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NUMERICAL EVALUATION OF EFFECTIVE THERMAL PROPERTIES FOR 

MATERIALS WITH VARIABLE POROSITY 
 

P. STAŇÁK, J. SLÁDEK, V. SLÁDEK, S. KRAHULEC1 

 
In this paper a computational homogenization technique is applied to thermal analyses in porous 

materials. A volume fraction of pores on the microstructural level is the key factor that changes the 

macroscopic thermal properties. Thus, the distribution of thermal fields at the macroscopic level is 

analysed through the incorporation of the microstructural response on the representative volume 

element (RVE) assuming a uniform distribution of pores. For the numerical analysis the scaled 

boundary finite element method (SBFEM) is introduced to compute the thermal response of RVE. 

The SBFEM combines the main advantages of the finite element method (FEM) and the boundary 

element method (BEM). In this method, only the boundary is discretized with elements leading to 

the reduction of spatial dimension by one, similarly as in the BEM. It reduces computational 

efforts in the mesh generation and CPU time. The proposed method is used to study square RVE 

with a circular and elliptic pore under the thermal load. Dimensions of the pore are varied to obtain 

different volume fractions of matrix material. Numerical results for effective thermal 

conductivities obtained via SBFEM modelling show an excellent agreement with the finite 

element analysis using commercial software COMSOL Multiphysics. 

 

Keywords: thermal conductivity, effective material properties, representative volume element 
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1. Introduction 

 

Numerical modelling of heat transfer, solid mechanics, fluid flow, electromagnetics and 

other physical, chemical or civil engineering sciences have experienced an intense development 

in the past several decades. Several tools are currently available for the analysis of heat transfer 

problems, based on analytical formulations (Carslaw and Jaeger, 1959) or numerical methods, 

such as the finite difference method (FDM) (Ozisik, 1994; Juncu, 2008), the finite element 

method (FEM) (Bathe, 1976), the finite volume method (FVM) (Cai, Mandel and McCormick, 

1991) and the boundary element method (BEM) (Brebbia, Telles and Wrobel, 1984; Ochiai, 

2001; Abreu, Canelas and Mansur, 2013). In recent years, a different type of numerical method 

has been developed as an alternative to the well established mesh-based methods, known as 

meshless methods or element free methods. Among many meshless methods available the 

meshless MLPG method with a Heaviside step function as the test function (Atluri, 2004) has 

been successfully applied to solve heat conduction (Sladek et al., 2003; Abasbandy and 

Shirzadi, 2010) and thermoelasticity (Sladek et al., 2006; 2009). Application of the MLPG 
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method to analysis of a broad range of scientific problems is summarized in the review article 

by Sladek et al. (2013). 

The above mentioned numerical methods have several drawbacks and limitations due to their 

inherent nature. Disadvantages of FEM are well-known, including locking phenomena in 

problems which involve constraints, difficulty to satisfy continuity requirements (especially in 

plates and shells), sensitivity to mesh distortion, etc. Many engineering problems cannot be 

efficiently solved by BEM because of missing fundamental solution. A drawback of meshless 

methods is a higher CPU time compared to regular FEM. 

Undoubtedly, the scaled boundary finite element method (SBFEM) (Song and Wolf, 1997) 

belongs to interesting computational methods. It is a semi-analytical method developed on the 

assumption of separation of spatial variables. This method not only combines the main 

advantages of the finite element method and the boundary element method (BEM) but also has 

unique features of its own. The discretization of the boundary is based on the standard finite 

element interpolation functions. In contrast to the boundary element method, no fundamental 

solution is required, which permits to analyze general boundary value problems. In this method, 

only the boundary is discretized, which spares the human and computational efforts in a mesh 

generation. To model the response of structures subjected to thermal loading, Song (2006) 

developed a scaled boundary finite element solution where the nodal loads due to the change in 

temperature are treated as a non-homogeneous term in the resulting ordinary differential 

equations. SBFEM is very efficient in solving problems involving the fracture. The asymptotic 

behaviour of gradients of primary fields of any kind near the crack tip is analytically represented 

in the “stress” solution. Applications to thermo-piezoelectricity in the fracture mechanics have 

already been reported (Li et al., 2015). 

The permanent demand for new innovations and applications is also a driving force for the 

development of new materials. Recent applications of porous materials for various advanced 

applications also set new challenges for efficient computational modelling. The correct 

treatment of materials with voids seems to be an adequate tool to describe also materials with 

empty pores. For voided isotropic or anisotropic materials, the influences of voids on the 

effective properties have been studied by many authors (Christensen, 1993; Jasiuk et al., 1994). 

The voided material, a typical heterogeneous material, consists of clearly distinguishable 

constituents or phases that show different physical material properties. The behaviour of 

inhomogeneous materials is determined by the relevant material properties of the constituents 

and by their geometry and topology. Inhomogeneous materials can be studied at a number of 

length scales ranging from the sub-atomic scales to the scales for which continuum descriptions 

are best suited. 

An engineering analysis and design of porous solids requires a homogenization approach 

since numerical computations of macro-scale structures are extremely expensive if the full 

micro-structural topology is to be modelled. Via the homogenization, the response on the macro 

level includes microstructural features of the material behaviour. Many analytical approaches 

such as Mori-Tanaka model (Mori and Tanaka, 1973; Benveniste, 1987) are utilized to get 

effective material properties. These schemes can be applied to problems such as the 

determination of the effective thermal conductivity of porous rocks in partially saturated 

conditions (Gruescu et al., 2007). In the present paper, a pure numerical approach has been 

developed to evaluate effective material properties in voided heat conducting ceramic material. 

Numerical analyses are performed on the representative volume element (RVE) (Hill, 1963). 

The RVE contains sufficient microstructural information to be a representative of any similar 

volume taken from any location in the voided solid. 
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In the present paper, the scaled boundary finite element method (SBFEM) is developed for 

2D boundary value problem in a porous heat conducting solid under stationary boundary 

conditions. The eigenvalue decomposition is used to solve the scaled boundary finite element 

equation (Song and Wolf, 1997). The temperature field is expressed as a series of power 

functions of the radial coordinate. The SBFEM is applied to a numerical solution of the specific 

boundary value problems in the RVE of the material with voids to compute effective thermal 

conductivities. The present analyses give additional information concerning how the 

homogenized thermal conductivities of the material vary in terms of porosity and also in terms 

of pore shape. 

 

2. Governing equation of heat conduction 

 

The stationary heat transfer by conduction to calculate the temperature  T x , at a point 

 1 2( , ) ( , )x y x x x of the spatial 2D solid domain is given by the generalized Laplace equation 

in Cartesian coordinates: 

 , , 0ij ijk T x y                   (1) 

where ijk is the thermal conductivity tensor. Equation (1) can be rewritten into the matrix form 

    0
T

L q                   (2) 

where the linear differential operator  L is given as 

 
x

L

y

 
  

  


 
  

                 (3) 

and the vector of heat flux can be obtained as 

      ,q k L T x y  .               (4) 

For orthotropic material one can define thermal conductivity matrix  k as 

  11

22

0

0

k
k

k

 
  

 
                 (5) 

The following essential and natural boundary conditions are assumed on the global boundary

 : 

( , ) ( , )T x y T x y      on      
T , 

,( , ) ( , ) ( , ) ( , )ij j iq x y k T x y n x y q x y         on     q , 

where  ,in x y is the unit outward normal vector on the global boundary, 
T is the part of the 

global boundary with the prescribed temperature and on q  the heat flux  ,q x y  is prescribed. 
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3. Scaled boundary finite element method for heat conduction 

 

In the present paper, the scaled boundary finite element method (SBFEM) is introduced to 

calculate the temperature field in heat conduction problems. The basic concept of SBFEM is 

shown in Figure 1. In this method, a scaling centre O is selected at a point from which the whole 

boundary is directly visible. By scaling the boundary S in the radial direction with respect to the 

scaling centre O with a scaling factor  which is smaller than 1 for bounded domain and larger 

than 1 for unbounded domain, the whole analyzed domain is covered. 

 

 

 
 

 

Figure 1. The scaled boundary polygon representation 

 

Figure 1 illustrates the basic idea of the scaled boundary finite element method for a 2D 

problem with domain V . Only the boundary S  of the domain is discretized with line elements 
eS  when applying the scaled boundary finite element method. Then, the whole analyzed 

domain V is decomposed into triangular sectors eV  associated with the boundary line elements
eS . The global Cartesian coordinates ( , )x y of a point of a line element on the boundary 

eS  

(superscript e  represents element) are parameterized as   

     x N x     ,            y N y     , 

with   being the local (circumferential) coordinate [ 1, 1]  ,       1 2,N N N      

is the 1 2 matrix of shape functions  1 (1 ) / 2N    ,  2 (1 ) / 2N    , and { }x , { }y  

are 2 1 vectors composed of the Cartesian coordinates of two nodal points on the boundary 

element, i.e.  
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   1 2{ } , ( 1), ( 1)
T T

x x x x x      ,      1 2{ } , ( 1), ( 1)
T T

y y y y y      .  

The analyzed domain is described by scaling the boundary with the dimensionless radial 

coordinate   pointing from the scaling centre O ( 0  ) to a point on the boundary ( 1  ). 

The Cartesian coordinates  1 2x x of a point inside the domain are parameterized as  

     1( )x x N x              (6) 

     2( )x y N y              (7) 

where   and   are called the scaled boundary coordinates.  

The scaled boundary coordinates in two dimensions resemble the polar coordinates. The 

polar coordinates in Figure 1 are expressed as   

       2 2r r x y             (8) 

 
 

 
arctan

y

x


 


     (9) 

The transformation between the components of the gradient operator in the Cartesian 

coordinate system and scaled boundary coordinate system is shown as  

1

2

ˆ( )
x

J

x


 



   
                

       

    ,       
1

1

2

ˆ( )
x

J

x


 





    
                 
      

 (10) 

with the Jacobian matrix defined as  

 
1, 2,

1, 2,

ˆ
x x

J
x x

 

 

 
 

     
 

   (11) 

where 
1,x 

, 2,x  , 
1,x 

 and 2,x   are determined from equations (6) and (7). Then,  Ĵ   
 

 is 

rewritten into the factorized form      

 
   

   
 

   
11

1 0 1 0
ˆ ,

0 0

1 0
ˆ

0 1/

x y
J J

x y

J J

 

 
  

  

  


 



    
            

     

 
        

 

   (12) 

with the radial coordinate   being separated from the local coordinate   on the 

boundary. The matrix  J    is the Jacobian matrix on the boundary ( 1  ), i.e.  

   
   

   
ˆ 1

x y
J J

x y
 

 
 

 
 

 
         

  

 ,   
 

   

   
1 1

| |

y y
J

J x x





 


  





  
   
  

  (13) 

and its determinant is  
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         | J | x y y x
 

    
 

  .   (14) 

The linear differential operator [ ]L  in equation (3) is transformed to the coordinates    as  

   1 21
[ ] [ ]L b b 

  

 
     

   (15) 

with  

 
 

 

 
1 1 y

b
| J | x








 





 
       

 ,     (16) 

 
 

 

 
2 1 y

b
x| J |






 
     

 
 .   (17) 

The temperature field  ,T   at any point inside the domain 
eV is obtained by interpolating 

 T   as with the shape functions  eN  as follows 

   { ( )} { }e

e

V
T N T        .             (18) 

Substituting equations (15) and (18) into equation (4) leads to  

               1 21
( )

e

e e

V
q k B T k B T


     


         , (19) 

where    1 1[ ( )]e eB b N         ,    2 2

,[ ( )]e eB b N         . 

The scaled boundary finite element equation for temperature field is derived as (Song and 

Wolf, 1997; Li et al., 2015) 

 2 0 0 1 1 2
, ,[ ]{ ( )} [ ] [ ] [ ] { ( )} [ ]{ ( )} 0TE T E E E T E T                  (20) 

where the coefficient matrices 
0 1 2[ ], [ ], [ ]E E E are formed by assembling the element 

coefficient matrices 

1
0 1 1

1 1

1
1 2 1

1 1

1
2 2 2

1 1

[ ] [ ] [ ][ ] | ( ) |

[ ] [ ] [ ][ ] | ( ) |

[ ] [ ] [ ][ ] | ( ) |

n
e T e

e

n
e T e

e

n
e T e

e

E B k B J d

E B k B J d

E B k B J d

 

 

 



 



 



 

   

   

   

            (21) 

The heat flux through the boundary is equilibrated in the discretized form by the vector 

{ ( 1)}R    corresponding to 

  0 1
,( ) [ ]{ ( )} [ ]{ ( )}R E T E T                 (22) 

that is defined at interior points which are having the character of density of heat sources.  

The solutions for  T   in Eq. (20) are expressed in a power function by following the 

eigenvalue decomposition technique (Song and Wolf, 1997) for the bounded domain as 
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     
1

tt
i

n
t

ii
i

T c
  



                (23) 

where tn is the total number of nodes, 
t
i are the negative eigenvalues and  ( )t

i are the 

corresponding eigenvectors of standard eigenproblem. They can be interpreted as independent 

temperature modes. Substituting Eq. (23) into Eq. (19) one obtains the approximation of the 

heat flux vector within the sector eV    

     1

1

, ( )
tt
i

e e

n

qi iV Si

q c
     



              (24) 

where the heat flux modes are defined as 

   
1

( ) ( )
e

n

qi qi
S

e

 


   ,            1 ( ) 2 ( )( )
e

e t t e t

qi i i i
S

k B B                (25) 

The integration constants  c are specified as follows 

         
1

( ) ( ) ( )
1 1... ( 1)
t t t

NNc T 



     
  

          (26) 

with  ( 1)T   being the vector of nodal temperatures on the boundary (where 1  ). 

The conductivity matrix of individual subdomain is given according to (Song and Wolf, 

1997) as 

             
1

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1... ...
R R R t t t

N NN NK


 
          
      

       (27) 

where  ( )R
i  represents the heat source mode that is obtained from (22) by taking  ( )

1
t



instead of { ( )}T  . The global conductivity matrix is assembled using the conductivity matrices 

of each subdomain that discretize the model. The standard finite element assemblage and 

solution procedures can be utilized at this point. The global system of equation is solved after 

enforcing appropriate boundary conditions in order to obtain the nodal temperature at the 

boundary  ( 1)T    as 

      
1

1T K F


                (28) 

with     1F R    being the vector given by prescribed heat fluxes at the boundary nodes. 

 

4. Computation of effective thermal conductivities 

 

Let us consider a rectangular RVE sample 1 2 1 2{ ( , ); , [0, ], }x x x x w   x . Inside the 

square RVE domain there are generally distributed some micro-structural empty voids with 

arbitrary geometry. Then, the average values of the conjugated fields within the analysed 

sample are given as 

1 2 2
1 1 2 2 2 1 102

0 0

1 w w

x w x w x
q w q dx q q x dx

w
  

         
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2 1 1
2 2 1 1 1 2 202

0 0

1 w w

x w x w x
q w q dx q q x dx

w
  

         
 ,          (29)     

and the integrands are obtained from the solution of considered boundary value problems. 

If the boundary conditions are selected as shown in Figure 2, the average values of the 

secondary fields are given as 

 ,1 1T const  ,  ,2 0T  .             (30) 

 

 

 

Figure 2. Boundary conditions appropriate for evaluation of 
11

effk  

 

Then, we can get the following effective thermal conductivity  

1

11

1

eff
q

k


  .               (31)   

If the boundary conditions are selected as shown in Figure 3, the average values of the 

secondary fields are given as 

,2 2T const  ,  ,1 0T    .             (32) 
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Figure 3. Boundary conditions appropriate for evaluation of 
22

effk  

 

Now, we can calculate the following effective material coefficients  

2

22

2

eff
q

k


                 (33) 

where the average values of the conjugated fields 
1q , 

2q  are given by formulae (29), with 

the integrands being obtained from the solution of the considered boundary value problem. 

Thus, having solved the above considered boundary value problems in the RVE sample; we 

can calculate all the effective thermal conductivity coefficients in materials with empty voids.  

 

5. Numerical examples 

 

As a numerical example single circular and elliptic void in square domain  w w  is 

analyzed, where various values of void radii are considered thus specifying various volume 

fractions of pores. Two ceramic materials are considered in order to show the effect of varying 

volume fraction of pores on thermal conductivities. The material parameters [Li at al. (2015)] 

corresponding to cadmium selenide ceramic material are given as k11 = 50 WK
-1

m
-1

, k22 = 75 

WK
-1

m
-1

 and for alumina (Al2O3) k11 = 35 WK
-1

m
-1

, k22 = 39 WK
-1

m
-1

. 

Since the RVE is not a simply-connected domain, it is divided into polygons and each 

polygon is treated as a scaled boundary finite element subdomain (see Fig. 1). There are needed 

at least 4 subdomains to solve this problem. We have considered 12 polygons in numerical 

analyses (Fig. 4) with getting quasi uniform fictitious triangulation which is appropriate for 

approximation accuracy. Only boundaries of subdomains need to be discretized with line 

elements. Three nodes elements are used for discretization of subdomain boundaries. There are 

totally 108 degrees of freedom (DOFs) in this mesh.  
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Figure 4. Discretization of a square domain with a circular and elliptic void in the SBFEM 

 

For comparative purposes we have analyzed the same problem by the finite element method 

(FEM). The software COMSOL has been applied. We used very fine mesh, where various 

numbers of elements have been considered in dependence on the radius of the circular void. 

Total number of elements 9689 and 5240 has been used for minimum porosity (volume fraction 

of 0.05) and maximum porosity with 0.5, respectively. The volume fraction of voids for the 

circular void is defined as 
2 2

0 /f r w , where 
0r  is the radius of the circular void. For the 

elliptic void one gets 
2/f ab w , where a and b are its major and minor semi-axes. Aspect 

ratio characterizing the shape of an ellipse is given as c b a . 

The numerical results for effective material parameters are presented in Figures 5 – 8. The 

fixed numbers of discretized lines by nodes were used in SBFEM for various radii of circular 

and elliptic voids. Three aspect ratios are considered assuming 1.0c   represents a circular 

void. Note that due to the flattening of an ellipse with 0.5c  , volume fraction of voids is 

limited to 0.3f  . The effective thermal conductivities 11

effk  and 22

effk  are shown in Figure 5 

and 6, respectively for cadmium selenide and in Figure 7 and 8 for alumina, respectively. They 

have a similar decreasing tendency with growing porosity. One can observe that the shape of 

void has a significant effect on effective thermal conductivities. While the values of 
11

effk

decrease less compared to the circular void, the values of 22

effk show significant decrease for 

smaller aspect ratio. Very good agreement between SBFEM and FEM results is observed. 
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Figure 5. Variation of effective thermal conductivities 
11

effk on porosity for cadmium selenide 

 

 
 

Figure 6. Variation of effective thermal conductivities 22

effk on porosity for cadmium selenide 
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Figure 7. Variation of effective thermal conductivities 
11

effk on porosity for alumina 

 

 

Figure 8. Variation of effective thermal conductivities 22

effk on porosity for alumina 
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6. Conclusions 

 

The scaled boundary finite element method has been applied to solve heat conduction 

problems for the RVE to get effective material properties of the material with voids. For the 

reliable functioning and design of voided materials it is necessary to use advanced numerical 

methods. The applicability of the proposed numerical method is demonstrated by the numerical 

examples assuming square RVE with a central circular pore. Obtained effective thermal 

conductivities decrease significantly with a growing volume fraction of pores. For elliptic pore 

different trends are observed for thermal conductivities depending on the aspect ratio of an 

elliptic void. 

The numerical results are compared with the finite element method results and a very good 

agreement is observed. Applicability, accuracy and efficiency of the SBFEM method are clearly 

demonstrated.  
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