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Abstract 19 
 20 
 21 
Phenotype-centric modeling enables a paradigm shift in the analysis of kinetic models. It 22 
brings the focus to a network’s biochemical phenotypes and their relationship with 23 
measurable traits (e.g., product yields, system dynamics, signal amplification factors, etc.) 24 
and away from computationally intensive parameter sampling and numerical simulation. 25 
Here, we explore applications of this new modeling strategy in the field of Rational 26 
Metabolic Engineering using the amorphadiene biosynthetic network as a case study. Our 27 
phenotype-centric approach not only identifies known beneficial intervention strategies 28 
for this network, but it also provides an understanding of mechanistic context for the 29 
validity of these predictions. Additionally, we propose a set of hypothetical strains with the 30 
potential to outperform reported production strains and enhance the mechanistic 31 
understanding of the amorphadiene biosynthetic network. We believe that phenotype-32 
centric modeling can advance the field of Rational Metabolic Engineering by enabling the 33 
development of next generation kinetics-based algorithms and methods that do not rely 34 
on a priori knowledge of kinetic parameters but allow a structured, global analysis of the 35 
design space of parameter values.  36 
 37 
 38 
 39 
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 2 

1. Introduction 40 

 41 

Metabolic Engineering aims at developing cellular factories to produce valuable 42 

chemicals by altering the metabolism of microbial strains through genetic engineering 43 

(Bailey, 1991; Lee et al., 2012; Chubukov et al., 2016). During the last decades, 44 

computational methods have enabled the discovery of non-intuitive strategies 45 

enhancing the production of a variety of target molecules (Nakamura and Whited, 2003; 46 

Lee et al., 2005; Yim et al., 2011; Paddon et al., 2013; Harder et al., 2016), giving rise to 47 

a model-based Metabolic Engineering that is increasingly less dependent on 48 

experimental intuition. Existing mathematical frameworks for rational Metabolic 49 

Engineering typically fall within one of two categories: kinetics- (mechanistic) or 50 

constraint-based methods (Valderrama-Gómez et al., 2017). The former is the gold 51 

standard and has the potential to capture intricate interactions between different levels 52 

of cellular organization (transcription, translation, and metabolism), which need to be 53 

rigorously integrated to understand and successfully optimize biological systems. 54 

Mechanistic models are truly predictive because they provide a rigorous link between 55 

metabolite concentrations, enzyme availability, and intracellular flux distributions. 56 

However, the application of mechanistic modeling in Metabolic Engineering has been 57 

rather limited, mainly due to a bottleneck caused by the large number of associated 58 

parameters with unknown values (Chowdhury, 2015), and structural uncertainties 59 

arising from unknown molecular interactions (Link et al., 2014). Consequently, 60 

constraint-based modeling (e.g., flux balance analysis) has been the method of choice 61 

to rationally guide the development of production strains (Zomorrodi, 2012; Valderrama-62 
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 3 

Gómez et al., 2017), which is reflected in most strain design algorithms being based on 63 

stoichiometric descriptions of cellular metabolism (Valderrama-Gómez et al., 2017).  64 

Even though constraint-based modeling has proven to be useful in characterizing 65 

certain aspects of metabolic networks (e.g., maximal theoretical yields), important 66 

features such as network dynamics and metabolite concentrations are outside the 67 

scope of these models (Wiechert and Noack, 2011). Thus, implementing engineering 68 

strategies suggested by constraint-based metabolic models can potentially lead to non-69 

viable strains because critical aspects of the metabolic system, such as dynamical 70 

instability and concentrations of potentially toxic metabolite intermediates are not 71 

considered.  72 

Overcoming the limitations of kinetic modeling will require a radical change in 73 

how these models are formulated and analyzed. In the last decade, ensemble modeling 74 

of metabolic networks has emerged as a useful approach to address both parametric 75 

(Tran et al., 2008; Lee et al., 2014) and structural (Link et al., 2014) uncertainties in 76 

kinetic models. Instead of analyzing a single model, this approach considers thousands 77 

of models, each exhibiting a different set of parameter values or alternative molecular 78 

interactions. A recently developed phenotype-centric modeling strategy (Lomnitz and 79 

Savageau, 2016; Valderrama-Gómez et al., 2018) offers enormous potential for the field 80 

of rational Metabolic Engineering by allowing the analysis of mechanistic models without 81 

a priori knowledge of kinetic parameters (Valderrama-Gómez, et al., 2020). The strategy 82 

combines a model decomposition technique with linear programming in logarithmic 83 

space to identify a space-filling set of biochemical phenotypes, each one valid within a 84 

high-dimensional polytope in the design space of parameter values. Biochemical 85 
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phenotypes are mathematically described by a simplified set of S-system differential 86 

equations (i.e., sub-systems), and an accompanying set of linear inequalities in 87 

logarithmic space. The mathematical object defining a biochemical phenotype involves 88 

all the system variables, parameters, and non-dominant processes. This is critically 89 

important because the ‘dominance concept’ may erroneously suggest a model reduction 90 

method with significant losses. It follows that any point in the parameter space is 91 

contained within at least one such biochemical phenotype. Powerful mathematical 92 

techniques have been developed to characterize S-systems in terms of steady states, 93 

signal amplification factors (logarithmic gains), phenotypic volumes, and dynamic 94 

behavior (Savageau et al., 2009; Fasani and Savageau, 2010; Lomnitz and Savageau, 95 

2016). These features link experimentally observable biological phenotypes with 96 

specific regions in the parameter space to produce a finite, chunked and highly 97 

structured System Design Space. 98 

In a recent work, we briefly discussed the potential of the phenotype-centric 99 

approach in Metabolic Engineering by analyzing the protocatechuate metabolic system 100 

of Acinetobacter (Valderrama-Gómez et al., 2020). We built a mathematical model 101 

considering the transport of protocatechuate into the cell and its subsequent enzymatic 102 

degradation, the synthesis of the intervening enzymes and, a signaling layer controlling 103 

the synthesis of mRNA molecules. The mathematical model encompassed 30 104 

parameters whose values were assumed to be unknown. Using the phenotype-centric 105 

approach, we were able to identify a biochemical phenotype and values for all system 106 

parameters that potentially correspond to the natural operating point of the system. 107 
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Moreover, we proposed several engineering strategies to increase the pathway flux 108 

without increasing the intracellular concentration of toxic pathway intermediates.  109 

In this work, we will further explore the utility of the phenotype-centric strategy in 110 

the field of Metabolic Engineering. We will use the amorphadiene biosynthetic network 111 

shown in Fig. 1 as a case study. Weaver et. al. (2015) mechanistically characterized 112 

this metabolic system in Escherichia coli using a kinetic model to identify various 113 

engineering strategies to increase productivity. In silico predictions were experimentally 114 

implemented and the performance of the resulting engineered strains closely matched 115 

model predictions. The work by Weaver et. al. (2015) will help us contrast traditional 116 

strain optimization procedures using kinetic models in a simulation-centric approach 117 

with our novel phenotype-centric strategy. As we will show later, our analysis not only 118 

reproduces the predictions made by Weaver et. al. (2015) but also provides a structured 119 

context in the System Design Space for which those predictions are valid. Furthermore, 120 

engineering strategies covering different regions in Design Space are also identified by 121 

our approach in a computationally efficient way that does not involve parameter 122 

sampling or numerical solution of the underlying kinetic model.  123 

We start in Section 2 by providing a description of the amorphadiene biosynthetic 124 

pathway and briefly summarizing previous findings by Weaver et. al. (2015). Relevant 125 

features of the phenotype-centric approach will be presented in Section 3. For a more 126 

detailed review of the method’s mathematical background along with its computational 127 

implementation, the interested reader is directed to previous publications (Savageau et 128 

al., 2009; Fasani and Savageau, 2010; Lomnitz and Savageau, 2016; Valderrama-129 

Gómez et al., 2018; Valderrama-Gómez et al., 2020). Section 4 will illustrate different 130 
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applications of the phenotype-centric strategy in Metabolic Engineering. Lastly, we 131 

conclude with a discussion and provide future directions in Section 5.  132 

 133 

2. The Amorphadiene Biosynthetic Pathway 134 

 135 

Amorphadiene is a volatile terpene involved in the synthesis of the anti-malarial drug 136 

artemisinin and its heterologous production was first reported in E. coli (Newman et al., 137 

2006). Weaver et. al. (2015) mechanistically characterized a metabolic system which 138 

used externally provided mevalonate to synthesize amorphadiene in a series of seven 139 

enzyme-catalyzed steps. The authors employed a kinetic model to identify the 140 

concentration of amorphadiene synthase (ADS), the last enzyme of the pathway (Fig. 141 

1), as one of the main engineering targets to improve productivity. The analysis of the 142 

kinetic model also showed that alleviating the feedback inhibition of mevalonate kinase 143 

(the first enzyme in the pathway) by farnesyl pyrophosphate (the final pathway 144 

intermediate) did not increase amorphadiene productivity, as previously hypothesized 145 

(Weaver et. al., 2015). Both predictions were based on a sensitivity analysis of the 146 

model parameters and were experimentally verified by constructing and characterizing 147 

three different strains: mbis3 (the base strain), saMK, and 10kADS. The kinetic model 148 

developed by Weaver et al. (2015) was based on a considerable body of previous 149 

experimental work that involved extracting values for 26 kinetic parameters from the 150 

literature and experimentally determining protein concentrations for all three strains.   151 

We slightly modified this model to consider a first-order output flux for amorphadiene 152 

(Eqs. S1 to S8). This modification does not affect the dynamics of the network’s 153 
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 7 

metabolic pools and solely serves to conveniently characterize the flux through the 154 

pathway in the context of the phenotype-centric approach.  155 

 156 

 157 
 158 
Figure 1. The Amorphadiene Biosynthetic Pathway. Amorphadiene is synthesized 159 
from externally supplied mevalonate in a series of seven enzyme-catalyzed reactions that 160 
involve the interaction of eight different metabolites. Enzymes are represented by black 161 
boxes using the following abbreviations: MK: Mevalonate kinase, PMK: 162 
Phosphomevalonate kinase, PMD: Mevalonate diphosphate decarboxylase, IDI: 163 
Isopentenyl-diphosphate isomerase, ISPA: Farnesyl pyrophosphate synthase, ADS: 164 
Amorphadiene synthase. Metabolites are represented by the following abbreviations: 165 
Mev: Mevalonate, MevP: Mevalonate phosphate, MevPP: Mevalonate pyrophosphate, 166 
IPP: Isopentenyl pyrophosphate, DMAPP: Dimethylallyl pyrophosphate, GPP: geranyl 167 
diphosphate, FPP: farnesyl diphosphate, AMO: Amorphadiene. The isomerization 168 
reaction of IPP and DMAPP catalyzed by IDI is the only reversible reaction in the network. 169 
The pathway involves feedback inhibition of MK, the first enzyme, by the last metabolic 170 
intermediate, FPP. 171 
 172 
 173 
 174 
 175 
3. Materials and Methods 176 

 177 

The System Design Space (Savageau et al., 2009) represents the mathematical 178 

foundation upon which the phenotype-centric modeling strategy (Valderrama-Gómez et 179 

al. 2018) is built. Here, we will provide a brief overview of key concepts as well as 180 

Mev

MevP 

MevPP

IPP

DMAPP

GPP AMOFPP

MK  

PMK

PMD

IDI
ISPA ADS

ISPA
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instructions to access computational tools to reproduce the results presented in this 181 

work. 182 

 183 

3.1 System Design Space: Key Concepts 184 

 185 

Biochemical systems described by the power-law functions of chemical kinetics and the 186 

rational functions of biochemical kinetics can be represented in a Generalized Mass 187 

Action (GMA) form (Savageau and Voit, 1987): 188 

 189 

       (1) 190 

       (2) 191 

 192 

Where  and  represent rate constants, while  and  are kinetic orders.  and 193 

 are the number of positive and negative terms in the i-th equation, respectively. 194 

Additionally,  represents the concentration of a chemical species in a system 195 

containing a total of n dependent and m independent variables. The set  of chemical 196 

variables represents all the chemical/biological entities (e.g., enzymes, metabolites, 197 

mRNA molecules, etc.) of the system. On the other hand, the set  contains 198 

auxiliary variables generated when recasting the system of ordinary differential 199 

equations into its GMA form. Environmental input variables for which a differential 200 

equation or algebraic constraint are not defined are treated as parameters.  201 

dXi
dt

= α ik X j
gijk

j=1

n+m

∏ −
k=1

Pi

∑ βik X j
hijk

j=1

n+m

∏
k=1

Qi

∑ i = 1,...,nc

0 = α ik X j
gijk

j=1

n+m

∏ −
k=1

Pi

∑ βik X j
hijk

j=1

n+m

∏
k=1

Qi

∑ i = (nc +1),...,n

α ik βik gijk hijk Pi

Qi

Xi

nc

n− nc
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 9 

For any system in steady state, one of the  positive and one of the  negative terms 202 

will dominate over the others in each one of the n equations in the system. This gives 203 

rise to a so-called dominant S-System (Savageau, 1969; Savageau et al., 2009), which 204 

can be generically described by Eqs. 3 and 4: 205 

 206 

    (3) 207 

      (4) 208 

 209 

with  and  representing the indices of the dominant positive and dominant 210 

negative terms in the i-th equation, respectively. The validity of the dominant S-System 211 

implies certain conditions (Savageau et al., 2009; Fasani and Savageau, 2010), which 212 

are represented by inequalities of the form 213 

 214 

    (5) 215 

  .  (6) 216 

 217 

Here,  represents indices of corresponding non-dominant terms. Steady state 218 

concentrations of the dependent variables can be obtained by rearranging Eqs. 3 and 4 219 

and taking logarithms on both sides:  220 

dXi
dt

=α ipi
X j

gijpi

j=1

n+m

∏ − βiqi X j

hijqi

j=1

n+m

∏ i = 1,...,nc

0 =α ipi
X j

gijpi

j=1

n+m

∏ − βiqi X j

hijqi

j=1

n+m

∏ i = (nc +1),...,n

pi qi

α ipi
X j

gijpi

j=1

n+m

∏ >α ik X j
gijk

j=1

n+m

∏ ∀k = 1,2,3,...,Pi | k ≠ pi{ }

βiqi X j

hijqi

j=1

n+m

∏ > βik X j
hijk

j=1

n+m

∏ ∀k = 1,2,3,...,Qi | k ≠ qi{ }

k
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,   (7) 221 

 222 

which can be written in matrix form as: 223 

 224 

,         (8) 225 

 226 

where ,  and . In a following step, dependent ( )  227 

and independent ( ) variables are split to obtain:  228 

 229 

        (9) 230 

 231 

The vector of dependent concentration variables  can be obtained by matrix 232 

operations: 233 

       (10) 234 

 235 

The flux through each metabolic pool can be obtained by a secondary matrix operation 236 

(Savageau, 2009). Because some have confused S-system equations in two different 237 

contexts, it should be noted that the original S-system equations were found in the 238 

context of a local (Taylor series) representation in logarithmic space and involved real-239 

valued exponents (Savageau, 1969; 2009), whereas the S-system equations found in 240 

the global context of the System Design Space involve positive integer-valued 241 

logα ipi
+ gijpi log X j =

j=1

n+m

∑ logβiqi + hijqi log X j
j=1

n+m

∑

Ay = b

y j = ln X j aij = gijpi − hijqi bi = ln(βin /α iq ) yD

yI

AD yD + AI yI = b.

yD

yD = −AD
−1AI yI + AD

−1b.
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exponents defined by the underlying chemical and biochemical kinetic mechanisms 242 

(Savageau et al. 2009).  In any case, they have the same mathematical form, which 243 

makes them amenable to the same set of powerful linear methods.  244 

 245 

3.1.1 Biochemical Phenotypes 246 

 247 

The concept of biochemical phenotype (or simply phenotype) is an integral element of the 248 

Design Space formalism and will be broadly used throughout this work. A phenotype is 249 

defined in the context of a mechanistic model of a biological system. The mathematical 250 

representation of a biochemical phenotype is given by a set of dominant S-system 251 

equations (Eqs. 3 and 4) and associated boundaries, which involve a comprehensive 252 

integration of information for all the system’s concentrations, fluxes, and parameters 253 

(Savageau et al., 2009; Fasani and Savageau, 2010). From a biological point of view, 254 

most of the mathematical properties of a biochemical phenotype, such as its logarithmic 255 

gains and dynamic behavior, can be experimentally measured, thus rendering 256 

biochemical phenotypes a powerful tool to design and optimize biochemical systems. 257 

Biochemical phenotypes can be categorized into two groups: pathological and 258 

physiological. The former is characterized by internal metabolic imbalances that result in 259 

the continual accumulation or depletion of at least one metabolic pool (Valderrama-260 

Gómez et al. 2020). Conversely, physiological phenotypes exhibit at least one steady 261 

state, which can be either stable or unstable. Phenotypes have an associated case 262 

number and a signature that implies a specific set of dominance conditions. 263 

 264 
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3.1.2 Logarithmic Gains 265 

 266 

Logarithmic gains are amplification factors relating changes in input signals 267 

(independent variables, ) to the resulting changes in output signals (dependent 268 

variables, ) and are denoted by the symbol L( , ). Strictly speaking, the term 269 

parameter sensitivity is used instead of logarithmic gain when the effect of varying a 270 

parameter on a dependent variable is analyzed. Both logarithmic gains and parameter 271 

sensitivities are properties that depend exclusively on the kinetic orders of the system 272 

and can be calculated for concentrations or fluxes (Savageau, 1971). They are valid 273 

throughout the entire polytope of a given biochemical phenotype. For simplicity, we will 274 

not distinguish between parameter sensitivities and logarithmic gains and will use only 275 

the latter term. A logarithmic gain with a magnitude greater than one implies 276 

amplification of the original signal; a magnitude less than one indicates attenuation.  A 277 

positive sign for the logarithmic gain indicates that the changes are in the same 278 

direction (both increase, or both decrease in value), while a negative sign indicates that 279 

the changes are in the opposite direction.  Logarithmic gains can be calculated directly 280 

from Eq. 10 as follows:  281 

 282 

.       (11) 283 

 284 

In the context of the Design Space formalism, Eq. 11 implies that the calculation of 285 

logarithmic gains does not involve parameter sampling or numerical integration of the 286 

yI

yD yD yI

∂yD
∂yI

= −AD
−1AI
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system of differential equations. Consequently, logarithmic gains can be used to identify 287 

metabolic engineering strategies in a computationally efficient way as illustrated in 288 

Section 4.2. 289 

 290 

3.1.3 Systems Design Space and Linear Programming  291 

 292 

Linear algebra and linear programming play a central role in mathematically defining and 293 

characterizing biochemical phenotypes (Fasani and Savageau, 2010). A set of dominant 294 

processes, along with an accompanying set of inequalities are only considered to 295 

represent a valid phenotype if (a) the S-system equations (Eqs. 3 and 4) have a valid 296 

steady-state solution, (b) the set of inequalities (Eqs. 5 and 6) is mathematically 297 

consistent, and (c) introducing the solution into the set of inequalities yields a consistent 298 

system. Note that step (a) is performed using linear algebra, while steps (b) and (c) 299 

involve solving a linear program in each case. Throughout this work, the Design Space 300 

Toolbox v3.0, DST3 (Valderrama-Gómez et al. 2020), was used to automatically define 301 

and solve linear programs using GLPK as the linear solver. Eqs. S25 to S40 exemplify S-302 

system equations defining phenotype 7306_3, which will be of interest in later analyses. 303 

This set of equations has a valid steady-state solution, which is shown in Eqs. S58 to 304 

S73. Associated dominance conditions are represented by Eqs. S41 to S57. Substituting 305 

the steady-state solution into the dominance conditions yields Eqs. S74 to S85, which 306 

represent phenotypic boundaries delimiting a region in Design Space in which phenotype 307 

7306_3 is valid. A similar process is required to test each one of the potential phenotypes 308 

of a given network. DST3 efficiently automates this process, while opening new 309 
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applications of linear programming in the context of mechanistic modeling, as we will 310 

demonstrate in Sections 4.3 and 4.4. For conciseness, mathematical equations defining 311 

biochemical phenotypes of the amorphadiene network will not be provided explicitly but 312 

can be trivially retrieved using the accompanying Jupyter Notebooks.  313 

 314 

3.2  The Design Space Toolbox v.3.0 & Jupyter Notebooks 315 

 316 

The Design Space Toolbox v.3.0 (DST3) is freely available for all major operating 317 

systems through Docker. After Docker has been installed on your system, running the 318 

following commands on a terminal window will provide access to DST3: 319 

1. docker pull savageau/dst3:3.08.79 320 

2. docker run -d -p 8888:8888 savageau/dst3:3.08.79 321 

3. Access the software by opening the address http://localhost:8888/ on any 322 

internet browser. 323 

Please refer to the original publication (Valderrama-Gómez et al. 2020) for detailed 324 

installation instructions and troubleshooting. Several Jupyter notebooks are provided to 325 

reproduce the modeling results of each section. Notebooks can be found within the 326 

Docker Image savageau/dst3:3.08.79 under the directory 327 

/Supporting_Notebooks/AMO_System. The source code is available under 328 

https://github.com/m1vg.   329 

 330 

 331 

 332 
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4. Results 333 

 334 

4.1 The Phenotypic Repertoire of the Amorphadiene Biosynthetic Network 335 

 336 

We start our analysis by recasting the system of differential equations describing the 337 

dynamics of the amorphadiene network (Eqs. S1 to S8) into a fully equivalent GMA form 338 

(Eqs. S9 to S24), in which all terms are expressed using power laws. This format is 339 

suitable for analysis using DST3 (Valderrama-Gómez et al. 2020). In a following step, 340 

the network’s phenotypic repertoire is enumerated along with dynamic properties 341 

(number of eigenvalues with positive real part) and volume of individual phenotypes in 342 

the System Design Space. This information is summarized in the Supplementary File 1. 343 

Note that co-dominant phenotypes were considered for this system (refer to 344 

Supplementary Section 4 for details). The amorphadiene network exhibits 40 345 

physiological phenotypes within a parameter range of 10-3 to 103 in all dimensions and a 346 

total logarithmic volume of 6.25x1016. This implies that only about 0.0367% of the 26-347 

dimensional Design Space (with a total logarithmic volume of 626) can support viable 348 

biological phenotypes. These numbers suggest that identifying stable operating points 349 

by randomly sampling the parameter space is highly inefficient, which is a technique 350 

commonly used by ensemble modeling approaches to parameterize mechanistic 351 

models (Lee et al., 2014).  352 

The phenotypic repertoire can be filtered to identify top-performing phenotypes 353 

without a priori knolwedge of parameter values. For that, we use the maximum fold 354 

change in production flux from a phenotype’s nominal operating point as the 355 
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performance metric. When evaluating specific phenotypic properties that depend on a 356 

phenotype’s operating point (e.g., eigenvalues, parameter tolerances, phenotype-357 

specific mutation rates (Valderrama-Gómez and Savageau, 2021)), linear programming 358 

methods can be applied to identify a nominal parameter set (Lomnitz and Savageau, 359 

2016). The results of this phenotypic assessment are summarized in Fig. S1 as a 360 

heatmap. Phenotypes 6921_3, 6913_3, 5769 and 7306_3 exhibit the highest potential 361 

to increase production flux from their respective operating point. Phenotype 7306_3 is of 362 

central interest in this study, because, as we will show below, it contains the operating 363 

point of one of the strains characterized by Weaver et al. (2015). 364 

Available experimental data (such as multi-omics and enzyme kinetics) can be 365 

integrated within the phenotype-centric modeling strategy to create a link between 366 

observable phenotypic features and regions in Design Space. In the case of the base 367 

strain mbis3, experimentally determined protein concentrations (Table S1), along with 368 

kinetic parameters extracted from the literature (Table S2), locate the system’s 369 

operating point within phenotype 7306_3, as indicated in Fig. 2A by the black circle. 370 

Interestingly, this phenotype was identified in our previous analysis as a potential top 371 

performer, which means that the mathematical abstraction for phenotype 7306_3 can 372 

be readily used in combination with linear programming to engineer mbis3 into a high 373 

performing production strain. Dynamic properties of the strain mbis3 can be determined 374 

by an eigenvalue analysis of phenotype 7306_3 (Table S3), which predicts a stable 375 

steady state (all eigenvalues are negative real). Numerical integration of the full system 376 

of differential equations confirms this prediction (Fig. 2B). Parameter perturbations can 377 

move the system’s operating point outside of phenotype 7306_3. For instance, 378 
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increasing the concentration of the enzyme amorphadiene synthase (ADS) shifts the 379 

operating point from phenotype 7306_3 to 7330_3, as shown in Fig. 2A by the diamond-380 

shaped symbol. Since the S-system representing phenotype 7330_3 exhibits complex 381 

conjugate eigenvalues with positive real part at the denoted operating point (Table S3), 382 

the intracellular metabolite concentrations of the network are predicted to exhibit an 383 

oscillatory behavior, which is confirmed in Fig. 2C by numerical integration. The ADS 384 

concentration can be further increased to place the operating point within a region in 385 

Design Space lacking a physiological phenotype (Fig. 2A, black triangle). Thus, some 386 

metabolites (MevP, MevPP, and IPP) will not reach a steady state, as shown in Fig. 2D. 387 

This behavior arises due to metabolic imbalances present in pathological regions of the 388 

Design Space. 389 

The different dynamic regimes shown in Fig 2. can be rationalized in terms of the 390 

operation of an integral control system (Aström and Murray, 2010), and the saturation of 391 

the enzyme ISPA. The control system, mechanistically implemented by the feedback 392 

inhibition of MK by FPP, integrates the difference between the pathway input and output 393 

flux to produce the error signal FPP. For example, an increase in ADS increases the 394 

output flux and initially decreases its substrate FPP.  The decrease in FPP causes de-395 

inhibition of MK and an increase in the input flux until it matches the increased output 396 

flux and the change in the error signal FPP goes to zero. As ADS is increased from its 397 

initial operating point (Fig. 2B), a switch to phenotype 7330_3 occurs, leaving the 398 

integral control system at the boundary of instability and causing oscillations in the 399 

concentration of intracellular metabolites (Fig. 2C). With still further increases in ADS 400 

and consequent decreases in FPP, there is further de-inhibition of MK to the point that 401 
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the increase in the input flux exceeds the Vmax of ISPA, which then becomes the rate 402 

limiting step (see second row of Table 1). The saturation of ISPA leads to a new steady 403 

state for FPP that is lower with each further increase in ADS, while GPP, DMAPP and 404 

AMO maintain a new steady state dictated by the rate limiting flux through ISPA.  The 405 

de-inhibition of MK and increased input flux causes a buildup of metabolites behind the 406 

ISPA bottleneck: MevP, MevPP and IPP (Fig. 2D).   407 

 408 

 409 
Figure 2. A System Design Space Plot and Three Dynamic Regimes of the 410 
Amorphadiene Network. A. A Design Space Plot of the amorphadiene biosynthetic 411 
network generated for the system defined by Eqs. S9 to S24. Color-coded regions 412 
represent biochemical phenotypes of the network. The black circle within phenotype 413 
7306_3 represents the operating point for the base strain mbis3. Kinetic parameters and 414 
experimentally determined enzyme concentrations for mbis3 can be found in Tables S1 415 
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and S2, which are reproduced from Weaver et. al. (2015). The white diamond symbol 416 
within phenotype 7330_3 and the neighboring black triangle in the upper right white region 417 
represent hypothetical strains in which the log10 concentration of ADS is increased to 2.04 418 
and 2.8, respectively. Panels B to D show the temporal behavior of intracellular metabolic 419 
pools for these three operating points. Each case differs from the other solely by the 420 
concentration of ADS. Initial metabolite concentrations were assumed to have a value of 421 
0.1 µM except for mevalonate, whose concentration was set to have a constant value of 422 
5 µM. Numerical integration was performed using the ODEINT routine of SciPy and 423 
10,000 steps. B. Stable network dynamics for the base strain mbis3 (black circle in panel 424 
A). C. Oscillatory network dynamics resulting from increasing log10(ADS) to 2.04 (white 425 
diamond in panel A). D. Pathological system dynamics when log10(ADS) is further 426 
increased to 2.8 (black triangle in panel A). Note that MevP, MevPP and IPP can no 427 
longer reach a steady state but continuously accumulate over time. 428 
 429 
 430 
4.2 A Logarithmic Gain Analysis Reveals a Global Landscape of Metabolic 431 

Engineering Strategies  432 

 433 

Here, we calculate logarithmic gains in production flux for each one of the 40 physiological 434 

phenotypes of the amorphadiene network. The goal is to identify system parameters with 435 

the potential to increase amorphadiene productivity. Engineering strategies can be 436 

identified from a logarithmic gain analysis using the following rationale: increasing the 437 

value of a parameter will enhance productivity when the parameter exhibits a positive 438 

logarithmic gain. Conversely, decreasing its value will increase pathway flux when the 439 

parameter exhibits a negative logarithmic gain. The global landscape of metabolic 440 

engineering strategies based on a logarithmic gain analysis is shown in Fig. 3. It can be 441 

divided into four different phenotypic groups according to non-zero logarithmic gains for 442 

kinetic parameters associated with a characteristic enzyme set. Each group consists of 443 

10 phenotypes.  The first group is characterized by non-zero logarithmic gains for kinetic 444 

parameters linked with the last enzyme in the pathway, ADS. The base strain mbis3, 445 

whose operating point is located within phenotype 7306_3 (Fig. 2A), belongs to this 446 
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group. The second and third groups are both characterized by non-zero logarithmic gains 447 

for kinetic parameters associated with the first enzyme in the pathway, the mevalonate 448 

kinase (MK). Finally, phenotypes within the fourth group exhibit non-zero logarithmic 449 

gains for both MK and ADS. Note that Fig. 3 represents the entire landscape of metabolic 450 

engineering strategies and is solely based on the architecture of the amorphadiene 451 

network (Eqs. S9 to S24). In the context of this analysis, model parameterization is 452 

optional and allows the identification of relevant strategies by placing the system’s 453 

operating point within one of the four phenotypic groups. In the specific case of strain 454 

mbis3, Fig. 3 proposes increasing the concentration of ADS or its turnover number (kcat7) 455 

as suitable intervention strategies, which is in line with numerical simulations performed 456 

by Weaver et al. (2015).  457 

 458 

 459 
Figure 3. Logarithmic Gains in Pathway Flux Calculated for Physiological 460 
Phenotypes. A landscape of 1,040 different logarithmic gains calculated for 40 461 
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biochemical phenotypes (x-axis) across 26 system parameters (y-axis) for the 462 
amorphadiene production flux, L(rout, i), is shown as a heat map. Logarithmic gain values 463 
are color-coded; the white background represents a logarithmic gain of 0. Blue represents 464 
a value of 1, green corresponds to 0.5, orange to -0.5 and red corresponds to -1. The 465 
rectangle with a black dashed outline highlights phenotype 7306_3, which contains the 466 
operating point of the base strain mbis3. Refer to Supplementary File 3 for the figure’s 467 
raw data. 468 
 469 
 470 
Phenotype signatures (Savageau et al. 2009, Valderrama-Gómez et al. 2020) encode 471 

necessary instructions to construct S-system equations (i.e., Eqs. 3 and 4) from the full 472 

system of differential equations. From a biological point of view, these signatures contain 473 

information about dominant fluxes and biochemical mechanisms exercised by each 474 

phenotype. An analysis of conserved dominance signatures (Table S4 and S5) for 475 

individual groups in Fig. 3 reveals that saturation patterns of two key enzymes (MK, and 476 

ADS, see Table. S6 and Fig. S2) can be used to differentiate individual phenotypic 477 

groups. Further, this suggests that a targeted enzymatic characterization has the potential 478 

to rapidly assign a given strain to one of these four groups. For instance, groups II and III 479 

differ solely by the saturation features of MK (Fig. S2). Since the mevalonate 480 

concentration is the largest positive term in Eq. S16 for all phenotypes within group II, we 481 

consider the enzyme MK to be saturated. Conversely, the same enzyme is not saturated 482 

in group III because KM1 is the largest positive term in Eq. S16. These saturation 483 

differences directly influence engineering strategies, as evidenced in Fig. 3 (compare 484 

groups II and III). When MK is saturated, increasing the mevalonate kinase concentration 485 

(MK) or its turnover number (kcat1) are the only two possible strategies to significantly 486 

increase amorphadiene productivity. However, if MK is not saturated, increasing the 487 

mevalonate concentration and decreasing the Michaelis-Menten constant KM1 are two 488 

additional strategies that can be implemented to increase productivity. Several other 489 
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analogous comparisons can be made. Let us consider the saturation patterns of 490 

phenotypic groups III and IV. At a first glance, there are no obvious differences in the 491 

enzyme saturation pattern of these two groups (see Table S6 and Figure S2). In each 492 

case, the key enzymes MK and ADS are not saturated. However, a detailed inspection of 493 

the MK saturation regime in group IV reveals an important difference. While KM1 is the 494 

largest positive term in Eq. S16 for all phenotypes within group III, the inhibition term KM1 495 

* FPP * K-1I,FPP is the largest one in group IV. The consequences of this subtle difference 496 

in dominance are reflected in additional engineering strategies involving not only MK but 497 

also ADS in group IV (refer to Fig. 3, groups III vs. IV). Increasing KI,FPP  positively impacts 498 

productivity in group IV because it reduces the aggregate Michaelis-Menten constant for 499 

MK (KM1 * FPP * K-1I,FPP + KM1). Additionally, increasing ADS, kcat7 or decreasing KM7 500 

accomplishes the same goal by decreasing the steady state value of the metabolic 501 

intermediate FPP (Fig. 1) –which can be inferred by a logarithmic gain analysis for the 502 

exemplary phenotype 7333_3 within group IV: L(FPP, ADS) = -0.5, L(FPP, kcat7)= -0.5,  503 

and L(FPP,KM7)= 0.5. 504 

 505 

4.3 Identifying Coupled Enzyme Targets 506 

 507 

Using numerical simulation and a partial rank correlation analysis for a set of 10,000 508 

models, Weaver et al. (2015) identified the concentration of ADS and its turnover 509 

number (kcat7) as the most relevant parameters to increase amorphadiene productivity. 510 

To refine model predictions, the authors experimentally determined the in vivo value for 511 

kcat7, which they estimated to be 0.022 ± 0.008 s-1. This number is significantly different 512 
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from the value extracted from the literature (0.0068 s-1). Fig. 4A shows a Design Space 513 

plot for the amorphadiene network with an updated kcat7 value.  Note that the qualitative 514 

arrangement of neighboring phenotypes, as well as the location of the operating point of 515 

the base strain mbis3 within phenotype 7306_3, remain unchanged when the kcat7 value 516 

extracted from the literature is used instead (refer to the Supplementary IPython 517 

Notebook 4.1 within the DST3 Docker Image).  518 

 519 

 520 
Figure 4. System Design Space Plots and in silico Titration Studies. A. A Design 521 
Space plot for strain mbis3 (black circle within phenotype 7306_3) is shown. B. A titration 522 
plot (solid blue line) is generated for the ODE system (Eqs. S1 – S8) by increasing the 523 
expression level of ADS from its basal concentration of 39.6 µM in strain mbis3 to 1,000 524 
µM. The two vertical dashed lines mark the boundaries of phenotype 7330_3. Operating 525 
points located within this biochemical phenotype have the potential to exhibit oscillatory 526 
behavior, qualitatively similar to the one shown in Fig. 2C. The average slope of the 527 
titration curve within the boundaries of phenotype 7306_3 is 0.98, which closely matches 528 
a logarithmic gain of L(rout, ADS) = 1 calculated for phenotype 7306_3 (Fig. 3) using linear 529 
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algebra. Experimental amorphadiene production rates for strains mbis3 and 10kADS are 530 
represented by a black star and a black circle, respectively. C. A Design Space plot is 531 
shown for the hypothetical strain mbis3* (white circle within phenotype 7306_3). This 532 
strain results from increasing the levels of PMK (1.91-fold), IDI (3.04-fold), PMD (5.14-533 
fold), and ISPA (9.2-fold), from the respective levels of the base strain mbis3. D. A titration 534 
plot for the ODE system (solid orange line) is generated by increasing the expression 535 
level of ADS from its basal concentration of 39.6 µM in the hypothetical strain mbis3* 536 
(white circle) to 1,000 µM. The blue solid line corresponds to the titration study performed 537 
in panel B. The vertical dashed line represents the right boundary of phenotype 7306_3. 538 
Experimental productivity of the strains mbis3 and 10kADS are represented by a black 539 
circle and a black star, respectively. The average slope of the titration curve within 540 
phenotype 7306_1 is 0.82, in close agreement with a logarithmic gain of L(rout, ADS) = 1 541 
calculated for the same phenotype. Average slopes are determined by computing two-542 
point slopes and averaging their values over the entire curve.  543 
 544 

To test the effect of increasing ADS expression on amorphadiene productivity, 545 

Weaver et al. (2015) constructed and characterized the strain 10kADS, which contains 546 

a stronger ribosome binding site in front of the ADS sequence. The experimentally 547 

determined ADS concentration in 10kADS was 678 µM, which corresponds to a 17-fold 548 

increase compared with its level in the base strain mbis3 (39.6 µM).  As reported by the 549 

authors, there is a good agreement between model predictions (blue line in Fig. 4B) and 550 

the experimental performance of strain 10kADS (black star in Fig. 4B). Our logarithmic 551 

gain analysis for phenotype 7306_3 not only predicts the fact that increasing ADS 552 

expression will increase amorphadiene productivity (Fig. 3), but it also provides an 553 

estimate for the magnitude of such an increase. A good agreement is observed 554 

between the slope of the blue curve to the left of the leftmost vertical line in Fig. 4B, 555 

whose value corresponds to 0.98, and the calculated logarithmic gain for the pathway 556 

flux, L(rout, ADS) = 1, for phenotype 7306_3. Note that an experimental log10(ADS) value 557 

of 2.8 places the operating point for strain 10kADS outside the boundaries of phenotype 558 

7306_3, well within the pathological region to the right of phenotype 7330_3 (Fig. 4A 559 

and B). The location of the operating point of strain 10kADS is relevant because the 560 
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predicted positive effect of ADS overexpression on amorphadiene productivity is only 561 

valid within the boundaries of phenotype 7306_3, for which a logarithmic gain of L(rout, 562 

ADS) = 1 is calculated. As shown in Fig. 4B, after log10(ADS) surpasses the right 563 

boundary of phenotype 7330_3 (rightmost vertical dashed line), further increasing ADS 564 

does not translate into a higher amorphadiene synthesis rate. Instead, overexpressing 565 

ADS at higher levels can potentially decrease strain performance due to the 566 

accumulation of toxic metabolites (MevPP, MevP and IPP, see Fig. 2D) and the 567 

associated protein burden.  568 

Since L(rout, ADS) = 1 is only valid within the boundaries of phenotype 7306_3 569 

(Eqs. S74-S85), identifying additional engineering targets to increase pathway 570 

performance is analogous to identifying enzyme perturbations that allow higher ADS 571 

expression levels within the boundaries of phenotype 7306_3. We exploit linearities in 572 

the mathematical definition of biochemical phenotypes in logarithmic space to formulate 573 

and solve this optimization task using linear programming. Starting from the operating 574 

point of the base strain mbis3, we allow the concentration of a set of enzymes, including 575 

ADS, to vary within the range 10-3 to 103. Note that this range can be easily adjusted if 576 

needed. Then, the concentration of the free enzymes is adjusted so that the expression 577 

of ADS is maximal within the boundaries of phenotype 7306_3. We perform this 578 

procedure varying the number of free enzymes from 1 to 4. The results are summarized 579 

in Table 1. Adjusting the expression level of the enzymes PMK, IDI, PMD, and ISPA as 580 

indicated in the last row of Table 1, would allow the resulting hypothetical strain mbis3* 581 

(Fig. 4C) to support a maximal ADS expression of 838 µM, which is higher than the 582 

ADS level in strain 10kADS (678 µM). The effect of increasing ADS to this level on 583 
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amorphadiene productivity is shown in Fig. 4D by the intersection of the orange curve 584 

and the dashed vertical line. As ADS is increased, so does the production flux through 585 

the amorphadiene network. The average slope of the orange curve to the left of the 586 

vertical dashed line is 0.82 and agrees well with a predicted logarithmic gain for 587 

phenotype 7306_3 of L(rout, ADS)=1.0. The net effect of adjusting the concentrations of 588 

PMK, IDI, PMD and ISPA is to extend the region of validity of phenotype 7306_3 589 

(compare Figs. 4A and 4C). Consequently, the network could support a productivity of 590 

608 µM/min, which represents a 4.5-fold increase compared with the experimental 591 

productivity for strain 10kADS (135 µM/min or 2.25 µM/s). 592 

 593 

Table 1. Enzyme Perturbations Enabling Higher Expression Levels of ADS. Maximal 594 
ADS expression values supported by phenotype 7306_1 are listed for multiple conditions. 595 
The first row corresponds to the maximal ADS expression supported by the base strain 596 
mbis3. Rows 2 to 5 represent hypothetical strains resulting from perturbations of a given 597 
set of enzymes (first column) by an amount indicated in the second column.  598 
 599 

Perturbed Enzymes Fold-Change 
From mbis3 

Maximal ADS 
Expression 
Value (µM) 

ADS +2.3 91.21 

ISPA, ADS +1.79, +4.12 163 

PMD, ISPA, ADS +1.69, +3.03, +6.97 276 

IDI, PMD, ISPA, ADS +1.59, +2.69, +4.82, +11.1 439 

PMK, IDI, PMD, ISPA, ADS +1.91, +3.04, +5.14, +9.2, +21.18 838 

 600 
 601 

Note that the intervention strategies listed in Table 1 can also be obtained from a 602 

manual boundary analysis for phenotype 7306_3 (Eqs. S74-S85). For instance, the 603 

maximal ADS value in the first row of Table 1 is dictated by Eq. S79. The same 604 
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equation also points to ISPA as the first enzyme whose level needs to be fine-tuned to 605 

allow for a higher ADS expression. Furthermore, Eq. S78 identifies PMD as an 606 

additional target, followed by IDI and PMK, which are identified through Eqs. S74 and 607 

S77, respectively. An automated analysis of phenotypic boundaries by linear 608 

programming will be the method of choice as the network’s scope and number of 609 

inequalities increase.  610 

Since experimentally implementing the fold-change values listed in Table 1 for 611 

perturbed enzymes might be challenging because of technical difficulties associated 612 

with continuous titration of enzyme levels, integer linear programming (Schrijver, 1986) 613 

provides an alternative approach to increase the biological feasibility of the strategies 614 

identified from a boundary analysis for phenotype 7306_3. From an experimental point 615 

of view, these intervention strategies could be implemented more easily, for instance, by 616 

fine-tuning the copy number of plasmids harboring target enzymes. The biological 617 

feasibility of the predictions could be further refined by considering appropriate 618 

constraints on the total number of plasmids that can be supported by the cell.  619 

 620 

4.4 Modulating Feedback Inhibition as a Valid Engineering Strategy  621 

 622 

Mevalonate kinase (MK), the first enzyme of the pathway, is subjected to feedback 623 

inhibition by the pathway intermediate farnesyl diphosphate (FPP) (Miziorko, 2011). 624 

Weaver et al. (2015) hypothesized that alleviating feedback inhibition in MK could 625 

increase amorphadiene productivity. A logarithmic gain analysis for biochemical 626 

phenotype 7306_3 (Fig. 3), which contains the operating point of the base strain mbis3 627 
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(Fig. 4A), indicates that the pathway flux (rout) is insensitive to perturbations in KI, FPP, 628 

i.e., L(rout, KI,FPP) = 0.0. Similarly, but using numerical simulation, Weaver et al. (2015) 629 

observed no significant effect of perturbations in KI,FPP on pathway flux. To 630 

experimentally validate this observation, the authors constructed and characterized 631 

strain saMK containing a homologous mevalonate kinase from Staphylococcus aureus 632 

with a 24-fold weaker KI, FPP. In line with our logarithmic gain analysis and numerical 633 

simulations by Weaver et al. (2015), the experimental amorphadiene production in 634 

strain saMK was not sensitive to mevalonate kinase inhibition.  635 

Table 2. Biochemical Phenotypes Responding to Changes in KI,FPP. Relevant 636 
logarithmic gains and phenotypic volumes in logarithmic space are listed for ten 637 
phenotypes for which L(rout, KI,FPP) ≠ 0. In each case, the pathway flux (rout) can be 638 
increased by modifying parameter values associated with either MK or ADS. Phenotypic 639 
volumes are calculating using the tolerance method, which provides an underestimate 640 
(Valderrama-Gómez and Savageau, 2021). By virtue of its volume, phenotype 6153 is 641 
considered as the most robust to parametric perturbations.  642 
 643 

Phenotype  
Number 

Mevalonate Kinase Amorphadiene Synthase 
Log  

Volume   L(rout, KI,FPP) 
L(rout, MK)  
L(rout, Mev) 
L(rout, kcat1) 

L(rout, KM1) L(rout, ADS) 
L(rout, kcat7) L(rout, KM7) 

6153 0.5 0.5 -0.5 0.5 -0.5 2.72e+15 
6157 0.5 0.5 -0.5 0.5 -0.5 3.07e+14 

7305_3 0.5 0.5 -0.5 0.5 -0.5 1.65e+14 
7297_3 0.5 0.5 -0.5 0.5 -0.5 1.1e+14 
7329_3 0.5 0.5 -0.5 0.5 -0.5 3.22e+12 
7333_3 0.5 0.5 -0.5 0.5 -0.5 1.33e+12 
7349_3 0.5 0.5 -0.5 0.5 -0.5 4.88e+11 
7309_3 0.5 0.5 -0.5 0.5 -0.5 4.51e+10 
7301_3 0.5 0.5 -0.5 0.5 -0.5 2.73e+10 
7345_3 0.5 0.5 -0.5 0.5 -0.5 1.41e+10 

 644 

We now employ the phenotype-centric approach to answer two related 645 

questions: a) does a biological phenotype exist for which modulating the MK feedback 646 
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inhibition is a valid strategy to increase amorphadiene productivity? and b) what is the 647 

effect of completely removing MK inhibition on the global landscape of valid engineering 648 

strategies increasing amorphadiene production? We use Fig. 3 to answer the first 649 

question. A logarithmic gain of L(rout, KI,FPP) = 0.5 in the fourth phenotypic group points 650 

to the existence of ten different biochemical phenotypes harboring operating points for 651 

which increasing values of KI,FPP  lead to an increased amorphadiene productivity. 652 

These phenotypes are listed in Table 2, along with their phenotypic volumes in 653 

logarithmic space (a proxy of phenotypic robustness) and non-zero logarithmic gains for 654 

pathway flux. To demonstrate the power of the phenotype-centric strategy to efficiently 655 

explore the Design Space using linear programming, we aim to identify an operating 656 

point within phenotype 6153 fulfilling two conditions: KI,FPP > 1.9 µM and rout > 50 657 

µM/min. These constraints are employed to identify an operating point which is 658 

comparable with that of the base strain mbis3. Starting from the mbis3 operating point, 659 

parameter values of a “free set” (which includes KI, FPP) are allowed to vary within the 660 

range 10-3 to 103. If phenotype 6153 is valid within the resulting high-dimensional cube, 661 

the tolerance for KI,FPP is calculated (minimum and maximum value) using linear 662 

programming. This procedure was initially performed for free sets containing only 663 

protein concentrations (MK, PMK, PMD, IDI, ISPA and ADS). The underlying idea was 664 

to identify an operating point within phenotype 6153 that could be experimentally 665 

reached starting from mbis3 by simply adjusting the expression of a given set of 666 

enzymes. However, this was not possible for free sets of any size (n=1, 2, …, 5 and 6). 667 

Thus, free sets were expanded to consider not only protein concentrations, but also 668 

enzyme kinetic parameters. Fig. 5A shows the location of one of such operating points 669 
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(white circle) within phenotype 6153 obtained using this procedure. We term this 670 

operating point mbis3**. Reaching mbis3** requires fine tuning ADS, ISPA, and KM7 to 671 

have values of 163 µM, 105.9 µM and 1,000 µM, respectively, while keeping all other 672 

kinetic parameters of the base strain mbis3 unchanged. As shown in Fig. 5B, alleviating 673 

MK feedback inhibition in the hypothetical strain mbis3** leads to a 4-fold improvement 674 

in productivity. This is in stark contrast with the experimental performance of strain 675 

saMK, whose amorphadiene productivity remained almost unchanged after alleviating 676 

MK inhibition by the same extent.  677 

 678 

 679 
 680 
Figure 5. Design Space and Titration Plots for Phenotype 6153. A. The relative 681 
locations of strains mbis3** (white circle) and saMK** (white triangle) within phenotype 682 
6153 are shown. Mbis3** is a hypothetical strain resulting from setting ADS = 163 µM, 683 
ISPA = 106 µM and KM7 = 1,000 µM while keeping all other kinetic parameters of the base 684 
strain mbis3 unchanged. Strain saMK* is also a hypothetical strain that results from 685 
alleviating MK inhibition in mbis3** by increasing its KI,FPP from 1.9 µM to 46 µM.  B. The 686 
estimated amorphadiene productivity for mbis3** corresponds to 27 µM/min and is lower 687 
than the base strain mbis3, which corresponds to roughly 48 µM/min (Fig. 5 in Weaver et 688 
al., 2015). The predicted amorphadiene productivity of strain saMK* is 100 µM/min, which 689 
is over 2.5-fold higher than the experimentally determined value for the strain saMK (Fig. 690 
5 in Weaver et al., 2015). The slope of the titration plot agrees well with a predicted 691 
logarithmic gain of L(rout, KI,FPP) = 0.5 for phenotype 6153. 692 
 693 
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We now turn our attention to the second question: what is the effect of completely 694 

removing MK inhibition on the global landscape of valid engineering strategies 695 

increasing amorphadiene production? As demonstrated in Section 4.2, the phenotype-696 

centric approach can be used to elucidate the mechanistic link between a network’s 697 

architecture and its function. Thus, we explore in silico the structural effect of completely 698 

removing MK feedback inhibition (Fig. S5A) on engineering strategies increasing 699 

production flux. As shown in Fig. S5B, removing KI,FPP from  Eqs. S16 eliminates 700 

phenotypic groups I and IV from the original landscape of metabolic engineering 701 

strategies (Fig. 3). Interestingly, and as a direct consequence of this structural 702 

modification, a logarithmic gain analysis suggests that overexpressing ADS or 703 

increasing its turnover number kcat7 would no longer increase pathway flux, as was the 704 

case for strain mbis3 (located within phenotypic group I).  A simple mathematical 705 

analysis (refer to Supplementary Section 5) can be used to calculate equivalent 706 

operating points for the modified network without feedback inhibition. Figs. S5C and 707 

S5D show the location of two such operating points. Since in each case the operating 708 

points are located on a phenotypic boundary involving MK, overexpressing the 709 

concentration of this enzyme to increase amorphadiene productivity can potentially lead 710 

to metabolic imbalances and a decreased product yield. 711 

 712 

 713 

 714 

 715 

 716 
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5. Discussion 717 

 718 

The notion that predictions from kinetic models are context specific and only informative 719 

under the conditions for which the underlying kinetic model has been parameterized is 720 

commonly accepted (Chowdhury et al., 2015). However, to the best of our knowledge, a 721 

mathematical formalism that generates predictions while providing the biological context 722 

in which those predictions are valid is still missing in the field of rational Metabolic 723 

Engineering. In Section 4.2, we showed that the phenotype-centric strategy generates 724 

predictions from mechanistic models without requiring parameterization or numerical 725 

integration of the underlying system of differential equations. Additionally, we showed 726 

that the context in which model predictions are valid is provided by the boundaries of 727 

the biochemical phenotype from which those predictions stem (Fig. 4B). For the case 728 

study analyzed here, Weaver et al. (2015) increased amorphadiene productivity by 729 

overexpressing the enzyme ADS from a low level in the base strain mbis3 to a high 730 

level in the production strain 10kADS. Since the biological context in which the positive 731 

effect of ADS overexpression on productivity was not considered to fine-tune ADS 732 

expression experimentally, a too high ADS level in strain 10kADS effectively placed its 733 

operating point within a pathological region of the Design Space (Fig. 4B). 734 

Consequently, metabolic intermediates (MevP, MevPP and IPP) have the potential to 735 

accumulate to toxic levels (Fig. 2D) in this strain. By confining ADS overexpression to 736 

the boundaries of the physiological phenotype 7306_3, as shown in Fig. 4B, the 737 

resulting production strain could have the potential to outperform strain 10kADS in 738 
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terms of product yield, due to balanced intracellular metabolite levels and a reduced 739 

protein burden. Strains mbis3a and 10kADSb in Fig. S3 illustrate this point.  740 

The role of feedback inhibition is critical to the operation of the amorphadiene 741 

network. It is essential for the implementation of the integral control that matches input 742 

flux to the output flux that is determined by the saturation of ADS. Elimination of this 743 

feedback inhibition can cause one of three behaviors, depending on the uncontrolled 744 

rate of the mutated MK: a) If the uncontrolled rate of MK is greater than that of ADS, 745 

there will be a continual increase of material withing the pathway (a pathological 746 

phenotype characterized by a blowup), b) if the uncontrolled rate of MK is less than that 747 

of ADS, there will be a continual decrease of material withing the pathway (a 748 

“blowdown”).  However, in this case ADS will eventually become unsaturated, and the 749 

pathway will come to a new steady state and c) if the uncontrolled rate of MK is equal to 750 

that of ADS, as described in the previous section and Supplementary Section 5, there 751 

will be a steady state that is marginally stable and any transient reduction of metabolites 752 

from the pathway will lead to another marginally stable steady state with less material 753 

being held within the system. There is no unique steady state solution but rather a 754 

marginally stable manifold of solutions. The detailed analysis of a simplified system that 755 

clearly exhibits this tripartite behavior can be found in the appendix of Savageau (1969).   756 

The phenotype-centric modeling strategy enables a computationally efficient 757 

exploration of the System Design Space at two different levels of detail. The first one is 758 

conducted at a global scale, involves the enumeration of the system’s phenotypic 759 

repertoire (Section 4.1) and the semi-quantitative characterization of phenotypic 760 

properties, such as robustness, dynamic behavior, and logarithmic gains (Section 4.2). 761 
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This step is automatically performed by the Design Space Toolbox v.3.0 (Valderrama-762 

Gómez et al., 2020) and does not require a priori knowledge of kinetic parameters. In 763 

contrast, the second level involves specific numerical values for the system’s 764 

parameters and is relevant when identifying a robust operating point within a 765 

biochemical phenotype of interest (Valderrama-Gómez et al., 2020), maximizing the 766 

region of validity for a specific phenotypic trait (Section 4.3), or identifying efficient 767 

transitions in parameter space between biochemical phenotypes (Section 4.4). At this 768 

level of detail, ensemble modeling approaches addressing parametric uncertainties by 769 

dense sampling (Tran et al., 2008; Lee et al., 2014) could benefit from the ability of the 770 

phenotype-centric modeling strategy to identify physiological phenotypes. This synergy 771 

would dramatically speedup model parameterization by restricting parameter sampling 772 

to regions in Design Space leading to stable, physiological models. Further, 773 

conventional optimization methods, such as gradient descent (Ruder, 2017), Newton’s 774 

method (Polyak, 2007), and evolutionary algorithms (Bäck and Schwefel, 1993), among 775 

others, could also benefit from an efficient identification of regions of interest in Design 776 

Space exhibiting desired properties. 777 

Regardless of the level in which the Design Space is explored, numerical 778 

simulation of the underlying system of differential equations (e.g., Figs. 2B-D, 4B, 4D 779 

and 5B) is not required in the context of the phenotype-centric modeling strategy and is 780 

only performed in this work to confirm our predictions. Overall, we observed a high 781 

accuracy in our predictions, as evidenced by (a) logarithmic gains estimated for 782 

biochemical phenotypes 7306_3 (Fig. 4B and D) and 6153 (Fig. 5B) closely matching 783 

the slopes of the respective titration curves, and (b) successful prediction of the full 784 
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system’s dynamics using an eigenvalue analysis of relevant biochemical phenotypes 785 

(Fig. 2 and Table S3). Note that deviations in our predictions from the actual behavior of 786 

the full system are a natural consequence of the mathematical definition of biochemical 787 

phenotypes. Deviations are expected to be low about a phenotype’s centroid and higher 788 

at phenotypic boundaries, where, by definition, there is no dominance (Savageau and 789 

Lomnitz, 2014).   790 

Even though the mechanistic model analyzed here only considered enzyme-791 

catalyzed metabolic processes, the mathematical formalism behind the phenotype-792 

centric approach is general and can handle models covering protein and mRNA 793 

synthesis with multiple regulatory layers at the transcription, translation and post-794 

translation levels. The only formal requirement is that the mechanisms are described by 795 

fundamental chemical and biochemical kinetics, which can be recast into the GMA form 796 

as exemplified in the Supplementary Section 2. One additional aspect to consider when 797 

building and analyzing kinetic models for Metabolic Engineering applications is the 798 

effect of enzyme overexpression on proteome allocation. This effect will become 799 

particularly important when one enzyme makes up a significant percentage of the 800 

overall proteome due to enzyme overexpression. Note that the effect of ADS 801 

overexpression on pathway enzyme levels was not considered in the titration studies 802 

shown in Figs. 4B and 4D. However, this can be done by constraining the total 803 

concentration of pathway enzymes (or in general, the total proteome) to a given value. 804 

We recently expanded the Design Space Toolbox (Valderrama-Gómez et al., 2020) to 805 

handle the system of algebraic differential equations resulting from such considerations 806 
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and we expect to explore the effect of proteome allocation constraints for kinetic models 807 

in a future work.  808 

We believe that the phenotype-centric strategy has the potential to advance the 809 

field of rational Metabolic Engineering by (a) providing an efficient way to explore the 810 

Design Space at different levels of detail, (b) allowing the evaluation of model 811 

hypothesis in a structured manner, (c) enabling metabolic network optimization based 812 

on kinetic models without requiring a priori knowledge of parameter values, and (d) 813 

serving as a scaffold for the development of kinetics-based algorithms for rational 814 

Metabolic Engineering. Using the amorphadiene biosynthetic network as a case study, 815 

we demonstrated each one of these advantages and provided a mechanistic context for 816 

the experimental work of Weaver et al. (2015). We envision next generation 817 

development of strain-design algorithms and methods for rational pathway optimization 818 

to exploit the predictive power of mechanistic models by leveraging a modeling 819 

paradigm that is more focused on biochemical phenotypes and their transitions and 820 

relies less on first requiring specific parameter values and numerical simulation.  821 
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