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A LOST-SALES 
PRODUCTION/INVENTORY MODEL 

WITH TWO DISCRETE PRODUCTION 
MODES 

Rein D. NOBEL* Mattijs van der HEEDEN 

Department of Econometrics, 
Faculty of Economics and Econometrics, 

Vrije Universiteit 
De Boelelaan 1105 

1081 HV Amsterdam 
The Netherlands. 

Abstract 

A discrete production/inventory model is considered in which batch 

orders for a single item arrive at  a production facility according to a 

Poisson process. The items can be produced according to two pro- 

duction modes, regular mode or high speed mode. Changing produc- 

tion mode requires a setup time during which production is disabled. 

Demand that  cannot be satisfied from stock is lost. To control this 

model with respect to a suitable cost criterion, two-level hysteretic 

switching strategies are considered. Using generally applicable meth- 

ods, tractable expressions are obtained for the fraction of lost demand 

and the average inventory level, amongst others. In these methods an 

essential role is played by the discrete Fast Fourier Transform. 

Copyright O 2000 by Marcel Dekker, Inc www dekker.cOm 
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454 NOBEL AND VAN DER HEEDEN 

Keywords: production/inventory control, lost-sales, compound Poisson de- 

mand, embedded Markov chain, Fast Fourier Transform. 

1 Introduction 

Single-item production/inventory models in which the production rate can be adjusted to  the 

on-hand inventory level in order to guarantee some prespecified service quality can play an 

important role in the  inventory management of large industries. We study a discrete production 

model in which each item requires a positive production time, so only at so-called production 

completion epochs the inventory level increases. Orders arrive in batches according to a Poisson 

process and demand that cannot be satisfied up011 arrival is lost. Of course there is a trade- 

off between, amongst others, holding costs for keeping items in inventory and the  quality of 

service as expressed, e.g., in the fraction of lost demand. To enhance a fine tuning between 

the conflicting objectives of low holding costs and a small fraction of lost demand, the model 

allows for two production modes, regular mode and high speed mode. A change of mode can 

be initiated a t  production completion epochs only, and requires a switching time during which 

production is disabled. So, we are faced with a control problem to find the switching strategy 

that minimizes some over-all cost function, e.g. a weighted sum of the  holding costs, operating 

costs and switching costs under the constraint that the fraction of lost demand does not exceed 

a prespecified acceptable percentage of lost-sales. In the analysis we will restrict ourselves to 

the natural class of so-called two-level hysteretic switching rules. Lnder such a control rule a 

change from regular mode to  high speed mode takes place when the inventory level has dropped 

below a given threshold, and a change vice versa is initiated when a t  a production completion 

epoch the  inventory has increased above some prespecified upper level. A precise description of 

the model will be given in Section 2. 

Variants of this discrete production/inventory model with a two-critical-number policy have 

been widely studied for the case that the  unsatisfied demand is backordered and the production 

is suspended when the  inventory reaches the  upper control level (see e.g. [2], [9], [12], [19], [20]). 

In practice these two model characteristics are not always the most adequate. It is quite natural 

to consider a regular production mode when the inventory level is high and a high speed mode 

when the  inventory level is low. Also, the model assumption of backordering the unsatisfied 

demand often is more motivated by mathematical convenience t,han by practical considerations. 

Especially for so-called class B and C items (see [18]), considering unsatisfied demand as lost 

is more realistic. The  lost-sales model is intrinsically more difficult (see below), and no exact 
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LOST-SALES PRODUCTION/INVENTORY MODEL 455 

results for the discrete model have been reported yet. Also for production/inventory models with 

a continuous production rate (see e.g. [6], [4]) attention has been paid mainly to  the backorder 

case. The main objective of this paper is to  present numerical methods which enable us to 

calculate all performance measures of interest for the lost-sales model with varying production 

modes and switch-over times. 

The first step in our analysis is to obtain, for a fixed switching rule, the  steady-state dis- 

tribution of the  Markov chain embedded a t  the production completion epochs. The discrete 

Fast Fourier Transform is essential to  calculate the numerical values of the  one-step transition 

probabilities of this Markov chain, and a geometric-tail property of the steady-state distribution 

is exploited to  reduce the  infinite set of equilibrium equations to a (small) finite set of linear 

equations. This Markov chain analysis is presented in Section 3. 

The next, more difficult, step in the  analysis of the lost-sales model is to  find the average 

inventory level. The  key idea for the solution of this problem is to  express the  conditional 

expectation of the  cumulative inventory between two consecutive production completion epochs 

in terms of the  coefficients of three explicit generating functions. The  numerical values of these 

coefficients can routinely be  obtained by the powerful discrete Fast Fourier Transform. Further 

details for finding the average inventory level are discussed in Section 4.  This approach is new 

and seems generally applicable. In the Sections 5 and 6 a similar approach is used to  obtain 

the long-run fraction of lost demand and the long-run fraction of customer orders that are not 

fully satisfied. 

In Section 7 we briefly discuss the  operating costs and the switching costs per unit time and, 

to conclude this paper, we describe the  computation of the parameters of the  two-level switching 

rule that solves the  optimization problem as presented in Section 2. Numerical results are also 

presented. Comparison with extensive simulation experiments has shown that the  procedures 

presented in this paper are numerically stable in a wide range of parameters. 

We end this introduction with some general remarks to position the  subject of this paper 

within the realm of queueing/inventory theory. The model presented here falls in the broad 

category of queueing and production/inventory models with state dependent parameters (see 

[7] for a recent overview). Queueing models with variable service and/or arrival rate that have 

been considered in the  literature are often of the M/G/ l - type  with infinite waiting room (e.g. 

[8], [ lo] ,  [13], [14], [Is] ,  [22] to  cite only a few). Finite-buffer queueing systems with state 

dependent parameters are intrinsically more difficult t o  analyse and have received much less 

attention. A similar phenomenon can be noticed with respect to  discrete production/inventory 

models with variable ~ r o d u c t i o n  rate. As mentioned above, the  backorder case, which shows 
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456 NOBEL AND VAN DER HEEDEN 

some parallelism with infinite-waiting-room queueing models, has been studied extensively, 

whereas tractable solutions for lost-sales models are often based on heuristics (e.g. see [5] for a 

continuous model with suspended production). The reason for the intractability of many finite- 

buffer systems and lost-sales models is rooted in the fact that their analysis leads to incomplete 

sums and integrals rather than to tractable complete sums and integrals, so paramount in 

many infinite-buffer models. And, not surprisingly, these incomplete sums and integrals cannot 

be reduced to simple expressions. 

The merit of this paper is that we present a method to get round this problem by construct- 

ing several generating functions that have as their coefficients the different incomplete sums, 

present in the initial setup for the formulae of the performance measures. It turns out that these 

generating functions can often be evaluated explicitly, and so the incomplete sums themselves 

can be numerically calculated by inversion. Because nowadays the Fast Fourier Transform gives 

an excellent method for inverting generating functions (see e.g. [I]),  we succeed to give numeri- 

cal procedures for many steady-state performance measures of the lost-sales model presented in 

this paper. This method can also be used for many finite-buffer systems with state dependent 

parameters. See the forthcoming paper [16] for an example. 

2 Description of the Model 

We consider a single-item production/inventory model with two production modes. Orders for 

the item arrive at a production facility according to a Poisson process with rate A.  The number 

of items in an order, say B, has a general discrete probability distribution Pr{R = k )  = Pkr k = 

1; 2 , .  . . .  Thc demand is satisfied directly upon arrival of an order from the inventory on hand. If 

the size of an order is larger than the inventory on hand, the excess demand is lost. The facility 

produces items without interruption according to one of two possible production modes, regular 

(R)  or high speed (H)  mode. The production time for an item in regular (high speed) mode, 

denoted by the generic random variable SR (SH), has a general distribution function FR(.) 

(FH(.)).  At production completion epochs only, the facility can decide to change production 

mode. If the facility decides to change mode, a setup time is involved to prepare for the new 

production mode. During a setup time production is disabled. The setup time to prepare the 

change from regular (high speed) to high speed (regular) mode is denoted by VR (V') and has 

a general distribution function GR(. )  (GH(.)). 

We impose four different types of costs on the model: holding, penalty, operating, and 

switching costs. More specifically, for each item held in stock a holding cost h per unit time 
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LOST-SALES PRODUCTIONIINVENTORY MODEL 457 

is incurred. With each item lost (or, as an alternative, with every order not fully satisfied) we 

associate a penalty cost p. Thirdly, during regular (high speed) production periods an operating 

cost CR ( c ~ )  per unit time is incurred. And finally, each change in production mode involves 

a switching cost s.  To balance these conflicting costs, we will now introduce an intuitively 

appealing control rule, that prescribes when to change production mode. 

The rule we have in view is a so-called hysteretic (m,  M )  switching rule, where the control 

parameters m and M are integers with 0 5 m < M. Under this rule the facility switches from 

the regular (high speed) production mode to the other production mode when just after the 

completion of a production, done according to the regular (high speed) mode, the stock on 

hand is at or below level m (at level M).  Here we count the newly produced item as not put on 

stock yet. In all other cases the next production starts immediately in the same mode as the 

last item produced. 

This completes the description of the production/inventory model to be discussed in this 

paper. Of course, the main problem of interest with respect to this model is to find the switching 

rule that minimizes a suitable cost criterion. Although in practice penalty costs are difficult to 

ascertain and one usually formulates production control problems in a constrained setting, we 

will present our minimization problem in unconstrained form, using a Lagrangian approach, by 

including penalty costs for lost demand as introduced above. 

To solve this problem, we will take a fixed (m,  M)-switching rule as our starting point and 

concentrate on the calculation of the different ~erformance measures of the resulting model 

(from now on, the (m, M)-system); which are present in the formulation of the control problem. 

Once we know these performance measures for any (m,  M)-switching rule, the control problem 

can be solved by simple enumeration. 

In the subsequent sections we will present numerical ~rocedures for the following perfor- 

mance measures: 

r l r n , ~  = the long-run average inventory level, 

0 C m , ~  = the long-run fraction of lost demand, 

K ~ , M  = the long-run fraction of orders not fully satisfied, 

0 PFh = the long-run fraction of time that the production mode is in L-mode (L = R, H),  

0 U m , ~  = the long-run average number of mode changes per unit time. 

Our unconstrained optimization problem can now be formulated as follows, 
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NOBEL AND VAN DER HEEDEN 

where h ,  c ~ ,  CH,  s and p are given positive constants introduced above. As a side-remark, 

C m , ~ X E [ B ] ,  the  long-run average number of items lost per unit time, can be replaced by K ~ , ~ X ,  

if one considers penalties for not completely satisfied orders more realistic. 

'To guarantee steady-state behaviour, we require the stability condition, that under regular 

production mode return to inventory levels below 7n occurs with probability one, so the average 

demand per unit time must be larger than the regular production rate, i.e. XE[B]E[SR] > 1. 

Further, t o  make the  model more realistic, we require of course E[SH] < E[SR].  

To conclude this section, we introduce some probabilities, that  are the 'building blocks' for 

our calculations. Let 

a?) = Pr{ total demand during a production time SL is 1 )  

q5jL) = Pr{ total demand during a setup time VL is j )  

for L = R, H. The numerical values of these probabilities can be routinely computed from their 

generating functions by the discrete Fast Fourier Transform, see e.g. Section 1.2 in [21]. Denote 

by 
m 

P(z)  = C Pnzn 
n=l 

the generating function of the batch-size distribution {P,, n 2 1). Then, it follows from a well- 

known result for the  generating function of a compound Poisson variable that (see Section 1.3 

in Tijms [21]) the  required generating functions are given by, 

m 

cpL(z) := c 4jL)z1 = GL(X(1 - P ( z ) ) )  for L = H, R, 
3=0 

where F ~ ( . )  and GL(.) are the Laplace-Stieltjes transforms of FL(.)  and GL(. )  respectively. Also 

we will need the probabilities (again L = R, H ) ,  

( lL)  = Pr{ total demand during the time from the start of a setup time VL 

until the next production completion epoch is . I ) .  

Of course we have 

For many production-time and setup-time distributions of practical interest the above gen- 

erating functions can be reduced to simple algebraic expressions. Ready-to-use codes for the  

discrete Fast Fourier Transform method are widely available, see e.g. Press e t  al. [17]. 
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LOST-SALES PRODUCTIONIINVENTORY MODEL 

3 The Embedded Markov Chain Approach 

Under the stability condition mentioned in Section 2, the continuous-time stochastic process 

{ I m , ~ ( t ) ,  t > 0), describing the inventory level in the (m,  M)-system at  time t ,  is a regenerative 

process for any (m,  M )  switching rule. We take as the regeneration points the high speed mode 

production completion epochs at which the stock on hand is at level M (as mentioned above, 

excluding the item just produced). From now on we consider the process {ImNM(t))  only for a 

fixed (m,  M )  switching strategy and suppress m and M in all future notations. We will study 

the process {I( t ) ,  t > 0) by embedding a Markov chain at the production completion epochs. 

So, define 

t, = epoch of the nth production completion, 

L, = production mode used for the production of the nth item. 

For completeness, define to = 0, Lo = H and I(O+) = A4 $ 1, so the process starts in a 

regeneration point. Then, denoting by t,- the epoch just before the nth production completion, 

the discrete-time process 

is a time-homogeneous positive recurrent aperiodic Markov chain because the demand-process 

is Poisson and because of the above argument concerning the stability condition. The state 

space of this Markov chain is 

Hence, the Markov chain {X,) has a limiting distribution which we denote by 

( L )  = 1 P { ( ( t - ) )  = ( j ) }  ( ( j ,  L) E S). 
71-+M 

To calculate the limiting distribution { ~ ( j ,  L))  we first give the one-step transition proba- 

bilities, 

P ( ~ , K ~ ( ~ , L )  = Pr{(I( tn+~-) ,  Ln+l) = ( j ,  L )  I ({(tn-)? Ln) ( 2 ,  I<)). 

For j = 1 , 2 , .  . . we have with the notations of the previous section, 
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NOBEL AND VAN DER HEEDEN 

We can now formulate the following lemma. 

Lemma 4.1 

where { ~ ( j ,  L)) zs again the limiting distribution oj'the Markou chain {X,). 

Proof First we show that the right-hand sides (r .h.s.)  of (4.4) and (4.5) are both finite. Since 

the  z(3, L) are bounded by the  larger of E[VR] $ E[SH]  and E[VH] + E[SR] this is trivially true 

for (4.5). With respect to (4.4) we remark that it is sufficient to consider the infinite tail of the 

Since it can be easily seen that for all j = M + 1, M + 2 , .  . . 

and we know that 

we can conclude that also (4.6) is finite 

Next, as in [ l l ] ,  we note that from the n-step balance equations 

it follows, by taking only one term in the r.h.s., e.g. (i, L f )  = ( M ,  H ) ,  that  

So we can conclude that the  terms of the  r.h.s. of (4.2) and (4.3) are bounded by 

'(" L, ~ ( j ,  L) and - 
n ( M .  H) 

L,  n ( j ,  L) ,  
z ( M ,  11) 

respectively. The  lemma follows by applymg the bounded convergence theorem. 13 

We will now consider the general state space Markov chain {W,). In view of our stability 
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LOST-SALES PRODUCTIONIINVENTORY MODEL 463 

condition (recall, XE[B]E[SR] > 1) the Markov chain {W,) is an  aperiodic positive recurrent 

Harris chain (shortly, Harris ergodic), because it has as a regeneration set 

Co = {(x ,  y , z )  E C : x = ( M ,  H), y 2 0,  z 2 O ) ,  

and the  number of transitions between two visits to Co is aperiodic and has finite expectation 

(see e.g. [3]). As a consequence, the Markov chain {W,} has a stationary distribution, say v. 

Now, introduce for convenience the  random vector (X, Y, 2) with its simultaneous distribution 

given by v. Then, the  marginal distribution of X is given by the distribution { ~ ( j ,  L)} and we 

can state the  following result. 

Theorem 4.1 The long-run average inventory 7 zs given by 

with probabilzty one. 

Proof From (4.1) we see that it is sufficient to  justify the application of the  ergodic theorem, 

for both the numerator and the denominator, i.e. for N -t m, 

with probability one (and similarly for E [ Z ] ) .  We only discuss the  numerator. Since we know 

from the  proof of Lemma 4.1 that  

EIYI = ~ ( 3 ,  L M ,  L )  
(I,L)ES 

is finite. we can use the  Harris ergodicity of {W,) to conclude that 

1 N-1 1 N-1 

lim - x Y, = lim - E[Yn], w. p. 1. 
N+m N nn=O N-tcc N n=o 

And so the proof is complete, because, again using Lemma 4.1, the  Cesaro-limit on the  right is 

equal to  E [Y]. 

So, the calculation of 7 boils down to  the question how to  determine E[Y]  and E [ Z ]  via the 

y ( j ,  L) and the  z ( j ,  L) ,  respectively. Concerning E [ Z ]  the  situation is rather simple, because 

the z ( j ,  L )  are simple expectations. Using also the  geometric-tail behaviour of the  { ~ ( j ?  R)} for 

j > M + l , w e g e t  
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NOBEL AND VAN DER HEEDEN 

To calculate E [ Y ]  we need the y(3, L) and, as for the z ( j ,  L),  there are four different cases, 

So, in words, we need an algorithm to  calculate the expected area under the  graph of the inven- 

tory function I ( . )  between two consecutive production completion epochs, given the inventory 

level at the  first epoch. 

The  following theorem presents a key result for the calculation of these conditional expec- 

tations. 

Theorem 4.2 Let the generic non-negatzve random variable V denote a time lapse between two 

consecutive production completion epochs with distribution functzon C(.) and Laplace-Stieltjes 

transform G(.). Consider the following generating functzons, 

Then,  for any r 2 1 ,  

For the proof, see Lemma 4.2-4.4 and the Appendix below. 

With this result we are able to find expressions for the conditional expectations y ( j ,  L) in 

all the  four cases presented above by taking the random variable V equal to  VR + SH, SR,  

SH and VH + SR respectively, or, in other words, by choosing the  Laplace-Stieltjes transform 

G( . )  equal to  G R ( . ) ~ H ( . ) ,  F R ( . ) ,  F R ( . )  and GR(.)FH(.). Adding self-explanatory superscripts 

to all the  coefficients to distinguish the different cases and exploiting again the geometric-tail 

behaviour of the  n ( j ,  R )  for J 2 M + 1, we can calculate E [ Y ]  as follows, 
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LOST-SALES PRODUCTIONIINVENTORY MODEL 

Notice that,  as for E [ Z ] ,  we can get rid of the infinite sum in the last term. We first rewrite 

the complete infinite series, i.e, from J = 0, as follows 

and subtract subsequently the finite sum 

To find the closed form expression for the infinite series (4.9) requires only some simple algebra, 

so we skip any further details. 

In conclusion, to find E[Y] we only need to apply Theorem 4.2 for different values of T and 

random variables b7. As a final remark, the coefficients ~ ~ ( r ) ,  6:, and Bk are (not surprisingly) 

calculated by various applications of the discrete Fast Fourier Transform method. 

The rest of this section will be dedicated to the proof of Theorem 4.2. To enhance readability 

we split the argument in a series of lemmas, but we first introduce the necessary notations. 

X, = time lapse between the epochs of the (3 - 1)th and the j t h  order arrival, 

AT(t) = the number of orders arrived up to time t ,  

B ( t )  = the total demand arrived up to time t ,  

B, = the size of the ith order. 

Further, we need the n-fold convolution of the batch size distribution {Pk), 

with the usual conventions, Pi0 = 1 and pi0 = 0 for k # 0; and the conditional probabilities 
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NOBEL AND VAN DER HEEDEN 

with the convention P(gO1gO) = 1. Remark that P(13 I?) = 0 for b < J , because Po = 0. We now 

formulate three lemmas which jointly prove Theorem 4.2. 

Lemma 4.2 With  the notation of Theorem 4.2, 

Lemma 4.3 For the -yk(r ) ,  introduced rn T h ~ o r e m  4.2, we have for k '1 0 and r 2 1 ,  

Lemma 4.4 With  the notation introduced in Theorem 4.2 we have for r > 1,  

We see that Theorem 4.2 follows directly from these three lemmas. In this section we give only 

the proof of Lemma 4.2. The other, rather technical, proofs are given in the Appendix. 

Proof of Lemma 4.2: We will use conditioning on the random variable V ,  the number N ( V )  

of order arrivals during V and the total demand B('v) during V.  Then we get 

where for convenience Xn+1 := t - & X ,  and the other X ,  as defined above. Now, by the 

independence between V,  the arrival process of the orders { N ( t ) )  and the order sizes {B,), and 

using the well-known property of the Poisson process that 

E I X j l N ( t )  = n ]  = j = l , . . , , n + l ,  
n + l l  

expression (4 .10)  can be rewritten as, 
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5 The Fraction of Lost Demand 

Our next performance measure of interest is the long-run fraction of lost demand, 

where Lm,M( t )  is the total demand lost up to time t. Again we fix a (m,  M) switching rule and 

suppress the subscripts. Define 

the number of items lost between the nth and the (n  $ 1)th production completion epoch, 

Dn = B ( ~ + I )  - B(t,) = 

the total demand between the nth and the (n  + 1)th production completion epoch. 

Then C can be rewritten as 

Again we will show that both the numerator and the denominator of (5.1) converge to a 

constant value with probability one. To do this, we remark that the stochastic process U, := 

(Xn+]. D,, Q,), is an aperiodic positive recurrent Markov chain with countable state space 

S x {O, l , .  . .) x {O, l , .  . .). This Markov chain has the property that the distribution of Un 

depends on Un-l only through the first coordinate, i.e. X,. So, we can proceed as in Section 

4. Let the random vector ( X ,  D ,  Q) have the limiting distribution of the Markov chain {U,). 

Then, starting the Markov chain {X,) in Xo = (M, H), and defining 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
r
i
j
e
 
U
n
i
v
e
r
s
i
t
e
i
t
,
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
7
:
1
8
 
9
 
J
u
n
e
 
2
0
1
1



NOBEL AND VAN DER HEEDEN 

we have, using the  n-step transition probabilities P { $ , ~ ) ( ~ , ~ ) ,  

E IDJ  = C d ( j ,  L)P{$,H)(,,L). 
(3,LlES 

Now, exactly as in Section 4 ,  we can show that the E [ Q n ]  and the E [ D n ]  converge to E [ Q ]  and 

E [ D ]  respectively, and the  ergodic theorem gives 

C = lim kZti: Q n  - EIQl w , p , l ,  

N-+" $ c:': Dn E [Dl 
Hence, the calculation of C is reduced to the calculation of E [ Q ]  and E [ D ]  

The calculation of E [ Q ]  is straightforward, because 

with the  q ( j ,  L )  given as follows 

With some simple algebra all these quantities q ( j ,  L) can be expressed as finite sums, and, 

using the  geometric-tail behaviour of the .rr(j, R), also the infinite tail q ( j ,  R ) n ( j ,  R )  in 

(5.2) can be rewritten as an expression in which only finite sums occur. So we have an efficient 

algorithm for E [ Q ] .  For completeness, we give the final result 

M f l  M t l  

A ~ [ B ] ( E [ V H ]  + ElS.1) - C - (A4 + 1) (1 - ( :Hi)]  r ( M ,  H )  
k = l  k=O 
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The calculation of E[D] is even simpler because 

and the compound Poisson demand gives d ( j ,  L )  = X E [ B ] z ( j ,  L ) ,  with z ( j ,  L )  as introduced in 

Section 4. So we can conclude that 

where for E [ Z ]  we use expression (4.7).  

6 The Fraction of Orders Not Completely Satisfied 

The next performance measure we consider is the long-run fraction of orders not completely 

satisfied, 

where J m , M ( t )  is the number of orders arriving in (0, t )  that are not completely satisfied. Fixing 

a strategy (m, M),  suppressing indices, and defining 

we can rewrite h: as 

Argueing as in the previous sections, we can see that the denominator converges to XE[Z] and 

the numerator to a constant which again can be considered as an expectation E [ K ] ,  where li' 

has the limiting distribution 

Pr(h' = i) = n-+m lirn Pr(& = i), 

which is the marginal distribution of the limiting distribution of the Markov chain { ( X n + l ,  li,)). 

Introducing 

k ( j , L )  = E [ K  I Xn = ( j ,L ) I  

the expectation E [ K ]  will be calculated by 

E[ICl = C k ( ~ ,  L ) r ( j ,  L ) ,  
W ) E S  

where the k ( j ,  L )  can take the following forms 
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To calculate the k(j ,  L) we need an analogue for Theorem 4.2.  

Theorem 6.1 Let the generic non-negative random variable V denote a tzme lapse between two 

consecutive production completion epochs with distribution function G(.) and Laplace-Stieltjes 

transform G ( . ) .  Consider the follozuing generating functions, 

and 

Then, for any r 2 0 ,  
m 

The proof will be given below. 

Using Theorem 6.1, we can calculate all the different conditional expectations k( j ,  L) men- 

tioned above, because, in complete analogy with Section 4, we only need to  apply Theorem 6.1 

for different values of r and random variables V. For completeness we give the  expression for 

E [ I i ] ,  where we remark that again the infinite tail C3>M k(j ,  R ) T T ( ~ ,  R)  has been rewritten using 

the geometric-tail behaviour of the n ( j ,  R ) ,  but we will not give the details (the superscripts in 

the  u-coefficients have of course the same meaning as in Section 4) 

Proof of Theorem 6.1: Define 

Y, = t ime needed to  run out of stock, given that at epoch 0 the  inventory level is r 

('run out of stock' means that  a t  least one item has got lost). Then it can be easily seen that 

E [ J ( V )  / I(0) = r] = Pr{Y, < V )  + A E [ ( V  - Y,)']. 
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Because (cf. Section 2) 

g k  = Pr(tota1 demand during time V is k ) ,  

we have 

k=r+l 

So, to  complete the  proof of the  theorem, we still have to show that  

To do this we need the probability distribution function of the  random variable Y,. Let y 2 0 and 

observe that {Y,  5 y) = {B(y)  > r ) .  This gives, by conditioning on N(y) ,  and independence 

arguments, 

Next, using (6.2), 

By interchanging the  summations, we can evaluate the  series between the  big parentheses to 

so we can also evaluate the  double integral, and this gives the  result. 

7 Numerical Results 

Returning our attention to the optimization problem as formulated in (2.1), we see that still 

three quantities have to be  calculated, i.e. p z h ,  pLHk and o m , ~  Using the same type of 

arguments as in the  previous sections, it is now straightforward to find expressions for these 

quantities. We give only the  final results, without any further comment, 
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Now, reintroducing subscripts for all quantities dependent on the (m,  M )  switching rule, we 

can write down the definitive expression for the criterion function, 

Next, we can solve (2.1) by simple enumeration: start with some large M = Mo and calculate 

for m = 0 , 1 , .  . . , M - 1 the right hand side of (7.1). In this way we find the optimal switching 

strategy with M = Mo. Repeat this procedure for M = Mo - 1, Mo - 2 , .  . . , until M = 1. 

Of course, for every (m, M )  strategy we need to solve the (small) system of 2M + 3 balance 

equations (3.2)) (3.5) and (3.6) to find the distribution { ~ ( j ,  L)) and we have to calculate 

the quantities E [ ~ , , M ] ,  E[Y,,M] and E[&m,M],  using the expressions (4.7), (4.8), and (5.3), 

respectively, but we emphasize that the number r and all quantities that require an application 

of the discrete Fast Fourier Tranform method have to be evaluated only once. So, after all, the 

enumeration algorithm is reasonably efficient. 

To illustrate the numerical procedures discussed in this paper, we will present the optimal 

strategies w.r.t. the chosen criterion function, together with the corresponding performance 

measures, for varying switching times and varying high speed production times. In all numerical 

examples we have kept the following parameters constant, 

We have taken a Coxian-2 distribution for the regular production time with squared coefficient 

of variation ci, = 0.8. Further, the cost parameters are always taken as follows, 

First, the switching times VR and V' are varied, but always taken deterministic and equal. 

In Table 1 we show the optimal strategies for a geometric batch size (note that for this case 

C m , ~  = K , , ~ )  and in Table 2 the corresponding values for a constant batch size. In all cases the 

high speed production time SH has been given a Coxian-2 distribution with E [ S H ]  = 0.8 and 

squared coefficient of variation ciH = 2. Next, for switching times VR and VH deterministic and 

both equal to  I ,  we varied the expected high speed production time E[SH], keeping c:, = 2 
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Table 1: Optimal strategies for geometric batch size and varying constant switching times 

I EKRI I /  (m ,  M) 1 q m , M  g m , ~  pf;t,M pfil,M C ~ , M  = Km,M I Criterion 
1 0 11 (18,49) 1 63.1069 0.003416 0.67185 0.32815 0.036093 / 1.7058 

Table 2: Optimal strategies for constant batch size and varying constant switching times 

Criterion] 

1.4764 
1.4790 
1.4809 
1.4819 
1.4537 

in all cases. The results for a geometric batch size are given in Table 3, and the corresponding 

results for a constant batch size in Table 4. From these numerical results we see that the 

optimal strategies are rather insensitive for the batch size distribution, whereas the performance 

measures are quite different. Further, we can conclude that increasing the expected switching 

times or the high speed production times leads to higher optimal switching levels m and M. The 

average inventory, the number of mode changes per unit time, and the fraction of lost demand 

turn out to be not very sensitive for the expected switching times. Only when the switching 

times become very large we see an increase of the number of mode changes, simultaneously 

with a lower inventory level and a shift towards a higher fraction of time that the high speed 

production mode is used. 

We see from Table 3 and 4 that,  as the expected high speed production times E [ S H ]  increase, 

the average inventory, the fracticn of lost demand, the number of mode changes, and the fraction 

of time that the high speed production mode is used all increase. Only when E [ S H ]  approaches 

E[SR]  the average inventory level decreases at the cost of a higher fraction of lost demand. 

8 Appendix. 

In this appendix we prove the technical Lemmas 4.3 and 4.4 of Section 4. 
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Table 3: Optimal strategies for geometric batch size and varying E [ S H ]  

Criterion 

1.4363 
1.4428 
1.4531 
1.4687 
1.4924 
1.5299 
1.5924 
1.7098 

Table 4: Optimal strategies for constant batch size and varying E[SH]  

Proof of Lemma 4.3: We must prove that 

Criterion 

1.2055 
1.2098 
1.2169 
1.2291 
1.2496 
1.2843 
1.3468 
1.4764 
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0 

As a final remark, the coefficients yk( r )  can be calculated for all r > 1 by only two applications 

of the Fast Fourier Transform method, noting that 

where the ~k and the vk are the respective coefficients of the generating functions 

The proof of Lemma 4.4 is an immediate consequence of the following two results, which 

we will prove separately. Using the notation of Theorem 4.2 we have for r 2 1, 

Proposition 1 

Proposition 2 

Proof of Proposition 1: We must show that 

Interchanging summations, we can rewrite (8.2) as 

Now, writing 

and subsequently, 
k 

C zb/3(p in) = E [ z x i 1  B. 12 B. = k] , 
b=j 1=1 

equation (8.3) becomes 

which, after interchanging summations, deconditioning and using the generating functions 
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leads to 

NOBEL AND VAN DER HEEDEN 

Now, summation over n and rearranging terms gives the  result after a few lines of algebra. 

Proof of Proposition 2: We must show that 

n r - l  
( A t ) -  ? 5 5 Lm -!- 1 1 b p ( ~ 3 1 y ) / 3 ~ n e - ' t -  dG'(t)zr-'  = 

r = ~  k=r n=l + 1 J=O b=j n! 

Now we use the  fact that the 

functions again, we have 

different batches are independent. Then, applying generating 

Substituting in (8.5) the left-hand side of ( 8 . 6 )  for the right-hand side gives after summation 

over 1 

1  - n + z n  - z  - z n +  - -n(n 1 + l ) ~ ( ~ ) ~ - l )  e - " W  d ~ ( t ) .  
( 1  - P ( z ) Y  2 n! 

Finally, summation over n and rearranging terms gives the result. 
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