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1. Introduction

In geometric theory of one complex variable, the following growth theorem for biholomorphic 
functions was well known.

Theorem 1.1 (Duren, 1983)    Let f be a biholomorphic function on the unit disk U = {𝜁 ∈ ℂ:|𝜁 | < 1}, 
and f (0) = f �(0) − 1 = 0. Then

It is natural to extend the above beautiful results to higher dimensions. However, Cartan (1933) 
pointed out the above theorem for normalized biholomorphic mappings would not hold in several 
complex variables. And he also suggested to study the star-like mappings and convex mappings as 
appropriate topics for generalization. Untill 1991, Barnard, Fitzgerald, and Gong (1991) firstly estab-
lished the growth and 1

4
-theorems for normalized biholomorphic star-like mappings on the unit ball 

Bn = {z ∈ ℂ
n:‖z‖ =

�∑n

j=1 �zj�2
� 1

2

< 1}. And after that, a lot of researchers came to study the 
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(1 + |� |)2 ≤ |f (�)| ≤ |� |
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growth theorem for star-like mappings and the subclasses of star-like mappings on different do-
mains; the reader can consult the references (Feng, Liu, & Ren, 2007; Hamada, Honda, & Kohr, 2006; 
Liu & Ren, 1998).

The subject of Loewner chains in higher dimensions was initiated by Pfaltzgraff (1974). He 
 generalized to higher dimensions the Loewner differential equation and developed existence and 
uniqueness theorems for its solutions on the Euclidean unit ball Bn in ℂn. Poreda (1987a, 1987b) 
obtained some applications of parametric representation to growth theorems and coefficient esti-
mates on the unit polydisk in ℂn. Poreda (1989) also deduced certain generalizations on the unit ball 
of finite dimensional complex Banach space. The existence and regularity of the theory of Loewner 
chains in higher dimensions were considered by Duren, Graham, Hamada, and Kohr (2010), Graham, 
Hamada, and Kohr (2002), Hamada and Kohr (2000), etc. Many details and applications of the theory 
of Loewner chains in several complex variables may be found in the monograph of Graham and Kohr 
(2003).

Chirilă (2014a) used the method of Loewner chains to generate certain subfamilies of normalized 
biholomorphic mappings on the Euclidean unit ball Bn in ℂn, which have interesting geometric char-
acterizations. In this paper, we will continue to study these biholomorphic mappings introduced by 
Chirilă. Furthermore, we will obtain the growth theorems for g-almost star-like mapping of order � 
(0 ≤ 𝛼 < 1) and g-spiral-like mapping of type � 

(
−

𝜋

2
< 𝛽 <

𝜋

2

)
 on the unit ball Bn using the method 

of parametric representation. As the application, some well-known results can be got when special 
functions g are taken on the unit disk in the complex plane.

In the following, we will give some notations and definitions. Let ℂ be the complex plane and 
Ur = {𝜁 ∈ ℂ:|𝜁 | < r}. The unit disk in ℂ is denoted by U. Let ℂn be the space of n complex variables 
z = (z1, … , zn)

� with the Euclidean inner product ⟨z, w⟩ = ∑n

i=1 ziwi  and the Euclidean norm 
‖z‖ = ⟨z, z⟩ 1

2, where z, w ∈ ℂ
n and the symbol “ʹ” means transpose. The unit ball 

Bn = {z ∈ ℂ
n:‖z‖ < 1}. Let X denote the complex Banach space with norm ‖ ⋅ ‖,   = {x ∈ X:‖x‖ < 1} 

be the unit ball in X. Let Ω be a domain in X, f :Ω → X. If for any x ∈ Ω, there is a linear mapping Df(x) 
from X to X such that

then f is said to be holomorphic on Ω. The linear map Df(x) is called the Fréchet derivative of f at x. In 
ℂ
n, Df(x) is the Jacobian, always written by Jf (z). We denote by H(Ω) the set of holomorphic map-

pings from Ω into ℂn. Let f :Ω → X be a holomorphic mapping; if its Fréchet derivative Df(x) is nonsin-
gular at each x ∈ Ω, then f is said to be locally biholomorphic on Ω. If f −1 means the inverse of f 
exists and it is holomorphic on the open set f (Ω), then f is said to be biholomorphic. If f (0) = 0 and 
Df (0) = I, then f is called normalized, where I is the identity operator.

The following families play a key role in our discussion:

2. Definition and lemmas
Definition 2.1 (Hamada et al., 2006)       Let g ∈ H(U) be a biholomorphic function such that 
g(0) = 1, g(� ) = g(� ) for � ∈ U (i.e. g has real coefficients in its power series expansion), Reg(�) ≥ 0 on 
U and assume that g satisfies the following conditions for r ∈ (0, 1)

lim
h→0

‖f (x + h) − f (x) − Df (x)h‖
‖h‖ = 0,

 = {p ∈ H(U): p(0) = 1, Rep(𝜁 ) < 0, 𝜁 ∈ U};

 =

�
h ∈ H(Bn): h(0) = 0,Re

�
h(z),

z

‖z‖2
�

≥ 0, z ∈ Bn�{0}
�
;

 = {h ∈  : Dh(0) = I}.
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Definition 2.2 (Chirilă, 2014a)   Let � ∈ [0, 1). A normalized biholomorphic mapping f :Bn → ℂ
n is said 

to be g-almost star-like mapping of order � if

where g satisfies the requirements of Definition 2.1.

Remark 1  

(a)  Since Reg(�) ≥ 0, we have Re
�
J−1f (z)f (z), z

� ≥ �‖z‖2. Hence, the g-almost star-like mapping of 
order � is a subclass of almost star-like mapping of order � on Bn. And hence biholomorphic on 
Bn.

(b)  If g(�) = 1−�

1+�
, � ∈ U, this class reduces to the class of almost star-like mappings of order � on Bn. 

If g(�) = 1−�

1+(1−2�)�
, � ∈ U, � ∈ (0, 1), the almost star-like mappings of order � and type � on Bn 

can be got (see Chirilă, 2014b).

Definition 2.3 (Zhang & Feng, 2013)   Let � ∈ [0, 1). A normalized biholomorphic mapping f :Bn → ℂ
n 

is said to be parabolic star-like mappings of order � if

This shows that if f is a parabolic star-like of order �, then 
�
J−1f (z)f (z), z

‖z‖2
�

 is a mapping from Bn 
onto the parabolic region in the right half-plane Ω

�
, where

Definition 2.4 (Chirilă, 2014a)   Let � ∈
(
−

�

2
, �

2

)
. A normalized biholomorphic mapping f :Bn → ℂ

n is 
said to be g-spiral-like mapping of type � if

where g satisfies the requirements of Definition 2.1.

Remark 2  

(1)  Obviously, if f is g-spiral-like of type �, then 

 Hence, f is also a normalized biholomorphic spiral-like mapping of type � on Bn.

(2)  If g(�) = 1−�

1+�
, � ∈ U, this class becomes the class of spiral-like mappings of type � on Bn. If 

g(�) = 1−�

1+(1−2�)�
, � ∈ U, � ∈ (0, 1), we obtain the class of spiral-like mappings of type � and or-

der � on Bn. If g(�) = 1+(1−2�)�

1−�
, � ∈ U, � ∈ (0, 1), we obtain the class of almost spiral-like map-

pings of type � and order � on Bn.

(2.1)
⎧
⎪⎨⎪⎩

min�� �=r Reg(�) = min{g(r), g(−r)};

max�� �=r Reg(�) = max{g(r), g(−r)}.

1

1 − �

�
J−1f (z)f (z),

z

‖z‖2
�
−

�

1 − �
∈ g(U), z ∈ Bn�{0},

�����

�
J−1f (z)f (z),

z

‖z‖2
�
− 1

�����
≤ (1 − 2�) + Re

�
J−1f (z)f (z),

z

‖z‖2
�
, z ∈ Bn ⧵ {0}.

Ω
�
= {w = u + iv:v2 ≤ 4(1 − �)(u − �)} = {w:|w − 1| ≤ (1 − 2�) + Rew}.

i
sin �

cos �
+
e−i�

cos �

�
J−1f (z)f (z),

z

‖z‖2
�

∈ g(U), z ∈ Bn�{0},

Re

�
e−i�

�
J−1f (z)f (z),

z

‖z‖2
��

≥ 0.
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Lemma 2.5 (Gurganus, 1975)   Let h ∈  . Then, for each z ∈ Bn, the initial value problem

has a unique solution v(t) = v(z, t) defined for all t > 0, and v(z, t) → 0 as t → +∞. For fixed t, v(⋅, t) is 
a biholomorphic Schwarz function on Bn.

Lemma 2.6 (Liu & Lu, 2002)    Let f :Bn → ℂ
n be a normalized biholomorphic star-like mapping. Then,

where v(z, t) is the solution of the initial value problem (2.2), and the corresponding h(z) = J−1f (z)f (z).

Lemma 2.7 (Liu, Zhang, & Lu, 2006)    Let � ∈
(
−

�

2
, �

2

)
, and let f :Bn → ℂ

n be a normalized biholomor-
phic spiral-like mapping of type �. Then,

where v(z, t) is the solution of the initial value problem (2.2), and the corresponding h(z) = e−i�J−1f (z)f (z).

Lemma 2.8 Let � ∈ [0, 1) and let f :Bn → ℂ
n be a g-almost star-like of order �. Then,

Proof For z ∈ Bn�{0}, let z0 =
z

‖z‖. Then,

is well defined on the unit disk U, and p is biholomorphic on U. By Definition 2.2, we know that

Since p(0) = g(0) = 1, we have p ≺ g. By the maximum and minimum principles for harmonic func-
tions, we have

Let � = ‖z‖. Then,

 ✷

(2.2)

{
�v

�t
(z, t) = −h(v(z, t)),

v(z, 0) = z

f (z) = lim
t→+∞

{
etv(z, t)

}
,

f (z) = lim
t→+∞

{
exp(te−i� )v(z, t)

}
,

�‖z‖2 + (1 − �)‖z‖2 min{g(‖z‖), g(−‖z‖)}
≤ Re��J−1f (z)f (z), z

��

≤ �‖z‖2 + (1 − �)‖z‖2 max{g(‖z‖), g(−‖z‖)}.

p(�) =

⎧
⎪⎨⎪⎩

1

1−�

1

�

�
J−1f (�z0)f (�z0), z0

�
−

�

1−�
, � ∈ U�{0},

1, � = 0

p(�) =
1

1 − �

�
J−1f (�z0)f (�z0),

�z0

‖�z0‖2
�

−
�

1 − �
∈ g(U).

min{g(|� |), g(−|� |)} ≤ Rep(�) ≤ max{g(|� |), g(−|� |)}, � ∈ U.

�‖z‖2 + (1 − �)‖z‖2 min{g(‖z‖), g(−‖z‖)}
≤ Re��J−1f (z)f (z), z

��

≤ �‖z‖2 + (1 − �)‖z‖2 max{g(‖z‖), g(−‖z‖)}.
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Lemma 2.9 Let � ∈
(
−

�

2
, �

2

)
 and let f :Bn → ℂ

n be a g-spiral-like of type �. Then,

Proof For z ∈ Bn�{0}, let z0 =
z

‖z‖. Then,

is well defined on the unit disk U, and p is biholomorphic on U. By Definition 2.4, we know that

Since p(0) = g(0) = 1, we have p ≺ g. By the maximum and minimum principles for harmonic func-
tions, we have

Let � = ‖z‖. Then,

 ✷

3. Main results
Theorem 3.1 Let � ∈ [0, 1) and let f :Bn → ℂ

n be a g-almost star-like of order �. Then,

Proof Let h(z) = J−1f (z)f (z), z ∈ Bn. Then, h ∈ . And let v(z, t) be the solution of the initial value 
problem (2.2) corresponding to the above function h. For any 0 ≤ t < t′, let v(t) = v(z, t). Then,

Since ‖v(t)‖ is continuous, the above inequality implies that ‖v(t)‖ is absolutely continuous for 
t ∈ [0, +∞), and thus ‖v(t)‖ is differentiable almost everywhere on [0, +∞). Since

cos �‖z‖2 min{g(‖z‖), g(−‖z‖)} ≤ Re�e−i��J−1f (z)f (z), z
��

≤ cos �‖z‖2 max{g(‖z‖), g(−‖z‖)}.

p(�) =

⎧
⎪⎨⎪⎩

i sin �
cos �

+
e−i�

cos �

1

�

�
J−1f (�z0)f (�z0), z0

�
, � ∈ U�{0},

1, � = 0

p(�) = i
sin �

cos �
+
e−i�

cos �

�
J−1f (�z0)f (�z0),

�z0

‖�z0‖2
�

∈ g(U).

min{g(|� |), g(−|� |)} ≤ Rep(�) ≤ max{g(|� |), g(−|� |)}, � ∈ U.

cos �‖z‖2 min{g(‖z‖), g(−‖z‖)} ≤ Re�e−i��J−1f (z)f (z), z
��

≤ cos �‖z‖2 max{g(‖z‖), g(−‖z‖)}.

‖z‖ exp
⎛⎜⎜⎝

‖z‖

�
0

�
1

� + (1 − �)max{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
≤ ‖f (z)‖

≤ ‖z‖ exp
⎛⎜⎜⎝

‖z‖

�
0

�
1

� + (1 − �)min{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
.

�‖v(t)‖ − ‖v(t�)‖� ≤ ‖v(t) − v(t�)‖ ≤ ‖
t�

�
t

dv(�)

d�
d�‖ ≤

t�

�
t

‖dv(�)
d�

‖d�

=

t�

�
t

‖ − h(v(�))‖d�.

d‖v(t)‖
dt

=
1

‖v(t)‖Re
�
�v(t)

�t
, v(t)

�

= −
1

‖v(t)‖Re⟨h(v(t)), v(t)⟩,



Page 6 of 11

Zhang, Cogent Mathematics (2017), 4: 1339369
https://doi.org/10.1080/23311835.2017.1339369

and by Lemma 2.8,

Thus ‖v(t)‖ is a decreasing function on [0, +∞). From the right-hand side of the above inequality,

It yields that

i.e.

Let t → +∞, by Lemma 2.6,

Using the same arguments,

 ✷

In particular, we can get the growth theorem for almost star-like mappings of order � on the unit ball 
Bn when g(� ) = 1−�

1+�
, � ∈ U.

Corollary 3.2 Let � ∈ [0, 1) and let f :Bn → ℂ
n be a almost star-like of order �. Then,

We can also obtain the growth theorem for almost star-like mappings of order � and type � on Bn if 
let g(� ) = 1−�

1+(1−2�)�
, � ∈ U, � ∈ (0, 1) in Theorem 3.1.

− �‖v(t)‖ − (1 − �)‖v(t)‖max{g(‖v(t)‖), g(−‖v(t)‖)}
≤ d‖v(t)‖

dt

≤ −�‖v(t)‖ − (1 − �)‖v(t)‖min{g(‖v(t)‖), g(−‖v(t)‖)}.

−

‖v(t)‖

�
‖z‖

1

� + (1 − �)min{g(x), g(−x)}

1

x
dx

= −

t

�
0

1

� + (1 − �)min{g(‖v(�)‖), g(−‖v(�)‖)}
1

‖v(�)‖
d‖v(�)‖
d�

d�

≥
t

�
0

d�.

−

‖v(t)‖

�
‖z‖

�
1

� + (1 − �)min{g(x), g(−x)}
− 1

�
1

x
dx − ln ‖v(t)‖ + ln ‖z‖ ≥ t,

‖z‖ exp
⎛
⎜⎜⎝
−

‖v(t)‖

�
‖z‖

�
1

� + (1 − �)min{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
≥ et‖v(t)‖.

‖z‖ exp
⎛⎜⎜⎝

‖z‖

�
0

�
1

� + (1 − �)min{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
≥ ‖f (z)‖.

‖z‖ exp
⎛⎜⎜⎝

‖z‖

�
0

�
1

� + (1 − �)max{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
≤ ‖f (z)‖.

‖z‖
(1 + (1 − 2�)‖z‖) 2(1−�)1−2�

≤ ‖f (z)‖ ≤ ‖z‖
(1 − (1 − 2�)‖z‖) 2(1−�)1−2�

, � ∈ [0, 1)�{
1

2
}.

‖z‖ exp(−‖z‖) ≤ ‖f (z)‖ ≤ ‖z‖ exp(‖z‖), � =
1

2
.
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Corollary 3.3 Let � ∈ [0, 1), � ∈ (0, 1) and let f :Bn → ℂ
n be a almost star-like of order � and type  

�. Then,

Corollary 3.4 Let � ∈ (0, 1) and let f :Bn → ℂ
n be a star-like mapping of order �. Then,

Proof Let g(�) = 1−�

1+(1−2�)�
, � ∈ U, � ∈ (0, 1). Then, g satisfies the conditions of Definition 2.1. Let � = 0 

in Definition 2.2. We have

thus, it is that

So f is a star-like mapping of order �. And letting � = 0 in Theorem 3.1, the result can be obtained.  ✷

The following corollary is due to Zhang and Feng (2013).

Corollary 3.5 Let � ∈ [0, 1) and let f :Bn → ℂ
n be a parabolic star-like mapping of order �. Then,

where we choose the branch of the square root such that 
√
1 = 1, and the branch of the logarithm 

function such that log 1 = 0.

Proof Let g(�) = 1 + 4(1−�)

�
2

�
log

1+
√
�

1−
√
�

�2
, � ∈ U, � ∈ [0, 1). Then, g is a biholomorphic function from U 

onto the parabolic region Ω
�
 in the right half-plane (see Ali, 2005), where

And g satisfies the conditions of Definition 2.1.

‖z‖
�
1 + (1 − 2�(1 − �))‖z‖� 2(1−�)(1−�)

1−2�(1−�)

≤ ‖f (z)‖
≤ ‖z‖

�
1 − (1 − 2�(1 − �))‖z‖� 2(1−�)(1−�)

1−2�(1−�)

, 1 − 2�(1 − �) ≠ 0;
‖z‖ exp[(2� − 1)‖z‖] ≤ ‖f (z)‖ ≤ ‖z‖ exp[(1 − 2�)‖z‖], 1 − 2�(1 − �) = 0.

‖z‖
(1 + ‖z‖)2(1−�) ≤ ‖f (z)‖ ≤ ‖z‖

(1 − ‖z‖)2(1−�) .

�
J−1f (z)f (z),

z

‖z‖2
�

∈ g(U), z ∈ Bn�{0},

�����

�
J−1f (z)f (z),

z

‖z‖2
�
−
1

2�

�����
≤ 1

2�
, z ∈ Bn�{0}.

‖z‖ exp
⎛
⎜⎜⎜⎝

‖z‖

�
0

⎡
⎢⎢⎢⎣

1

1 + 4(1−�)

�
2

�
log

1+
√
x

1−
√
x

�2 − 1

⎤
⎥⎥⎥⎦
1

x
dx

⎞
⎟⎟⎟⎠

≤ ‖f (z)‖

≤ ‖z‖ exp
⎛⎜⎜⎜⎝

‖z‖

�
0

⎡⎢⎢⎢⎣
1

1 + 4(1−�)

�
2

�
log

1+i
√
x

1−i
√
x

�2 − 1

⎤⎥⎥⎥⎦
1

x
dx

⎞⎟⎟⎟⎠
,

Ω
�
=
{
w ∈ ℂ:|w − 1| ≤ (1 − 2�) + Re{w}

}
.
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Since f is a parabolic star-like mapping of order �, we have

Thus, it is that

Let � = 0 and let g(�) = 1 + 4(1 − �)

�
2

�
log

1 +
√
�

1 −
√
�

�2

 in Theorem 3.1. Then, the result can be  
obtained.  ✷

Theorem 3.6 Let � ∈
(
−

�

2
, �

2

)
 and let f :Bn → ℂ

n be a g-spiral-like of type �. Then,

Proof Let h(z) = e−i�J−1f (z)f (z), z ∈ Bn. By Definition 2.4, we know h ∈  . And let v(z, t) be the solu-
tion of the initial value problem (2.2) corresponding to the above function h. For any 0 ≤ t < t′, let 
v(t) = v(z, t). Then,

Since ‖v(t)‖ is continuous, the above inequality implies that ‖v(t)‖ is absolutely continuous for 
t ∈ [0, +∞), and thus ‖v(t)‖ is differentiable almost everywhere on [0, +∞). Since

and by Lemma 2.9,

Thus, ‖v(t)‖ is a decreasing function on [0, +∞). From the right-hand side of the above inequality,

�����

�
J−1f (z)f (z),

z

‖z‖2
�
− 1

�����
≤ (1 − 2�) + Re

��
J−1f (z)f (z),

z

‖z‖2
��

, z ∈ Bn�{0}.

�
J−1f (z)f (z),

z

‖z‖2
�

∈ g(U), z ∈ Bn�{0}.

‖z‖ exp
⎛⎜⎜⎝

‖z‖

�
0

�
1

max{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
≤ ‖f (z)‖

≤ ‖z‖ exp
⎛⎜⎜⎝

‖z‖

�
0

�
1

min{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
.

��‖v(t)‖ − ‖v(t�)‖�� ≤ ‖v(t) − v(t�)‖ ≤
�������

t�

�
t

dv(�)

d�
d�

�������
≤

t�

�
t

‖dv(�)
d�

‖d�

=

t�

�
t

‖ − h(v(�))‖d�.

d‖v(t)‖
dt

=
1

‖v(t)‖Re
�
�v(t)

�t
, v(t)

�

= −
1

‖v(t)‖Re⟨h(v(t)), v(t)⟩,

−cos �‖v(t)‖max{g(‖v(t)‖), g(−‖v(t)‖)} ≤ d‖v(t)‖
dt

≤ −cos �‖v(t)‖min{g(‖v(t)‖), g(−‖v(t)‖)}.
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It yields that

i.e.

Let t → +∞, by Lemma 2.7,

Using the same arguments,

 ✷

In particular, letting g(� ) = 1−�

1+�
, � ∈ U in Theorem 3.6, we can obtain the growth theorem for spi-

ral-like mappings of type � on Bn. This result is due to Hamada and Kohr, and we can refer to the 
Theorem 7.3.6 in Kohr and Liczberski (1998).

Corollary 3.7 Let � ∈
(
−

�

2
, �

2

)
 and let f :Bn → ℂ

n be a spiral-like mapping of type �. Then,

Letting g(� ) = 1−�

1+(1−2�)�
, � ∈ U, � ∈ (0, 1) in Theorem 3.6, we can also obtain the growth theorem 

for spiral-like mappings of type � and order �  on Bn.

Corollary 3.8 (Feng et al., 2007)   Let � ∈
(
−

�

2
, �

2

)
, � ∈ (0, 1), and let f :Bn → ℂ

n be a spiral-like map-
ping of type � order �. Then,

If g(� ) = 1+(1−2�)�

1−�
, � ∈ U, � ∈ (0, 1) in Theorem 3.6, we can obtain the growth theorem for almost 

spiral-like mappings of type � and order � on Bn.

−

‖v(t)‖

�
‖z‖

1

min{g(x), g(−x)}

1

x
dx

= −

t

�
0

1

min{g(‖v(�)‖), g(−‖v(�)‖)}
1

‖v(�)‖
d‖v(�)‖
d�

d�

≥ cos �
t

�
0

d�.

−

‖v(t)‖

�
‖z‖

�
1

min{g(x), g(−x)}
− 1

�
1

x
dx − ln ‖v(t)‖ + ln ‖z‖ ≥ t cos �,

‖z‖ exp
⎛
⎜⎜⎝
−

‖v(t)‖

�
‖z‖

�
1

min{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
≥ et cos �‖v(t)‖.

‖z‖ exp
⎛⎜⎜⎝

‖z‖

�
0

�
1

min{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
≥ ‖f (z)‖.

‖z‖ exp
⎛⎜⎜⎝

‖z‖

�
0

�
1

max{g(x), g(−x)}
− 1

�
1

x
dx

⎞⎟⎟⎠
≤ ‖f (z)‖.

‖z‖
(1 + ‖z‖)2 ≤ ‖f (z)‖ ≤ ‖z‖

(1 − ‖z‖)2 .

‖z‖
(1 + ‖z‖)2(1−�) ≤ ‖f (z)‖ ≤ ‖z‖

(1 − ‖z‖)2(1−�) .
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Corollary 3.9 (Feng et al., 2007)      Let � ∈
(
−

�

2
, �

2

)
, � ∈ (0, 1), and let f :Bn → ℂ

n be a almost 
 spiral-like mappings of type � and order �. Then,
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‖z‖
(1 + (1 − 2�)‖z‖) 2(1−�)1−2�

≤ ‖f (z)‖ ≤ ‖z‖
(1 − (1 − 2�)‖z‖) 2(1−�)1−2�

, � ∈ [0, 1)�

�
1

2

�
.

‖z‖ exp(−‖z‖) ≤ ‖f (z)‖ ≤ ‖z‖ exp(‖z‖), � =
1

2
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