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Abstract It is argued that the notion of classical entailment faces two

problems, the second argument projection problem and the P -to-Q problem,

which arise because classical entailment is not designed to handle partial

functions. It is shown that while the second argument projection problem

can be solved either by flattening the syntactic tree or with naïve multi-valued

logics, the P -to-Q problem cannot. Both problems are solved by introducing

a new notion of entailment that is defined in terms of Strawson entailment

(in the sense of von Fintel 1999, 2001).
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1 The main claim

The goal of this paper is to scrutinize the formal notion of entailment as
it is understood and used in the semantics literature, and to propose an
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alternative that is inspired by the notion of Strawson entailment (as it is
understood and used in von Fintel 1999, 2001).

One of the goals of semantic theory is to explain speakers’ intuitions
regarding relations between sentences. An example of such a linguistic in-
tuition is the one regarding (1), which is reflected by speakers’ discomfort
with It’s true that some student arrived early but it isn’t true that some student
arrived (or [(1a) but not (1b)]).

(1) a. Some student arrived early.
b. Some student arrived.

A widely held view is that the relation between (1a) and (1b) is that of classical
entailment — or ⇒-entailment — defined informally in (2) (where a statement
is something that has a truth value, a predicate is something that takes
arguments to yield a truth value, and a type-relevant x is an x of the type
that can serve as an argument of P and of Q).

(2) ⇒-entailment (classical entailment)

a. For any statements p and q, p ⇒-entails q iff p is false or q is
true.

b. For any predicates P and Q, P ⇒-entails Q iff for all type-relevant
x, P(x) ⇒-entails Q(x).

Assume that arrive and arrive early have no presuppositions. It follows from
clause (2b) that arrive early ⇒-entails arrive, because for any type-relevant
x, it follows from clause (2a) that [x arrived early] ⇒-entails [x arrived]. By
similar reasoning, (1a) ⇒-entails (1b).

The pair in (1) also illustrates the fact that the determiner some is upward-
entailing with respect to its second argument. An informal definition of
upward-entailingness is given in (3).

(3) O is upward-entailing iff for all type-relevant P and Q such that P
⇒-entails Q, O(P) ⇒-entails O(Q).

Indeed, for any type-relevant X (e.g., student), and any type-relevant P and Q
such that P ⇒-entails Q, [O P ] is false or [O Q] is true, where O = some X.

However, on the view that presuppositions are encoded semantically,
two problems arise with (2)–(3) when we consider cases where some takes
presuppositional arguments such as likes his mother. The examples in (4)–(5)
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illustrate the second argument projection problem and the example in (6)
illustrates the P -to-Q problem.

(4) a. Some French student arrived.
b. Some student arrived.

(5) a. Some French student likes his mother.
b. Some student likes his mother.

(6) a. Some student likes his mother.
b. Some student likes someone.

The second argument projection problem. Assume that French student
and student have no presuppositions. By (2), French student ⇒-entails
student and (4a) ⇒-entails (4b), but (5a) does not ⇒-entail (5b), despite
the fact that speakers reject [(5a) but not (5b)] just as they reject [(4a)
but not (4b)]. The reason is, presumably, that when all the students are
motherless, both (5a) and (5b) are neither true nor false. Accordingly,
while (3) makes some upward-entailing with respect to its second
argument (as we saw), it does not make it upward-entailing with
respect to its first argument: it is impossible to establish that Some
P likes his mother ⇒-entails Some Q likes his mother for every type-
relevant P and Q such that P ⇒-entails Q. Consequently, we fail to
capture the fact that speakers have the same reaction to [(4a) but
not (4b)] and [(5a) but not (5b)].

The P-to-Q problem. Speakers reject [(6a) but not (6b)] just as they reject
[(1a) but not (1b)]. We want to blame this on the fact that some is
upward-entailing, by (3), with respect to its second argument. In other
words, we want to be able to say that just like (1a) ⇒-entails (1b)
because arrive early ⇒-entails arrive, (6a) ⇒-entails (6b) because likes
his mother ⇒-entails likes someone. But we cannot say this. While for
any type-relevant x, speakers reject [‘x likes his mother ’ but not ‘x
likes someone’], likes his mother does not ⇒-entail likes someone by (2):
if x is motherless and doesn’t like anyone, x likes his mother is neither
true nor false and x likes someone is false.

To solve these problems, we introduce two new relations:
st
⇒-entailment,

informally defined in (7), and ⇛-entailment, informally defined in (8). The
notion of

st
⇒-entailment is inspired by the notion of Strawson entailment in

von Fintel 1999, 2001 (the coined term “Strawson entailment” is von Fintel’s
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tribute to Strawson (1952)). The notion of ⇛-entailment is defined in terms
of Strawson entailment. We also propose that the definition of upward-
entailingness in (3) be replaced with (9).

(7)
st
⇒-entailment

a. For any statements p and q, p st
⇒-entails q iff p is false or q is

true.
b. For any predicates P and Q, P st

⇒-entails Q iff for all x such
that the presuppositions of P(x) and Q(x) are satisfied, P(x)
st
⇒-entails Q(x).

(8) ⇛-entailment
For any P and Q, P ⇛-entails Q iff

a. P st
⇒-entails Q; and

b. if P and Q are predicates, for all n ≥ 1 and all ⟨x1, x2, . . . , xn⟩, if
P(⟨x1, x2, . . . , xn⟩) is a truth value, satisfaction of the presuppo-
sitions of P(⟨x1, x2, . . . , xn⟩) guarantees satisfaction of the pre-
suppositions of Q(⟨x1, x2, . . . , xn⟩).

(9) O is upward-entailing iff for all type-relevant P and Q such that
P ⇛-entails Q and the presuppositions of O(P) are satisfied, the
presuppositions of O(Q) are satisfied and O(P) ⇛-entails O(Q).

Both problems are solved. When x has a mother, x likes his mother is false or
x likes someone is true. Consequently, likes his mother ⇛-entails likes someone.
When some French student has a mother, some student has a mother, and (5a)
is false or (5b) is true. When some student has a mother, (6a) is false or (6b) is
true. Consequently, some comes out upward-entailing with respect to its first
and second arguments. We contend that on the view that presuppositions
are semantically encoded, the significant forms of entailment in natural
language are

st
⇒-entailment and ⇛-entailment. Classical entailment — namely,

⇒-entailment as defined in (2) — plays a very small role in semantics.
In Section 2 we discuss the second argument projection problem and

the P -to-Q problem in some detail. In Section 3 we introduce and revise the
notion of Strawson upward- and downward-entailingness in order to solve the
second argument projection problem. In Section 4 we build on the proposal
in Section 3 to solve the P -to-Q problem. Section 5 compares our proposal to
a proposal that is based on a trivalent logic and a proposal that is based on a
flattened clause structure.
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2 Modeling upward- and downward-entailingness

2.1 The basics

In what follows, when we say that sentence A intuitively entails sentence B,
we mean that whenever speakers judge A true, they automatically judge B
true. For example, Mary and Jane arrived intuitively entails Mary arrived.
When we say that one-place predicate α intuitively entails one-place predicate
β, we mean that for any type-appropriate x, [x (is) α] intuitively entails [x
(is) β]. For example, arrived early intuitively entails arrived and French
student intuitively entails student. When we say that a determiner DET is
intuitively upward-entailing on its first argument, we mean that for any type-
appropriate α, β and γ such that α entails β, [DET α γ] intuitively entails
[DET β γ]. When we say that DET is intuitively downward-entailing on its first
argument, we mean that for any type-appropriate α, β and γ such that α
entails β, [DET β γ] intuitively entails [DET α γ]. Similar conventions apply to
“DET is upward/downward-entailing on its second argument”. For example,
the determiner no is intuitively downward-entailing on its first and second
arguments, as evidenced by the fact that No student arrived intuitively entails
both No French student arrived and No student arrived early. The determiner
some is intuitively upward-entailing on its first and second arguments, as
evidenced by the fact that Some French student arrived and Some student
arrived early each intuitively entails Some student arrived.

A widely held view is that intuitive entailment is modeled on ‘⇒’ (roughly,
⇒-entailment in Section 1), which is defined recursively in (10) (see, for ex-
ample, von Fintel 1999). Intuitive upward- and downward-entailingness are
modeled on UE and DE defined in (11) and (12) respectively.

(10) a. Cross-categorial ⇒ (classical entailment)
For all p,q ∈ Dt: p⇒ q if p = False or q = True,

p⇏ q if p = True and q = False.
For all f ,g ∈ D⟨σ,τ⟩: f ⇒ g if for all x ∈ Dσ , f (x) ⇒ g(x),

f ⇏ g if for some x ∈ Dσ , f (x) ⇏ g(x).
b. Dρ is the domain of semantic objects of type ρ, where

(i) t is a type and Dt = {True,False};
(ii) e is a type and De is the domain of individuals;
(iii) for any types σ and τ, ⟨σ,τ⟩ is a type and D⟨σ,τ⟩ is the

domain of functions from Dσ to Dτ .1

1 We are only concerned here with the types of determiners and their arguments.
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(11) A function f ∈ D⟨σ,τ⟩ is UE iff for any P,Q ∈ Dσ such that P ⇒ Q,
f (P) ⇒ f (Q).

(12) A function f ∈ D⟨σ,τ⟩ is DE iff for any P,Q ∈ Dσ such that P ⇒ Q,
f (Q) ⇒ f (P).

Let us illustrate how no comes out DE. We assume, as is standard in
linguistic semantics, that semantic interpretation proceeds in a compositional
fashion. The syntactic representation of No student arrived that serves as
input to semantic interpretation — its LF — is [S [NP no student] [VP arrived]],
where student is the first argument of no and arrived is its second argument.
The interpretation function � � is relativized to (at least) the following two
parameters: (i) w, an element of W (the set of all possible worlds), and (ii)
C, a function that assigns to every w ′ in W a subset of De that includes
all and only individuals that are relevant in w ′. Assuming that for any C
and w, �student�C,w and �arrived�C,w are (total) functions of type ⟨e, t⟩ and
�no�C,w is a (total) function of type ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩ as in (13), [S [NP no student]
[VP arrived]] receives the interpretation in (14).2

(13) For any w and C, and any Z,Y ∈ D⟨e,t⟩, �no�C,w(Z)(Y) = True iff
{y ∈ C(w) ∣ Z(y) = True} ∩ {y ∈ De ∣ Y(y) = True} = ∅.

(14) �[no student] arrived�C,w = �no�C,w(�student�C,w)(�arrived�C,w) =
True iff {y ∈ C(w) ∣ �student�C,w(y) = True} ∩
{y ∈ De ∣ �arrived�C,w(y) = True} = ∅.

By (12), for any C and w and any Z ∈ D⟨e,t⟩, �no�C,w(Z) is a DE function.
To see why, assume that �arrived early�C,w is also of type ⟨e, t⟩ and that
�arrived early�C,w ⇒ �arrived�C,w . Accordingly, for any Z ∈ D⟨e,t⟩, either

�no�C,w(Z)(�arrived�C,w) = False

or
�no�C,w(Z)(�arrived early�C,w) = True,

2 No combines with student, and no student with arrived, via Functional Application (see, for
example, Heim & Kratzer 1998):

(i) Functional Application: If α is a branching node and {β,γ} is the set of its daughters,
then for any w, C and assignment g, �α�C,w,g is defined if �β�C,w,g and �γ�C,w,g are
defined and �γ�C,w,g ∈ Dom(�β�C,w,g). In that case, �α�C,w,g = �β�C,w,g(�γ�C,w,g).
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so �no�C,w(Z)(�arrived�C,w) ⇒ �no�C,w(Z)(�arrived early�C,w) (see (I), Ap-
pendix). Likewise, �no�C,w itself is also DE: on the assumption that
�French student�C,w is also of type ⟨e, t⟩ and that �French student�C,w ⇒
�student�C,w , for any Z ∈ D⟨e,t⟩, either

�no�C,w(�student�C,w)(Z) = False

or
�no�C,w(�French student�C,w)(Z) = True,

so �no�C,w(�student�C,w) ⇒ �no�C,w(�French student�C,w).
We say that no is DE on both its first and second arguments. By this we

mean that as defined in (13), �no�C,w is DE for any C and w (“no is DE on
its first argument”) and that for any Z ∈ D⟨e,t⟩, �no�C,w(Z) is DE for any C
and w (“no is DE on its second argument”). The determiner some, with the
meaning in (15), comes out UE on its second argument (see (II), Appendix). It
also comes out UE on its first argument, as expected.

(15) For any w and C, and any Z,Y ∈ D⟨e,t⟩, �some�C,w(Z)(Y) = True iff
{y ∈ C(w) ∣ Z(y) = True} ∩ {y ∈ De ∣ Y(y) = True} ≠ ∅.

Why is it important to classify no as downward-entailing and some as
upward-entailing in a purely technical sense? It is often claimed that formal
properties such as DE and UE are linguistically significant in the sense that
certain linguistic rules explicitly refer to them (see, for example, Heim &
Kratzer 1998, Chapter 6 and references cited there). For the sake of the
discussion, we take it for granted that the following holds. There are linguistic
rules that refer to DE functions and linguistic rules that refer to UE functions.
Since no behaves as if it is referred to by the former and some behaves as if
it is referred to by the latter, we expect no to come out DE and some UE.

As is well known, however, it is not obvious that the functions in (13)
and (15) are indeed the meanings of no and some, because these determiners
seem to carry presuppositions.

2.2 Presuppositional arguments

The sentence John likes his first book, with the definite description his first
book, is judged odd when John doesn’t have a first book (for discussion of
related experimental evidence see, for example, Abrusán & Szendrői 2013).
Likewise, No professor who likes his first book arrived is judged odd when no
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one has a first book, and No professor likes his first book is judged odd when
no professor has a first book. One way to account for these facts, within the
semantic approach to presuppositions, is the following. Likes his first book
denotes a potentially partial function of type ⟨e, t⟩, as in (16), rather than
the total function in (17) (we say that a function is of type ⟨ρ,σ ⟩ even if its
domain is a proper subset of Dρ; see, for example, Heim & Kratzer 1998).3

Likewise, no denotes a potentially partial function of type ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩,
as in (18), rather than the total function in (13).

(16) For any C , w and x ∈ De:

a. �likes his first book�C,w(x) is defined iff the cardinality of {y ∈

C(w) ∣ y is a book of x in w and no z ∈ {z′ ∈ C(w) ∣ z′ is a book
of x in w} precedes y (relative to x) in w} is 1;

b. if defined, �likes his first book�C,w(x) = True iff for all y ′ ∈ {y ∈

C(w) ∣ y is a book of x in w and no z ∈ {z′ ∈ De ∣ z′ is a book of
x in w} precedes y (relative to x) in w}, x likes y ′ in w.

3 A more detailed LF of likes his first book might be [2 [[the [first [book of he2]]] [3 [t2 likes t3]]]],
where 2 and 3 are indices, he2 is a pronoun of type e and t2 and t3 are traces of type e. In
addition to Functional Application in Footnote 2, we assume:

(i) For any w and C, �likes�C,w and �of�C,w are of type ⟨e, ⟨e, t⟩⟩, �book�C,w is of type
⟨e, t⟩, �first�C,w is of type ⟨⟨e, t⟩, ⟨e, t⟩⟩ and:

a. if likes his first book is as in (16), then

�the�C,w =

λP ∈ D⟨e,t⟩∶ the cardinality of{y ∈ C(w) ∣ P(y) = True} is 1

. λQ ∈ D⟨e,t⟩. for all z ∈ {y ∈ C(w) ∣ P(y) = True},Q(z) = True.

b. if likes his first book is as in (17), then �likes�C,w , �of�C,w , �first�C,w and �book�C,w

are total, and

�the�C,w =

λP ∈ D⟨e,t⟩. λQ ∈ D⟨e,t⟩. the cardinality of {y ∈ C(w) ∣ P(y) = True} is 1, and

for all z ∈ {y ∈ C(w) ∣ P(y) = True}, Q(z) = True.

(ii) Predicate Abstraction: If α is a branching node and {n,γ} is the set of its daughters
(where n is a numerical index), then for any w, C and assignment g, �α�C,w,g =

λx∶ �γ�C,w,g[n→x] is defined. �γ�C,w,g[n→x].

(iii) Traces and Pronouns Rule: If α is a pronoun or a trace and n a numerical index, then
for any w, C and assignment g, �αn�C,w,g is defined only if n is in the domain of g.
When defined, �αn�C,w,g = g(n).
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(17) For any C, w and x ∈ De, �likes his first book�C,w(x) = True iff the
cardinality of {y ∈ C(w) ∣ y is a book of x in w and no z ∈ {z′ ∈
C(w) ∣ z′ is a book of x in w} precedes y (relative to x) in w}
is 1, and for all y ′ ∈ {y ∈ C(w) ∣ y is a book of x in w and no
z ∈ {z′ ∈ C(w) ∣ z′ is a book of x in w} precedes y (relative to x) in
w}, x likes y ′ in w.

(18) For any w, C and any Z,Y ∈ D⟨e,t⟩:

a. �no�C,w(Z) is defined iff C(w) ∩Dom(Z) ≠ ∅;
b. when �no�C,w(Z) is defined, then �no�C,w(Z)(Y) is defined iff

Dom(Y) ≠ ∅ and {y ∈ C(w) ∣ Z(y) = True} ⊆ Dom(Y);
c. when defined, �no�C,w(Z)(Y) = True iff {y ∈ C(w) ∣ Z(y) =

True} ⊆ {y ∈ Dom(Y) ∣ Y(y) = False}.

Let us call the first presupposition of no ((a) in (18)) the first argument pre-
supposition, and the second presupposition of no ((b) in (18)) the second
argument presupposition. Presumably, all determiners have a first and a
second argument presupposition, though there is some controversy regard-
ing their exact formulation. Some scholars (e.g., Heim (1983)) argue that the
second argument presupposition is always the universal {y ∈ C(w) ∣ Z(y) =
True} ⊆ Dom(Y) in (18b). Other scholars (e.g., Beaver (2001)) have proposed
an existential version of the second argument presupposition (at least for
some determiners), namely, {y ∈ C(w) ∣ Z(y) = True} ∩ Dom(Y) ≠ ∅. In
addition, at least for some determiners, the first argument presupposition
has been argued to be the strong {y ∈ C(w) ∣ Z(y) = True} ≠ ∅ rather than
the weak (18a).4 Nothing we say in this section and in Section 3 hinges on
which versions are adopted, and we assume different versions for different
determiners. For example, we assume some has an existential second argu-
ment presupposition, though the reason for this will become apparent only
in Section 4, where we consider a variation in predictions arising from the
different versions of these presuppositions.

As it turns out, ‘⇒’, as defined in (10a) — repeated below — is not explicit
about the status of partial functions.

4 From now on for any X, ‘{y ∈ C(w) ∣ X(y) = True}’ is shorthand for ‘{y ∈ De ∣ y ∈

C(w) ∩Dom(X) and X(y) = True}’.
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(10) a. Cross-categorial ⇒
For all p,q ∈ Dt: p⇒ q if p = False or q = True,

p⇏ q if p = True and q = False.
For all f ,g ∈ D⟨σ,τ⟩: f ⇒ g if for all x ∈ Dσ , f (x) ⇒ g(x),

f ⇏ g if for some x ∈ Dσ , f (x) ⇏ g(x).

This is problematic because by (10a), for any σ and f ∈ D⟨σ,t⟩ such that
Dom(f ) ⊂ Dσ , there is at least one x ∈ Dσ such that we cannot determine that
f (x) = True, nor can we determine that f (x) ≠ True (i.e., that f (x) = False).
We cannot determine that f (x) = Undefined either, as Undefined is not a
member of Dt in this system: by (10b), Dt = {True,False}. Rather, f (x) is
undefined. Therefore, for any σ , any f ,g ∈ D⟨σ,t⟩, and any x ∈ Dσ such that

i. x ∉ Dom(f ) and

ii. x ∉ Dom(g) or g(x) = False,

we cannot determine by (10a) either that f ⇒ g or that f ⇏ g. As a result,
the following two problems arise: the second argument projection problem,
illustrated by (19a) and (19b), and the P -to-Q problem, illustrated by (19c)
and (19d).

(19) a. No professor likes his first book.
b. No French professor likes his first book.
c. Some professor likes his first book.
d. Some professor likes something.

If no indeed denotes a partial function, (19a) and (19b) sometimes lack a truth
value. Consequently, we cannot establish that no is DE on its first argument,
despite the fact that (19a) intuitively entails (19b). If likes his first book indeed
denotes a partial function, we cannot establish that �likes his first book�C,w ⇒
�likes something�C,w for all C and w. Therefore, we cannot blame the fact
that (19c) intuitively entails (19d) on the claim that �likes his first book�C,w ⇒
�likes something�C,w for all C and w. Let us discuss this in some more detail,
starting with the second argument projection problem.

No determiner that has a second argument presupposition — “existential”
or “universal” — comes out either DE or UE on its first argument. For example,
according to (18), we cannot establish that for any C and w and any P and Q
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such that P ⇒Q,

�no�C,w(Q)(�likes his first book�C,w) ⇒

�no�C,w(P)(�likes his first book�C,w).

To see why, assume as before that �French professor�C,w ⇒ �professor�C,w ;
it follows from the definition of ‘⇒’ that Dom(�French professor�C,w) =

Dom(�professor�C,w) = De (given that we are now allowing partial functions,
the domains of these functions could, in principle, be smaller; we come back
to this issue in Section 4.1). But there is at least one C and w such that
C(w) has French and non-French professors, but none of them has in w a
first book in C(w), so �no�C,w(�professor�C,w)(�likes his first book�C,w) and
�no�C,w(�French professor�C,w)(�likes his first book�C,w) are both undefined.
Therefore, we cannot establish that �no�C,w(Q) ⇒ �no�C,w(P) for all C , w, P
and Q such that P ⇒Q. (We also cannot establish that for some C , w, P and
Q such that P ⇒Q, �no�C,w(Q) ⇏ �no�C,w(P).)

Similarly, within the semantic approach to presuppositions, (20) — and
not (15) — is probably the proper meaning of some.

(20) For any w and C , and any Z,Y ∈ D⟨e,t⟩:

a. �some�C,w(Z) is defined iff {y ∈ C(w) ∣ Z(y) = True} ≠ ∅;
b. when �some�C,w(Z) is defined, �some�C,w(Z)(Y) is defined iff
{y ∈ C(w) ∣ Z(y) = True} ∩Dom(Y) ≠ ∅;

c. when defined, �some�C,w(Z)(Y) = True iff {y ∈ C(w) ∣ Z(y) =
True} ∩ {y ∈ Dom(Y) ∣ Y(y) = True} ≠ ∅.

Because of its second argument presupposition, some is not UE on its first
argument.

As we saw in Section 2.1, no and some do come out DE and UE respectively
on their first argument if we assume that they are total (and that likes his
first book is total). If we don’t want to give up on partiality completely, we
may try to avoid the second argument projection problem by giving up only
the second argument presupposition. Suppose we say that No professor likes
his first book is (at least optionally) interpreted as ‘No professor who has a
first book likes his first book’, via the local accommodation of the presup-
position of likes his first book into the first argument position of no (along
the lines of Berman 1991). As argued in von Fintel 2008, this is not a viable
option, for the following reason (see also Beaver 2004). If local presuppo-
sition accommodation were an available process in the grammar, a locally
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accommodated presupposition would not be perceived as a presupposition at
all, but rather as an embedded assertion. For example, (21a) and (21b) would
both be acceptable. In point of fact, only (21a) is; (21b) sounds contradictory.

(21) a. No student who has a mother wrote to his mother, yet the stu-
dents who don’t have a mother wished they had a mother to write
to.

b. #No student wrote to his mother, yet the students who don’t have
a mother wished they had a mother to write to.

So if no and some are indeed partial, they have a second argument presuppo-
sition (as in (18) and (20)), which prevents them from being DE/UE on their
first argument.5,6

Note that neither the first argument presupposition nor the second ar-
gument presupposition prevents any determiner from being DE or UE on
its second argument. For example, when we check whether no is DE on
its second argument — that is, when we check whether �no�C,w(Z)(Q) ⇒
�no�C,w(Z)(P)— by the definition of “DE” we only consider combinations of
no and Z such that �no�C,w(Z) is a function (i.e., is defined; so the presuppo-
sitions of Z , whatever they are, are satisfied), and only pairs ⟨P,Q⟩ such that
P ⇒ Q (whose domains, by the definition of ‘⇒’, are De). This implies that
when we say that no is DE on its second argument, we mean that for any Z,
C and w such that �no�C,w(Z) is defined, �no�C,w(Z) is DE; when we say that
some is UE on its second argument, we mean that for any Z, C and w such
that �some�C,w(Z) is defined, �some�C,w(Z) is UE (see (III)–(IV), Appendix).

On to the P -to-Q problem. Notice that we cannot prove that the informal
statement in (22) is valid. Yet it seems reasonable to take its validity for
granted, given intuitions regarding some.

5 Global presupposition accommodation is certainly possible, and explains why No professor
likes his first book is fine, while No student likes his first book sounds odd. If we don’t know
that the professors have written at least one book, we are willing to revise our beliefs upon
hearing No professor likes his first book. But global accommodation of the presupposition
that the students have written at least one book is usually harder (given that students are
usually too young to have written a book).

6 It is worth noting that we only expect hard presuppositions (in the sense of Abusch 2002,
2010), but not soft presuppositions (such as the presupposition of stop smoking), to give
rise to the second argument projection problem because, presumably, only the former are
semantically encoded. Indeed, No student stopped smoking, yet the students who smoke envy
those who have never smoked is not odd (cf. (21b)).
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(22) For any type-appropriate α and β: (a) iff (b).

a. For any type-appropriate γ: [Some γ α] intuitively entails [Some
γ β].

b. α intuitively entails β.

On the additional (reasonable) assumption that “intuitively entails” is mod-
eled on some well-defined notion of formal entailment, we expect (23) to be a
(provably) valid statement.

(23) For any type-appropriate α and β: (a) iff (b).

a. For any Z ∈ D⟨e,t⟩, C and w such that �some�C,w(Z)(�α�C,w) is de-
fined: �some�C,w(Z)(�β�C,w) is defined and �some�C,w(Z)(�α�C,w)
formally entails �some�C,w(Z)(�β�C,w).

b. For any C and w, �α�C,w formally entails �β�C,w .

A natural candidate for “formally entails” is ‘⇒’, so let us replace all occur-
rences of “formally entails” in (23) with ‘⇒’. We get (24), which is valid on the
assumption that all natural language functions are total.

(24) For and type-appropriate α and β: (a) iff (b).

a. For any Z ∈ D⟨e,t⟩, C and w such that �some�C,w(Z)(�α�C,w) is de-
fined: �some�C,w(Z)(�β�C,w) is defined and �some�C,w(Z)(�α�C,w)
⇒�some�C,w(Z)(�β�C,w).

b. For any C and w, �α�C,w ⇒ �β�C,w .

Indeed, if all natural language functions are total, then for any α and β that
denote functions of type ⟨e, t⟩, α and β denote total functions; and �α�C,w ⇒
�β�C,w for all C and w iff �some�C,w(Z)(�α�C,w) ⇒ �some�C,w(Z)(�β�C,w)
for all Z ∈ D⟨e,t⟩, C and w.7 But if natural language functions are poten-
tially partial, we cannot prove that (24) is valid (or that it is not valid). For
example, likes his first book and likes something denote functions of type
⟨e, t⟩, but if likes his first book is partial (as in (16)), we cannot establish
that �likes his first book�C,w ⇒ �likes something�C,w for all C and w : there are
worlds w and individuals x such that x does not have in w a first book in

7 Why is that? It follows from the definition of UE and the proven claim that some is UE
on its second argument that if for all C and w, �α�C,w ⇒ �β�C,w , then for all Z, C and
w, �some�C,w(Z)(�α�C,w) ⇒ �some�C,w(Z)(�β�C,w). In addition, if for some x, C and w,
�α�C,w(x) = True and �β�C,w(x) = False, it follows from the semantics of some that for
some C and w, �some�C,w(λx ∈ De. �β�C,w(x) = False)(�α�C,w) = True and �some�C,w(λx ∈

De. �β�C,w(x) = False)(�β�C,w) = False.
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C(w) and x likes nothing in w; that is, �likes his first book�C,w(x) is unde-
fined and �likes something�C,w(x) = False.8 (Nor can we establish that there
are a C and a w such that �likes his first book�C,w ⇏ �likes something�C,w .)
For advocates of the semantic approach to presuppositions, this implies
that “formally entails” in (23) is not ‘⇒’. Given the (assumed) validity of (22),
we have to come up with an alternative definition of “formally entails” that
would make (23) a valid statement.

Note that advocates of a purely pragmatic approach to presuppositions
will probably consider these problems to be support for the pragmatic ap-
proach. After all, the second argument projection problem and the P -to-Q
problem are byproducts of the assumption that the only way to account for
the emergence of presuppositions is by treating natural language functions as
potentially partial. We do not take issue with this position. Indeed, solving the
second argument projection problem and the P -to-Q problem is the burden
of advocates of the semantic approach. Of course, advocates of the pragmatic
approach have to provide an alternative explanation for the emergence of
presuppositions; this is a nontrivial task which we do not discuss any further.

In Section 3 we explore a semantic solution to the second argument
projection problem that is based on Strawson entailment — formally, ‘

st
⇒’

(roughly,
st
⇒-entailment in Section 1) — which is weaker than ‘⇒’. Accordingly,

no and some come out formally Strawson downward- and upward- entailing,
respectively, on their first argument. In Section 4 we solve the P -to-Q problem
by modeling intuitive entailment on ‘⇛’ (roughly, ⇛-entailment in Section 1),
which is defined in terms of ‘

st
⇒’ and is stronger than ‘

st
⇒’. As we show, (23) is

valid when “formally entails” is replaced with ‘⇛’. One might wonder whether
exploiting a trivalent logic, or a flattened LF, would offer other — perhaps
simpler — semantic solutions to both these problems. In Section 5 we explore
and reject two such alternatives.

3 Solving the second argument projection problem with Strawson entail-
ment

Strawson entailment was introduced by von Fintel (1999, 2001) as part of
an attempt to account for the distribution of weak NPIs (negative polarity
items such as any and ever).9 The notion of Strawson entailment has since

8 A detailed LF of likes something is [2 [something [3 [t2 likes t3]]]] (cf. Footnote3).
9 The distribution of other types of NPIs is a more complex matter (see, for example, Zwarts

1998).
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proven useful not only for capturing generalizations regarding weak NPIs
in various constructions (see, for example, Condoravdi 2010), but also for
capturing generalizations regarding other linguistic phenomena such as
modification by temporal adverbials (see Csirmaz 2008), covert reciprocity
(see Schwarz 2006) and scalar implicatures (see Gajewski & Sharvit 2012).
It is not our purpose here to provide new arguments for the claim that
Strawson entailment underlies these linguistic phenomena (other theories
are, of course, conceivable). We merely solve the second argument projection
problem using Strawson entailment.

A well known theory of weak NPIs, due to Fauconnier (1978) and Ladusaw
(1979), says that they are licensed in the scope of functions that are DE,
such as sentential negation. (Given the definition of “DE” assumed here, the
condition should be: An NPI is licensed in the scope of an α such that �α�C,w

is DE for any C and w.) As is also well known (at least since Ladusaw 1979),
there are expressions that license weak NPIs but are not even intuitively
downward-entailing. Only is a typical example: Only John has ever visited
Paris is grammatical, yet (25a) may be judged true when John arrived late.

(25) a. Only John arrived.
b. Only John arrived early.

Rather, (25a) intuitively Strawson-entails (25b). We say “(25a) intuitively Straw-
son-entails (25b)” to mean that the truth of (25a) and the presupposition
of (25b) — John arrived early — intuitively guarantee the truth of (25b). More
generally, whenever we say “Sentence A intuitively Strawson-entails sentence
B”, we mean that whenever A and the presuppositions of B are judged true,
B is judged true. A similar behavior is exhibited by sorry and longest.10

Given intuitions regarding only and similar NPI-licensers, the suggestion
in von Fintel 1999, 2001 is that weak NPIs are licensed in the scope of
functions that are Strawson DE — or SDE — as defined in (26). The term “SUE”,
the “upward” counterpart of “SDE”, is defined in (27).

(26) A function f ∈ D⟨σ,τ⟩ is SDE iff for any P,Q ∈ Dσ such that P ⇒ Q
and f (P) and f (Q) are defined: f (Q) ⇒ f (P).11

10 For example, sorry licenses NPIs (as in I am sorry I ever met you), but Jon is sorry Jim left
does not intuitively entail Jon is sorry Jim left early. Rather, Jon is sorry Bill left and he knows
Bill left early intuitively entails Jon is sorry Jim left early (because, presumably, know p is
presupposed by be sorry that p).

11 Formulation (26) is not entirely faithful to von Fintel (1999), whose definition of SDE says
“. . . such that P ⇒ Q and f (P) is defined: f (Q) ⇒ f (P)”. This minor difference has no effect
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(27) A function f ∈ D⟨σ,τ⟩ is SUE iff for any P,Q ∈ Dσ such that P ⇒ Q
and f (P) and f (Q) are defined: f (P) ⇒ f (Q).

Indeed, on the assumption that only denotes a partial function of type
⟨e, ⟨⟨e, t⟩, t⟩⟩ as in, say, (28), it does not come out DE, but it comes out SDE on
its second argument. Thus, the meaning of Only John arrived is derived as
in (29). (Strictly for simplicity, we assume that only x is a VP-level operator,
and not that only is a sentence-level operator.)

(28) For any C and w, Z ∈ D⟨e,t⟩ and x ∈ De:

a. �only�C,w(x) is defined iff x ∈ C(w);
b. when �only�C,w(x) is defined, �only�C,w(x)(Z) is defined iff Z(x)

is defined and Z(x) = True; and
c. when defined, �only�C,w(x)(Z) = True iff {y ∈ C(w) ∣ Z(y) =

True} = {x}.

(29) When defined,

�[only John] [arrived]�C,w

= �only�C,w(�John�C,w)(�arrived�C,w)

= True iff {y ∈ C(w) ∣ �arrived�C,w(y) = True} = {John}.

We say that only is SDE on its second argument because for any C and w,
and any x ∈ De such that �only�C,w(x) is defined, �only�C,w(x) is, by (26),
SDE (see (V), Appendix). For example, for any C and w, it follows from the
(nontrivial) assumption that �arrived early�C,w ⇒ �arrived�C,w that

Dom(�arrived early�C,w) = Dom(�arrived�C,w) = De;

and it follows from (28) that when �only�C,w(�John�C,w)(�arrived�C,w) and
�only�C,w(�John�C,w)(�arrived early�C,w) are defined,

�only�C,w(�John�C,w)(�arrived�C,w) = False

or
�only�C,w(�John�C,w)(�arrived early�C,w) = True.

In general, any DE function is also SDE, but the reverse does not hold; likewise,
any function that is UE is also SUE, but the reverse does not hold.12

on the point made here, and we may ignore it. Also, the new condition on NPI licensing is:
An NPI is licensed in the scope of an α such that �α�C,w is SDE for any C and w.

12 For discussion of challenges to the (S)DE theory of weak NPIs see, for example, Linebarger
1987, Rothschild 2002, Wagner 2006, Guerzoni & Sharvit 2007, Homer 2008, Crnič 2011.
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Thus, Strawson upward/downward-entailingness provides us with a way
to model properties of partial functions, and it seems promising to try to
solve the second argument projection problem by appealing to it. The idea
would be to say that no and some, as the partial functions in (18) and (20),
are merely SDE and SUE respectively on their first argument (though they are
DE and UE respectively on their second argument, as we saw in Section 2.2).

Some readers may be uncomfortable with this move, for the following
reason. It relies on speakers’ intuitions about Strawson entailment (e.g., on
the claim that No professor likes his first book intuitively Strawson-entails
No French professor likes his first book). To test such intuitions, we present
speakers with a task that seems very strange; we ask them to decide whether
the truth of A plus the presuppositions of B guarantees the truth of B. In their
everyday life, speakers often ask themselves whether B follows from A, but
rarely (probably never) whether B follows from “A plus the presuppositions
of B”. But notice that what we actually ask speakers to decide is whether
the truth of “A and P” guarantees the truth of B, where P is the conjunction
of the presuppositions of B which we explicitly spell out for them. What
precisely the presuppositions of B are is determined independently. Granted,
determining what a sentence presupposes is often subject to considerable
theoretical debate, but that is an independent issue. Crucially, the task of
figuring out whether B follows from “A and P” is no different from the task
of figuring out whether B follows from A. And indeed, No French professor
likes his first book follows from No professor likes his first book and any and
all French professors have a first book, just like Only John left early follows
from Only John left and John left early.

As we now show, the second argument presupposition prevents no and
some from being SDE/SUE on their first argument, just like it prevents them
from being DE/UE on their first argument. Fortunately, replacing SDE/SUE
with a different notion of Strawson downward/upward-entailingness solves
the problem.

Because of the second argument presupposition in (18), for any C and w
with French and non-French professors in C(w) that have in w no first book
in C(w), both �no�C,w(�French professor�C,w)(�likes his first book�C,w) and
�no�C,w(�professor�C,w)(�likes his first book�C,w) are undefined. Therefore, it
cannot be established that

�no�C,w(�professor�C,w) ⇒ �no�C,w(�French professor�C,w)
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and consequently, “No is SDE on its first argument” cannot be established.
Similarly, “Some is SUE on its first argument” cannot be established. How
does only avoid this problem and come out SDE on its second argument? The
second argument of only is also its last argument: once all arguments have
been fed, all the presuppositions associated with them are satisfied, and there
is no additional source for potential presupposition failure. On the other
hand, feeding the first argument of no/some does not guarantee satisfaction
of the second argument presupposition; there can still be elements of D⟨e,t⟩
that do not satisfy it (as we saw).

As another illustration of this, consider every. For many speakers, (30b)
presupposes that there are French students. For all speakers, (30a) intuitively
Strawson-entails (30b), and (30c) intuitively entails (30a).

(30) a. Every student arrived.
b. Every French student arrived.
c. Every student arrived early.

For any C and w , �every�C,w should come out SDE, and �every�C,w(Z) should
come out UE for any Z such that �every�C,w(Z) is defined. Suppose every has
the semantics in (31), with a “universal” second argument presupposition,
and a “strong” first argument presupposition.

(31) For any w and C , and any Z,Y ∈ D⟨e,t⟩:

a. �every�C,w(Z) is defined iff {y ∈ C(w) ∣ Z(y) = True} ≠ ∅;
b. when �every�C,w(Z) is defined, �every�C,w(Z)(Y) is defined iff
{y ∈ C(w) ∣ Z(y) = True} ⊆ Dom(Y); and

c. when defined, �every�C,w(Z)(Y) = True iff {y ∈ C(w) ∣ Z(y) =
True} ⊆ {y ∈ Dom(Y) ∣ Y(y) = True}.

For any w and C, it follows from the assumption that �arrived early�C,w ⇒
�arrived�C,w that Dom(�arrived early�C,w) = Dom(�arrived�C,w) = De; there-
fore, as long as there are students in C(w) (or in other words, as long as
�every�C,w(�student�C,w) is defined),

�every�C,w(�student�C,w)(�arrived early�C,w) = False

or
�every�C,w(�student�C,w)(�arrived�C,w) = True.

Thus, every is indeed UE on its second argument (see (VI), Appendix). But
when, for some C and w, there are French and non-French students in C(w)
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but none of them has in w a (unique) mother in C(w),

�every�C,w(�student�C,w)(�likes his mother�C,w)

and
�every�C,w(�French student�C,w)(�likes his mother�C,w)

are both undefined, and “Every is SDE on its first argument” cannot be
established (even if we weaken the first argument presupposition of every).

Fortunately, a slightly different notion of Strawson downward/upward-
entailingness does solve the second argument projection problem. Specifi-
cally, we propose SDEST and SUEST, in (32) and (33) respectively, as alternatives
to SDE in (26) and SUE in (27). Here, P and Q are constrained by ‘⇒’ (as in (26)
and (27)), but a new relation — ‘

st
⇒’ — relates f (P) to f (Q). This relation ‘

st
⇒’

is the Strawsonian counterpart of ‘⇒’ defined in (34) (see Herdan & Sharvit
2006 and Gajewski 2007).

(32) A function f ∈ D⟨σ,τ⟩ is SDEST iff for any P,Q ∈ Dσ such that P ⇒ Q
and f (P) and f (Q) are defined: f (Q) st

⇒ f(P).

(33) A function f ∈ D⟨σ,τ⟩ is SUEST iff for any P,Q ∈ Dσ such that P ⇒ Q
and f (P) and f (Q) are defined: f (P) st

⇒ f (Q).

(34) Cross-categorial
st
⇒

For all p,q ∈ Dt: p st
⇒ q if p = False or q = True,

p st
⇏ q if p = True and q = False.

For all f ,g ∈ D⟨σ,τ⟩: f st
⇒ g if for all x ∈ Dom(f ) ∩Dom(g),

f (x) st
⇒ g(x),

f st
⇏ g if for some x ∈ Dom(f ) ∩Dom(g),

f (x) st
⇏ g(x).

The relation ‘
st
⇒’ is explicit about the status of partial functions in the follow-

ing way: for any pair of functions, it disregards anything that is not in the
intersection of their domains. Otherwise, ‘

st
⇒’ is just like ‘⇒’.13,14

13 The definition of ‘
st
⇒’ in (34) fleshes out von Fintel’s (1999) notion of Strawson validity (“an

inference p1, . . . , pn ∴ q is Strawson valid iff the inference p1, . . . , pn, S ∴ q is classically
valid, where S is a premise stating that the presuppositions of all the statements involved
are satisfied”).

14 While there is at least one w and C such that �likes his mother�C,W st
⇒ �likes his father�C,W

holds vacuously, this is not the case for all w and C (specifically, those w and C where
someone in C(w) has a mother and a father). Notice that we could alternatively define ‘

st
⇒’

so that it is undefined for pairs ⟨f ,g⟩ with nonintersecting domains. For current purposes,
the differences between such a definition and (34) are insignificant.
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The second argument projection problem is thus solved. For example, no,
as defined in (18), comes out SDEST on its first argument (see (VII), Appendix).
By (34), for any C , w and f such that

f ∈ Dom(�no�C,w(�French professor�C,w)) ∩

Dom(�no�C,w(�professor�C,w)),

it is the case that

�no�C,w(�professor�C,w)(f ) st
⇒ �no�C,w(�French professor�C,w)(f );

therefore,

�no�C,w(�professor�C,w) st
⇒ �no�C,w(�French professor�C,w).

If some professors in C(w) lack a first book, �likes his first book�C,w is ig-
nored because it is not in

Dom(�no�C,w(�French professor�C,w)) ∩

Dom(�no�C,w(�professor�C,w)).

By similar reasoning, some comes out SUEST on its first argument, and every
SDEST on its first argument (see (VIII)–(IX), Appendix). Since only is SDE (see
(V), Appendix), it is trivially SDEST.

This solution to the second argument projection problem is somewhat
disappointing. For example, it makes some SUEST on its first argument, but it
is intuitively upward-entailing, and not merely intuitively Strawson upward-
entailing, on its first argument. As we will now see, the solution to the P-to-Q
problem also solves the second argument projection problem in a more
satisfactory manner.

4 Solving the P-to-Q problem with Strawson entailment

4.1 The scope of the problem

Before offering a solution to the P -to-Q problem, let us remind ourselves of
what it is and expand its scope a bit. Given our intuitions about some, we
expect (23), repeated below, to be valid.

(23) For any type-appropriate α and β: (a) iff (b).
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a. For any Z ∈ D⟨e,t⟩, C and w such that �some�C,w(Z)(�α�C,w) is de-
fined: �some�C,w(Z)(�β�C,w) is defined and �some�C,w(Z)(�α�C,w)
formally entails �some�C,w(Z)(�β�C,w).

b. For any C and w, �α�C,w formally entails �β�C,w .

As we saw in Section 2.2, the problem is that “formally entails” cannot mean
‘⇒’, within the semantic approach to presuppositions, because of pairs such
as ⟨likes his first book, likes something⟩.

There are other generalizations that show that “formally entails” is not
‘⇒’; one of them also shows that the solution in Section 3 to the second
argument projection problem is not satisfactory as far as some is concerned.
Recall that our definitions make some merely SUEST and every merely SDEST

on their first argument. But some is intuitively upward-entailing on its first
argument, as shown by the fact that Some student who likes his first book ar-
rived intuitively entails — and not merely intuitively Strawson-entails — Some
student who likes something arrived. This means that we expect (35) to be
valid just as much as we expect (23) to be valid.

(35) For any type-appropriate α and β: (a) iff (b).

a. For any C and w such that �some�C,w(�α�C,w) is defined:
�some�C,w(�β�C,w) is defined and �some�C,w(�α�C,w) formally en-
tails �some�C,w(�β�C,w).

b. For any C and w, �α�C,w formally entails �β�C,w .

On the other hand, given that for many speakers Every student who likes
someone arrived merely intuitively Strawson-entails Every student who likes
his mother arrived, there is no problem with classifying every as merely
formally Strawson downward-entailing. However, given that (36a) merely
intuitively Strawson-entails (36b) (it is possible that all the students are
not book-destroyers, yet none of them has a unique first book), no should
come out formally Strawson downward-entailing on its second argument
and not DE, as it is classified now, just as it comes out formally Strawson
downward-entailing on its first argument.

(36) a. No student destroyed a book.
b. No student destroyed his first book.

It is also important to acknowledge that the P -to-Q problem is not con-
fined to pairs such as ⟨likes his first book, likes something⟩. So far we have
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assumed, for convenience, that for any C and w, �French student�C,w ⇒
�student�C,w . But in fact, these functions, too, may be partial; that is to say,
even innocent-looking predicates such as student may carry nontrivial pre-
suppositions (see Magidor 2013). For example, there might be individuals,
such as the chair I’m sitting on, that cannot, in principle, be students in
at least one possible world. We find ourselves, then, in a rather strange
meta-theoretical situation. We can easily formally prove that no is DE and
some UE on their second arguments (see (III)–(IV), Appendix), but if all world-
dependent predicates are potentially partial, no world-dependent pair of
predicates can actually illustrate these properties of some and no. For exam-
ple, on the assumption that John, be and self-identical are rigid designators,
�be John�C,w ⇒ �be self-identical�C,w (for all C and w); and indeed Some stu-
dent is John intuitively entails Some student is self-identical. However, Some
boy is a French student intuitively entails Some boy is a student, yet we cannot
establish that �French student�C,w ⇒ �student�C,w (for all C and w).

4.2 The solution

4.2.1 Step 1: Constraining P and Q with ⇛

We introduce ‘⇛’ as a new formal notion of intuitive entailment, to re-
place all occurrences of ‘⇒’ in the definitions of (Strawson) upward- and
downward-entailingness. Informally, f ⇛ g iff (i) f Strawson-entails g, and
(ii) satisfaction of the presuppositions of f guarantees the satisfaction of the
presuppositions of g. More formally, we define ‘⇛’ as in (37).

(37) Cross-categorial ⇛
if f ,g ∈ Dt, then f ⇛ g if f st

⇒ g
f ô g if f st

⇏ g

if f ,g ∈ D⟨σ,τ⟩, then f ⇛ g if
for all x ∈ Dom(f ) ∩Dom(g), f (x) ⇛ g(x),
and Dom(f ) ⊆ Dom(g)

f ô g if
for some x ∈ Dom(f ) ∩Dom(g), f (x) ô g(x),
or Dom(f ) ⊈ Dom(g)

An example of a pair of predicates that satisfies ‘⇛’ in all C and w is
⟨likes his first book, likes something⟩. This is because for any C and w,
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i. �likes his first book�C,w st
⇒ �likes something�C,w (that is, if x satisfies

the presuppositions of both, �likes his first book�C,w(x) = False or
�likes something�C,w(x) = True), and

ii. if x satisfies the presuppositions of �likes his first book�C,w (x has a
first book in w and x is capable, in principle, of liking his first book),
x automatically satisfies the presuppositions of �likes something�C,w

(x is capable, in principle, of liking something).

Other examples are the pairs ⟨French student, student⟩ and ⟨be John,be self-
identical⟩. An example of a pair of predicates that satisfies ‘

st
⇒’ but does not

satisfy ‘⇛’ in all C and w is ⟨stabbed all his siblings, stabbed all his younger
siblings⟩. This is because

i. for any C and w,

�stabbed all of his siblings�C,w st
⇒

�stabbed all of his younger siblings�C,w

(if x stabbed in w all of x’s siblings in C(w) and x has in w younger
siblings in C(w), x stabbed in w all of x’s younger siblings in
C(w)), but

ii. for some x, C and w, x has in w siblings in C(w) (satisfying the
presupposition of �stabbed all of his siblings�C,w), but none of them
are younger than x in w (failing to satisfy the presupposition of
�stabbed all of his younger siblings�C,w ).

The pair

⟨has siblings that he likes,doesn’t hate all of his siblings⟩

does not satisfy ‘⇛’, but it satisfies Strawson equivalence, whereas

⟨likes his first book, likes something⟩,

⟨French student, student⟩, and

⟨stabbed all of his siblings, stabbed all of his younger siblings⟩

do not.
We define DE⇛ and UE⇛ as in (38), where P and Q are constrained by ‘⇛’,

and the relation between f (P) and f (Q) is also ‘⇛’. They are the new formal
notions of downward- and upward-entailingness.

1:23



Yael Sharvit

(38) Downward/upward-entailingness

a. A function f ∈ D⟨σ,τ⟩ is DE⇛ iff for any P,Q ∈ Dσ such that P ⇛Q
and f (Q) is defined: f (P) is defined and f (Q) ⇛ f (P).

b. A function f ∈ D⟨σ,τ⟩ is UE⇛ iff for any P,Q ∈ Dσ such that P ⇛Q
and f (P) is defined: f (Q) is defined and f (P) ⇛ f (Q).

For example, some is UE⇛ on its second argument, as illustrated by the fact
that for any C and w, �likes his mother�C,w ⇛ �likes someone�C,w and if

�some�C,w(�student�C,w)(�likes his mother�C,w)

is defined, then

�some�C,w(�student�C,w)(�likes someone�C,w)

is defined and

�some�C,w(�student�C,w)(�likes his mother�C,w) ⇛

�some�C,w(�student�C,w)(�likes someone�C,w).

Likewise, some is UE⇛ on its first argument and every is UE⇛ on its second
argument.

No is not DE⇛ on either argument, as suggested by the fact that No student
destroyed a book does not intuitively entail No student destroyed his first book
(though it intuitively Strawson-entails it): it is possible that all the students
are not book-destroyers, yet none of them has a (unique) first book. Likewise,
only is not DE⇛ on its second argument, and every is not DE⇛ on its first
argument.

We also define SDE and SUE as in (39a)–(39b), where P and Q are con-
strained by ‘⇛’ and the relation between f (P) and f (Q) is ‘

st
⇒’. They are the

new formal notions of Strawson upward- and downward-entailingness.

(39) Strawson downward/upward-entailingness

a. A function f ∈ D⟨σ,τ⟩ is SDE⇛ iff for any P,Q ∈ Dσ such that
P ⇛Q, and f (P) and f (Q) are defined: f (Q) st

⇒ f (P).
b. A function f ∈ D⟨σ,τ⟩ is SUE⇛ iff for any P,Q ∈ Dσ such that

P ⇛Q, and f (P) and f (Q) are defined: f (P) st
⇒ f (Q).

Being UE⇛, some is also SUE⇛ on both its arguments. Only is merely SDE⇛

on its second argument, no is merely SDE⇛ on both its arguments and every
is merely SDE⇛ on its first argument and SUE⇛ on its second. Some of the
results are summarized in (40).
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(40) a. First argument properties

DE⇛ UE⇛ SDE⇛ SUE⇛

some − + − +

no − − + −

every − − + −

b. Second argument properties

DE⇛ UE⇛ SDE⇛ SUE⇛

some − + − +

no − − + −

every − + − +

4.2.2 Step 2: Constraining P and Q with
st
⇒

In the definitions of (S)DE⇛ and (S)UE⇛ above, P andQ are constrained by ‘⇛’.
The question that naturally arises is whether corresponding properties where
P and Q are constrained by ‘

st
⇒’ are linguistically significant. In other words,

are there natural language functions that are SDE
st
⇒ or SUE

st
⇒ , as these terms

are defined in (41), where P and Q are constrained by ‘
st
⇒’ and the relation

between f (P) and f (Q) is
st
⇒? Also, are there natural language functions

that are DE
st
⇒ or UE

st
⇒ , as these terms are defined in (42), where P and Q are

constrained by ‘
st
⇒’ and the relation between f (P) and f (Q) is ‘⇛’?

(41) a. A function f ∈ D⟨σ,τ⟩ is SDE
st
⇒ iff for any P,Q ∈ Dσ such that

P st
⇒Q, and f (P) and f (Q) are defined: f (Q) st

⇒ f (P).
b. A function f ∈ D⟨σ,τ⟩ is SUE

st
⇒ iff for any P,Q ∈ Dσ such that

P st
⇒Q, and f (P) and f (Q) are defined: f (P) st

⇒ f (Q).

(42) a. A function f ∈ D⟨σ,τ⟩ is DE
st
⇒ iff for any P,Q ∈ Dσ such that

P st
⇒Q and f (Q) is defined: f (P) is defined and f (Q) ⇛ f (P).

b. A function f ∈ D⟨σ,τ⟩ is UE
st
⇒ iff for any P,Q ∈ Dσ such that P st

⇒Q
and f (P) is defined: f (Q) is defined and f (P) ⇛ f (Q).

The answer to the first question is not obvious, and the answer to the second
question is clearly “no”. To see this, let us discuss some concrete cases.

If every is SDE
st
⇒ on its first argument, we expect (43a) to intuitively

Strawson entail (43b).

(43) a. Every student who stabbed all of his younger siblings went to jail.
b. Every student who stabbed all of his siblings went to jail.

1:25



Yael Sharvit

Recall from Section 3 that when we check whether A intuitively Strawson-
entails B, we have to decide what B presupposes, conjoin those presup-
positions with A and check whether B follows. There doesn’t seem to be
any reason to say that (43a)–(43b) presuppose more than is implied by (31),
repeated below.

(31) For any w and C , and any Z,Y ∈ D⟨e,t⟩:

a. �every�C,w(Z) is defined iff {y ∈ C(w) ∣ Z(y) = True} ≠ ∅;
b. when �every�C,w(Z) is defined, �every�C,w(Z)(Y) is defined iff
{y ∈ C(w) ∣ Z(y) = True} ⊆ Dom(Y); and

c. when defined, �every�C,w(Z)(Y) = True iff {y ∈ C(w) ∣ Z(y) =
True} ⊆ {y ∈ Dom(Y) ∣ Y(y) = True}.

Suppose, then, that there are students who stabbed all of their younger
siblings and students who stabbed all of their siblings, and that they all can,
in principle, go to jail. In such a state of affairs, (43a) does not intuitively
Strawson-entail (43b): when some student has only older siblings, and he
stabbed them all and didn’t go to jail, (43b) is intuitively false, but (43a)
may be intuitively true. This implies that every is not SDE

st
⇒ on its first

argument, but merely SDE⇛. Notice, though, that if every had a super-strong
first argument presupposition — namely, {y ∈ C(w) ∣ Z(y) = True} ≠ ∅

and C(w) ⊆ Dom(Z)— then (43a) would intuitively Strawson-entail (43b). We
would expect speakers who have such a semantics for every to find both (44)
and (45) incoherent.

(44) Every prisoner who had stabbed all of his siblings was denied an
early hearing. Prisoner John never had any siblings and got an early
hearing.

(45) Every prisoner who was denied an early hearing had stabbed all of
his siblings. Prisoner John appealed the denial of his early hearing
because he never had any siblings.

In an informal survey we conducted of fifteen speakers, all participants
found (45) to be incoherent, but only two found (44) to be incoherent. This
suggests the following:

i. For those speakers who found (44) incoherent, every might have a
super-strong first argument presupposition, requiring John to have
had at least one sibling at some point.
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ii. For those speakers who found (44) coherent, every seems not to have
a super-strong first argument presupposition — so John need not have
had any siblings ever.

iii. No speaker excluded John from C(w); for if they had, they would
have found both (44) and (45) coherent.

It seems, then, that for (ii)-type speakers (the majority), every has the first
argument presupposition in (31), and is SDE⇛— not SDE

st
⇒ — on its first ar-

gument. As the readers can verify, some is SUE⇛— not SUE
st
⇒ — on its first

argument
Next, if every is SUE

st
⇒ on its second argument, we expect (46a) to intu-

itively Strawson-entail (46b), and if some is SUE
st
⇒ on its second argument, we

expect (47a) to intuitively Strawson-entail (47a).

(46) a. Every student stabbed all of his siblings.
b. Every student stabbed all of his younger siblings.

(47) a. Some student stabbed all of her siblings.
b. Some student stabbed all of her younger siblings.

When all the students stabbed all their siblings, but not all students have
younger siblings, not all students are younger-sibling-stabbers; this means
that (46a) intuitively Strawson-entails (46b) only if every indeed has a “uni-
versal” second argument presupposition, as in (31). As mentioned in Section 3,
there is no agreement among scholars about the quantificational force of the
second argument presupposition. It has been suggested (see Chemla 2009)
that the quantificational force of the second argument presupposition is
predictable from the quantificational force of the assertion of the determiner.
And indeed, some — which has an “existential” assertion as in (20), repeated
below — seems to have an “existential” second argument presupposition.

(20) For any w and C , and any Z,Y ∈ D⟨e,t⟩:

a. �some�C,w(Z) is defined iff {y ∈ C(w) ∣ Z(y) = True} ≠ ∅;
b. when �some�C,w(Z) is defined, �some�C,w(Z)(Y) is defined iff
{y ∈ C(w) ∣ Z(y) = True} ∩Dom(Y) ≠ ∅;

c. when defined, �some�C,w(Z)(Y) = True iff {y ∈ C(w) ∣ Z(y) =
True} ∩ {y ∈ Dom(Y) ∣ Y(y) = True} ≠ ∅.

Indeed, when one student has younger siblings, (47a) could be intuitively
true while (47b) is intuitively false (rather than a presupposition failure). This
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is further supported by the coherence of (48), confirming that some is not
‘SUE

st
⇒ ’ on its second argument.

(48) Some student likes her mother, but not all students have a mother.

On the other hand, since it seems that every has a “universal” assertion and
a “universal” second argument presupposition, it may very well be SUE

st
⇒ on

its second argument. It is worth noting that if some had a “universal” second
argument presupposition, it would still be UE⇛ on its second argument, but
merely SUE⇛ on its first argument.

Finally, no determiner that we are aware of is either UE
st
⇒ or DE

st
⇒ . For

example, if some were UE
st
⇒ on its second argument, we would expect Some

student stabbed all of her siblings to intuitively entail Some student stabbed all
of her younger siblings, but it does not. Similarly, some is not UE

st
⇒ on its first

argument and every is not UE
st
⇒ on its second argument. No is trivially not

DE
st
⇒ (on either argument), since it is not DE⇛ (on either argument). Likewise,

every is trivially not DE
st
⇒ on its first argument.

4.2.3 Step 3: Constraining P and Q with ⇢

None of the definitions of the determiner properties we have discussed re-
lies on ‘⇒’. What, then, is its status? As already mentioned in Section 4.1,
‘⇒’ doesn’t even apply to ⟨French student, student⟩, because there might be
individuals that cannot be a student or be French in principle. We also noted
that ‘⇒’ is applicable in all possible worlds only to some world-independent
⟨e, t⟩ pairs (e.g., ⟨be John,be self-identical⟩). Importantly, ‘⇛’ is applicable to
those pairs as well, so there is no need to use ‘⇒’ in any of the definitions of
DE⇛, UE⇛, SDE⇛ or SUE⇛. But we can and should make more subtle distinc-
tions. For example, we want to distinguish between ⟨French student, student⟩
and ⟨likes his mother, likes someone⟩. ‘⇛’ is applicable to both of them in all
possible worlds, but they do differ from each other: in the first pair, both
members have the same presuppositions (it seems that being able to be a
French student, in principle, and being able to be a student, in principle,
amount to the same set of requirements, whatever they are). To capture
this, we define ‘⇢’, which is applicable to ⟨French student, student⟩ but not to
⟨likes his mother, likes someone⟩.
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(49) Cross-categorial ⇢
if f ,g ∈ Dt, then f ⇢ g if f ⇛ g

f ` g if f ô g

if f ,g ∈ D⟨σ,τ⟩, then f ⇢ g if
for all x ∈ Dom(f ) ∩Dom(g), f (x) ⇢ g(x),
and Dom(f ) = Dom(g)

f ` g if
for some x ∈ Dom(f ) ∩Dom(g), f (x) ` g(x),
or Dom(f ) ≠ Dom(g)

The contrast below suggests that ‘⇢’ is indeed linguistically significant: (50a)
does not intuitively entail (50b), it merely intuitively Strawson-entails it (be-
cause (50a) may be intuitively true while the students have no first book),
but (51a) does intuitively entail (51b).

(50) a. No student destroyed a book.
b. No student destroyed his first book.

(51) a. No student stabbed a professor.
b. No student stabbed a French professor.

We established in Section 4.2.1 that no is not DE⇛; this is consistent with the
judgments regarding (50). But judgments regarding (51) indicate that no is
DE⇢, as defined in (52).

(52) A function f ∈ D⟨σ,τ⟩ is DE⇢ iff for any P,Q ∈ Dσ such that P ⇢Q and
f (Q) is defined: f (P) is defined and f (Q) ⇛ f (P).

Classical entailment doesn’t seem to be linguistically significant. It doesn’t
seem that any linguistically significant property of determiners is defined
exclusively in terms of ‘⇒’.

We are now in a position to solve the P -to-Q problem. Let us weaken the
first argument presupposition of some in (20a) to C(w) ∩Dom(Z) ≠ ∅. Some
is still UE⇛ on its first and second arguments; moreover, (53a)–(53b) are both
valid (weakening (20a) guarantees that Strawson-equivalent pairs such as
⟨has siblings that he likes,does not hate all of his siblings⟩ do not invalidate
(53b)). In addition, (54a) is valid (for those speakers who do not have a super-
strong first argument presupposition for every) and (54b) is also valid.

(53) a. For any type-appropriate α and β: (i) iff (ii).
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(i) For any Z ∈ D⟨e,t⟩, C and w such that �some�C,w(Z)(�α�C,w)
is defined: �some�C,w(Z)(�β�C,w) is defined and

�some�C,w(Z)(�α�C,w) ⇛ �some�C,w(Z)(�β�C,w).

(ii) For any C and w, �α�C,w ⇛ �β�C,w .
b. For any type-appropriate α and β: (i) iff (ii).

(i) For any C and w such that �some�C,w(�α�C,w) is defined:
�some�C,w(�β�C,w) is defined and

�some�C,w(�α�C,w) ⇛ �some�C,w(�β�C,w).

(ii) For any C and w, �α�C,w ⇛ �β�C,w .

(54) a. For any type-appropriate α and β that are not Strawson-equivalent,
(i) iff (ii).
(i) For any C and w such that both �every�C,w(�α�C,w) and

�every�C,w(�β�C,w) are defined:

�every�C,w(�α�C,w) st
⇒ �every�C,w(�β�C,w).

(ii) For any C and w, �β�C,w ⇛ �α�C,w .
b. For any type-appropriate α and β that are not Strawson-equivalent,

(i) iff (ii).
(i) For any Z ∈ D⟨e,t⟩, C and w such that �no�C,w(Z)(�α�C,w) is

defined: �no�C,w(Z)(�β�C,w) is defined and

�no�C,w(Z)(�α�C,w) ⇢ �no�C,w(Z)(�β�C,w).

(ii) For any C and w, �β�C,w ⇢ �α�C,w .

5 Alternative solutions

To recap, ignoring the P -to-Q problem, we solved the second argument
projection problem in Section 3 by classifying determiners that are intuitively
upward-entailing on their first argument as SUEST on their first argument,
as this term is defined in (33), repeated below (a similar move takes care of
determiners that are intuitively downward-entailing on their first argument).

(33) A function f ∈ D⟨σ,τ⟩ is SUEST iff for any P,Q ∈ Dσ such that P ⇒ Q
and f (P) and f (Q) are defined: f (P) st

⇒ f (Q).
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To also solve the P -to-Q problem, in Section 4 we disowned ‘⇒’ and replaced
it with ‘⇛’, itself defined in terms of ‘

st
⇒’ (see the valid (53) and (54) in

Section 4.2.3). As we now show, it is easy to solve the second argument
projection problem without appealing to ‘

st
⇒’. But solving the P -to-Q problem

without appealing to ‘
st
⇒’ is harder.

One alternative that easily solves the second argument projection prob-
lem without appealing to ‘

st
⇒’ involves expressing Strawson entailingness in

Schönfinkelized terms (effectively flattening the tree structure). Accordingly,
we may define SUESch as follows (cf. Heim & Kratzer 1998: 157).

(55) a. f is SUESch on its first argument iff for all sets S, S ′, S ′′: if S ⊆ S ′,
Ff (S, S ′′) = True and ⟨S ′, S ′′⟩ ∈ Dom(Ff ), then Ff (S ′, S ′′) = True.

b. f is SUESch on its second argument iff for all sets S, S ′, S ′′: if S ⊆ S ′,
Ff (S ′′, S) = True and ⟨S ′′, S ′⟩ ∈ Dom(Ff ), then Ff (S ′′, S ′) = True.

For example, for any C and w, FC,w�some�— the Schönfinkel-counterpart of
�some�C,w — is that function g such that

i. Dom(g) = {⟨A,B⟩ ∣ there is a P ∈ Dom(�some�C,w)

and a Q ∈ Dom(�some�C,w(P))

such that A = {x ∣ P(x) = True}

and B = {x ∣Q(x) = True}}

ii. Ran(g) ⊆ Dt, and

iii. for all ⟨X,Y ⟩ ∈ Dom(g), g(X,Y ) = True iff C(w) ∩X ∩ Y ≠ ∅.

Unlike �some�C,w , FC,w�some� applies to its two arguments at the same time, so the
second argument projection problem does not arise, and by (55), �some�C,w

is SUESch on its first and second arguments.15

Another alternative that easily solves the second argument projection
problem involves introducing a third truth value. Let Dt be {True,False,Und},
and let ‘

l
⇒’ be as in (56)–(57) (this definition is based on Łukasiewicz 1920; a

definition based on Kleene 1952 would be at least as problematic).

(56) For any p,q ∈ {True,False,Und}:

15 Another alternative that belongs to the same family of alternatives is the one that says that
linguistic rules do not refer to (S)DE/(S)UE functions, but rather to (S)DE/(S)UE environments
(see Gajewski 2007, Homer 2011). This solution, too, avoids the second argument projection
problem by effectively flattening the syntactic tree.
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a. p l
⇒ q if p = False or one of (i)–(iii) holds:

(i) p = True and q = True,
(ii) p = Und and q = True,
(iii) p = Und and q = Und.

b. p l
⇏ q if p = True and q = False.

c. Otherwise, ‘
l
⇒’ is not defined for ⟨p,q⟩.

(57) For any functions h,h′:

a. h l
⇒ h′ if for all type-appropriate x, h(x) l

⇒ h′(x).
b. h l

⇏ h′ if for all type-appropriate x, ‘
l
⇒’ is defined for the pair

⟨h(x), h′(x)⟩, and for some type-appropriate x, h(x) l
⇏ h′(x).

c. Otherwise, ‘
l
⇒’ is not defined for ⟨h,h′⟩.

We define ‘SUEL’ in (58) as an alternative to (33), where P andQ are constrained
by ‘⇒’, but the relation between f (P) and f (Q) is ‘

l
⇒’.

(58) f is SUEL iff for all P,Q such that P ⇒Q and ‘
l
⇒’ is defined for f (P)

and f (Q): f (P) l
⇒ f (Q).

We adjust the meaning of some so that it is a total function such that for any
Z,Y of type ⟨e, t⟩ and any C and w, if

{y ∈ C(w) ∣ Z(y) = True} ∩ {y ∣ Y(y) ∈ {True,False}} = ∅,

then �some�C,w(Z)(Y) = Und; otherwise �some�C,w is as in (20). We derive
that for any P and Q of type ⟨e, t⟩ such that P ⇒ Q and ‘

l
⇒’ is defined

for �some�C,w(P) and �some�C,w(Q), �some�C,w(P) l
⇒ �some�C,w(Q) for all

C and w. For example, when the French and non-French professors are
motherless in w,

�some�C,w(�French professor�C,w)(�likes his mother�C,w)

= �some�C,w(�professor�C,w)(�likes his mother�C,w)

= Und,

so �some�C,w(�French professor�C,w) l
⇒ �some�C,w(�professor�C,w). Some in-

deed comes out SUEL on its first argument.
To solve the P -to-Q problem, however, we must find two appropriate

alternatives to ‘⇒’: one that makes some formally upward-entailing (rela-
tive to ⟨likes his mother, likes someone⟩; see (38)/(53)), and one that makes no
formally downward-entailing (relative to ⟨French student, student⟩, but not
relative to ⟨likes his mother, likes someone⟩; see (52)/(54)). This is not easily
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achieved without appealing to ‘
st
⇒’, because on the one hand, ⟨likes his mother,

likes someone⟩ doesn’t satisfy ‘
l
⇒’, and, on the other hand, ⟨French student,

student⟩ and ⟨likes his mother, likes someone⟩ both satisfy intuitive entail-
ment. There might be less naïve multivalent logics that afford a better so-
lution (and there probably are). Our point is this: merely switching to a
multivalent logic cannot address the P -to-Q problem satisfactorily.

6 Conclusion

We have proposed formal notions of entailment, Strawson entailment, up-
ward/downward-entailingness and Strawson upward/downward-entailing-
ness stated in terms of ‘

st
⇒’ and other relations that are themselves defined in

terms of ‘
st
⇒’. We contend that if at least some determiners and some nouns

and verbs denote partial functions, ‘
st
⇒’ is a more useful basis for describing

properties of natural language determiners, compared to ‘⇒’ or ‘
l
⇒’.

Appendix

More formal versions of some of the informal proofs given in the text are
provided below (where C is any function from W to {X ∣ X ⊆ De} and w is
any element of W ).

On the assumption that all natural language functions are total, and by
the definition of ‘⇒’ in (10), (I)–(II) hold for any P,Q,Z ∈ D⟨e,t⟩ such that
P ⇒Q.

(I) a. {y ∈ C(w) ∣ Z(y) = True} ∩ {y ∈ De ∣Q(y) = True} ≠ ∅ or
{y ∈ C(w) ∣ Z(y) = True} ∩ {y ∈ De ∣ P(y) = True} = ∅;

b. (i) by (a) and the meaning of no in (13):
�no�C,w(Z)(Q) = False or �no�C,w(Z)(P) = True,

(ii) by (i) and the definition of ‘⇒’ in (10): �no�C,w(Z)(Q) ⇒
�no�C,w(Z)(P).

(II) a. {y ∈ C(w) ∣ Z(y) = True} ∩ {y ∈ De ∣ P(y) = True} = ∅ or
{y ∈ C(w) ∣ Z(y) = True} ∩ {y ∈ De ∣Q(y) = True} ≠ ∅;

b. (i) by (a) and the meaning of some in (15):
�some�C,w(Z)(P) = False or �some�C,w(Z)(Q) = True,

(ii) by (i) and the definition of ‘⇒’ in (10): �some�C,w(Z)(P) ⇒
�some�C,w(Z)(Q).
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Therefore, by the definitions of ‘DE’ and ‘UE’ in (12) and (11), respectively, for
any Z ∈ D⟨e,t⟩: �no�C,w(Z) is DE and �some�C,w(Z) is UE.

It follows from the definition of ‘⇒’ in (10) that for any P,Q ∈ D⟨e,t⟩
such that P ⇒ Q, Dom(P) = Dom(Q) = De. Thus, (III)–(IX) hold for any
P,Q ∈ D⟨e,t⟩ such that P ⇒ Q, even if natural language functions can be
partial in principle.

(III) for any Z ∈ D⟨e,t⟩ such that C(w) ∩Dom(Z) ≠ ∅:

a. {y ∈ C(w) ∣ Z(y) = True} ⊈ {y ∈ Dom(Q) ∣Q(y) = False} or
{y ∈ C(w) ∣ Z(y) = True} ⊆ {y ∈ Dom(P) ∣ P(y) = False};

b. (i) by (a) and the meaning of no in (18):
�no�C,w(Z)(Q) = False or �no�C,w(Z)(P) = True,

(ii) by (i) and the definition of ‘⇒’ in (10): �no�C,w(Z)(Q) ⇒
�no�C,w(Z)(P).

(IV) for any Z ∈ D⟨e,t⟩ such that {y ∈ C(w) ∣ Z(y) = True} ∩Dom(P) ≠ ∅:

a. {y ∈ C(w) ∣ Z(y) = True} ∩ {y ∈ Dom(P) ∣ P(y) = True} = ∅ or
{y ∈ C(w) ∣ Z(y) = True} ∩ {y ∈ Dom(Q) ∣Q(y) = True} ≠ ∅;

b. (i) by (a) and the meaning of some in (20):
�some�C,w(Z)(P) = False or �some�C,w(Z)(Q) = True,

(ii) by (i) and the definition of ‘⇒’ in (10):
�some�C,w(Z)(P) ⇒ �some�C,w(Z)(Q).

(V) for any x ∈ C(w) such that x ∈ C(w) and P(x) = True:

a. {y ∈ C(w) ∣ Q(y) = True} ≠ {x} or {y ∈ C(w) ∣ P(y) = True} =
{x};

b. (i) by (a) and the meaning of only in (28):
�only�C,w(x)(Q) = False or
�only�C,w(x)(P) = True,

(ii) by (i) and the definition of ‘⇒’ in (10):
�only�C,w(x)(Q) ⇒ �only�C,w(x)(P).

(VI) for any Z ∈ D⟨e,t⟩ such that {y ∈ C(w) ∣ Z(y) = True} ≠ ∅:

a. {y ∈ C(w) ∣ Z(y) = True} ⊈ {y ∈ Dom(P) ∣ P(y) = True} or
{y ∈ C(w) ∣ Z(y) = True} ⊆ {y ∈ Dom(Q) ∣Q(y) = True};

b. (i) by (a) and the meaning of every in (31):
�every�C,w(Z)(P) = False or �every�C,w(Z)(Q) = True,

(ii) by (i) and the definition of ‘⇒’ in (10): �every�C,w(Z)(P) ⇒
�every�C,w(Z)(Q).
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(VII) for any Y ∈ D⟨e,t⟩ such that {y ∈ C(w) ∣ Q(y) = True} ⊆ Dom(Y), if
Dom(Y) ≠ ∅ and C(w) ∩Dom(P) ≠ ∅:

a. {y ∈ C(w) ∣Q(y) = True} ⊈ {y ∈ Dom(Y) ∣ Y(y) = False} or
{y ∈ C(w) ∣ P(y) = True} ⊆ {y ∈ Dom(Y) ∣ Y(y) = False};

b. by (a) and the meaning of no in (18):
�no�C,w(Q)(Y) = False or �no�C,w(P)(Y) = True;

c. by (b) and the definition of ‘
st
⇒’ in (34), �no�C,w(Q) st

⇒ �no�C,w(P).

(VIII) for any Y ∈ D⟨e,t⟩ such that {y ∈ C(w) ∣ P(y) = True} ∩Dom(Y) ≠ ∅:

a. {y ∈ C(w) ∣ P(y) = True} ∩ {y ∈ Dom(Y) ∣ Y(y) = True} = ∅ or
{y ∈ C(w) ∣Q(y) = True} ∩ {y ∈ Dom(Y) ∣ Y(y) = True} ≠ ∅;

b. by (a) and the meaning of some in (20):
�some�C,w(P)(Y) = False or �some�C,w(Q)(Y) = True;

c. by (b) and the definition of ‘
st
⇒’ in (34),

�some�C,w(P) st
⇒ �some�C,w(Q).

(IX) for any Y ∈ D⟨e,t⟩ such that {y ∈ C(w) ∣ Q(y) = True} ⊆ Dom(Y), if
{y ∈ C(w) ∣ P(y) = True} ≠ ∅, then:

a. {y ∈ C(w) ∣Q(y) = True} ⊈ {y ∈ Dom(Y) ∣ Y(y) = True} or
{y ∈ C(w) ∣ P(y) = True} ⊆ {y ∈ Dom(Y) ∣ Y(y) = True};

b. by (a) and the meaning of every in (31):
�every�C,w(Q)(Y) = False or �every�C,w(P)(Y) = True;

c. by (b) and the definition of ‘
st
⇒’ in (34),

�every�C,w(Q) st
⇒ �every�C,w(P).

Therefore, by the definitions of ‘DE’ and ‘UE’ in (12) and (11), respectively; the
definition of ‘SDE’ in (26); and the definitions of ‘SDEST’ and ‘SUEST’ in (32)
and (33), respectively:

(a) for any Z ∈ D⟨e,t⟩ such that �no�C,w(Z) is defined, �no�C,w(Z) is DE;

(b) for any Z ∈ D⟨e,t⟩ such that �some�C,w(Z) is defined, �some�C,w(Z) is
UE;

(c) for any Z ∈ D⟨e,t⟩ such that �every�C,w(Z) is defined, �every�C,w(Z) is
UE;

(d) for any x ∈ De such that �only�C,w(x) is defined, �only�C,w(x) is SDE
and SDEST;

(e) �no�C,w and �every�C,w are SDEST and �some�C,w is SUEST.
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