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Abstract
We introduce a simple framework in which market participants update their prior about an

efficient price with a model-based learning process. We show that exponential intensities for
the arrival of aggressive orders arise naturally in this setting. Our approach allows us to fully
describe market dynamics in the case with Brownian efficient price and informed market takers.
We are also able to revisit the emergence of market impact due to meta-order splitting, making
several connections with existing literature.
Keywords: market microstructure, Bayesian filtering, price formation, Zakai SPDE,
market impact.

1 Introduction
The way information about an asset is conveyed to market participants and generates price dynamics
is usually referred to as the price formation process. Its study is of both theoretical and practical
interest. In particular it explains how economic trends are reflected in the market and is the key
to understand and optimize trading costs due to market impact when designing trading algorithms,
see [Almgren and Chriss, 1999, Bertimas et al., 1999]. In this paper, we present a framework based
on the simple idea that market participants have a model for an unobserved efficient price which
should describe the fair value of the asset. They believe that market dynamics, by equating offer and
demand, provide information on this price, and they try to estimate this efficient price by continu-
ously updating their view about it using Bayesian updates. The goal of this paper is to derive the
dynamics of the market participants’ views on this price and of the mid-price in this framework. By
using a filtering approach in continuous time to model the learning of the efficient price by the market
participants, we are thus able to describe a general mechanism of price formation.

We consider a market with a single asset whose efficient price is non observable. This is classical
in the study of price and liquidity dynamics, see for example [Delattre et al., 2013, Guéant et al.,
2013, Jaisson, 2015a, Madhavan et al., 1997, Stoikov, 2018]. In [Jaisson, 2015a] for example, a “fair
price” is used to link the spread and the impact of market orders by making a zero Profits and Loss
assumption for the market makers. In our model there are three types of market participants:
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• Market observers: these market participants have a view on the efficient price and update
it continuously according to the observed market dynamics. They can either stand for high-
frequency traders who compute metrics in order to optimize some algorithms, or for softwares
which provide a list of indicators for trading desks. In our framework they simply try to estimate
the efficient price and they do not interact with the market, except for one particular observer,
called the market maker. The market maker is a special observer, as he is responsible for setting
the bid and ask prices, and may use his personal metrics to do so. There is only one market
maker. We consider two different settings: either the bid and ask prices are fixed (independently
of everything else), or they depend on the view of the market maker on the efficient price.

• Market takers: these market participants know the efficient price in our model, and trigger
trades. In the following we refer to a trade at the ask price as a buy trade and a trade at the
bid price as a sell trade. We make the assumption that those trades can be described by two
jump processes (one for buy trades and one for sell trades) with intensities which are functions
of the difference between the efficient price and the bid or ask price, so the market takers are
somewhat opportunistic. In that sense our approach is close to that of [Delattre et al., 2013].

• Meta-traders: these market participants trigger large sequences of trades (called meta-orders)
according to some schedule which does not depend on the efficient price. We will only consider
such participants in Section 5.

The market observers see the bid and ask prices continuously as well as the trades. For the sake of
tractability we assume that they consider that all the trades are initiated by the opportunistic market
takers. As a consequence the meta-orders will be indistinguishable from informed trades in Section
5 and thus they will be treated as a perturbation. It is similar to the approach of [Jusselin and
Rosenbaum, 2020]. We construct from the observed trades the learning process of a given observer,
and we derive how each trade modifies his view on the efficient price. In particular we investigate
how the trades lead to market impact. Time is continuous in our model, contrary to the Kyle model
[Kyle, 1985] or the model of [Farmer et al., 2011] on market impact. This allows us in particular to
describe how the views evolve in the intervals between the trades and how the bid and ask prices
shape the views on the efficient price. Moreover our model uses neither a non-arbitrage argument
as in [Farmer et al., 2011] or [Jaisson, 2015a], nor the fact that some agent optimizes a utility function.

Here, similarly to [Delattre et al., 2013], we suppose that the market observers believe that the trades
contain information on the efficient price: the smaller the difference between the efficient price and
the bid or ask price, the more frequent the trades, but the trades’ arrival remains random. Instead
of estimating the functional linking the efficient price to the intensity of market orders and then
recovering the efficient price by making the time horizon go to infinity as in [Delattre et al., 2013],
we assume that the observers know this functional and they try to estimate the efficient price online.
Their knowledge about the efficient price takes the form of a probability distribution1, which repre-
sents the probability for the current efficient price to lie in some interval, given the initial knowledge
and the information gathered by observing the market orders. Practical motivations for trying to
estimate an efficient price include optimizing decision making by better predicting order flow, getting
a view of what other participants deem a reasonable price, or anticipate the reaction of the market to
the order flow. Also, the views on an efficient price reflect in some way the general consensus on the

1We might also refer to this distribution by the names “prior” or “posterior” depending on the context.
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right price to trade at, so studying the learning process gives us insights into the way prices are formed.

In this framework, the shape of the function describing the arrival intensity of market orders is
important. A classical hypothesis is to take a decreasing exponential function of the one-sided spread
d2 of the form

λ(d) = λ0e
−ad

for the intensity of arrival of market orders3. This functional form has been particularly interesting to
obtain explicit results in the optimal execution literature, see [Avellaneda and Stoikov, 2008, Cartea
et al., 2015, Guéant et al., 2013] and in regulation, see [Laruelle et al., 2020]. Our framework enables
us to show that exponential functions are the only natural candidates for the intensity of arrival of
market orders, as they appear to be the only possible functions which satisfy two particular proper-
ties for our learning process. On the one hand, they ensure that, information on the efficient price is
brought to the market mostly through the timestamps of the transactions and their clustering pat-
terns. On the other hand, the exponential intensity of orders decouples the mid-price and the spread
in the dynamics of the learning process. While the mid-price becomes the price towards which our
estimation of the efficient price tends to go, the spread only dictates how fast the observer accepts
the mid-price.

Then by setting λ as a decreasing exponential function, we are able to derive closed form formulas
to describe the price formation process. Taking the particular example of a fixed efficient price, we
show that between two trades, and due to the symmetry between buying and selling, an observer’s
estimation of the efficient price tends to the mid-price, with a characteristic time

t1 = ea
Sa−Sb

2

2λ0
,

where a and λ0 are the parameters used previously in the definition of the intensity function, and
Sb and Sa are the current bid and ask prices. Although fixed bid and ask prices are unrealistic,
this last result gives some insights into illiquid markets. In particular, to justify this approach, we
give a stability result for the market between two trades: if the bid and ask prices are set symmet-
rically around the average of a symmetric prior, then the mid-price will not change between two trades.

We then consider an approximation of our learning process with dynamic bid and ask prices. In this
approximation, if the initial prior is Gaussian, then the posterior remains Gaussian. Furthermore, we
are able to derive explicit expressions for the mean and the variance of the posterior if the efficient
price is constant or follows a Brownian motion with known volatility. The variance converges to a
constant σ2

∞ given by

σ2
∞ = σ

√
t1
a

where σ is the volatility of the efficient price. This variance can be understood as an observer’s asymp-
totic confidence in his estimation of the efficient price. Our model also allows us to derive formulas
for the market impact of a meta-order. While [Kyle, 1985] predicts an impact which increases linearly
in the total traded volume, it has been largely disproved empirically for small time horizons, see for

2By this we mean the distance between the trade price (either the bid price or the ask price) and the efficient price.
3Power-law distributions have also been proposed, see for example [Bouchaud et al., 2002].
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example [Almgren et al., 2005, Bouchaud et al., 2018, Gomes and Waelbroeck, 2015, Torre, 1997].
The square root law has been widely accepted to describe the impact as a function of the traded
volume, see [Bershova and Rakhlin, 2013, Torre, 1997, Tóth et al., 2016] for instance. However,
other exponents, see [Almgren et al., 2005, Ferraris, 2007, Kissell and Malamut, 2006, Moro et al.,
2009], or even logarithmic functions, see [Bouchaud et al., 2009, Zarinelli et al., 2014], have also been
considered. Our model, though it is certainly stylized, helps better understand how certain impact
shapes can emerge, and why this problem can be controversial. The main theoretical explanations for
the shape of the market impact connect it to the persistence of the order flow, see [Bouchaud et al.,
2003, Jaisson, 2015b, Jusselin and Rosenbaum, 2020, Lillo and Farmer, 2004], or the size distribution
of meta-orders, see [Farmer et al., 2011]. For example, in [Farmer et al., 2011], the authors link
the size distribution of market orders to the impact by assuming that the market observers try to
guess whether a meta-order is being executed and that the market makers make no overall profit. In
[Jaisson, 2015b], the author supposes that permanent impact is linear in the size of the meta-order
and links the long memory exponent of the sign of market orders to the transient market impact.

Here we do not assume any distribution for the size of meta-orders nor any intricate strategy by
the market makers. We simply look at how the estimation of the efficient price moves when trades
happen and thus market impact is driven by the hidden estimates of the efficient price each market
observer can have. The long memory of market dynamics is somehow replaced here by the modeling
assumption that market orders follow a jump process with an intensity which depends on the efficient
price. This is in a way similar to the approach of [Tóth et al., 2011] where the shape of a hidden
latent order book is responsible for market impact form. We will consider two cases: in one case we
fix the bid and ask prices and in a second case we make the market maker an observer who has some
rule to set the bid and ask prices given his own view on the efficient price. In the first case we define
market impact as the change in the prior of an observer, and in the second case we define it as the
change in the mid-price (which is directly linked to the change in the prior of the market maker). In
both cases we find concave market impacts. For example, in the second case and if we assume that
the spreads are small, then the expected impact on the mid-price of a meta-order executed between
t = 0 and t = T with β buy orders per second is

βt1
a
e
− aσ√

t1
t(e

aσ√
t1

(t∧T )
− 1).

This is linear in the trading speed and concave in time. It is also bounded when T goes to infinity,
which can be explained by the fact that the market takers still trade according to the difference be-
tween the efficient price, which they know, and the mid-price, which they observe. In this framework
the efficient price is not impacted so at some point the meta-order is balanced out by the orders from
the opportunistic market takers. We also show that under the same assumptions the impact becomes
linear if no information about the efficient price is received while the meta-order is executed i.e. if
no trades are triggered by opportunistic market takers, and we link the slope of the impact to the
asymptotic confidence σ2

∞.

For general spreads and for a fixed efficient price, we consider two limiting regimes. For a fast
meta-order, the market impact is logarithmic in the traded volume, and for a slow meta-order it is
approximately constant and equal to βt1

a
. This recovers the infinite slope at very short time, as in the

case of the square-root law, see [Bouchaud et al., 2009, Tóth et al., 2011]. For intermediate speeds we

4



give a recursive formula where we show that the sinh of the impact is the key quantity to compute.
Interestingly the market impact in our model is linked directly to the intensity function of the market
orders: in most cases we can expect an arcsinh impact, which may appear similar to a square-root
impact. Linear impact and logarithmic impact can appear in limiting cases.

Our paper considers only the case where the information on the efficient price is contained in the
intensity of the arrival of the aggressive orders. As a consequence we only derive results regarding
transient market impact, and the model does not account for market movements which are due to
an optimization of quotes in response to a meta-order and a fixed prior, i.e. adverse selection by the
market maker related to the detection of the meta-order. The study of a model in which the market
takers are themselves learning and thus create nontrivial market dynamics is left for further research.

The paper is organized as follows. We start by introducing the framework and the modelling choices
in Section 2. Then we consider the case of a fixed efficient price in Section 3. In Section 4 we introduce
an approximation which yields closed form dynamics. We study the impact of meta-orders in Section
5. Finally, some proofs are relegated to the appendix.

2 Model description
We consider a market participant who tries to estimate the efficient price of the asset S which follows
a one-dimensional process. The market participant is an observer, and he does Bayesian updates
on his prior for S (a probability distribution on R) given a model on the dynamics of S and the
available information. We refer to [Liptser and Shiryaev, 2001] for an introduction to Bayesian
filtering, [Cvitanić et al., 2006] or [Frey and Runggaldier, 2001] for financial applications and [Rupnik
Poklukar, 2006] for an extension to jump processes. In our setting, the available information is made
of the history of the bid and ask prices and of the trades.

2.1 Framework
We consider a filtered probability space (Ω,F,P) on which the dynamic of the efficient price S is given
by

dSt = µS(t, St)dt+ σS(t, St)dWt (2.1)

where W is a Brownian motion, µS and σS are two real-valued continuous Lipschitz functions, which
are known by the observer. In particular there is strong existence and uniqueness of S given some
initial value S0 ∈ R. The initial efficient price S0 follows some probability distribution π0 on R. For
any t ≥ 0, define the operator Lt on C2

c (R) the set of twice differentiable functions with continuous
first and second derivatives and with compact support by

Ltf = µS(t, .)∂xf + 1
2σS(t, .)2∂2

xxf

for any f ∈ C2
c (R). Also define its adjoint operator L∗t by L∗tf = −∂x(µS(t, .)f) + ∂2

xx(1
2σS(t, .)2f).

Let the ask and bid prices Sa and Sb be two càdlàg processes to be specified later. Let Na and N b be
two jump processes with unit jumps and compensators given by λ(Sat− − St) and λ(St − Sbt−) on the
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ask and bid side respectively. The intensity function λ is a continuous, non-negative and decreasing
function on R (see Section 2.3 for more details on the choice of λ). The processes Na and N b are
respectively the number of trades on the ask side and the bid side. Trades happen on the ask side
with an intensity λ(Sat− − St) which is decreasing with respect to the distance between the ask price
and the efficient price. Similarly trades happen on the bid side with an intensity λ(St−Sbt−) which is
decreasing in the distance between the efficient price and the bid price. Let (Ft)t≥0 be the filtration
associated with an observer, defined as the completion of the filtration generated by Sa, Sb, Na and
N b. Note that neither W nor S are observable. We denote by E the expectation under P.

Remark 2.1. We do not consider the case where the observer uses erroneous dynamics in his es-
timation of the efficient price. However the filtration is generated only by Sa, Sb, Na and N b, and
most of our results aim at expressing the learning process using only those four processes (and not the
law of S). So, even if the participants had erroneous models, most of our results could still be used to
understand the market dynamics.

2.2 Filtering equation
We consider an observer who tries to estimate S from the filtration (Ft)t≥0. He adopts a purely
Bayesian point of view, i.e. he aims at computing E[f(St)|Ft] for any bonded function f . At time
t = 0, he has a prior on S given by the probability measure π0 on R. Then he updates this measure
given the information he receives. We now recall the filtering equations associated to the filtration
(Ft)t≥0, see for example [Rupnik Poklukar, 2006].

We say that a process ρ on the space of measures on R defined for any f ∈ C2
c (R) by ρ[f ]t =

∫
f(s)dρt(s)

is a solution of the Zakai equation if ρ[f ]t is càdlàg and if

dρ[f ]t =ρ[Ltf ]tdt+ (ρ[f(.)λ(Sat− − .)]t− − ρ[f ]t−)(dNa
t − dt)

+ (ρ[f(.)λ(.− Sbt−)]t− − ρ[f ]t−)(dN b
t − dt).

(2.2)

for any f ∈ C2
c (R).

Classical uniqueness results ensure that the posterior is fully determined by the solution of this
equation if Sa and Sb are deterministic. We indeed have the following result.

Proposition 2.2. Suppose that Sa and Sb are deterministic and that

0 < λ− ≤ λ ≤ λ+

for some constants λ−, λ+, and λ the intensity function defined in (2.1). Then, for any t ≥ 0 and
f ∈ C2

c (R), ρ[f ]t = Ē[f(St)|Ft] is the unique solution to the Zakai equation (2.2) with ρ0 = π0. The
expectation Ē is taken under the measure P̄ given by the change of probability dP̄

dP |t = Γt with

Γt = e
∫ t

0 − log(λ(Sas−−Ss))dNa
s−
∫ t

0 (1−λ(Sas−−Ss))dse
∫ t

0 − log(λ(Ss−Sbs−))dNb
s−
∫ t

0 (1−λ(Ss−Sbs−))ds.

The law of St given Ft is then described by π[f ]t = E[f(St)|Ft] = ρ[f ]t
ρ[1]t .

Proof. The proof can be found in [Qiao, 2018], see also [Ceci and Colaneri, 2012b, Ceci and Colaneri,
2012a, Qiao and Duan, 2015, Mandrekar et al., 2011].
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The measure ρ is called the unnormalized filter, as opposed to π, which we call the normalized filter.
If the solution of the Zakai equation has a smooth density m̂, an integration by parts shows that it is
a solution to the following Zakai SPDE

dm̂t(x) =(L∗t m̂t)(x)dt
+ m̂t−(x)(λ(Sat− − x)− 1)(dNa

t − dt)
+ m̂t−(x)(λ(x− Sbt−)− 1)(dN b

t − dt).
(2.3)

Remark 2.3. Similarly, under the same assumptions as in Proposition 2.2, the normalized filter π
is the unique solution of the Kushner-Stratonovich equation: for any f ∈ C2

c (R), π[f ]t is càdlàg and

dπ[f ]t =π[Ltf ]tdt+ (−π[f(.)(λ(Sat − .) + λ(.− Sbt ))]t + π[f ]tπ[(λ(Sat − .) + λ(.− Sbt ))]t)dt

+
(π[f(.)λ(Sat− − .)]t−

π[λ(Sat− − .)]t−
− π[f ]t−

)
dNa

t

+
(π[f(.)λ(.− Sbt−)]t−

π[λ(.− Sbt−)]t−
− π[f ]t−

)
dN b

t .

(2.4)

for any f ∈ C2
c (R).

Most of the time we work with unnormalized densities as the Zakai SPDE (2.3) is linear. Also, if the
initial prior has a density, a solution m̂ of the Zakai SPDE (2.3) (if it exists) gives the density of the
unique unnormalized filter. This is only a technical tool as we can retrieve the density m of the prob-
ability distribution from the density m̂ of the normalized filter by renormalizing m̂: mt(x) = m̂t(x)∫

m̂t(y)dy .

There are three distinct terms in (2.3):

• The first term L∗t m̂t = −µS∂xm̂t + 1
2σ

2
S∂

2
xxm̂t takes into account the model of the observer: the

density will diffuse and drift according to the model.

• The second term m̂t−(x)(λ(Sat− − x) − 1)dNa
t + m̂t−(x)(λ(x − Sbt−) − 1)dN b

t describes what
happens after each trade. Each time a trade occurs at the ask price the density is multiplied
by λ(Sat− − x) so the new density puts more weight to the higher prices. Conversely each time
a trade occurs at the bid price the density is multiplied by λ(x− Sbt−) so the new density puts
more weight to the lower prices.

• The third term −m̂t(x)(λ(Sat − x) + λ(x − Sbt ) − 2)dt explains the behaviour of the density
between two trades. The density is modified by some potential x 7→ λ(Sat −x)+λ(x−Sbt ) which
has its extremum at Sat +Sbt

2 . Note that the 2m̂t(x)dt term is irrelevant from the point of view of
a learning observer as adding a term of the form m̂t(x)φt in the Zakai SPDE (2.3), with φ some
càdlàg process which does not depend on x, modifies m̂t(x) but not m̂t(x)/

∫
m̂t(y)dy.

Remark 2.4. The boundedness assumption on λ in Proposition 2.2 is only technical. If we take λ
to be a positive, continuous, decreasing and convex function, then clipping λ makes the assumption
trivial, and it has no impact on the financial interpretations or the numerical results if the clipping is
done far enough. So most of the time we will only consider the Zakai SPDE, ignoring the boundedness
condition.
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Remark 2.5. The Zakai equation describes the evolution of the posterior of each observer, if they
suppose that the price process follows the dynamics given by (2.1). Each observer could have different
functions µS and σS. It is possible to complexify the dynamics by making our observers learn some
parameters on which µS and σS could depend. Thus they could revise their views on the dynamics
themselves.

In the following, we will consider two possible cases:

• Sa and Sb are fixed constants so an observer uses the Zakai filtering equation (2.3) to update his
views on the efficient price. This toy model will help us understand some important features,
and it will give insights into illiquid markets.

• Our observer is the market maker. He applies the same filtering equation (2.3) to update his
prior through the observation of Na and N b. He then uses his posterior to change his quotes.
This filter, together with a rule for the update of the quotes given the posterior and the definition
of Na and N b yield a fixed-point problem for Sa and Sb which we discuss in Proposition 3.3 and
in Sections 4 and 5.

2.3 Exponential intensities as a consequence of microstructure
The intensity function λ plays an important role. For financial reasons we consider continuous, strictly
decreasing and convex functions. We introduce two new properties which arise naturally in our frame-
work and we show that they are satisfied only by exponential functions.

The first property translates the idea that, given the pre-trade prior density mt−, the jump in the
filter happening at time t because of a trade should not depend on the bid and ask prices Sat− and
Sbt−. In more financial terms, it means that knowing only the value of a trading price is not sufficient
to estimate the efficient price: an observer needs the timestamps and the clustering patterns of the
trades. It can be translated into the following mathematical property.

Property (a) λ is a continuous, positive, strictly decreasing, exponentially bounded4 and convex
function. Also, the maps

Ma
λ → RR2

m 7→
(
(z, x) 7→ λ(z − x)m(x)∫

λ(z − y)m(y)dy
)

and

Mb
λ → RR2

m 7→
(
(z, x) 7→ λ(x− z)m(x)∫

λ(y − z)m(y)dy
)

whereMa
λ = {m > 0,

∫
m(x) = 1, 0 <

∫
λ(y − x)m(x)dx <∞, ∀y ∈ R} andMb

λ = {m > 0,
∫
m(x) =

1, 0 <
∫
λ(x− y)m(x)dx <∞,∀y ∈ R}, have their image in the set of functions which do not depend

4By this we mean that λ(x) < ec|x| for some c > 0.
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on z.

Note that Ma
λ and Mb

λ are always non-empty for λ a continuous, strictly decreasing, exponentially
bounded and convex function as they contain the Gaussian density functions.

The two maps in Property (a) describe the jump in the density of the prior when a trade happens, on
the ask side or the bid side. Property (a) can be interpreted as follows: mt depends on mt− and on
the sign of the trade but not on Sat− or Sbt−. In other words, for a given observer, a trade on the ask
side (resp. on the bid side), by itself, has the same informational value whatever the spread. It does
not mean that the bid and ask prices are useless for the observer, but that he needs to observe the
dynamics of the trades: for example the time elapsed before the trade is important. In a way learning
is intrinsically dynamic: the knowledge of the price of a trade only helps if we know the history of
the previous bid and ask prices and of the trades.

The second property relates to the fact that in the absence of trades, the mid-price Sa+Sb
2 plays the

role of the potential new estimator of the efficient price and the half-spread Sa−Sb
2 modulates the

speed of learning this price. In more financial terms, it means that, if we look at the market at
some given time with no specific information, the best available estimate of the efficient price is the
mid-price. The spread only helps build confidence in the mid-price. It can be translated into the
following mathematical property.

Property (b) The function λ is continuous, positive, strictly decreasing, exponentially bounded,
convex and four times differentiable. Also, there exists 3 functions f : R → R, g : R → R and
h : R→ R, such that

−(λ(sa − x) + λ(x− sb)− 2) = h(sa, sb)︸ ︷︷ ︸
global constant

−g(x− sa + sb

2 )︸ ︷︷ ︸
Potential with minimum at sa+sb

2

f(s
a − sb

2 )

for all sa, sb, x ∈ R.

Property (b) can also be interpreted in more physical terms. It means that the mid-price and the
spread play two independent roles for the learning process: the spread appears as a time dilation
parameter, while the mid-price is the location of the minimum of a potential. As a consequence, the
spread serves only to determine the speed with which the mid-price is accepted as the best estimator
of the efficient price when no trade happens. When λ(x) = λ0e

−ax for some a > 0 and λ0 > 0, the
term without jump in dm̂t is actually

(L∗t m̂t)(x)dt− λ0m̂t(x)(e−a(Sat −x) + e−a(x−Sbt ))dt = (L∗t m̂t)(x)dt− 2λ0e
−S

a
t −S

b
t

2 m̂t(x) cosh(S
a
t + Sbt

2 − x)dt,

so a high spread can be counterbalanced by a high base intensity λ0.

Our result is the following.

Proposition 2.6. Property (a) and Property (b) hold if and only if λ is of the form λ(x) = λ0e
−ax

for some λ0 > 0 and a > 0.
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Proof. See Appendix A.

We introduce the following assumption which will be useful in the next sections.

Assumption Aλ. We assume that λ(x) = λ0e
−ax for some a > 0 and λ0 > 0.

For σ ≥ 0, let Aσ be the following assumption, which will help us get explicit expressions.

Assumption Aσ. We assume that

µS = 0

and σS = σ.

2.4 Example with a Gaussian prior at time t−
Assume Aλ and Aσ and suppose that right before time t, mt− is Gaussian with mean S̄ and variance
σ̄2 > 0.5 Then

dmt(x) = σ2

2σ̄2 (−1 + (x− S̄)2

σ̄2 )mt(x)dt

+ 2λ0e
−aS

a
t −S

b
t

2 (−mt(x) cosh(a(x− Sat + Sbt
2 )) + e

a2σ̄2
2 cosh(a(S̄ − Sat + Sbt

2 )))dt

+mt−(x)
( λ0e

−a(Sat−−x)∫
λ0e

−a(Sat−−y)mt−(y)dy
− 1

)
dNa

t

+mt−(x)
( λ0e

−a(x−Sbt−)∫
λ0e

−a(y−Sbt−)mt−(y)dy
− 1

)
dN b

t .

A simple computation shows that if mt− is Gaussian right before a jump, the posterior is still Gaus-
sian, with same variance but with a shifted mean S̄post = S̄ + aσ̄2. Unsurprisingly the estimation of
the efficient price is revised upward after an aggressive buy trade. The jump is proportional to σ̄2:
the less confident a trader in his estimation, the more he will change it when something happens. It
is also proportional to the scale factor a in the intensity function. Indeed, as a grows larger, trades
become less frequent, so each aggressive order will be that much more important to estimate the effi-
cient price. Also, from the above equation we deduce that a Gaussian prior does not usually remain
Gaussian if it is updated continuously, because of the cosh(a(x− Sat +Sbt

2 ) term.

At time t the mean evolves locally as

d(
∫
xmt(x)dx) =− 2λ0aσ̄

2e−a
Sat −S

b
t

2 +a2σ̄2
2 sinh(a(S̄ − Sat + Sbt

2 ))dt

+ aσ̄2(dNa
t − dN b

t ).

As we saw in Section 2.3 it is revised upward or downward by aσ̄2 if a trade occurs. If no trade
happens, the dynamics of the prior depend on the mid-price Sat +Sbt

2 . We interpret it as a tendency for
5For example this is the case of an observer with initial prior m0 ∼ N (S̄, σ̄2) who for some reason did not update

his views before t.
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an observer to believe that the bid and ask prices are set symmetrically around the efficient price if no
trade happens, which makes him see the mid-price as a good estimate. For example, if our estimated
mean is higher than the mid-price, then we think that there will be more aggressive buys than sells. If
nothing happens, we tend to think that the number of buys will be closer to the number of sells, and
we decrease our estimate. The spread Sat − Sbt plays also a role: the bigger the spread, the less infor-
mation we learn by seeing no trade. As before, the value aσ̄2 measures our confidence in our estimates.

The mean square evolves locally as

d(
∫
x2mt(x)dx) =σ2dt− 2λ0e

−aS
a
t −S

b
t

2 +a2σ̄2
2

(
(σ̄2 + S̄2 + a2σ̄4) cosh

(
a(S̄ − Sat + Sbt

2 )
)

+ 2aS̄σ2 sinh
(
a(S̄ − Sat + Sbt

2 )
))
dt+ 2Ŝaσ̄2(dNa

t − dN b
t ).

so our variance evolves locally as

d
( ∫

x2mt(x)dx−(
∫
xmt(x)dx)2

)
=
(
σ2−2λ0e

−aS
a
t −S

b
t

2 +a2σ̄2
2 (σ̄2 +S̄2 +a2σ̄4) cosh

(
a(S̄− S

a
t + Sbt

2 )
))
dt

so it is locally strictly decreasing if it is large and locally strictly increasing if it is small. So we could
expect some convergence of the variance (see Section 4). Also, the further our estimate is from the
mid-price, the slower the variance changes.

3 Learning a fixed efficient price
In this section we assume A0, i.e. we fix the efficient price. We study the learning process in this toy
framework, which will give us important intuitions for the more general case. It is also adapted to
illiquid markets in which movements in the efficient price are deemed small compared to the uncer-
tainty on it.

First we observe that with a constant efficient price the Zakai equation on densities (2.3) has a simple
solution. The proof of the following proposition is a direct application of Itô’s formula.

Proposition 3.1. Assume A0 and suppose that the prior at time 0 has a density m0. Then the Zakai
SPDE (2.3) has a unique solution m̂ given by

m̂t(x) = m0(x)e−
∫ t

0 (λ(Sau−x)+λ(x−Sbu)−2)due
∫ t

0 lnλ(Sau−−x)dNa
u+lnλ(x−Sbu−)dNb

u .

We deduce the following corollary.

Corollary 3.2. If additionally Aλ holds and the initial prior is Gaussian, then m̂t is integrable in x
for each t.

We introduce the following assumption which allows us to derive convergence results of the posterior
distribution to the real efficient price.

Assumption Afix. We assume that Sa and Sb are fixed constants.

11



We show later in Proposition 3.3 that this assumption makes sense when we look at what happens
between two trades.

We have the following result:

Theorem 1. Assume Afix, A0, and that λ is strictly decreasing and strictly convex. If m0 ∈ C(R) is
the density of a probability measure on R with m0(Sa+Sb

2 ) 6= 0, then we have the following results.

(i) Let τ = inf{t > 0,max(Na
t , N

b
t ) > 0} be the time of the first trade. There exists a.s. a unique

solution m̂ on [0, τ) to the Zakai SPDE with initial density m0, and this solution is integrable.
The renormalized probability density ut = m̂t∫

m̂t(x)dx is deterministic, and it tends in the sense of

measures to a Dirac distribution at point Sa+Sb
2 as t→ +∞.

(ii) In particular if Aλ holds, then

ut(x) ∼
t→+∞

√
t

πt1

m0(x)
m0(Sa+Sb

2 )
e
− t
t1

(cosh(x−S
a+Sb

2 )−1)
,

where t1 = ea
Sa−Sb

2
2λ0

.

Proof. See Appendix B.

This theorem implies that if the initial prior has a density whose support contains the mid-price, then
necessarily an observer learns this mid-price during the intervals between the trades. This learning
takes places with a characteristic time t1. Note that t1 is decreasing in the spread.

We now look at the case where the market maker learns the efficient price: we impose ex post that
the mean of mt is the mid-price and we look for a fixed point. We prove a stability result: the market
maker does not change his quotes if no trade occurs.

Proposition 3.3. Assume Aλ and A0, that m0 is Gaussian, and suppose that the processes Sa and
Sb satisfy Sa−Sb

2 = δ > 0 and are such that the solution of the Zakai SPDE is a distribution with
mean Sa+Sb

2 (i.e. that the market maker chooses his mid-price as the mean of mt, and that he takes
a constant half-spread δ). Then the quotes are stable, i.e. Sat +Sbt

2 = Sa0 +Sb0
2 , for t < τ = inf{t >

0,max(Na
t , N

b
t ) > 0}. Also, there exists a.s. a unique solution m̂ on [0, τ) to the Zakai SPDE with

initial density m0, and this solution is integrable. The renormalized probability density ut = m̂t∫
m̂t(x)dx is

deterministic, and it tends in the sense of measures to a Dirac distribution at point Sa0 +Sb0
2 as t→ +∞.

Proof. Note from Proposition 3.1 that the unique solution m̂ of the Zakai SPDE has an integrable
continuous density for t < τ , with moments of every order, so the renormalized distribution m solves
the Kushner-Stratonovich SPDE for t < τ . Writing xt =

∫
yut(y)dy, observe from (2.3) that

m̂t(xt − x) = m0(xt − x)e2t− t
t1

cosh(ax)

for t < τ . Integrating the Kushner-Stratonovich SPDE, we see that

dxt = −dt
t1

∫
(xt − x)ut(xt − x)(cosh(ax)−

∫
cosh(ay)ut(xt − y)dy)dx.

12



Plugging

ut(xt − x) = m0(xt − x)e2t− t
t1

cosh(ax)∫
m0(xt − y)e2t− t

t1
cosh(ay)

dy

into the dynamics of xt we find that xt solves a continuous and locally Lipschitz ODE. As a consequence
xt = x0 i.e. Sat +Sbt

2 = Sa0 +Sb0
2 is the only possible solution, for t < τ . Plugging xt = x0 in the previous

equation we obtain the convergence of ut, conditional on t < τ to a Dirac distribution at x0.

This result completes Theorem 1 by giving the point of view of the market maker between trades. It
shows that a market maker who quotes a constant spread has no incentive to move his bid and ask
prices if his initial prior on the efficient price is Gaussian.

4 Small spread approximation
Assume Aλ and Aσ for some σ ≥ 0. Let m0 be the density of a N (x0, σ

2
0), and suppose that

Sat −Sbt
2 = δ ≥ 0 for all t. The Zakai SPDE is

dut(x) =σ
2

2 ∂
2
xxut(x)dt− 1

t1
cosh(a(x− Sat + Sbt

2 ))ut(x)dt

+ ut−(x)(λ0e
−a(Sat −x) − 1)dNa

t + ut−(x)(λ0e
−a(x−Sbt ) − 1)dN b

t .

We consider an approximation of this SPDE which we obtain by replacing the cosh term by the first
two terms in its Taylor expansion:

dut(x) =σ
2

2 ∂
2
xxut(x)dt− 1

t1
ut(x)dt− 1

2t1
a2(x− Sat + Sbt

2 )2ut(x)dt

+ ut−(x)(λ0e
−a(Sat −x) − 1)dNa

t + ut−(x)(λ0e
−a(x−Sbt ) − 1)dN b

t .

(4.1)

This new equation approximates the learning process in the case where typical spreads are small
compared to 1/a where a is the scale parameter given by the intensity function in Aλ. Our goal here
is not to make this approximation rigorous, but to use it to obtain simple explicit and reasonable
results. Also, note that a solution to (4.1) is not necessarily the density of a probability distribution.

4.1 Fixed price
Throughout this subsection we assume that A0 is satisfied. The proof of the following proposition is
a direct application of Itô’s formula.

Proposition 4.1. There exists a unique solution to (4.1) denoted by u such that u0 = m0 and given
for any t ≥ 0 by

ut(x) = m0(x)e−
1
t1

1
2a

2
∫ t

0 (S
a
s+Sbs

2 −x)2ds+ax(Na
t −Nb

t )− t
t1 .

13



In particular, ut is (up to a multiplicative constant) the density of a Gaussian distribution N (xt, σ2
t )

where

xt =
x0
σ2

0
+ a2 1

t1

∫ t
0
Sas+Sbs

2 ds+ a(Na
t −N b

t )
1
σ2

0
+ a2 t

t1

and

σ2
t = 1

1
σ2

0
+ a2 t

t1

→
t→+∞

0.

Remark 4.2. This solution should be compared to the exact solution

m̂t(x) = m0(x)e−
1
t1

∫ t
0 cosh(a(S

a
s+Sbs

2 −x))ds+ax(Na
t −Nb

t )
.

One advantage of the approximation is that it helps us derive explicit formulas for the moments and
the dynamics of the posterior.

We deduce the following results by specifying Sa and Sb.

Corollary 4.3. Under Afix we have

xt →
t→+∞

a2 1
t1
Sa+Sb

2 + a 1
t1

sinh(−a(Sa+Sb
2 − S0))

a2 1
t1

,

a.s.. If instead we impose Na = N b = 0, then

xt →
t→+∞

Sa + Sb

2 .

If Sat +Sbt
2 = xt with fixed half-spread Sat −Sbt

2 = δ > 06, then xt is the unique solution to

xt = x0 +
∫ t

0

a
1
σ2

0
+ a2 s

t1

(
dNa

s − dN b
s

)
.

Proof. The proof of the first point is obvious. We only prove the second point. From Proposition 4.1
we deduce that

dxt = σ2
t

a2

t1
(S

a
t + Sbt

2 − xt)dt+ σ2
t a(dNa

t − dN b
t ).

Imposing Sat +Sbt
2 = xt and integrating we get that xt is a solution to

xt = x0 +
∫ t

0

a
1
σ2

0
+ a2 s

t1

(
dNa

s − dN b
s

)
.

6This means that the particular observer which learning process we are considering is the market maker, and that
he chooses the mid-price as xt with a constant half-spread δ.
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4.2 Brownian efficient price
Assume now Aσ with σ > 0 instead of A0. We have the following result.

Theorem 2. Let T0 > 0 and suppose that the market maker sets his quotes so that the mid-price
Sat +Sbt

2 is almost surely bounded on [0, T0] and constant between two jumps of Na or N b (this holds for
example if Sat +Sbt

2 = xt). There exists a unique positive solution u to the approximate SPDE (4.1) on
[0, T0]× R such that u0 = m0. It is given, for any t ≥ 0 and up to a multiplicative constant7, by the
density of N (xt, σ2

t ) where

σ2
t =


σ
√
t1
a

√
1 + exp(− aσ

2
√
t1
t+ C+

0 ) if σ2
0 ≥

σ
√
t1
a

σ
√
t1
a

√
1− exp(− aσ

2
√
t1
t+ C−0 ) otherwise

(4.2)

with C+
0 = log(σ4

0
a2

σ2t1
− 1), C−0 = log(1− σ4

0
a2

σ2t1
) and

dxt = σ2
t

a2

t1
(S

a
t + Sbt

2 − xt)dt+ σ2
t a(dNa

t − dN b
t ). (4.3)

In particular, σ2
t converges to σ2

∞ = σ
√
t1
a

> 0 and a.s. xt does not converge.

Proof. We take an ansatz ut = γte
− (x−xt)

2

2σ2
t with σt > 0 and we look at the PDE which arises from

(4.1), seen pathwise between t = 0 and t = τ ∧ T0 where τ = inf{t > 0,max(Na
t , N

b
t ) > 0}. Using

(4.1) and identifying the quadratic, linear and constant terms in x, we find that a solution of this
PDE on [0, τ ∧ T0)× R is given by a solution of the system

∂tσt = σ2

2
1
σt
− a2

2t1
σ3
t

∂txt −
2xt
σt
∂tσt = −xt

σ2

σ2
t

+ σ2
t

a2

t1

Sat + Sbt
2

∂tγt = γt
(−1
t1

+ ∂t
( x2

t

2σ2
t

)
− 1

2
a2

t1
(S

a
t + Sbt

2 )2 + σ2

2 (− 1
σ2
t

+ x2
t

σ4
t

)
)
.

Given x0, σ0 and γ0 = 1√
2πσ2

0
a solution of this system exists and is unique. In particular σt and xt

are given by the (4.2) and (4.3) and γte
− (x−xt)

2

2σ2
t is bounded on [0, τ ∧T0)×R. From classical results on

the positive solutions of the Cauchy problem with unbounded coefficients, as in [Aronson and Besala,
1967], we deduce that this is the unique positive solution of (4.1) on [0, τ ∧ T0) × R. If τ < T0 the
solution stays Gaussian (up to a constant) after a jump at τ . For example if dNa

τ = 1 we have

uτ (x) = uτ−(x)λ0e
−a(Saτ−−x) = γτ−e

− (x−xτ−)2

2σ2
τ− λ0e

−a(Saτ−−x) = γτe
− (x−xτ )2

2σ2
τ

with στ = στ−, xτ = xτ−+aσ2
τ− and γτ = γτ−λ0e

−aSaτ−e
−
x2
τ−−(xτ−+aσ2

τ−)2

2σ2
τ− . Because there is almost surely

a finite number of jumps on [0, T0], we deduce that a.s. we can extend this solution to [0, T0]×R. In
7Recall that the solution of the approximate SPDE (4.1) is not necessarily the density of a probability distribution.
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particular σt must solve the first equation for all t, and xt satisfies

dxt =
(2xt
σt
∂tσt − xt

σ2

σ2
t

+ σ2
t

a2

t1

Sat + Sbt
2

)
dt+ σ2

t a(dNa
t − dN b

t ).

This theorem shows that there is an asymptotic confidence in our estimation of the efficient price
which comes from a balance between the diffusive behaviour of the price and the information gained
by observing the trades. More precisely, the variance of our posterior is asymptotically constant
and depends linearly on the (supposed) volatility of the efficient price. As a consequence in the
approximation there is a permanent regime in which an observer’s estimation of the price xt mean-
reverts towards the mid-price at a speed t1

a2σ2
∞

and jumps by a fixed amount σ2
∞a when a trade

happens.

Corollary 4.4. If the market maker chooses the mid-price so that Sat +Sbt
2 = xt with fixed half-spread

δ = Sa−Sb
2 , then the only solution is given by

xt = x0 +
∫ t

0
σ2
sa(dNa

s − dN b
s ).

5 Impact of meta-orders on the posterior
We consider the case where, during the first T ∈ R∪{+∞} seconds, an additional market taker sends
β deterministic orders (buy orders if β > 0 and sell orders if β < 0) per second. In the following we
suppose β > 0 and we make the same assumptions as in Section 4: we assume Aλ and Aσ for some
σ ≥ 0. The meta-order is treated as a perturbation of the process Na. We assume that the observer
does not make the difference between trades from a meta-order and trades from opportunistic market
takers, and that he still uses the same filtering equation as in the case without meta-order. As a
consequence we model the meta-orders by an additional term in the observed process Na: Na

t is
replaced by Na

t +Nβ
t where Nβ is the deterministic càdlàg pure jump process defined by Nβ

0 = 0 and
∆Nβ

t = 1 if tβ ∈ N∗ and t ≤ T , and ∆Nβ
t = 0 otherwise. We use the same notations as in Section 4.

Again, let m0 be the density of a Gaussian distribution N (x0, σ
2
0), and suppose that Sat −Sbt

2 = δ ≥ 0
for all t.

5.1 Small spread approximation
In the approximation introduced in Section 4, the filtering equation (4.1) becomes

dut(x) =σ
2

2 ∂
2
xxut(x)dt− 1

t1
ut(x)dt− 1

2t1
a2(x− Sat + Sbt

2 )2ut(x)dt

+ ut−(x)(λ0e
−a(Sat −x) − 1)(dNa

t + dNβ
t )

+ ut−(x)(λ0e
−a(x−Sbt ) − 1)dN b

t .

(5.1)

From Proposition 4.1, Theorem 1 and Theorem 2 we deduce the following result.
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Proposition 5.1. There exists a unique solution to (5.1) denoted by u such that u0 = m0. In
particular, ut is (up to a multiplicative constant) the density of a Gaussian N (xt, σ2

t ) where

dxt = σ2
t

a2

t1
(S

a
t + Sbt

2 − xt)dt+ σ2
t a(dNa

t − dN b
t + dNβ

t )

and σt is the same as in Proposition 4.1 if σ = 0 or Theorem 1 if σ > 0.

We see that adding a meta-order does not change the dynamics of the variance of the posterior: only
xt is impacted.

If we also impose that Sat +Sbt
2 = xt (with fixed half-spread δ = Sa−Sb

2 ) then the solution is given by

xt = x0 +
∫ t

0
σ2
sa(dNa

s − dN b
s + dNβ

t ).

If in particular opportunistic market takers do not react to the meta-order (Na
t −N b

t = 0 for t ≤ T )
then we have the following result.

Corollary 5.2. If in addition Sat +Sbt
2 = xt (with fixed half-spread δ = Sa−Sb

2 ) and Na
t − N b

t = 0 for
t ≤ T , then, if σ = 0, then

xt − x0 =
∫ t

0
σ2
sadN

β
t ∼
β→+∞

βt1
a

log(1 + a2σ2
0

t1
t)

for t ≤ T . If σ > 0, then

xt − x0 =
∫ t

0
σ2
sadN

β
t ∼
β→+∞

4βt1
a

−
√

1± e−
aσ

2
√
t1
t+C±0 +

√
1± eC±0

+ 1
2 log

∣∣∣∣∣∣∣
1 +

√
1± e−

aσ

2
√
t1
t+C±0

1−
√

1± e−
aσ

2
√
t1
t+C±0

∣∣∣∣∣∣∣−
1
2 log

∣∣∣∣∣∣∣
1 +

√
1± eC±0

1−
√

1± eC±0

∣∣∣∣∣∣∣


∼
t→+∞

β
√
t1σt.

So, believing that the efficient price follows a Brownian motion yields linear market impact if no
information is given by the other market participants. In the extreme case where the observer does
not expect the efficient price to move, logarithmic impact can appear. Hence our model does not
reproduce the square-root law in the approximation for markets with small spreads. In this case
logarithmic impact is a consequence of low volatility σ of the efficient price.

Let us now consider the average behaviour of xt. We see that

dE[xt|S0] ' −σ
2
sa

2

t1
(E[xt|S0]− S0)dt+ σ2

t adN
β
t , (5.2)

in the small spread approximation, so

E[xt|S0] ' x0 + (S0 − x0)
∫ t

0

σ2
sa

2

t1
e
−
∫ t
s

σ2
ua

2
t1

du
ds︸ ︷︷ ︸

average learning: At

+
∫ t

0
σ2
sae
−
∫ t
s

σ2
ua

2
t1

du
dNβ

s︸ ︷︷ ︸
average impact: Bt

,
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where At represents the average learning of the efficient price, and does not depend on the meta-
order, and Bt is a term of average impact caused by the meta-order. We simulate the Zakai equation
with Sat +Sbt

2 = xt and fixed half-spread δ = Sa−Sb
2 . A meta-order of size 25 is executed. We plot the

posterior’s mean (minus S0) as well as the approximate formula for E[xt|S0]−S0 given by (5.2) in the
small spread approximation. We take the following parameters:

• λ0 = 50

• δ = 0.1

• m0 ∼ N (S0, σ
2
0) with σ0 = 0.05, so that At = x0

• σ = 0.06.

We take a = 5 (small spreads compared to the characteristic scale 1/a of the intensity function) in
Figure 1 and a = 20 (large spreads compared to the characteristic scale 1/a of the intensity function)
in Figure 2. We vary the speed β of the meta-order. The full lines correspond to a simulation of xt,
while the dashed lines correspond to (5.2).

Figure 1: Simulation of the price impact with respect to time, for a = 5 and three choices of β. The
dotted plot is the theoretical mean impact in the small spread approximation.

As expected, we observe that the small-spread approximation works well only for a small a, and that
in this case the impact is roughly linear in time.

Next we note that At has closed form formulas if σ = 0 or if σ > 0 and σ0 = σ∞. The term Bt can
also be expressed in a simple way in the limit β → +∞.

Proposition 5.3. For t ≥ 0, we have

At =


t1

σ2
0a

2
t1

σ2
0a

2 +t
x0 + t

t1
σ2

0a
2 +t

S0 if σ = 0,

x0 + (S0 − x0)
∫ t

0
σ2
sa

2

t1
e
−(t−s) aσ√

t1 ds =
if σ0=σ∞

S0 + (x0 − S0)e−σ
2
∞
a2
t1
t if σ > 0,
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Figure 2: Simulation of the price impact with respect to time, for a = 20 and three choices of β. The
dotted plot is the theoretical mean impact in the small spread approximation.

and

Bt ∼
β→+∞


t∧T
t1

σ2
0a

2 +t
βt1
a

if σ = 0,
∫ t∧T
0 σ2

saβe
−(t−s) aσ√

t1 dt =
if σ0=σ∞

βt1
a
e
−σ2
∞
a2
t1
t(eσ

2
∞
a2
t1

(t∧T ) − 1) if σ > 0.

We see that as long as the market takers keep sending orders with an intensity that depends on the
efficient price, we can expect the mid-price to reflect the efficient price (via At) plus some impact (via
Bt). The expected mid-price xt is the sum of two terms: one term At which is left unchanged by a
meta-order and which denotes the learning of the efficient price allowed by the information sent by
the market takers, and another term Bt which reflects the impact of the meta-order on the mid-price
and behaves as a concave function of time. Interestingly if we look only at the filtering equation, then
imposing Na − N b = 0 has two different interpretations: it can mean that the time period we are
looking at is small or that the buys equal the sells i.e. that the market takers trade equally on both
sides, i.e. that on this sample path St is close to xt. So it reflects the case in which the market takers
learn similarly to the market maker. In that case the impact becomes linear in the long run, except
if the market maker is convinced that the efficient price does not move, in which case the impact is
logarithmic. Note that the two choices we make for the market takers (averaging trades with some
fixed S or taking Na −N b = 0) are actually two extreme cases where the price formation process is
driven either by market takers who are price arbitragers, or by the market maker. The study of a
transition between those two cases, which should take into account the views of the market takers, is
left for further study.

5.2 No approximation
Now we do not approximate the Zakai SPDE by (4.1) anymore. We assume A0. In the presence of a
meta-order, our (perturbed) filtering equation (2.3) becomes

dut(x) =− 1
t1

cosh(a(x− Sat + Sbt
2 ))ut(x)dt

+ ut−(x)(λ0e
−a(Sat −x) − 1)(dNa

t + dNβ
t )

+ ut−(x)(λ0e
−a(x−Sbt ) − 1)dN b

t .

(5.3)
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The posterior does not remain Gaussian. In Section 4, we made the market maker take for his mid-
price the mean of the Gaussian posterior, i.e. the likelihood maximizer. Here the mean and the
likelihood maximizer are not necessarily equal, but the likelihood maximizer is easier to manipulate
and more natural. If it is well defined, we denote it by x̂t:

x̂t = argmaxut.

We will see that the filtering equation (5.3) leads to some new interesting dynamics for x̂t, both in
the case with fixed mid-price and in the case with a mid-price equal to x̂t. In particular it naturally
gives rise to an “arcsinh impact law”.

5.2.1 Fixed prices

As in Section 4 we start with the simple case of fixed bid and ask prices. We have the following result
on x̂t, which says that we can expect an impact in arcsinh(β) as the starting confidence (the standard
deviation σ0 of the initial prior) becomes small (σ0 → +∞) or the quantity of information becomes
large (t→ +∞).
Proposition 5.4. Assume Afix. Then, x̂t is well defined for all t ≥ 0, and, a.s.,

x̂t −→
t→+∞

S if T < +∞,
Sa+Sb

2 + 1
a
arcsinh(sinh(a(S − Sa+Sb

2 )) + βt1) if T =∞.

Also, for all t ≥ 0, a.s.,

x̂t −→
σ0→+∞

Sa + Sb

2 + 1
a
arcsinh

(t1
t

(Na
t −N b

t + bβ(t ∧ T )c)
)
.

Proof. We prove without loss of generality the convergence in t. Using Proposition 3.1 we get

x̂t = argsup{e
− (x−x0)2

2σ2
0
− t
t1

cosh(a(S
a+Sb

2 −x))+ax(Na
t −Nb

t )+axbβ(t∧T )c
}

= arginf{(x− x0)2

2tσ2
0

+ 1
t1

cosh(a(S
a + Sb

2 − x))− axN
a
t −N b

t

t
− axbβ(t ∧ T )c

t
}.

The function x 7→ (x−x0)2

2σ2
0

+ t
t1

cosh(a(Sa+Sb
2 − x)) is strictly convex for every t and goes to −∞

as x → ±∞ so x̂t is well defined and is an argmax. Almost surely the function x 7→ (x−x0)2

2tσ2
0

+
1
t1

cosh(a(Sa+Sb
2 − x)) − ax

Na
t −Nb

t

t
− ax bβ(t∧T )c

t
is level-bounded in x uniformly in t and converges

uniformly in x on every compact set of R so epiconverges towards the function x 7→ 1
t1

cosh(a(Sa+Sb
2 −

x))− a
t1

sinh(a(S− Sa+Sb
2 ))x−axβ1T=+∞ as t→ +∞. As a consequence of classical results [Rockafellar

and Wets, 1998], the argmin of the first function converges to the argmin of the second function, which
is

Sa + Sb

2 + 1
a
arcsinh(sinh(a(S − Sa + Sb

2 ))) = S

for T < +∞ and

x̂t →
Sa + Sb

2 + 1
a
arcsinh(sinh(a(S − Sa + Sb

2 )) + βt1)

otherwise.
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The boundedness of the impact can be explained by the fact that the market marker’s quotes remain
constant, so at some point there is a balance between the increase in the estimation of S due to the
meta-order and the decrease towards the mid-price set by the market maker between the trades.

5.2.2 With a market maker

We now look for a solution in the case where the market maker sets his mid-price as x̂t. We have
x̂0 = x0 and, for any t > 0, x̂t should solve

x̂t = argmax
{
− (x− x0)2

2tσ2
0
− 1
t1

1
t

∫ t

0
cosh(a(x̂s − x))ds+ ax

Na
t −N b

t

t
+ ax

bβ(t ∧ T )c
t

}
. (5.4)

We will obtain explicit formulas for the impact in two limiting regimes. If βt1 is large (i.e. there
are few opportunistic trades compared to meta-orders), we obtain an impact which is logarithmic in
the traded volume. In the case of a very slow meta-order and under some approximations we find
constant impact. In the intermediate regime the impact is closer to an arcsinh of the traded volume,
at least for small volumes.

We start by showing that x̂t is necessarily constant between two jumps.
Proposition 5.5. There is a unique càdlàg finite variation process x̂t solution to (5.4) with x̂0 = x0.
It is given by a pure jump process with jumps happening only when dNa

t 6= 0 or dN b
t 6= 0 or {t|β| ∈

N∗, t ≤ T} and the jump magnitudes ∆x̂t = x̂t − x̂t− solve

0 =− x̂t− + ∆x̂t − x0

σ2
0

− a

2t1

(
ea(x̂t−+∆x̂t)

∫ t

0
e−ax̂sds− e−a(x̂t−+∆x̂t)

∫ t

0
eax̂sds

)
+ a

∫ t

0
(dNa

s − dN b
s + dNβ

t )

if dNa
t 6= 0 or dN b

t 6= 0 or {tβ ∈ N∗, t ≤ T}.
Proof. Given (5.4) x̂t solves

0 = − x̂t − x0

σ2
0
− a

2t1

(
eax̂t

∫ t

0
e−ax̂sds− e−ax̂t

∫ t

0
eax̂sds

)
+ a

∫ t

0
(dNa

s − dN b
s + dNβ

t ). (5.5)

Differentiating we get, by denoting by dx̂t and ∆x̂t the continuous and jump differentials,

0 =− dx̂t + ∆x̂t
σ2

0
− a2

2t1

(
eax̂t−

∫ t

0
e−ax̂sds+ e−ax̂t−

∫ t

0
eax̂sds

)
dx̂t

− a

2t1

(
ea(x̂t−+∆x̂t)

∫ t

0
e−ax̂sds− e−a(x̂t−+∆x̂t)

∫ t

0
eax̂sds

)
+ a

2t1

(
eax̂t−

∫ t

0
e−ax̂sds− e−ax̂t−

∫ t

0
eax̂sds

)
+ a(dNa

t − dN b
t + dNβ

t ).
So identifying the jump and continuous parts we get the desired result.

This extends Proposition 3.3 as it shows that the market maker has no incentive to change his mid-
price if there is no trade and if the mid-price maximizes the density function of his prior. Also, it
gives an explicit recursive equation to compute the size of the jumps in the mid-price. Surprisingly
this equation is one-dimensional: we do not need to make computations on density functions to solve
it.
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Fast meta-order In the limit where the learning is fast and the initial prior has large variance we
get the following corollary when we look at the event {Na

t = N b
t for all t < T}.

Corollary 5.6. Assume {Na
t = N b

t for all t < T}. There is a unique càdlàg finite variation process x̂0
t

solution to (5.4) with x̂0
0 = x0. On [0, T ] it is a deterministic pure jump-process with jumps happening

only if t|β| ∈ N∗ and 0 ≤ t ≤ T , and the jump magnitudes ∆x̂0
t = x̂0

t − x̂0
t− solve

0 =− x̂0
t− + ∆x̂0

t − x0

σ2
0

− a

2t1

(
ea(x̂0

t−+∆x̂0
t )
∫ t

0
e−ax̂

0
sds− e−a(x̂0

t−+∆x̂0
t )
∫ t

0
eax̂

0
sds

)
+ abβtc.

Also, we have

x̂0
T − x0 ∼

1
a

log(2bβT cβt1)

as a2σ2
0

βt1
→ +∞ and βt1 → +∞ with a and β fixed.

Proof. As we work on {Na
t = N b

t for all t < T} we can build x̂0
t recursively. For k ∈ {0, ..., bTβc},

ka =
x̂0
k
β

− x0

σ2
0

+ a

t1

∫ k
β

0
sinh(a(x̂0

k
β
− x̂0

s))ds

so

k =
x̂0
k
β

− x0

aσ2
0

+ 1
βt1

k−1∑
i=0

sinh(a(x̂0
k
β
− x̂0

i
β
)). (5.6)

We get a recursive sequence with a fixed number of steps. We show the convergence for the first two
steps (k = 1 and k = 2). The same argument can be used for any k ∈ {0, ..., bTβc}. First

1 =
x̂0

1
β

− x0

aσ2
0

+ 1
βt1

sinh(a(x̂0
1
β
− x0))

and as a2σ2
0

βt1
→ +∞

1 = 1
βt1

sinh(a(x̂0
1
β
− x0)) + o(1),

and using βt1 → +∞ we get

1 ∼ 1
2βt1

e
(a(x̂0

1
β

−x0))

hence

x̂0
1
β
− x0 = 1

a
log(2βt1) + o(1).

Then

2 =
x̂0

2
β

− x0

aσ2
0

+ 1
βt1

sinh(a(x̂0
2
β
− x̂0

1
β
)) + 1

βt1
sinh(a(x̂0

2
β
− x0)).
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By the same arguments

2 = 1
2βt1

e
a(x̂0

2
β

−x0)
+ 1
βt1

sinh(a(x̂0
2
β
− x̂0

1
β
)) + o(1)

as βt1 → +∞. If a(x̂0
2
β

− x̂0
1
β

) is not bounded as βt1 → +∞, then along some sequence such that
(βt1)k →

k→+∞
+∞ and a(x̂0

2
β

− x̂0
1
β

) →
k→+∞

+∞ we have

2 = 1
2(βt1)k

e
a(x̂0

2
β

−x0)
+ 1

2(βt1)k
e
a(x̂0

2
β

−x̂0
1
β

)
+ o(1),

but

e
a(x̂0

2
β

−x̂0
1
β

)

e
a(x̂0

2
β

−x0) = e
−a(x̂0

1
β

−x0)
→

k→+∞
0,

so the second term is negligible and

x̂0
2
β
− x0 = 1

a
log(4βt1) + o(1),

which contradicts that a(x̂0
2
β

− x̂0
1
β

) →
k→+∞

+∞. So a(x̂0
2
β

− x̂0
1
β

) is bounded as βt1 → +∞. As a
consequence

2 = 1
2βt1

e
a(x̂0

2
β

−x0)
+ o(1),

which again yields

x̂0
2
β
− x0 ∼

1
a

log(4βt1).

This means that if a meta-order takes place and the market maker adapts his quotes accordingly
without benefiting from any additional information given by another trader, the mid-price increases
logarithmically in time (or in the traded volume). This is a bit different from Corollary 5.2 with σ = 0
as now the trading speed β appears only in the total traded volume in the logarithm.

Slow meta-order We now consider the other limit regime where βt1 << 1 and T = +∞ i.e. the
meta-order is very slow. We make some simplifications. In (5.5) we formally take σ0 → +∞ and
we replace the jump processes by their compensators and Nβ

t by βt. Setting teaS0u(t) =
∫ t
0 e

ax̂sds
and te−aS0v(t) =

∫ t
0 e
−ax̂sds with u and v two differentiable functions on R+ and solving in eax̂t =

eaS0u(t) + teaS0u′(t) and in e−ax̂t = e−aS0v(t) + te−aS0v′(t) leads us to the system of equations

1
t1

(uv + tu′v) = (β + 1
2t1

(v − u)) +
√

(β + 1
2t1

(v − u))2 + uv

t21
,

1
t1

(uv + tuv′) = −(β + 1
2t1

(v − u)) +
√

(β + 1
2t1

(v − u))2 + uv

t21

(5.7)
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on R∗+. Taking βt1 << 1 leads us to consider the approximate problem

1
t1

(uv + tu′v) = (β + 1
2t1

(v − u)) + 1
2t1

(v + u) + β
v − u
v + u

,

1
t1

(uv + tuv′) = −(β + 1
2t1

(v − u)) + 1
2t1

(v + u) + β
v − u
v + u

(5.8)

on R∗+. Solving this system leads to the following property.

Proposition 5.7. The system (5.8) has a unique solution given by

u(t) = 1 + βt1, v(t) = 1− βt1.

Proof. See Appendix C.

In particular, going back to x̂, we get x̂t = S + log(1+βt1)
a

from u and x̂t = S − log(1−βt1)
a

from v, which
is reasonable and tells us that the impact is finite and equal to βt1

a
.

Intermediate regime The recursive formula (5.6) can also be used to compute recursively the
theoretical market impact in the case where βt1 is fixed and σ0 → +∞, but the formulas are very
hard to use. For example, if Na

t = N b
t for all t ≤ T :

x̂ 1
β
− x0 ∼

σ0→+∞

1
a
arcsinh(βt1)

x̂ 2
β
− x0 ∼

σ0→+∞

1
a
arcsinh

(
βt1(1 +

√√√√1− 3
2

1
1 +

√
1 + (βt1)2

)
)
.

The impact of Q orders at the speed β per second takes the shape 1
a
arcsinh(f(Q)βt1) for some sub-

linear function f , which is close to linear for small Q and large βt1.

Summary of the results on market impact in this section In this section we have shown how
various market impact shapes arise from meta-order splitting depending on the information struc-
ture, the market parameters and the nature of the meta-orders. If the spread is small (i.e. in the
approximation with a small and σ0 small) and the mid-price is fixed as the average of the posterior,
we derive two types of impact depending on who drives the market. If the market is driven by the
market maker (Na − N b = 0), the market impact is linear if σ > 0 while it is logarithmic in time
and linear in the speed β in the extreme case σ = 0. If opportunistic market takers are present, the
average market impact grows as t∧T

t1
σ2

0a
2 +t

βt1
a

if σ > 0 and as βt1
a
e
−σ2
∞
a2
t1
t(eσ

2
∞
a2
t1

(t∧T ) − 1) if σ = 0.

We also compute market impact shapes without using the approximation if the mid-price is fixed as
the average of the posterior and σ = 0. If Na −N b = 0 the impact is logarithmic in the volume βt if
σ2

0/t1 → +∞ and t1 → +∞. If we only take σ0 → +∞ we obtain a recursive formula in which the
key quantity to compute is the sinh of the impact.
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A Proof of Proposition 2.6
Property (a) By a symmetry argument we prove the result for a trade on the ask side only. Let
l be a deterministic, positive, non-increasing and exponentially bounded function. Ma

l is non-empty
as it contains the Gaussian density functions. Let m ∈Ma

l .

The image of m by the map is the function defined by

m̃(z, x) = l(z − x)m(x)∫
l(z − y)m(y)dy

and is well-defined and positive by the definition of Ma
l . Suppose m̃ does not depend on z. From

m > 0 and m̃(z, x) = m̃(0, x), we get

l(z − x) = f(z)l(−x)

27



for any x ∈ R, z ∈ R and for a positive function f which is given by f(z) =
∫
l(z−y)m(y)dy∫
l(−y)m(y)dy and does

not depend on x. Taking x = 0 we get l(z) = f(z)l(0) so

l(0)l(z − x) = l(z)l(−x)

for all (y, x) ∈ R2. Using the monotonicity of l we have l ∈ {x 7→ λ0e
−ax, (λ0, a) ∈ R2

+}. The other
inclusion is straightforward.

Property (b) We prove the first inclusion, as the other one is obvious. We look for functions l
which are continuous, strictly decreasing, exponentially bounded, convex and four times differentiable,
such that there exist functions f, g on R and h on R2 such that, for any x, sa, sb ∈ R,

−(l(sa − x) + l(x− sb)− 2) = h(sa, sb)− g(x− sa + sb

2 )f(s
a − sb

2 ).

However up to renaming we can take min g = g(0) = 0 so h(sa, sb) = −2(l( sa−sb2 )− 1) and

−(l(sa − x) + l(x− sb)) = −2l(s
a − sb

2 )− g(x− sa + sb

2 )f(s
a − sb

2 ).

We can suppose that l(4)(0) > 0. Indeed as l converges and is decreasing l′ converges to 0 as it is in-
creasing and bounded. We can find some point x such that l(3)(x) < 0. Indeed if l(3) ≥ 0, as l′′(z) > 0
for some z ∈ R, l is strongly convex on [z,+∞[, so diverges, which contradicts the convergence of l.
Then if l(4)(y) ≤ 0 for all y ∈ R then l(3)(y) ≤ l(3)(x) for all y ≥ x so l′ is strongly concave on [x,+∞[,
so diverges, which is absurd.

First we note that f(x) 6= 0 for all x ∈ R. So, by taking sa = sb = 0 and sa = −sb we can write

l(y − x) + l(y + x)− 2l(y) = (l(x) + l(−x)− 2l(0))f(y)
f(0)

for any x, y ∈ R. Differentiating twice in the x direction and taking x = 0 we find l′′(x) = l′′(0)f(x)
f(0)

and

l′′(y − x) + l′′(y + x) = (l′′(x) + l′′(−x)) l
′′(y)
l′′(0) .

By differentiating again twice with respect to x and taking x = 0 we get

l(4)(y) = l(4)(0) l
′′(y)
l′′(0) ,

which yields the result given that l is positive and strictly decreasing.

B Proof of Theorem 1
Let m0 ∈ C(R) be the density of a probability measure on R with m0(Sa+Sb

2 ) 6= 0.
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Proof of (i). If t < τ , then

m̂t(x) = m0(x)e2t−
∫ t

0 (λ(Sau−x)+λ(x−Sbu))du

= m0(x)e2t−t(λ(Sau−x)+λ(x−Sbu)),

which is integrable because λ is non-negative. Now note that Φt : x 7→ e−t(λ(Sau−x)+λ(x−Sbu)) is strictly
increasing on ] − ∞, Sa+Sb

2 ] and strictly decreasing on [Sa+Sb
2 ,+∞[. We look at the renormalized

density ut. At y = Sa+Sb
2 , we have m0(y) 6= 0 by the assumption, and

ut(y) = m0(y)Φt(y)∫
m0(x)Φt(x)dx = 1∫ m0(x)

m0(y)
Φt(x)
Φt(y)dx

.

Now m0 is integrable and Φt(x)
Φt(y) −→ 0 for any x 6= y. By dominated convergence theorem we deduce

that ut(y) −→ +∞.
Now take y 6= Sa+Sb

2 such that m0(y) 6= 0. Without loss of generality we suppose y < Sa+Sb
2 . Observe

that for any t, Φt is symmetric around Sa+Sb
2 . So

ut(y) = m0(y)Φt(y)∫
m0(x)Φt(x)dx

= 1∫ m0(x)
m0(y)

Φt(x)
Φt(y)dx

= 1∫ y
−∞

m0(x)
m0(y)

Φt(x)
Φt(y)dx+

∫ Sa+Sb−y
y

m0(x)
m0(y)

Φt(x)
Φt(y)dx+

∫+∞
Sa+Sb−y

m0(x)
m0(y)

Φt(x)
Φt(y)dx

.

By the same reasoning as before the first and third terms in the denominator tend to 0. Now note
that there exists a closed interval of the form [Sa+Sb

2 − ε, Sa+Sb
2 + ε] in ]y, Sa + Sb − y[ with ε > 0 and

m0(x) > m0(S
a+Sb

2 )
2 for any x in this interval. So

∫ Sa+Sb−y

y

m0(x)
m0(y)

Φt(x)
Φt(y)dx ≥

∫ Sa+Sb
2 +ε

Sa+Sb
2 −ε

m0(x)
m0(y)

Φt(x)
Φt(y)dx

≥ 2ε
m0(Sa+Sb

2 )
2m0(y)

Φt(S
a+Sb

2 − ε)
Φt(y) −→ +∞

and

ut(y) −→ 0.

Proof of (ii) Let y ∈ R. Observe that

ut(y) = m0(y)Φt(y)∫
m0(x)Φt(x) =

m0(y) Φt(y)
Φt(S

a+Sb
2 )∫

m0(x) Φt(x)
Φt(S

a+Sb
2 )

dx
,
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and

m0(y) Φt(y)
Φt(S

a+Sb
2 )

= m0(y)e−2λ0e
−aS

a−Sb
2 t(cosh(y−S

a+Sb
2 )−1) = m0(y)e−

t
t1

(cosh(y−S
a+Sb

2 )−1)

where t1 = ea
Sa−Sb

2
2λ0

. We split the integral as
∫
m0(x) Φt(x)

Φt(S
a+Sb

2 )
dx =

∫ Sa+Sb
2

−∞
m0(x) Φt(x)

Φt(S
a+Sb

2 )
dx+

∫ +∞

Sa+Sb
2

m0(x) Φt(x)
Φt(S

a+Sb
2 )

dx

and we study the second term. We get∫ +∞

Sa+Sb
2

m0(x) Φt(x)
Φt(S

a+Sb
2 )

dx = t1
t

∫ +∞

0
m0(S

a + Sb

2 + arccosh(1 + u
t1
t

)) e−u√
(1 + u t1

t
)2 − 1

du

=
√
t1
t

∫ +∞

0
m0(S

a + Sb

2 + arccosh(1 + u
t1
t

)) e−u√
2u+ u2 t1

t

du

∼
√
t1
t
m0(S

a + Sb

2 )
∫ +∞

0

e−u√
2u

=
√
t1
t
m0(S

a + Sb

2 )
√
π

2
and we conclude that

ut(y) ∼
√

t

πt1

m0(y)
m0(Sa+Sb

2 )
e
− t
t1

(cosh(y−S
a+Sb

2 )−1)
.

C Proof of Proposition 5.7
The system (5.8) can be rewritten as

1
t1

(u(t) + tu′(t)) = 2β 1
v(t) + u(t) + 1

t1
,

1
t1

(v(t) + tv′(t)) = −2β 1
v(t) + u(t) + 1

t1
,

(C.1)

so
(tv(t))′ = (tu(t))′ + 2.

This implies that

v(t) = −u(t) + 2 + K

t

for some constant K. Plugging this into C.1 and integrating we get

u(t)t =t(1 + βt1)− βt1
K

2 log(t+ K

2 ) +R

v(t)t =t(1− βt1) + βt1
K

2 log(t+ K

2 ) +R′

for constant R,R′. This complies with the previous inequality only for K = R = R′ = 0.
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