archives-ouvertes

Radio Wave Propagation Simulation on the Cray T3D

Frédéric Guidec, Pierre Kuonen, Patrice Calégari

» To cite this version:

Frédéric Guidec, Pierre Kuonen, Patrice Calégari. Radio Wave Propagation Simulation on the Cray
T3D. Parallel Computing (ParCo), 1997, Bonn, Germany. pp.155-162. hal-00495036

HAL Id: hal-00495036
https://hal.archives-ouvertes.fr/hal-00495036

Submitted on 24 Jun 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.archives-ouvertes.fr/hal-00495036
https://hal.archives-ouvertes.fr

Radio Wave Propagation Simulation on the Cray T3D

Frédéric Guidec, Pierre Kuonen and Patrice Calégari

Swiss Federal Institute of Technology,

Computer Science Theory Laboratory,

CH-1015 Lausanne, Switzerland.

E-Mail: {guidec|kuonen|calegari}@di.epfl.ch

The ParFlow method permits the simulation of outdoor wave propagation in urban
environment, describing the physical system in terms of the motion of fictitious microsco-
pic particles over a lattice. This paper begins with a brief introduction to the ParFlow
method. It then reports the design, the implementation in C++, and the experimentation
on a Cray T3D of ParFlow++, an object-oriented parallel irregular implementation of the
ParFlow method, primarily targeted at MIMD-DM platforms.

1. INTRODUCTION

Computer-based simulation of radio wave propagation is of great interest to telecommu-
nication operators, since it makes it possible to predict the geographical areas covered by
any potential radio network. The objective of the European project STORMS (Software
Tools for the Optimization of Resources in Mobile Systems) is to develop a software tool
to be used for the design and the planning of the future Universal Mobile Telecommunica-
tion System (UMTS). This software tool, which is planned to be used mostly interactively,
shall include fast radio wave propagation simulation algorithms for both urban and rural
environments.

This paper reports the development of ParFlow++-, a parallel irregular implementation
of the ParFlow method targeted at MIMD-DM platforms (Multiple Instruction stream,
Multiple Data stream, Distributed Memory), and its experimentation on a Cray T3D.
The ParFlow method was designed at the University of Geneva by Chopard, Luthi and
Wagen [4,5]. According to the principle of Huygens, a wave front consists of a number
of spherical wavelets emitted by secondary radiators. The ParFlow method is based on
a discrete formulation of this principle. Space and time are represented in terms of finite
elementary units Ar and At, related by the velocity of light Cy:

Ar
At = ——
Cov/2

Space is modeled by a grid with a mesh size of length Ar, and flow values are defined on
the edges connecting neighboring grid points. The flows entering a grid point at time ¢ are
scattered at time ¢+ At among the four neighboring points. This model, characterized by

Figure 1. Results of a radio wave propagation simulation on a district of the city of
Geneva. The broken arrow shows the position of the transmitter.

a simultaneous independent dynamics and by a very simple numerical scheme, suggests a
cellular automaton based implementation.

The ParFlow method thus permits 2D radio wave propagation simulations, using a
digital city map, and assuming infinite building height (further information can be found
in [3,4]). Figure 1 shows the path-loss map obtained after running a wave propagation
simulation on a 500 x 500 point simulation zone modeling a 1 x 1 km? district of the city
of Geneva.

2. IRREGULAR IMPLEMENTATION

In the ParFlow model wall points are perfectly reflecting points that return any incident
wave with opposite sign. Consequently the model does not allow for radio wave propa-
gation through buildings. It can thus be most convenient not to process indoor points.
Indeed, when modeling an urban area, buildings can represent up to 30 % of the surface
considered. Excluding indoor points from the model helps saving memory space, as well
as computational power. However, such an approach inevitably leads to the creation and
the management of an irregular data structure. This is the reason why ParFlow+-+ was
developed in C++.

All kinds of non-indoor points (namely, outdoor points, wall points, and the source

180

Open area (100 % outdoor points) -----
Real district (68 % outdoor points) ------
160

140

120

100

80

60

Step duration (CPU time in ms)

40

20

0 20 40 60 80 100 120 140
Iteration steps

Figure 2. Evolution of the workload per simulation step during a sequential simulation on
a 100 x 100 point simulation zone. These results show the workload evolution observed
when achieving a simulation on an open area (upper curve), and on a real district of the
city of Geneva (lower curve). The CPU times reported were measured on one processor
of a Cray T3D.

point) are described in a hierarchy of C++ classes. Instances of these classes are assembled
at runtime so as to constitute an irregular structure that models only the non- indoor
part of the simulation zone considered.

A wave radiated by the source point propagates step by step throughout the simulation
zone. Consequently the amount of computation required during a simulation step is not
constant. ParFlow+-+ was designed so as to exploit this characteristic. The amount of
points implied during any computation step is always kept at a minimum. At runtime each
object modeling a non-indoor grid point is either active or inactive. Initially all points
are inactive but the source point. Other points get activated as the wave propagates
throughout the simulation zone (see [2] for further details).

Experiments confirm the advantage of activating points dynamically. Figure 2 shows
how the workload per simulation step increases as the wave propagates and covers a
growing surface, and how it reaches a ceiling as soon as the simulation zone is completely
covered. The figure also confirms the advantage of using a data structure that does
not model indoor points. The speed at which the workload increases depends on the
amount of obstacles met by the wave during its propagation, and the maximal workload
is proportional to the amount of outdoor points in the simulation zone.

3. PARALLEL IMPLEMENTATION

Because of the large amount of outdoor points that must be considered in a simula-
tion (typically, several thousands of outdoor points to model a single city district), an

Figure 3. Simulation zone partitioning and mapping on 4 processors.

appropriate policy must be chosen to allocate each point to a processing element of the
target platform. Many partitioning policies can be considered for an irregular structure
such as that ParFlow+-+ operates on. Yet, exotic partitioning policies usually require
costly mechanisms for locating remote data, and for ensuring efficient data exchanges.
This is the reason why the current version of ParFlow++ implements a quite simple
data distribution policy. The simulation zone is split in horizontal stripes of equal he-
ight. These stripes are then assigned to processors in a round-robin fashion, as shown in
Figure 3.

Partitioning the simulation zone in stripes has some advantages. In ParFlow++, mecha-
nisms for data location and message vectorization were readily implemented using facilities
of the PVM library [1]. Moreover, as adjacent stripes are allocated to adjacent processors,
communications are only required between neighboring processors. However, the irregular
structure ParFlow-++ operates on, and the fact that the workload is not constant during
a simulation (as explained in Section 2), make it more difficult to obtain a good load
balancing.

Actually, when partitioning the simulation zone ParFlow++ could allow for the actual
distribution of buildings in this zone, hence adjusting the height of each stripe so that all
stripes roughly get the same amount of non-indoor points. Yet this is not done in the cur-
rent implementation, because it is assumed that buildings are distributed homogeneously
in the simulation zone. Experiments confirm that this asumption is usually verified.

Although all stripes have roughly the same height in the current implementation of
ParFlow++4, the number of stripes assigned to each processor —and, as a consequence,
their height— can be adjusted easily. Since the wave radiates from a single source point, and

C. #
Proc. #1 -z Proc. #1 -z
0 Prac. #2 w0 Prac. #2
C. #3 -

60 e o 60

50 50

40 40

30 30

Step duration (CPU time in ms)
Step duration (CPU time in ms)
™~

20 e 20

10 - 10

It

100 120 140 0 20 40 100 120 140

6 0 6 0
Iteration steps Iteration steps

(a) (b)

Figure 4. Influence of the number of stripes per processor on the workload per processor,
during a simulation achieved on 4 processors of a Cray T3D. The figures show the workload
per processor observed when the simulation zone is split (a) in 4 stripes, and (b) in 16
stripes.

since non-indoor points get activated only when they are reached by the wave, partitioning
the simulation zone in thin stripes helps ensuring that all processors get their share of work
early after the wave started propagating. It is thus possible to obtain a fair distribution
of the workload among the processors, simply by adjusting the number of stripes per
processor, as confirmed by the results reproduced in Figure 4.

These results were observed when achieving a parallel wave propagation simulation
on a 128 x 128 point ‘open’ area (no obstacles, source point located in the middle of
the simulation zone), on 4 processors of a Cray T3D. They show how the workload per
processor depends on the partitioning policy. Figure 4(a) shows the workload observed
when the simulation zone was split in 4 stripes (only one stripe per processor), whereas
the workload in Figure 4(b) was obtained with 16 stripes (4 stripes per processor). In the
latter case the workload increased almost similarly on all processors. These results confirm
that partitioning the simulation zone in many thin stripes permits a better balancing of
the computation workload. Yet, this approach also leads to a greater communication
overhead, because of the higher number of frontiers between stripes.

This is confirmed in Figure 5, which shows how the number of stripes per processor
influences the global performances of the simulation. The figure shows the efficiency
observed, for different hardware configurations (from 2 to 256 processors), as a function
of the number of stripes per processor, for 512 x512 point and 2048 x 2048 point simulation
zones.

Figure 5(a) shows that, for each machine size, there usually exists an optimal parti-
tioning policy. On the one hand, when using only two processors, there is no point in
having more than one stripe per processor. Since, in this particular simulation case, the

1.0 2 Proc.
4 Proc.
0.94 8 Proc.
2 3
£ 084 16 Proc. | £ 256 Proc.
2 5
E o 0.7
0.74
32 Proc.
64 Proc. 0.6
0.6 128 Proc.
0.5 T T T T T T 0.5 T 7T T T T T T
0 1 2 3 4 5 6 7 0 20 40 60 80 100 120
Stripes per Processor Stripes per Processor

(a) (b)

Figure 5. Efficiency of parallel simulations on a Cray T3D as a function of the number of
stripes per processor. (a) shows the results observed with a 512 x 512 point simulation
zone, and (b) those observed with a 2048 x 2048 point zone.

source of the wave is located in the middle of the simulation zone, both processors get
exactly the same share of work. Partitioning the zone in more than two partitions results
in a greater communication overhead, hence a lower efficiency. On the other hand, when
using more than two processors it can be interesting to have several stripes per processor
(although 2 or 3 stripes usually give the best efficiency). This is not true any more, tho-
ugh, when using more than 32 processors. This is because, when partitioning a 512 x 512
point zone in more than 32 processors, the height of each stripe then gets so small that
the ratio of the computation time over the communication time is not good enough.

The advantage of allocating several stripes per processor can also be observed with the
2048 x 2048 point simulation zone (Figure 5(b)), except that it can then be interesting to
have up to 8 stripes per processor.

Figure 6 shows the speedups we observed when running radio wave propagation simu-
lations on the Cray T3D, for various district sizes. (For the 1024 x 1024 and 2048 x 2048
simulation zones, the simulation was not possible on a single processor because of memory
limitation, so we had to estimate the sequential reference times).

4. CONCLUSION

ParFlow++ is a new parallel, irregular code that permits the prediction of radio wave
propagation in urban environments, based on a two-dimensional simulation over a digital
city map. It can be used for simulating radio wave propagation when transmitters are
placed below rooftops. This is the case in urban radio networks composed of micro- cells
(e.g., cellular phone networks).

300

512x512 zone, 752 steps <—
1024x1024 zone, 1520 steps -+--
2048x2048 zone, 3056 steps -8---

250 - Ideal -

200 - uE

150

Speedups

100

50

0 50 100 150 200 250 300
Number of processors

Figure 6. Speedups observed on a Cray T3D, when achieving simulations for various
district sizes.

ParFlow++ was designed in an object-oriented way, and implemented in C++ for
MIMD-DM platforms. It was developed so as to be highly portable, its current imple-
mentation relying on the PVM library.

Experiments on a Cray T3D confirm the performance of the code: the computation of
Figure 1 took about 18 minutes on a single processor of the Cray T3D, which is quite short
compared to the computation times required by other urban wave propagation simulation
algorithms). They also show the scalability of the implementation, since the efficiency
of the parallel simulations discussed in Section 3 was never less than 60 %. Yet these
experiments also suggest that finding the ‘best’ partitioning policy for a given problem case
is a real issue. Many parameters must be accounted for, such as the simulation zone size,
the location of the radiating source, and the characteristics of the target parallel machine
(raw performances, topology, number of processors, etc.). Work is now in progress to
build a mathematical model of the workload and of communications in ParFlow++4-. This
model should help select the best partitioning policy for any simulation problem case. We
would also like to experiment with a heterogeneous partitioning policy. Since many stripes
are required near the source point in order to give better workload balancing, and since
too many stripes lead to a degradation of communication performances, a satisfactory
compromise must be found for each problem case. Allocating thinner stripes in the area
around the source point should be an interesting step towards such a compromise. This
shall be investigated in the near future.

Acknowledgements

STORMS (Software Tools for the Optimization of Resources in Mobile Systems) is a

European ACTS project, funded by the European Community and by the Swiss govern-
ment (OFES grant). The Cray T3D experimentations were conducted on the machine of
the Swiss Federal Institute of Technology in Lausanne.

REFERENCES

1.

A. Geist and al. PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for
Networked Parallel Computing. The MIT Press, 1994.

F. Guidec, P. Calégari, and P. Kuonen. Parallel Irregular Software for Wave Propaga-
tion Simulation. In Proceedings of the High-Performance Computing and Networking
(HPCN Europe '97) Conference, April 1997. To be published. Conference to be held
in Wien, Austria, April 28-30.

W. J. R. Hoeffer. The Transmission-Line Matrix Method: Theory and Applications.
IEEE Transactions on Microwave Theory and Techniques, 33(100):882-893, oct 1985.
P. O. Luthi and B. Chopard. Wave Propagation with Transmission Line Matrix.
Technical report, University of Geneva and Swiss Telecom PTT, 1994.

P. O. Luthi, B. Chopard, and J.-F. Wagen. Radio Wave Propagation Simulator
on Scalable Parallel Computers. In N. Droux, editor, Proceedings of the SIPAR’95
Workshop, Parallel and Distributed Systems, pages 63-66. Biel School of Engineering,
CS Department, CH-2501 Biel-Bienne, Switzerland, October 1995.

