ Precipitation).
Some instances of this dataset are shown in Table IV. We
aim to use the five interval-valued features for precipitation
prediction.

5) Washington Weather Dataset: The 5th dataset is the
meteorological data of Washington (from January 1, 2016 to
December 31, 2021) in the “Reliable Prognosis” site as well,
which contains 2191 instances. Each instance is meteorolog-
ical data of one day in Washington, which described by five
interval-valued variables (same as the 4th dataset) and one cat-
egory variable (same as the 4th dataset). We aim to use the
five interval-valued features for precipitation prediction.

B. Preprocessing of Interval-Valued Data

We notice that the features of the 2nd, 4th, and 5th datasets
are interval valued. Therefore, in this section, we present
an approach to transform interval-valued features into fuzzy-
valued features. Suppose [A, B] is denoted as a feature of
one interval-valued instance. Thus, we use one approach that
maps [A, B] to a triangular fuzzy number x̃ characterized by
(A, βA + (1 − β)B, B), where β ∈ [0, 1] is a hyperparameter
to control the shape of the membership function of x̃.
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TABLE V
EXPERIMENT RESULT OF PERCEPTIONS EXPERIMENT DATASET

Through the above preprocessing, the DF-SVM and
DF-MLP algorithms can be used to classify dataset with
interval-valued instances. In addition, we realize that the sec-
ond dataset is an imbalanced dataset, which means that each
category contains a different number of instances. Therefore,
a random oversampling technique (KMeansSMOTE [55]) is
used to improve the performance of the proposed algorithms.
After the process of the random oversampling technique, the
data of each category in the second dataset is expanded to 30.

C. Experimental Setup

We use the same baselines in Section VII, and the exper-
imental details of all methods are basically the same as in
Section VII. The only difference is that one more hyperparam-
eter β needs to be selected when analyzing the second dataset.
We select the shape parameter β from {0, 0.05, 0.1, . . . , 1}.
Furthermore, we complete the Wilcoxon rank-sum tests of
the method, which obtains the best performance, with other
methods on real-world datasets. Since DCCF and BCCF can-
not well handle the dataset with a large number of instances,
we only compare the proposed algorithms with the first five
baselines on the last three datasets in our experiments.

In addition, since the second dataset is an imbalanced
dataset, we use balanced accuracy [56] and AUC instead of
classification accuracy to compare model performance on the
second dataset. The definition of balanced accuracy is

Balanced Accuracy = 1

K

K
∑

k=1

(Recall of k−th class)

Recall = TP/(TP + FN)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. AUC is equal to the compute
area under the receiver operating characteristic curve.

D. Experimental Results Analysis

All the experiment results on the five real-world datasets
are illustrated in Tables V–X, and how the evaluation metrics
varies with the number of epochs for Algorithm 2 are shown in

TABLE VI
EXPERIMENT RESULT OF MUSHROOM DATASET

TABLE VII
p-VALUE OF THE STATISTIC TEST ON MUSHROOM DATASET

TABLE VIII
EXPERIMENT RESULT OF LETTER RECOGNITION DATASET

Fig. 5. From these results, the proposed two algorithms achieve
better performance than other baselines on all five real-world
datasets, which illustrates the efficacy of the proposed algo-
rithms in addressing real-world datasets with fuzzy-valued or
interval-valued features. Moreover, the results of the statis-
tic test show that the proposed two algorithms outperform
most other methods significantly at the 0.05 significance level,
which demonstrates the superiority of the proposed algorithms.
Furthermore, for the 1st, 2nd, and 5th datasets, DF-MLP
obtains the highest average performance on the test set. While,
for the letter recognition dataset and London weather dataset,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



MA et al.: MULTICLASS CLASSIFICATION WITH FUZZY-FEATURE OBSERVATIONS 11

(a) (b) (c)

(f)(e)(d)

Fig. 5. Evaluation metrics varies with the number of epochs. (a) DF-MLP on the perceptions experiment dataset. (b) DF-MLP on the mushroom dataset.
(c) DF-MLP on the mushroom dataset. (d) DF-MLP on the letter recognition dataset. (e) DF-MLP on the London weather dataset. (f) DF-MLP on the
Washington weather dataset.

TABLE IX
EXPERIMENT RESULT OF LONDON WEATHER DATASET

DF-SVM is more prioritized than other methods, which means
that the proposed algorithms are applicable to different types
of datasets.

E. Parameters Sensitivity Analysis

In this section, we analyze whether the value of the
shape parameter β in DF-SVM and DF-MLP affects
the balanced accuracy and AUC on the mushroom
dataset.

We conduct the same preprocessing for the mush-
room dataset. We select the shape parameter β from
{0, 0.05, 0.1, . . . , 1}. Then, for each value of β, the results are
obtained using the same experimental operation in Section VII.
Fig. 6(a) and (b) shows the mean and standard deviation

TABLE X
EXPERIMENT RESULT OF WASHINGTON WEATHER DATASET

of the balanced accuracy and AUC of the test sets on the
mushroom dataset when the shape parameter β of both algo-
rithms changes from 0 to 1. These figures illustrate that a
different value for the shape parameter β will affect the clas-
sification performance since the value of β determines the
shape of the triangular fuzzy number. A value of β that can
achieve high performance means that the proposed algorithms
with this value of β can extract more significant information
from the datasets with fuzzy-valued or interval-valued fea-
tures. Therefore, we can improve the performance of DF-SVM
and DF-MLP by finding a suitable value of β. In our exper-
iments, we find the optimal value of β in the validation
set.
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(a) (b)

Fig. 6. Evaluation metrics of the test sets varies with the value of shape parameter β. (a) DF-SVM. (b) DF-MLP.

IX. CONCLUSION AND FUTURE WORK

In this article, we identified a new problem called MCIMO.
In the MCIMO problem, we need to train a fuzzy classifier
when only fuzzy-feature observations are available.

First, we identified a novel problem called MCIMO in
Section IV. Since there are no existing papers for theoreti-
cal analysis of fuzzy classifiers, we give the estimation error
bounds for the MCIMO problem in this article. These bounds
illustrate that we can always train a fuzzy classifier with high
classification accuracy to solve the MCIMO problem as long
as sufficient fuzzy-feature instances can be collected.

Hence, two algorithms are constructed to handle the
MCIMO problem. In addition, the optimal defuzzification
function for the proposed fuzzy technique-based algorithms
is found by comparing the performance of different defuzzi-
fication methods on synthetic datasets. Finally, experimental
results on synthetic datasets and three real-world datasets show
the superiority of the proposed algorithms. Moreover, through
comparisons with several nonfuzzy baselines, the experimen-
tal results demonstrate that the proposed fuzzy-based methods
can obtain better performance in analyzing fuzzy data or
interval-valued data than nonfuzzy methods. Since they use
fuzzy vectors to express the distribution of imprecise data and
apply different defuzzification methods to extract crisp-valued
information from imprecise observations.

In future research, we plan to study more complicated
issues, for example, covariate shift and domain adaptation with
imprecise observations. We can obtain the theoretical analysis
and solutions of these issues based on the introduced the-
oretical analysis and algorithms in this article. In addition,
we found that the proposed two algorithms can obtain better
performance in processing interval-valued data. Therefore, we
consider analyzing interval-valued data based on the proposed
two algorithms in future studies.
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