
HopliteML: Evolving application customized FPGA NoCs with

adaptable routers and regulators

GURSHAANT MALIK, University of Waterloo, Canada

IAN ELMORE LANG, University of Waterloo, Canada

RODOLFO PELLIZZONI, University of Waterloo, Canada

NACHIKET KAPRE, University of Waterloo, Canada

We can overcome the pessimism in worst-case routing latency analysis of timing-predictable Network-on-Chip (NoC)

workloads by single digit factors through the use of a hybrid FPGA-optimized NoC and workload adapted regulation. Timing-

predictable FPGA-optimized NoCs such as HopliteBuf integrate stall-free FIFOs that are sized using oline, static analysis of

a user-supplied low pattern and rates. For certain bursty traic and low conigurations, the static analysis delivers very

large, sometimes infeasible, FIFO size bounds and large worst-case latency bounds. Alternatively, backpressure-based NoCs

such as HopliteBP can operate with lower latencies for certain bursty lows. However, they sufer from severe pessimism in

the analysis due to the efect of pipelining of packets and interleaving of lows at switch ports. As we show in this paper, a

hybrid FPGA NoC that seamlessly composes both design styles on a per-switch basis, delivers the best of both worlds with

improved feasibility (bounded operation), and tighter latency bounds. We select the NoC switch coniguration through a novel

evolutionary algorithm based on Maximum Likelihood Estimation (MLE). For synthetic (RANDOM, LOCAL) and real world (SpMV,

Graph) workloads, we demonstrate ≈2ś3× improvements in feasibility, ≈1ś6.8× in worst-case latency while only requiring

LUT cost ≈1ś1.5× larger than the cheapest HopliteBuf solution. We also deploy and verify our NoC (PL) and MLE framework

(PS) on a Pynq-Z1 to adapt and reconigure NoC switches dynamically. We can further improve a workload’s routability

by learning to surgically tune regulation rates for each traic trace to maximise available routing bandwidth. We capture

critical dependency between traces by modelling the regulation space as a multivariate gaussian distribution and learn the

distribution’s parameters using Covariance Matrix Adaptation Evolution Strategy (CMA-ES). We also propose nested learning

that learns switch conigurations and regulation rates in-tandem. Compared to standalone switch learning, this symbiotic

nested learning helps achieve ≈1.5× lower cost constrained latency, ≈3.1× faster individual rates and ≈1.4× faster mean rates.

We also evaluate improvements to vanilla NoCs’ routing using only standalone rate learning (no switch learning); with ≈1.6×
lower latency across synthetic and real world benchmarks.

CCS Concepts: · Computing methodologies→Machine learning; · Networks→ Network on chip; · Hardware→
Reconigurable logic and FPGAs.

1 Introduction

With the growing communication demands of modern FPGA system-level interfaces like HBM stacks, high-speed

networking, and multi-chip module IOs, it is imperative that we support data movement using resource-shared,

high-performance NoCs. The Xilinx Versal NoC [25] is a hard network-on-chip that is permanently embedded in

the FPGA fabric with ixed bandwidth and routing features that are tailored for distributing high-speed HBM

Authors’ addresses: Gurshaant Malik, gsmalik@uwaterloo.ca, University of Waterloo, Waterloo, Ontario, Canada; Ian Elmore Lang,

ielmorlang@uwaterloo.ca, University of Waterloo, Waterloo, Ontario, Canada; Rodolfo Pellizzoni, rpellizz@uwaterloo.ca, University of

Waterloo, Waterloo, Ontario, Canada; Nachiket Kapre, nachiket@uwaterloo.ca, University of Waterloo, Waterloo, Ontario, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

1936-7406/2022/1-ART1 $15.00

https://doi.org/10.1145/3507699

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.1145/3507699

1:2 • Malik, et al.

and high-speed IO interface bandwidth across the FPGA fabric. Hoplite [9], CMU CONNECT [19], and Penn

Split-Merge [7] switches are soft network-on-chip architectures that can be implemented using existing FPGA

LUTs and interconnect. A combination of both styles of NoCs will be necessary to address data movement

requirements that span the entire FPGA die including last-mile connectivity. Regardless of the style of NoC

used, there is a need for mapping tools and analysis techniques for making eicient use of these communication

structures. In this paper, we develop mapping tools targeting soft NoCs or conigurable, hard NoC switches that

allow customization of NoC operation on a per-switch basis.

The Hoplite [9] FPGA NoC is a LUT-optimized network-on-chip architecture targeting fracturable Xilinx

FPGAs for high-speed, low-cost operation. Several variants of Hoplite targeting eicient implementations with

diferent cost-feature tradeofs such as HopliteRT [26], and HopliteBuf [4] have been published. These designs

eliminate the livelock limitations of the original Hoplite design and provide provable upper bounds on packet

latency. This is crucial for safety-critical real-time systems, where timing properties of the underlying hardware

are used to ensure that applications meet their scheduling deadlines, and performance isolation between diferent

communicating components is required [8]. Of particular interest is the HopliteBuf variant that adds stall-free

SRL32 FIFOs to the switch and uses static analysis tools to prove upper bounds on FIFO sizes and worst-case

routing latency (wclatency). However, under certain scenarios, the static analysis exaggerates FIFO and latency

bounds making them impractical for real designs. Under these circumstances, a diferent variant of the NoC

with lightweight backpressure, HopliteBP [5] may be preferred. If the entire NoC adopts a backpressure-based

routing style, the blocking efects of backpressure due to pipelining and interleaving of lows will severely limit

provable NoC performance [5]. Furthermore, the FPGA implementation requirements of low control, however

lightweight they may be, were a primary motivation for the delection-oriented design of Hoplite. Instead of

a homogeneous NoC design, a carefully selected hybrid NoC architecture that combines both HopliteBuf and

HopliteBP styles in a ine-grained fashion yields a superior solution than either alternatives alone.

An application lowset is composed of a multitude of unique traic traces (or lows), each carrying packets

between a source and destination PE. Each low is characterised by its regulated injection rate (the rate at which

packets can be injected into the NoC) and data block size (number of consecutive packets injected). We explain

the composition of a low in greater detail in section 4.1. We show a set of three network lows on a 4×4 NoC
interacting in prescribed ways in Fig. 2. HopliteBuf provides better worst-case latency for the horizontal traic in

Fig. 2a, as HopliteBP sufers from backpressure propagated on the horizontal connections. However, for vertical

traic in Fig. 2b, HopliteBP delivers 1.5× better worst-case latency. The cyclic loop of dependencies between lows

shown in Fig. 2c further afects HopliteBuf, reducing its range of statically analyzable rates, while HopliteBP is

less afected. We analyze this example in further detail in Section 3. Based on these observations, it is clear that

one-style-its-all approach will not work and we need to conigure each switch in the NoC carefully by learning

the efect of interactions between the conlicting traic lows of the application. As the interference pattern of the

network lows can be quite complex, and a brute-force approach not feasible for large NoC sizes, we develop a

evolutionary strategy to discover high-quality solutions for a given QoR (quality of result) function. We formulate

a Maximum Likelihood Estimation solution where we adjust the probabilities of each switch coniguration based

on iterative analysis trials.

NoCs make use of regulators to guarantee application bandwidth SLAs by mitigating a variety of packet

starvation, deadlocks and denial of service scenarios. For a given application lowset consisting of variety of

traic traces, HopliteBP and HopliteBuf rely on token bucket regulators [15] for every trace to schedule the

injection of its packets into the NoC. For a given low, its token bucket regulator limits the injection rate and data

block size of that low to its prescribed regulation rate (�) and burst size (�) respectively. We explain the token

bucket regulator in greater detail in section 4.2. Regulation is an important variable in the Hoplite suits of analysis

tools to guarantee tight bounds on routing latency and NoC costs. Previous versions of Hoplite [5, 17] leave

regulation rate out of the decision space as a user parameter; evaluating NoC designs by measuring performance

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:3

over a range between [0,1] with a ixed increment linear search. Furthermore, only a single regulation rate is

used to regulate all traces in an application lowset, which can create unintended bottlenecks in NoC routing and

distort search spaces of other NoC parameters. This paper extends the scope of regulation by learning regulation

rates for each trace, with the aim of maximising the requested QoR, speciic to the given application lowset. This

allows us to surgically address localised contention bottlenecks within the NoC by individually regulating traces

involved in the bottlenecked hotspot. We encode the rates for a lowset as a multivariate gaussian distribution

to capture the dependence of a trace’s routability on other traces within the lowset and learn the parameters

of this distribution using Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [6]. Furthermore, we

introduce nested learning where we learn the switch conigurations of the NoC and the regulation rates of traces

in tandem. This coupling of two search spaces allows one to modulate the other in a synergistic manner, thus

allowing for a more efective NoC design that outperforms designs born out of learning only either one of the

search spaces.

The key contributions of this paper include:

• Design of a hybrid FPGA NoC architecture that combines HopliteBuf and HopliteBP switches to exploit

the best of both worlds.

• Development of an evolutionary strategy to learn switch conigurations for a deined QoR function using

Maximum Likelihood Estimation (MLE), scalable to large NoC sizes.

• Development of a multivariate gaussian distribution based evolutionary learning strategy to learn regulation

rates, speciic to the application lowset and QoR requested.

• Development of a nested learning strategy to learn switch level conigurations and regulation rates for an

application lowset in tandem.

• Formalization of the Hoplite NoC analysis suite and explanation of its low model; used for estimating

feasibility and upper bounds on routing latencies, including worst case and injection latency.

• Quantiication of worst-case latency, feasibility, cost and optimization runtime across real and synthetic

applications. Demonstrating:

ś ≈1ś6.8× reduction in worst-case latency and ≈2-3× improved feasibility by learning switch level conig-

uration.

ś When learning rates and switch conigurations in-tandem (nested learning), a further ≈1.5× lowered cost

constrained latency, ≈3.1× faster individual rates and ≈1.4× faster mean rates.

• We implement and verify our entire switch learning framework on a Pynq-Z1. We implement the MLE

optimization tool on the Cortex A9 processor (PS) to conigure the FPGA NoC switches dynamically, while

realizing the NoC itself on the FPGA.

2 Switch Design

In this section, we irst discuss the original Hoplite NoC [9] and related work around designing NoCs with

timing predictability [13, 14, 21, 23, 28]. We then introduce the designs of the existing HopliteBuf and HopliteBP

networks and details of their FPGA implementation. We focus on 3 properties speciically: 1. Tight latency

bounds; 2. Lightweight area overheads and 3. Application awareness. The FPGA NoC switches (see Fig. 1)

explored in this paper are based on the Hoplite [9, 10] design. It is an FPGA-optimized switch that is integrated in

a unidirectional torus topology and routes packets using delections rather than bufering low control. Packets

use DOR (dimension-ordered routing) policy where they traverse in the X-dimension (� → �) irst before

turning (� → �) into the Y-dimension (� → �). While the lightweight hoplite switches are an attractive

proposition for area sensitive applications, possibility of routing livelock and unbounded routing latencies are

signiicant limitations, making it unsuitable for systems requiring guarantees on worst-case packet latencies.

Furthermore, this original version of the hoplite NoC cannot be tuned in an application aware manner; with

ACM Trans. Reconig. Technol. Syst.

1:4 • Malik, et al.

the aim of optimising its routing performance by taking into account the application’s traic traces and their

interactions with each other. Motivation for application aware tuning is presented in subsequent section 3.

[14] aims to provide latency guarantees by leveraging the use of probabilistic weighted arbiters and bufers

along router ports to provide bandwidth equity to all traces on the NoC. However, global and local fairness

delivered by these arbiter types comes at the expense of signiicant area and latency overheads for the NoC. Instead

of providing fair arbitration, [23, 28] attempts to schedule traic intro domain exclusive waves that can potentially

travel unimpeded from other domain traic through the NoC, thus providing strict isolation guarantees. However,

contention between traic belonging to the same domain is still possible. In such a scenario, losing packets

have to wait for the next compatible domain wave to traverse the NoC, introducing unavoidable routing latency

overheads and necessitating the use of bufers along router links. Further, independent traic is not grouped into

domains in an application aware manner, which can severely constrain the NoC’s available injection bandwidth

(since packets can only surf their own domain wave). [23]’s use of time division multiplexing at the virtual

channel also results in router complexity growing linearly with virtual channel counts and attempts to ofset

this area overhead via explicitly pipelining routers limits the number of domains that can maintain strict low

isolation and zero delay hop routing [23, 28]. Leveraging TDM asynchronous routers in a GALS implementation,

[13] introduces a simple router design. However, the TDM is statically scheduled and is not tuned to optimise

the underlying application’s QoR. The GALS implementation also mandates expensive modiications to the

network interface and additional design cycles for clock domain crossing compatibility between the NoC and

user PEs. Instead of equitable arbitration [14] or domain creation [23, 28], [21] guarantees conlict free traic

low by leveraging dependency graphs between interacting traces to introduce strategic delays for each traic

trace. However, this forces even non conlicting traic traces to be delayed by an amount determined by the

dependency graphs. Furthermore, only a single packet can be inserted in a time-slot, increasing queuing latency

and lowering available network throughput. These strategic delays are introduced by delay latches across the

router paths, which also increases the area overhead of NoC. Finally, despite non interacting traic traces, [21]

still requires low control to avoid end-point saturation. Thus, FPGA application design still needs a lightweight

NoC that addresses this gap by providing strict latency bounds that are optimised for the application being routed.

2.1 HopliteBuf and HopliteBP

HopliteBuf (FIFO in Fig. 1a) [4] is a variant of Hoplite that introduces stall-free FIFOs on the turns in the NoC.

We bufer packets turning from� → � if a � → � packet is present in that cycle. Following DOR routing

policy, we allow � packets to travel � while� packets must wait for an empty cycle to progress further. The

2:1 East mux chooses between� , and �� packets while the South mux chooses between� ′ (FIFO output), � ,

and �� packets. It is worth noting that while the FIFO is only available for� → � packets, we also need to

hold back �� → � packets if a � packet is present, as the �� port has the lowest priority for injecting a packet;

the same holds for a �� →� packet if a higher priority� → � is present. �� packets have lowest priority

amongst all packets and must wait for traic to clear on the target exit mux. Rather than implementing additional,

LUT-expensive FIFOs, we assume a regulator compatible PE interface that can be stalled; such that the PE is

prevented from injecting a packet in any clock cycle when a higher priority packet is present. We assume that

packet delivery to a PE is not stallable, thus allowing unrestricted N→S traic.

HopliteBP (Backpressure in Fig. 1b) [5] supports lightweight backpressure in the horizontal ring. � → �

packets have the highest priority; thus foregoing a need for backpressure along the vertical dimension. Only

packets turning� → � in the network may be subject to contention and thus require a backpressure interface.

We insert shadow registers on the� port which provide an ability to store stalled packets in place and propagate

the backpressure control (��0) upstream in the opposite direction of packet low [18].

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:5

2
:1

3:1

�
�

�

����

���
F
IF
O

(a) HopliteBuf (FIFO)

2
:1

Ctrl

3:1

�
�

�

�

������

���

���

��
��

bp

(b) HopliteBP (Backpres-

sure)

2
:1

Ctrl

3:1

�
�

�

�

������

���

���

��
��

bp

(c) Unified HopliteBuf+BP

Fig. 1. Block diagrams of HopliteBuf, HopliteBP and HopliteBuf+BP designs.

HopliteBuf+BP (FIFO + Backpressure in Fig. 1c) is a uniied switch that includes both switch components

and supports runtime coniguration of the operating mode. The HopliteBuf design presented in [4] cannot coexist

with HopliteBP switches in the same horizontal ring, as it will not respond to a backpressure signal (��0), and

thus, despite assertion of this signal, may end up sending a packet to the� input of a backpressured HopliteBP

switch. In order to have switches with a� → � FIFO in the same horizontal ring as HopliteBP switches, we

deine this third switch, that extends HopliteBuf by incorporating backpressure and shadow registers in the

design.When implementing a soft NoC, a HopliteBuf+BP switch is used in place of HopliteBuf whenever the

analysis determines that the switch could be reached by a backpressure signal generated by a HopliteBP switch on

the same horizontal ring. We can also realize a hard, conigurable NoC architecture based on the same principle.

Speciically, the HopliteBuf+BP structure can be used to support both stall-free FIFO and backpressure designs,

by simply implementing a programmable register that can either be conigured during compilation or in response

to evolving traic conditions when routing a workload (without requiring full FPGA bitstream reconiguration).

All switches are complemented with a static analysis and traic regulation component [5]. We leverage this

analysis to prove feasibility (bounded latencies and FIFO sizes), compute worst-case FIFO size (for HopliteBuf), as

well as worst-case bounds on latency (injection+routing) of packets. The analysis computes composable latency

bounds, that is, the bounds do not depend on detailed information about activity of unrelated PEs. To this end, it

limits the maximum number of packets that a PE can inject in the network in any interval of time using a network

regulator. In this way, to compute the latency for low �� , it only needs to know the regulation parameters and

source/destination PEs for every other low in its set of interfering lows. The analysis employs a 32 bit leaky

bucket regulator [15], which uses two parameters, regulation rate fi .� and data burst size fi .b: data burst is the

maximum number of consecutive packets that the low can send through the regulator, while the rate is the

maximum long-term throughput of the regulator in packets per cycle. We review the static analysis used in these

designs in greater detail in Section 4.

2.2 Xilinx FPGA Mapping

The muxes of the original Hoplite switch [26] can be eiciently mapped to a single fracturable 6-LUT for one bit

of switching datapath. For the HopliteBuf design, we are unable to exploit that degree of compactness as the

south mux needs to select between three inputs: � , FIFO output and ��� . To realize these FIFOs, we can make

use of the SRL32 primitive on Xilinx FPGAs that repurposes LUTs as Memory elements. For HopliteBP, the DOR

ACM Trans. Reconig. Technol. Syst.

1:6 • Malik, et al.

routing logic must be adapted to account for the presence of backpressure signals. The control logic and shadow

registers are more expensive to implement on the FPGA than SRL-based FIFOs. They result in a 1.2ś1.8× increase

in LUT and FF usage over HopliteBuf switches as shown in Table 1. We also build a uniied HopliteBuf+BP switch

that not only permits propagation of backpressure when composing a mixture of HopliteBuf and HopliteBP

switches, but also provides runtime adaptability to choose either operating mode.

Hoplite HopliteBuf HopliteBP HopliteBuf+BP

LUTs 59 161 189 247

FFs 86 91 167 175

Table 1. Resource utilization of Hoplite based switches on Xilinx Virtex-7 for 32b datawidth and 32-deep SRL32 FIFOs.

3 Motivating Example

In this section, we discuss the motivation for learning NoC parameters for a given application lowset. Speciically,

in order to maximise a user requested QoR (quality of result) for a speciic application lowset, we build a case for:

(1) Building a hybrid NoC design by learning mode of operation (between HopliteBuf and HopliteBP), for

every switch in the NoC.

(2) Learning the regulation rate for every traic trace present in the application lowset.

0,3

0,2

0,1

0,0

1,3

1,2

1,1

1,0

2,3

2,2

2,1

2,0

3,3

3,2

3,1

3,0

(a) Horizontal

0,3

0,2

0,1

0,0

1,3

1,2

1,1

1,0

2,3

2,2

2,1

2,0

3,3

3,2

3,1

3,0

(b) Vertical

0,3

0,2

0,1

0,0

1,3

1,2

1,1

1,0

2,3

2,2

2,1

2,0

3,3

3,2

3,1

3,0

(c) Cyclic

●●

●●

●●
●●

●● ●● ●
●

●

●

●

●

●

●

●

●

●●

●●

●●
●● ●

●
●
●

●
●

●

●

●

●

●●

●●

●
● ●

●

●

● ● ●
●

●

●

●

Horizontal Vertical Cyclic

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

100

300

1000

100

300

1000

100

300

1000

Regulation Rate

W
o
rs

t
C

a
s
e
 L

a
te

n
c
y

● ●BP FIFO

(d) Worst-Case Latency Scaling Trends

Fig. 2. Interacting network flows on a 4×4 NoC arranged to show the benefits of mixing FIFO and Backpressure switches.

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:7

3.1 Learning Switch Configuration

To discuss how switch coniguration afects the results of the analysis for diferent low patterns, we perform a

set of analyses for the three low sets: (a) Horizontal, (b) Vertical and (c) Cyclic shown in Fig. 2. We assume that

all lows have the same block size �� .� = 8 and we use the same value of regulation rate �� .� (x axis of Fig. 2d)

across all lows.

In Fig. 2d, we then plot the maximum analytical latency of the NoC while varying �� .� . We consider two

network conigurations, one where all switches use stall-free FIFOs (HopliteBuf), and one where all switches

use backpressure (HopliteBP). We stop plotting the latency whenever the network declares infeasibility due to

unbounded latencies or the size of any bufer under HopliteBuf exceeds 32 (as this enables one-LUT per bit FIFO

implementation).

• Efect of regulation rate: As we increase regulation rate, latency initially decreases for all cases in Fig. 2d.

This is because decreasing the regulation period (1
�� .�

) afords each PE increased opportunity to inject its

packets into the network. However, past a certain regulation rate, the latency starts increasing due to increased

contention caused by conlicting lows, which dominates any beneits of a reduced regulation period.

• Horizontal: For the set of lows shown in Fig. 2a, we note that HopliteBuf (ifo) delivers lower worst-case

latency. This is because under HopliteBP, �1 () sufers interference not only from �2() but also �3 ()

indirectly due to horizontal backpressure stalls originating from switch (3, 1); thus increasing latency compared

to HopliteBuf.

• Vertical: Here, HopliteBP achieves lower latency. This is due to the efects of bufering: since �2 () sufers

interference from �1 (), HopliteBuf will accumulate its packets at switch (3, 1). Hence, the maximum number

of consecutive packets that �2 () can inject south at (3, 1) becomes larger than its data block size �2.�. In

turn, this means that the queueing delay of �3 () at switch (3, 2)’s FIFO can exceed injection delay at the

source of �3 () due to backpressure induced stalls in HopliteBP.

• Cyclic: The negative efects of vertical bufering are magniied in a cyclic low pattern and the HopliteBuf

designs show signiicantly worse latency than HopliteBP, as shown in Fig. 2d.

A user-supplied set of network lows can contain a combination of these three patterns, among others. The irst

key idea explored in this paper is to learn the efect of these lowset interactions on routability and hardware

costs to make a determination between HopliteBuf and HopliteBP on a per-switch basis. The use of such hybrid

NoC switch conigurations allows to optimize both analytical low latency as well as hardware cost. This in-turn

allows us to tailor our NoC oferings to the application at-hand and QoR requested, by learning the efects of the

provided lows on a per-switch basis.

3.2 Learning Regulation Rates

We now make a case for learning regulation rates for every trace in an application lowset by presenting a set of

arguments using Fig. 3a and 3b. Speciically, each traic trace within an application lowset interacts with other

traces in a complex non-deterministic manner, thus afecting NoC routing. Flowset speciic learning allows us to

maximise NoC routability by encoding the latent afects of these traces’ interactions into the learnt rates. We

now discuss two speciic advantages of learning unique regulation rates for every trace in the lowset, speciic to

the applications and QoR at hand. We contrast this proposed learning approach against the practice of using a

single rate to regulate all traces within a lowset [5, 17].

• Local contention zones: In Fig. 3a, the NoC comprises of a localised contention hotspot around switch

(2,1), comprising of 3 traces (, ,). Regardless of mode of operation of the switches, these 3 traces

generate more contention than the other two traces (,) if we regulate all of them by the same

amount. As a result, this localised hotspot forms a bottleneck in the feasibility and latency analysis, thus

leaving available NoC bandwidth untapped by (,). For example, the non conlicting traces’ (,

ACM Trans. Reconig. Technol. Syst.

1:8 • Malik, et al.

0,3

0,2

0,1

0,0

1,3

1,2

1,1

1,0

2,3

2,2

2,1

2,0

3,3

3,2

3,1

3,0

(a) Localized Contention

0,3

0,2

0,1

0,0

1,3

1,2

1,1

1,0

2,3

2,2

2,1

2,0

3,3

3,2

3,1

3,0

(b) Turning Trafic in vanilla HopliteBuf

Fig. 3. Interacting network flows on a 4×4 NoC arranged to show the benefits of learning regulation rates for each trafic

trace

) regulated injection rates can reach levels that are much higher than the hotspot’s, without having any

adverse afect on the routability of the application lowset. An application lowset can generate a multitude

of these disparate contention zones within a NoC. Learning unique trace level regulation rates, speciic to

the application lowset, allows us to extract information about such trace interactions and recover lost NoC

routing bandwidth, thus allowing for a more eicient optimization of the application QoR.

• Learning switch coniguration: In Fig. 3b, we investigate learning switch level conigurations for the

traces shown. We start of with all of the NoC’s switches operating in HopliteBuf mode. The application

lowset consists of predominantly turning traic traces. Note that switch (3,2) south link has 3 traic traces

exiting through it (, ,) which forms a potential choke point that can quickly become infeasible

as regulated injection rates of these three traces increase (FIFO runs out of capacity). The lost feasibility

can be recovered by replacing this HopliteBuf switch (3,2) by a HopliteBP NoC. However, this can lead to

frequent and incessant stall of its entire row due to backpressure signals induced from its west port. This

unfairly penalizes innocent traces (,) which were not even interacting with the infeasibility causing

traces but now are made to sacriice their available bandwidth to make routing feasible. Furthermore, the

entire row must now be upgraded to a HopliteBP+Buf coniguration to support backpressure and FIFO

signals, resulting in a more costly NoC design. Instead, an easier alternative is to address the infeasibility at

its source. We can tune the regulation rates of the traces most responsible for eating up FIFO capacity at

switch (3,2); trace () since it is not only involved in the contention at switch (3,2) but also is responsible

for increasing the data block size of the trace exiting at south port of switch (3,1).

Such subtle and non-deterministic interactions between traic traces of a complex lowsets can be challenging

for a NoC to address. The second key idea explored in this paper is to learn the regulation rates of each traic

trace in an application lowset to

(1) Surgically tune localised hotspots by encoding this contention information into regulation related decision

making for afected traces.

(2) Increase eiciency of switch learning with nested learning where rate learning can help expand the domain

of feasible switch solutions as well as directly improve NoC routing conditions.

(3) For a NoC of size NxN, eiciently navigate for solutions in a multi-modal search space that asymptotically

grows as (0, 1]� 4
and makes simple search based techniques impractical.

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:9

4 Latency and Backlog Analysis

We now discuss how to derive latency bounds, as well as backlog (the maximum FIFO occupancy) bounds, for a

NoC design incorporating a mix of HopliteBuf and HopliteBP switches. Speciically, the analysis derives four sets

of parameters:

• The worst-case injection latency for any low �� , that is, the maximum time that node (�� .��, �� .��) can be

stalled while trying to inject one or more packets of �� .

• The worst-case queuing delay for any low �� turning� → � on a FIFO enabled (HopliteBuf/Uniied)

switch, that is, the maximum time that a packet of �� can be queued in the FIFO.

• The per-hop delay for any low �� , from (��,��) to (��,��). The total latency for �� is then the sum of its

injection latency, queuing delay (if applicable), and per-hop delay.

• Finally, to prove that stall-free FIFOs can be used without dropping packets, we determine the worst-case

backlog (bufer occupation) for any FIFO enabled switch.

We begin by introducing the low and traic regulation model. We then summarize the existing analysis for

HopliteBuf [4] and HopliteBP [5], and inally show how to extend it to a hybrid architecture.

4.1 Flow Model

We assume that each NoC node sends packets as part of one or more lows; a low �� represents a sequence of data

blocks, each comprising �� .� consecutive packets, sent between the same source node (�� .��, �� .��) and destination
node (�� .��, �� .��). The data block size �� .� is related to the architecture of the PEs and the width of the NoC;

as an example, if blocks represent 32 bytes cache lines and the NoC width is 8 bytes, we obtain �� .� = 4. We

make no assumption on the exact time at which successive data blocks are produced by the source node, as such

information might be too diicult to analyze 1. Instead, our goal is to determine a worst-case analytical bound to

the latency sufered by any data block of low �� . The bound includes both the injection latency �� �������(��),
that is, the maximum time that node (�� .��, �� .��) takes to inject all packets of the block into the network, as well

as the queuing delay, that is, the maximum time that any packet of �� can be queued in a� → � FIFO. As part of

the queuing analysis, we also derive a backlog bound for each FIFO. We say that a network is stable if all lows

have bounded total latency and the backlog for all FIFOs is smaller or equal to the FIFO size.

4.2 Trafic regulation

We are interested in computing a composable latency bound, that is, the bound for a low should not depend on

detailed information on the activity of unrelated PEs. To this end, we limit the maximum number of packets that

a low can inject in the network in any interval of time using a network regulator. In this way, to compute the

latency for �� we only need to know the regulation parameters and source/destination for every other low �� ; as

long as those remain constant, any change to the way �� generates data blocks has no efect on �� . As in [4, 5], we

employ a token bucket regulator [15], which uses two parameters, regulation rate �� .� and burst size �� .�: burst

size is the maximum number of consecutive packets that the low can send through the regulator, while the rate

is the maximum long-term throughput of the regulator in packets per cycle.The implementation of the regulator

uses two counters. The rate counter is incremented every cycle and adds a token to the token counter every

1/�� .� cycles (the regulation period). The token counter has a maximum size of �� .�. At any clock cycle, the node

is allowed to inject a packet only if the NoC is ready (meaning that no other packet is being sent to the same

output port, given that the PE port has the lowest priority) and the token counter is not empty; sending a packet

removes a token from the counter. There is no bufer associated with the regulator; hence, a node that wishes to

inject a packet but is blocked by the regulator is simply stalled. We make no assumption on the arbitration policy

1For example, in the case of requests produced by a cache, the speciic timing of fetches/write-backs depends on both the initial cache state,

and the path through the program.

ACM Trans. Reconig. Technol. Syst.

1:10 • Malik, et al.

among lows sourced from the same node: if during a clock cycle a node is ready to inject a packet from both a

low �� and a low �� , then it can select either of the two lows.

4.3 Injection Latency

To determine the injection latency for low �� , we need to compute the set of conlicting lows Γ�� that can prevent

a packet of �� from being injected in the NoC. This set comprises all lows sourced from the same node (�� .��, �� .��)
as �� , plus all higher priority lows that traverse the switch at (�� .��, �� .��) in the same direction as �� : the� → �

lows if �� is injected to the � port, or the � → � and� → � lows if �� is injected to the � port. After obtaining

the conlict set Γ�� , the injection latency can be computed as follows, where � (Γ��) is the sum of data block sizes

of all lows in Γ
�
� and � (Γ��) is the sum of their regulation rates:

Theorem 1 (Theorem 1 in [5] and 2 in [27]). Assume � (Γ��) < 1 and the client wishes to inject a sequence (data

block) of �� .� ≤ �� .� packets for low �� . Then the delay to inject all packets in the block is upper bounded by:

�� �������(��) =⌈1/�� .�⌉ − 1 +
⌈
� (Γ��)

1 − � (Γ��)

⌉

+
⌈

(�� .� − 1) ·max

(
1

�� .�
,

1

1 − � (Γ��)

)⌉

. (1)

Note that 1 − � (Γ��) is the available regulation rate for �� after removing the rate of lows in Γ
�
� . In essence, the

irst packet in the data block is delayed irst by the regulation period (inverse of the rate) 1/�� .� ; then, by the data

block size of interfering lows, which is captured by term � (Γ��)/
(
1 − � (Γ��)

)
; and inally, the remaining �� .� − 1

packets are injected at the minimum rate (maximum of the periods) between �� .� and the available regulation

rate 1 − � (Γ��). We make three important observations:

• If � (Γ��) ≥ 1, then in the worst case �� can never inject, hence its latency is unbounded and the network is

unstable.

• The bound only holds for data blocks of size at most �� .�: larger blocks can be delayed by � (Γ��) multiple

times, leading to signiicantly worse latency. Furthermore, increasing the burst size of the regulator beyond

the low’s block size does not provide any advantage to �� . While it could increase � (Γ��) for some other

low �� , in the rest of the paper, we simply set �� .� = �� .� for all lows.

• Increasing the regulation rate �� .� improves the latency of �� , because it reduces the regulation period

1/�� .� ; it also increases both the guaranteed (1/�� �������(��)) as well as average-case regulation rate for

�� . However, it can also decrease the available rate 1 − � (Γ��) for some other low �� , leading to a higher

latency for �� .
Therefore, the regulation latency of a low represents a measure of how latency-critical the low is: the higher the

rate, the better the latency for that low, at the expense of other lows. This competitive relationship between

traces becomes important when learning unique rates to address inequity in per-trace regulation.

4.4 Analysis for FIFO Mode

For a low �� turning� → � on a FIFO enabled switch (vanilla HopliteBuf or Uniied), let � ′� denote the low after

it leaves the � port: the efect of queuing packets in the bufer can cause the data block size � ′� .� to be higher

than �� .�. In turn, this will afect the data block size and latency of lows either injected � or turning� → � on

downstream switches in the same vertical ring. Hence, this efect must be bounded to obtain safe worst-case

estimates. To this end, the analysis in [4] relies on the theory of network calculus [15], which is commonly

employed to derive deterministic bounds on network latency and backlog. The analysis derives a set of linear

equations that relate the data block size � ′� .� of � ′� to the data block size of other lows leaving the � port on other

FIFO switches on the same vertical torus. We then solve the system of equations; if resulting data block size

values for all lows are inite and positive, then they must indeed represent valid upper bounds. Otherwise, we

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:11

deem the network unstable. Assuming stability, the queuing delay for �� and backlog for the switch can then be

derived based on the regulation rate and data block size of all lows that traverse the switch in the � → � and

� → � direction.

It is important to note that due to the torus topology, the system of equations can contain cyclic dependencies

between data block size variables. An example is provided in Fig. 2c: here, each low turning� → � is delayed

by the other two lows that traverse the switch � → � . Hence, increasing the data block size of a low causes

an increase in the data block size of the other two lows, which in turn afect the irst one. This feedback loop

introduces pessimism in the analysis, causing a reduction in the sustainable per-link utilization: for this example,

the network becomes unstable at a per-link utilization of 75% (a regulation rate of 1/4 for each low).

4.5 Analysis for Backpressure Mode

Since they do not contain a FIFO, no bufer analysis is required for backpressure enabled switches (vanilla Ho-

pliteBP or Uniied). Instead, the analysis in [5] accounts for the efects of backpressure by adding all backpressured

lows to the set of conlicting lows Γ�� . Speciically, if �� turns� → � at a switch, we add to Γ�� all other lows that

traverse that switch in the � → � or� → � directions, as they can backpressure �� . Furthermore, if another low

�� shares a� port on any switch with �� , then all lows that backpressure �� can also indirectly cause backpressure

on �� ; therefore, they must be added to Γ
�
� .

4.6 Hybrid NoC Analysis

To analyze our hybrid NoC, composed of individual switches operating in either FIFO or backpressure mode, we

combine the analysis for FIFO and backpressure modes; we irst run the bufer analysis for each vertical ring that

contains at least one FIFO enabled switch. Note that for any low �� that turns� → � on that vertical ring at a

backpressure switch, we consider the original data block size �� .� rather than the modiied data block size � ′� .�, as
the low does not traverse a bufer. We then run the backpressure analysis for each horizontal ring that contains

at least one backpressure switch. Note that a low �� can sufer backpressure from � → � and� → � lows only

if it turns� → � at a backpressure enabled switch; however, a low �� can sufer indirect backpressure from �� if

it shared a� port on any switch (HopliteBP/Uniied) or the horizontal ring. Finally, it is important to note that

based on the analysis, adding a� → � FIFO bufer to a switch is a trade-of: on the negative side, the bufer

increases the data block size of turning lows, and thus the interference on the vertical ring; on the positive, if we

can prove that the FIFO is stall-free, we avoid generating backpressure on the horizontal ring. However, if the

FIFO can be stalled, then it is not advantageous. For this reason, the HopliteBP design does not include a FIFO.

5 Evolutionary Learning of NoC Parameters

We now present the key ideas explored in this paper. We learn, for a given application lowset, data block size

and deined QoR:

(1) The coniguration mode (between HopliteBP and HopliteBuf) for every individual switch in the NoC.

(2) Unique regulation rates for every trace in the application lowset.

This allows us to tailor the NoC towards the application at hand by optimizing for a user deined QoR. We cast

the learning of switch level conigurations as a Maximum Likelihood Estimation problem. We learn regulated

injection rates of every trace in the lowset using Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES).

We also present nested learning, where we learn both regulation rates and switch conigurations in-tandem.

5.1 Learning NoC Switches

The irst key idea explored in this paper is the use of hybrid NoC switch conigurations that mix HopliteBuf

and HopliteBP styles in a single NoC. Depending on the interference pattern of network lows, each switch

ACM Trans. Reconig. Technol. Syst.

1:12 • Malik, et al.

coniguration may be tailored in an application-speciic manner. In Fig. 4, we show the best switch coniguration

for a simple 3×3 NoC with a ixed set of nine lows (shown in red in the leftmost NoC subigure). We vary the

block size � and regulation rate � for each low (identically). At very low rates and data block sizes, HopliteBuf

ofers the cheapest and best-performing design, while at larger rates and blocks, the design starts to migrate to

HopliteBP-dominated solutions. Given that an � × � NoC will have � 2 switches, each with a boolean decision

to make, the design space grows exponentially with problem size.

�=0.01,�=1 �=0.01,�=32 �=0.15,�=1 �=0.15,�=32

Fig. 4. FPGA NoC Switch Configuration for a 3×3 NoC for a set of nine flows (shown in letmost subfigure) with identical

but four combinations of rate � and block size � characteristics. At low rates and block sizes, most switches tend to be cheap

HopliteBuf variants, while a growing number convert to expensive HopliteBP variants with increasing rate+size.

Now, we discuss the optimization technique we use to learn the switch conigurations for a particular set of

lows. Speciically, given the regulation rate (provided by user or a learning algorithm) and data block size of

each low, we determine whether each switch in the network implements a stall-free FIFO or backpressure logic

to optimise for the user deined QoR (wclatency*cost, wclatency, etc).

Note that an � × � NoC has � 2 switches, each with a boolean decision to make. This � (2� 2) solution space

necessitates the use of a scalable approach rather than brute-force exploration (a 7 × 7 NoC can have ≈562 trillion
solutions). We choose to model this as a Maximum Likelihood Estimation algorithm. We model each switch of

the NoC as an independent random variable from a 2-point Bernoulli distribution �� . This means that there are

two outcomes possible for each switch: 0 represents a HopliteBuf and a 1 represents HopliteBP. For each switch

� , we represent the probability of choosing a Backpressure coniguration as �� while the FIFO choice becomes

1 − �� . We seed each switch with zero bias by ensuring that the skew of each switch’s distribution �� ,
1−2��√
(�� (1−��)

,

is 0 by starting with �� = 0.5 ∀ i.
We aim to evolve the optimal NoC coniguration by producing multiple candidates solutions for the ��ℎ

generational step for each switch �
�
� of the �×� NoC. Unlike conventional neural networks with a known

training set, we generate our training set on-the-ly based on the results of the generational search. Unlike Naïve

Bayesian inference strategies explored by InTime [11], our approach directly aims to minimize an objective

function rather than train with a binary classiier. For our setup, we evolve by sampling each switch’s Bernoulli

distribution �
�
� (�

�
�) to produce either a FIFO (0) or a Backpressure conigured (1) switch. For each generation step

�, we produce � potential candidate NoC conigurations �
�

�
∈ (0, 1)� 2×� , as shown below in Equation 2. For our

experiments we chose �=100.

�
�

�
=



�
�
1,1 �

�
2,1 · · · �

�

�,1
...

...
. . .

...

�
�

1,� 2 �
�

2,� 2 · · · �
�

�,� 2


︸ ︷︷ ︸

Each column is a lattened NoC coniguration (ℎ�)

(2)

We test each candidate coniguration ℎ� for itness on a user deined function and ilter out the top �=25%

performing candidates �
�

�:�
∈ (0, 1)� 2×� . This is a greedy step but the memory of previous iterations is relected

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:13

in the existing probabilities of the switch conigurations. We then adapt each switch’s Bernoulli distribution

in the general direction of the chosen candidates. We aim to increase the likelihood that the top performing

candidates�
�

�:�
of this generation were sampled from it. For each switch �

�
� at generation g, we deine a likelihood

function as follows:

�
(
�
�

1:�,�
,...�

�

�:�,�
|��+1�

)
= �

(
�
�

1:�,�
, �
�

2:�,�
..., �

�

�:�,�
|��+1�

)

= � (�1, �2 ..., �� |�̂)
︸ ︷︷ ︸

substitute

= �̂�1 · (1 − �̂)1−�1 ...�̂�� · (1 − �̂)1−��

= �̂
�∑
� · (1 − �̂)�−

�∑
� (3)

Equation 3 is the likelihood of a Bernoulli distribution for switch � generating the best performing � samples from

a distribution with probability parameter �
�+1
� . Remember, �

�

�:�,�
refers to the top � (out of total �) performing

switch conigurations for switch � at generation �. The inal expression of Equation 3 can be diferentiated to ind

the value of �̂ = �
�+1
� that maximizes this likelihood. We irst apply a logarithmic transformation on this equation

before diferentiation, as shown below:

ln(�) = ln(�̂) ·
�︁

� + ln(1 − �̂) · (� −
�︁

�)

�
(
ln(�)

)

��̂
=

�∑
�

�̂
− � −

�∑
�

1 − �̂ = 0

�︁

� − �̂ ·
�︁

� = � · �̂ − �̂ ·
�︁

�

�̂ =

�∑
�

�
(4)

Hence, the updated probability parameter �̂ = �
�+1
� for each switch �� ’s Bernoulli distribution �� can simply be

written as an average over the � best performing candidates in generation g. We formalize this in Equation 5

below:

�̂ = �
�+1
� =

�∑
�=1

�
�

� :�,�

�
. (5)

Finally, in Fig. 5, we irst show the high-level representation of a single iteration of the MLE algorithm. Given a

set of probabilities associated with the distributions ��, we generate �
�

�
samples of possible NoC conigurations.

We then select the top-K best-performing solutions �
�

�:�
to revise the distributions as ��+1 for the next iteration.

While MLE can also be used for Bayesian inference [2] with respect to how samples are generated and probabilities

updated, for our scenario we directly minimize an objective function rather than performing a classiication.

ACM Trans. Reconig. Technol. Syst.

1:14 • Malik, et al.

Multiple trials of various NoC conigurations to extract best performing �
�

�:�

�
�
0

0.2
�
�+1
0

0.66

�
�
1

0.5
�
�+1
1

0.5

�
�
2

0.3
�
�+1
2

0.5

�
�
3

0.1
�
�+1
3

0.25

Flattened NoC Conig. (��

�
) , broadcast to the NoC’s mesh shape

g
en
_
ca
n
d
id
at
es

M
L
E
_
ev
o
lv
e

Back-Pressure Stall-Free FIFO

Fig. 5. Evolution of switch type probabilities for a 2×2 NoC using Maximizing Likelihood Estimation (MLE). One MLE

iteration is shown which has a candidate size C=8 (each of the 8 shown 2x2 Hoplite NoC configurations is a candidate) and

elite size �=4. Only marked NoC configurations are used to generate the new Bernoulli distribution ��+1.

5.2 Learning Regulated Injection Rates

The second key idea explored in this paper is to learn the degree of regulation introduced in each trace for a

given application lowset. An application lowset can be composed of a diverse types of traces and much like the

butterly efect, each trace generates varying degrees of contention within the NoC via second order interactions

with other traces. We wish to improve the overall routing conditions of these complex traic interactions by

regulating the amount of traic generated by each trace within a time frame. Speciically, for a given application

lowset, we learn these regulated injection rates, for every trace in the lowset, to maximise a user requested QoR

function. We explore 2 methods of rate learning: 1. Univariate and 2. Multivariate.

5.2.1 Univariate Rate Learning

One method is to linearly search over a uniform distribution ∈ (0,1] with the increment precision truncated to

32 bits to mimic the regulation dynamics of the token bucket regulators. Each search sample is then universally

applied to all traces’ regulators and the resulting QoR determined. The sample that best optimises for the requested

QoR can be selected as the desired regulation rate. This is equivalent to the linear search of [17] and section

6.2.1 (learning only switch conigurations) ∈ (0,1], with NoC routability measured as a function of the regulation

rate. The precision of the linear search increments can be ine-grained to support 32 bit regulators instead of

the chunkier increments of the original work. Furthermore, the brute force linear search can be replaced with

an intelligent binary search or a univariate gaussian modelling, with no efect to the inal quality of solution.

While information about the application lowset is encoded in this light and fast methodology, it fails to take into

account any unique dependencies between traces and their latent efects on other regions of the NoC since all

traces are equally regulated. Furthermore, it prevents the NoC from reaching its peak available bandwidth since

regulation is bottlenecked by the worst trace in the lowset. We compare and contrast this univariate learning

against multivariate learning in more detail in section 6.2.

5.2.2 Multivariate Rate Learning

Wenowpresent themain idea of learning regulation rates: modelling each trace’s regulation rate as a multivariate

gaussian distribution and learning this distribution’s parameters using Covariance Matrix Adaptation Evolu-

tionary Strategies (CMA-ES) [6]. Formally, as shown in equation 6, for a NoC of size N×N, given a lowset �

composed of set of traces (�1, �2, ..., �� , ..., ��) and data block size � , we wish to learn the corresponding regulation

rates �=(� �1 , � �2 , ..., � �� , ..., � ��) such that the user deined objective QoR function � , calculated as a function of the

Hoplite analysis suite � , can be maximised (or minimised).

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:15

� = (�1, �2, ..., �� , ..., ��) : � ≤ � 4

� = (� �1 , � �2 , ..., � �� , ..., � ��) : � �� ∈ (0, 1]∀�

� = argmax(� (� (�, �, �))) (6)

Recall that each trace in a lowset can impact the others via second order interactions and we encode this

dependence bymodelling� as amultivariate gaussian distribution� ∼ N(�, �2), with � ∈ [0, 1]� and� ∈ [0, 1]��� .
This is a key diferentiation between univariate of section 5.2.1 and [17] as it allows us to extract crucial

information about these interactions. Furthermore, increasing the dimension of the regulation search space

allows us to directly address bottlenecks in NoC routing by: 1. learning the regulation rates of the most diicult

traces in an application as well as 2. encode this information in rates of traces that might be involved in indirect

interactions. Multivariate learning, when paired with algorithms that learn other NoC parameters (switch

coniguration in section 5.3), also provides access to a much richer search space in contrast, when compared to

univariate learning. This is explained by univariate unilaterally regulating all traces with the same amount,

thus introducing a strong bias in other algorithm’s search space.

We now explain the modelling of multivariate learning as a black box optimization problem using CMA-

ES. Just like switch learning of MLE, the core of multivariate learning involves sampling � candidate rates

�
�

�
∈ (0, 1]�2�� from a multivariate distribution N(��, �2�) at every generation � as shown in Equation 7. For

our experiments, we choose � = 100. Each sample in �
�

�
is then tested for itness on the QoR function. As

shown in Equation 8,the top � performing regulation rate samples �
�

�:�
∈ (0, 1]�2�� are then selected for CMA-

ES to evolve the multivariate distribution in the general direction of top performing samples by updating

the mean � and covariance � according to the evolutionary steps detailed in [6]. Observe in Equation 8 that

CMA-ES maintains an evolutionary path to keep a historical track of past generation’s multivariate parameters

(N(�1, �21),N(�2, �22), ...,N(��−1, �2�−1). This encoding of trajectory of past decisions plays an important role to

help balance the exploration vs exploitation tradeof and prevent CMA-ES from getting stuck in local optimas.

�
�

�
=



�
�1,1
� �

�1,2
� · · · �

�1,�
�

...
...

. . .
...

�
��,1
� �

��,2
� · · · �

��,�
�


︸ ︷︷ ︸

Each column is a lattened regulated injection rate (ℎ�)

∼ N(��, �2�) (7)

N(��+1, �2�+1) = ���({N (�1, �21),N(�2, �22), ...,N(��, �2�)}, �
�

�
, �
�

�:�
) (8)

Representative updates to a 2D Gaussian distribution for multivariate learning of regulation for a 2x2

HopliteBP NoC are shown in Fig 6. As a black box optimization, CMA-ES enables us to learn best � in a large

search space of (0, 1]� 4
without requiring any explicit knowledge of the QoR function or the myriad functions in

the Hoplite analysis suite. This foregoes the need for any calculation of gradients and allows for a well composed

interaction with other black box learners (like MLE for switch coniguration); thus allowing for symbiotic nested

learning techniques over multiple NoC parameters.

ACM Trans. Reconig. Technol. Syst.

1:16 • Malik, et al.

3
2
1
0
1
2
3 3 2 1 0 1 2 3 4

1.0

0.8

0.6

0.4

0.2

0.0

0.2

(a)

3
2
1
0
1
2
3 3 2 1 0 1 2 3 4

1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

(b)

3
2
1
0
1
2
3 3 2 1 0 1 2 3 4

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75

(c)

3
2
1
0
1
2
3 3 2 1 0 1 2 3 4

1.0

0.5

0.0

0.5

1.0

(d)

Fig. 6. Evolution of a 2D gaussian distribution when learning regulation rates for a 2x2 HopliteBP NoC with 2 traces of data

block size 1 in a RANDOM flowset. Note the convergence of the distribution over epochs as CMA-ES progressively learns beter

solutions.

5.3 Nested Learning

In this section, we explain the formulation of nested learning, where multiple parameters of the NoC can be

learnt to optimise for a speciic application lowset. We focus on learning regulation rates as well as switch

level coniguration of the NoC in-tandem; with each inluencing the other’s search space and having a direct

impact on the learnt parameters. This mutual dependence arises from the direct coupling of regulation and switch

coniguration on the performance of the NoC. When learning for a speciic application lowset, changing one set

of parameters (regulation rates for example) will inluence potential application routing, thus shaping the search

space for the other parameter set (switch coniguration for example).

Result: � reg., � switch conf.

CMA.init;

while not CMA.converge do

CMA.gen_samples;

for ���� in CMA.samples do

MLE.init;

while not MLE.converge do

MLE.gen_samples;

for ���� in MLE.samples

do

qor=calc(����, ����);

MLE.tell(qor);

MLE.it();

qor=calc(����, MLE.best);

CMA.tell(qor);

CMA.it();

Algorithm 1 explains the algorithm for rate learning along with

learning switch level coniguration for Hoplite NoCs. The objec-

tive of this algorithm is to ind rate �, switch conigurations � such

that (�, �)= argmax(� (� (�, �, �, �))). Note that multivariate
learning has a much larger search space ∈ (0, 1]� 4

compared to

switch learning which has a search space of 2�
2
. Also a gauss-

ian distribution (for rates) is computationally more challenging

than a Bernoulli distribution (for switches). Thus, we nest the

switch coniguration learning algorithm (���) inside rate learn-

ing (���).This decision helps cut down learning times many

folds since the much larger search space of rate learning will only

need to converge once; with the simpler switch learning converg-

ing to generate best switch coniguration for each rate candidate

generated by CMA. The fit functions used by respective algo-

rithms (��� and���) perform the action of selection of ittest

candidates out of ���.samples and ���.samples respectively,

followed by evolution of their respective distributions.

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:17

Since the nested search space can rapidly explode in size with increasing NoC size for challenging lowsets,

we prepend Algorithm 1 with steps to shrink the search space. We do this for 2 reasons: 1. To remove search

space with obviously infeasible solutions (for example, little to no regulation for all traces) and 2. Provide a better

seed/starting position to multivariate learning for a tighter initial spread of gaussian distribution. To this

end, we irst introduce a universal regulated injection rate of 1 (implying no regulation) and apply it to all traces

in the application lowset. We keep halving this rate until we achieve feasibility in the NoC. This simple step

helps us prune the search space of regulation rates to only include feasible solutions. Since we keep halving the

rate until feasibility is achieved, the time complexity is logarithmic in nature; taking only |log2 (�)| steps to ind

the irst feasible rate � . A simple search, as used in [17], exhibits linear asymptotic time complexity in contrast;

taking (1−�
�
) steps, with G ∈ (0,1) being the resolution of the search increment. We use this irst "feasible" rate to

seed a univariate learning of regulation rates. We learn this univariate rate until convergence and use this

to seed our inal phase of multivariate learning. Although univariate learning ofers much less idelity and

does not produce an optimal solution, it seeds multivariate learning’s starting parameters such that expected

coordinate-wise distance to the true optimum is minimised. Without this seeding, the CMA optimizer can exhibit

numerical instability; with the underlying probability density function lacking any coherent structure pertinent to

the problem and hence generating solutions on pure chance. Asymptotically, the optimizer can take ininite steps

before converging to a valid solution. Hence, seeding results in a tighter (implying smaller standard deviation)

multivariate gaussian distribution, taking fewer steps for multivariate learning to converge. We evaluate this

in greater details in section 6.2.3 and Fig. 22.

6 Evaluation

6.1 Methodology

For switch learning, our MLE optimizer is written in Python3. We implement the latency and bufer analysis

in Matlab, and convert it to C code using Real Time Workshop; the optimizers communicate with the analysis

tool using direct data transfer based on the Python ctypes APIs. We run all experiments on a 16-core Intel Xeon

E5-2697A CPU and parallelize our search across 32 threads. We measure our MLE switch learning implementation

to be 50-500× faster when compared against open-source Python implementations of black-box optimizers

CMA-ES [6] and RBFOPT [3], while exploring the solution space just as efectively. For regulation rate learning, we

implement the learning suite using the python based cma library. We parallelize computation of QoR for each

sample candidate generated in an epoch by spawning individual Process objects using the multiprocessing

library. Each spawned Process can either calculate the QoR directly for vanilla Hoplite conigurations (no switch

learning; section 6.2.3) or learn switch conigurations as part of the internal loop of Algorithm 1 (nested learning;

6.2.2).

We evaluate our entire framework across a range of 100 synthetically-generated communication workloads

with RANDOM and LOCAL communication patterns. For RANDOM patterns, each PE chooses destinations via uniform

sampling of other PEs. For LOCAL patterns, sampling is restricted to a +/- 2 radius of neighbouring PEs. We run

our analysis across various data block sizes to mimic the diversity of communication interfaces and endpoints like

DRAM, PCIe, and Ethernet. Furthermore, we also test for optimizing real-world applications designs for FPGA

accelerators such as Sparse matrix vector multiplication (SpMV [1]) used by many deep learning kernels [20] and

Graph [16] analytics. The extracted traces exhibit a rich diversity of co-relation and bandwidth requirements;

with load factors of 37-92% between the benchmarks. Furthermore, the traces in these real benchmarks are a

snapshot of real edge-point data, allowing us to evaluate our designs on ability to route data that closely mimics

interactions of end-points in a production setting.

In addition to the static analysis above, we also implement and verify the entire MLE generated NoC on a

Pynq-Z1 board, with uniied HopliteBuf+BP switches in the FPGA fabric (PL), and coniguration tools for the

ACM Trans. Reconig. Technol. Syst.

1:18 • Malik, et al.

NoC switches and regulators running on the ARM A9 (PS). For the uniied NoC, the software layer on the ARM

conigures the switches dynamically over an AXI bus, depending on the application requirements, without the

need for complete bitstream reconiguration. For a 6x6 network, the runtime of the MLE optimization on the PS

is 9-60s, and the reconiguration of the switches instantiated in the PL takes 850ms.

6.2 Results

In this section, we present the results of the static analysis of our hybrid FPGA NoC under various system sizes,

data block sizes, and optimization methods. We study the efects of:

• Standalone learning of switch level conigurations with regulation rate as a user controlled parameter for

evaluation (Section 6.2.1).

• In-tandem learning of regulation rates and switch conigurations (Section 6.2.2)

• Standalone learning of regulation rates with the switch coniguration preemptively set to all HopliteBuf or

HopliteBP (Section 6.2.3).

We are primarily interested in determining network feasibility (bounded latency), FIFO size needed, worst-case

latency, itness of the solution, and time required to optimize the NoC.

6.2.1 Learning Switch level Configuration only

For the following set of experiments, we focus on only learning switch level coniguration to generate hybrid

NoCs. We treat the regulated injection rate rate as a user set universal parameter and quantify the resulting NoCs

on their ability to optimised for the requested QoR over a linear range (between 0 and 1) of these rates.

6.2.1.1 Learning for Feasibility: In Fig. 7, we determine the subset of the 100 synthetic RANDOM and LOCAL

lowsets that can be routed feasibly on the NoC, that is, with bounded latencies and it within the 32-deep FIFO

capacity limits of an SRL32 structure. We conigure MLE to produce feasible NoC conigurations for provided

lowset. As we vary system size, regulation rate, and data block size, we note several interesting trends:

• First, we observe that feasibility rate drops from 100% to 0% as we increase regulation rate (x-axis), with steeper

losses observed for larger system sizes. This is understood as there are more lows competing for bandwidth

that does not scale linearly with system size. For a torus, doubling of system size increases bisection bandwidth

by only
√
2.

• As we increase data block lengths from 1ś16 (igures along a column), we note a counter-intuitive efect.

Now the HopliteBP and MLE designs show the highest feasibility envelopes while HopliteBuf loses severely.

HopliteBuf is unable to maintain feasibility as the SRL32 FIFOs run out of capacity for larger data blocks. It is

possible to increase feasibility by increasing FIFO sizes, but that impacts LUT cost and causes HopliteBuf to

exceed the footprint of the HopliteBP switches.

• As we increase system size, we note that HopliteBP designs start to lose feasibility quickly due to pessimism in

the analysis for backpressure-based designs. For pipelined backpressure-based switches, the analysis must

account for the cascading efect of network lows, which signiicantly depresses sustainable rates. LOCAL pattern

sufers a greater loss in feasibility due to the short distances traversed by the lows and resulting larger conlict

set of lows.

• Finally, we observe that MLE-optimized NoC smoothly navigates the entire design space to deliver the highest

feasibility rates across all combinations. This conirms that neither extreme solution works best in all cases,

and a mix-and-match approach is necessary to get the best outcomes. Importantly, by mixing and matching

switch conigurations, MLE NoCs exceed the potential of either NoCs in isolation, achieving ≈2ś3× higher
feasibility over vanilla designs.

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:19

3x3 5x5 7x7
1

4
8

1
6

0
50

100

0
50

100

0
50

100

0
50

100

F
e

a
s
ib

le

fifo mle bp

(a) RANDOM

3x3 5x5 7x7

1
4

8
1

6

0
.0

0
.1

0
.2

0
.3

0
.0

0
.1

0
.2

0
.3

0
.0

0
.1

0
.2

0
.3

0
50

100

0
50

100

0
50

100

0
50

100

Injection Rate

F
e

a
s
ib

le

(b) LOCAL

Fig. 7. Feasible set of RANDOM and LOCAL flowsets on system sizes 3×3ś7×7 (across columns) and data block sizes 1ś16

(across rows). Note x and y axes are shared vertically and horizontally respectively

6.2.1.2 Learning for Worst-Case Latency: Next, in Fig. 8, we show the efect of varying regulation rate of a 5×5
NoC when routing feasible LOCAL traic traces. We conigure the MLE to learn switch conigurations to minimise

wclatency. We summarise our observations with varying regulation rates and block sizes:

• First, we note that as the rate increases and reaches an inlection point, we see an increased spread in latencies

across all conigurations. This is due to the traic regulation model dominating cycle counts below this

inlection rate, forcing the network congestion efects to take a backseat. Second, as we increase data block

sizes, the latencies increase and the spread shift upwards. We also note that there is noise around the calculation

of mean curves due to the shifting feasibility combinations of the lowsets.

• HopliteBuf NoCs are competitive at lower regulation rates. At higher regulation rates, the worst-case latencies

can be quite large for certain lowsets. This is a direct result of deeper FIFOs and associated head-of-line

ACM Trans. Reconig. Technol. Syst.

1:20 • Malik, et al.

blocking efects [12] for those scenarios. Also, HopliteBuf NoCs do not scale to large block sizes (=16) because

they run out of stall-free FIFO capacity.

• The HopliteBP NoCs initially start with higher latency at the lower rates, but become competitive at larger

regulation rates. At higher rates, HopliteBP NoCs sufer from loss of feasibility and cease to scale. At higher

data block sizes, HopliteBP NoCs continue to scale beyond HopliteBuf for higher rates but saturate below MLE.

• MLE-optimized NoCs deliver competitive latencies across all rates and block sizes. At lower rates, the MLE-

optimizer prefers reducing FIFO size and mimics HopliteBuf solutions as the regulation dominated latency is

a ixed efect. At increased rates, MLE can strategically replace congestion hotspots with HopliteBP designs

and avoid the increased bufering efects that cause high latencies for HopliteBuf designs. At large data block

sizes and rates, MLE-optimized NoCs are the only feasible combinations outperforming both HopliteBuf and

HopliteBP NoCs.

1 4 16

0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

1K

10K

100

1K

100

1K

Regulation Rate

W
o

rs
t

C
a

s
e

 L
a

te
n

c
y

fifo mle bp

Fig. 8. Worst-case latency as a function of regulation rate for 100 synthetic LOCAL flowsets for various data block sizes.

6.2.1.3 Learning for Cost Constrained Worst-Case Latency: For the next set of experiments, we conigure the

MLE to optimise for the cost constrained latency function of wclatency*cost, with an aim to analyse its ability

to balance the growth of the two negatively correlated terms while simultaneously minimising their product. In

Fig. 9, we look at cost-latency tradeofs when considering feasible RANDOM and LOCAL lowsets that are routed at a

system size of 4×4 and a regulation rate of 0.17. At small data block sizes, MLE-optimized NoCs end up occupying

the cost range closer to the lower-cost HopliteBuf designs. As block sizes increase, vanilla FIFO designs run out of

capacity and declare infeasibility and MLE-optimized NoCs consume increasingly more LUTs. This suggests that

MLE will replace HopliteBuf switches with the more expensive HopliteBP/HopliteBP+Buf versions in exchange

for feasibility or proportionate latency gains. We also note the narrower spread of HopliteBP latencies which is a

direct result of having fewer feasible combinations at that rate and block size.

We also quantify the extent of latency improvement distribution over HopliteBuf and HopliteBP switches

in Fig. 10 for 100 LOCAL lowsets at 0.13 regulation rate across diferent data block sizes on a 4×4 NoC. When

compared to HopliteBuf designs, we note latency reduction by as much as 2× with little sensitivity to block sizes.

When compared against HopliteBP, the latency wins can be as much as 15×. This larger win is attributed to

pipelining efects in backpressure-based networks that can cause the analysis to include a large number of lows

in the conlict set to produce safe upper latency bounds.

6.2.1.4 Routing Real World FPGA Applications: We now show the efect or regulation on worst-case latency

of realistic FPGA workloads running on a 16-client NoC. In Fig. 11, we study the efect of regulation rate on

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:21

1 8 16

5
0

1
0
0

1
5
0

2
0
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

2
0
0

4
0
0

6
0
0

8
0
0

2.5K

3K

3.5K

2.5K

3K

3.5K

2.5K

3K

3.5K

Worst−Case Latency

L
U

T
 C

o
s
t

fifo mle bp

(a) RANDOM

1 8 16

4
0

8
0

1
2
0

1
6
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

2
0
0

4
0
0

6
0
0

2.5K

3K

3.5K

2.5K

3K

3.5K

2.5K

3K

3.5K

Worst−Case Latency

L
U

T
 C

o
s
t

(b) LOCAL

Fig. 9. LUT Cost-Worst Case Latency tradeofs for a 4×4 NoC with 0.17 regulation rate for 100 synthetic RANDOM and LOCAL

flowsets across various block sizes.

0

5

10

15

1.0 1.1 1.2 1.3

Latency Improvement Ratio

C
o
u
n
t

1
4
8
16

(a) vs. HopliteBuf

0.0

0.1

0.2

0.3

5 10

Latency Improvement Ratio

1
4
8
16

(b) vs. HopliteBP

Fig. 10. Cumulative distribution of improvements of worst-case latency MLE NoC over HopliteBuf and HopliteBP

worst-case latency of lows with a data block size of 4. With low congestion at low rates, all NoC designs exhibit

ACM Trans. Reconig. Technol. Syst.

1:22 • Malik, et al.

similar characteristics. As we increase injection rates, we notice increased worst-case latencies across most

workloads. In particular, we note greater feasibility and lower worst-case latencies for MLE-optimized NoCs. For

smaller data block sizes (See Table 2), MLE prefers HopliteBuf NoCs as most conlicts can be absorbed in the

shallow SRL FIFOs. However, smaller blocks sizes require extremely wide NoCs with hundreds of bits of payload

sent as a single block. We conclude that MLE-optimized hybrid NoCs are at par or better than either designs by

sustaining 1-9× higher rates while achieving 1-6.8× lower latency across all real application benchmarks and

block sizes.

stanford ram2k memplus roadnet

0.3 0.6 0.9 0.4 0.8 1.2 0.4 0.8 1.2 1.6 0 1 2

5K

10K

15K

5K

10K

15K

5K

10K

15K

5K

10K

15K

Regulation Rate x 100

W
o
rs

t
C

a
s
e
 L

a
te

n
c
y

 fifo mle bp

Fig. 11. Latency Scaling of a 4x4 NoC for Graph/ SpMV traces

Rate×103 Latency Rate×103 Latency

F B M F B M F B M F B M

w
i
k
i 1 17 8 17 743 6.7K 743

g
o
o
g
l
e 1 17 8 17 789 6.7K 789

4 ś 8 8 ś 16.2K 16.2K 4 ś 8 8 ś 16.1K 16.1K

s
t
n
f
d 1 23 11 23 1310 6K 1310

s
o
c

1 17 8 17 789 8.5K 789

4 ś 11 11 ś 14.5K 3.2K 4 ś 8 8 ś 20.2K 20.2K

d
a
c 1 19 10 19 1238 10.6K 1216

r
d
n
e
t 1 37 19 37 1661 1609 1635

4 ś 10 10 ś 25.6K 25.6K 4 3 19 27 1.4K 3.9K 3.4K

r
a
m
2
k 1 28 14 28 998 2K 998

m
m
p
l
s 1 27 14 27 2K 3.2K 2K

4 2 14 15 2.1K 4.8K 3.5K 4 ś 14 16 ś 7.6K 6.1K

g
e
n
e
2 1 17 8 17 789 11.3K 789

b
m
h
f
3 1 25 14 25 1.5K 1.9K 1.5K

4 ś 8 8 ś 27K 27K 4 ś 14 14 ś 4.7K 4.6K

b
m
h
f
2 1 25 12 25 1.6K 10.5K 1.5K

b
m
h
f
1 1 20 9 20 720 5.2K 720

4 ś 12 12 ś 26.2K 3.8K 4 ś 9 9 ś 12.4K 12.4K

a
m
z
o
n 1 17 8 17 789 11.3K 789

a
d
d
2
0 1 19 9 19 898 5.2K 898

4 ś 8 8 ś 27K 27K 4 ś 9 9 ś 12.4K 12.4K

Table 2. Application Performance over block size of 1,4 for Graph/SpMV traces. (F: FIFO, B: Back-Pressure, M: MLE)

6.2.1.5 Analysing Eiciency of MLE: Finally, we turn our attention to the MLE optimization low and try

to understand how the solver discovers good solutions. In Fig. 12, we plot the solution quality (LUT cost ×
worst-case latency) and time taken to discover the solutions across a range of 100 synthetic RANDOM workloads

targeting a 5×5 NoC at a regulation rate of 0.1. The HopliteBuf and HopliteBP NoCs are one-shot solutions that

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:23

●●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●●●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

1e+05

3e+05

1e+06

100 u 100 m 100

Time Taken (s)

O
b
je

ct
iv

e
Fu

n
ct

io
n ● fifo

mle

bp

cma

rbf

Fig. 12. Solution quality and time taken by MLE optimizer across flowsets mapped to a 5×5 NoC with 0.1 regulation rate

do not need any search and are hence observed in the left corner of the space. MLE’s highly composable binary

decision making proceeds in an iterative fashion before it stabilizes. We observe a narrower spread of objective

function values after 1ś10 s. CMA-ES [6] explores the space just as efectively but takes ≈5ś10× longer due to
the necessary but obtuse integer quantization of real-valued distributions used by the optimizer. We also use

RBFOPT [3], that generates marginally inferior solutions and is 50ś500× slower than our MLE approach. While

RBFOPT claims to require fewer explorations, the number crunching after each sample is compute intensive and

dominates the fast analysis process for our problem.

6.2.1.6 Adapting MLE for NoCs with diferent topologies and parameters: In this section, we take a look at

MLE’s ability to optimise diverse NoC design parameters for NoCs with markedly diferent topologies. For this

case study, we focus on the Butterly Fat Tree crossbar (BFT3) topology in [18]. A BFT3 NoC with � endpoints is

made up of ���2 (�) ∗ �2 unique pi switches. We refer the reader to [18] for further information on the BFT3 NoC

and pi switches. [18] conigures a packet climbing a pi switch to have a direct routing; packets entering a pi

switch’s left port are routed to the left port of U (L->U0) with a similar connection for packets climbing a switch

from the right (R->U1), as shown in Fig. 13a. Alternatively, cross routing connects L->U1 and R->U0, shown in

Fig. 13b. In this work instead, we use MLE to conigure the routing of the crossbar, choosing between cross or

direct, on a per-switch basis for each of the ���2 (�) ∗ �2 switches, tuned to optimise a speciied QoR. Contrasting

Fig. 13a and 13b, MLE introduces no overheads since only direct connectivity is changed. Furthermore, properties

of the original work: live-lock freedom and in-order packet delivery are also preserved. We optimise a BFT3

NoC with 16 endpoints to minimise the total worst latency while routing real benchmarks at 100% injection

rate in Fig. 13c. We observe that an application optimised BFT3 achieves latencies that are ≈1.1-1.7× lower than

the vanilla direct and cross BFT3 versions, strongly suggesting that the MLE framework of this work can be

leveraged for other NoC topologies and tuning diferent parameter spaces.

6.2.1.7 Comparing an ASIC implementation with Timing Predictable NoCs: In this section, we compare and

analyze a potential ASIC implementation of an 8x8 Hoplitebuf+BP NoC where the NoC switches can be fabricated

once and be conigured to operate in FIFO or backpressure mode, conigured on a per-switch basis for the

application at hand. We compare the result of MLE optimised analysis of the hoplite NoC and compare it against

the state-of-the-art in timing predictable NoCs: mainly SurfNoC [28] and PhaseNoC [23]. We evaluate the NoCs on

2 fronts: 1. The Area overhead for each router (Table 3) and 2. Average routing latency (Fig. 15). For estimating the

area of the HopliteBuf+BP switch, we model each 6-LUT of the switch using transistors [24], with a representative

design for a 3-LUT connection shown in Fig. 14 (black is 0-through and white is 1-through transistor). We

ACM Trans. Reconig. Technol. Syst.

1:24 • Malik, et al.

U0out U1out

Lin RinLout Rout

U0in U1in

3:1 3:1

(a) Direct Routing

U0out U1out

Lin RinLout Rout

U0in U1in

3:1 3:1

(b) Cross Routing

0.2

0.4

0.6

0.8

1.0

1.2

add20

amazon

bomhof1

bomhof2

google
hamm

human

roadnet
dac

ram2k
soc

stanford
wiki

N
o
rm

a
lis

e
d
 W

o
rs

t
T
o
ta

l
L
a
n
te

n
c
y

direct cross mle

(c) MLE configured BFT3 crossbar against direct and cross vanilla

crossbars

Fig. 13. Analyzing MLE’s ability in optimising for the parameter design space of a Buterfly Fat Tree crossbar NoC.

estimate area consumption of the resulting design using Intel 45 nm technology with a transistor density of

3.3x106. We observe that the HopliteBuf+BP (MLE-1 in Table 3) switch is 3-3.7× smaller than its counterparts,

thus allowing us to replicate the NoC up to 3 times (MLE-3) and tripling the available routing bandwidth, while

still maintaining area parity with Phase and Surf NoCs. This is especially useful for increasing routing feasibility

when routing becomes infeasible with increasing injection rates, owing to the lightweight low controls of the

switches (compared to Surf and Phase).

For latency comparison in Fig. 15, we compare the average latencies of each trace in the application lowset

with random-uniform communication patterns with a data block size of 6, where each node in the NoC randomly

chooses another destination node in the NoC. We generate 100 such random application lowsets to eliminate

any bias in the distributions and average the results over these application lowsets. The data for Phase and Surf

NoCs is extracted from [23]. We add additional channels (MLE-2, MLE-3) whenever the MLE generated NoC

becomes infeasible with increasing injection rate. Note that even with replicated channels, the MLE optimised

HopliteBuf+BP ASIC NoC is still cheaper than the Surf and Phase NoCs (Table 3). We observe in Fig. 15 that MLE

generated NoC analysis results in average latencies that are 1.3-12× lower than Phase and Surf NoC variants,

owing to the application aware tuning of the NoC and always available routing bandwidth low control of

bufering and backpressure, without any TDM scheduled routing breaks.

6.2.2 In-Tandem Learning Regulation Rates and Switch Configurations

In this section, we investigate the efectiveness of learning regulation rates while also learning switch conigura-

tion on a per-switch basis. We compare this nested learning against standalone switch learning of section 6.2.1. We

contrast multivariate rate learning with univariate rate learning against a variety of RANDOM, LOCAL and REAL

benchmarks. For both learning types, we use MLE as our algorithm of choice to learn switch level conigurations.

Note that the previous section 6.2.1 separates out the regulation rate as a single value determined by the user.

Univariate rate learning is an extension of linear searching of the previous section 6.2.1; in that the rate, while

still being a single value that regulates all traic, is now learnt as part of the optimization problem instead of

being linearly searched over a range with some ixed increment. If this increment was made ininitesimally small

and the rate point with the best QoR chosen, then linear search and univariate would generate equivalent

solutions.

It is also helpful to recall that since both rates (univariate and of section 6.2.1) are a single value that are

universally applied to all regulators in the NoC, they do not ofer the level of idelity required to individually

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:25

0

1

2

3

4

5

6

7

f 0
f 1

f 2
f 3

f 4
f 5

f 6
f 7

a

0

1

2

3

0

1

b c

z
=

f(
a,

b,
c)

Fig. 14. Design of a 3-LUT [24]

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
●

● ●
●

●

● ●
●

●
●

●

●
●

●

●

●

4

25

50

75

0.00 0.05 0.10 0.15

A
ve

ra
g

e
 L

a
te

n
c
y

●

●

●

●

●

●

●MLE−1

MLE−2

MLE−3

PhaseNoC

PhaseNoC−OBS

SurfNoC

SurfNoC−Speedup

Fig. 15. Average Latency vs Rate. Phase and SurfNoC from

[22]

NoC Area

MLE-1 0.009

MLE-2 0.019

MLE-3 0.028

PhaseNoC [23] 0.027

SurfNoC [28] 0.033

Table 3. Area in ��2.

MLE NoCs’ area cal-

culated using Intel 45

nm process (3.3x106

transistors/��2)

regulate NoC bandwidth to each traic trace. Multivariate learning instead learns unique rates for each src-dst

traic trace pair. Over a range of benchmarks, we aim to investigate if multivariate rate learning can implicitly

identify potential congestion hotspots within the NoC and tweak regulation of ofending individual traic to

outperform univariate learning by achieving lower routing latency while sustaining higher rates across a range

of benchmark lowsets.

6.2.2.1 Routing RANDOM, LOCAL and REAL Benchmarks: We irst compare multivariate and univariate

rates by evaluating their performance on numerous RANDOM, LOCAL and REAL traic benchmarks of varying

combinations data block and NoC sizes. We now list a few important diferences between multivariate and

univariate learning, along with their impact on performance of the inal NoC design in Figs. 16 ś 18:

• As NoC sizes increase, multivariate is aforded an increased capacity to tune regulation rates due to

increase in parameter space � 4. This larger parameter space allows it to work with MLE at a more granular

level to optimise for the requested QoR. In contrast, univariate’s parameter space remains the same.

0

1

2

3

4

5

6

7

8

9

50K 100K 150K 200K 250K

R
A

N
D

O
M

 T
ra

c
e

 I
D

(a) Size=4x4, Block size=4

100K 200K 300K 400K 500K

(b) Size=4x4, Block size=8

100K 200K 300K 400K 500K

(c) Size=5x5, Block size=4

200K 400K 600K 800K 1M

(d) Size=5x5, Block size=8

←− Worst Latency*NoC Cost −→

Univariate Multivariate

Fig. 16. QoR (Worst case Latency∗NoC Cost) achieved by univariate and multivariate rate learning strategies, compared

for data block sizes of 4, 8 and NoC sizes of 4x4, 5x5 for 10 diferent RANDOM traces.

ACM Trans. Reconig. Technol. Syst.

1:26 • Malik, et al.

This implies that the efectiveness of univariate decreases with NoC size; it is unable to individually

respond to dramatically diferent routing conditions between numerous local regions of a bigger NoC.

Thus, multivariate’s increased tuning capability allows it implicitly tag locally congested regions and

throttle down contention within these local NoC zones by surgically regulating only the ofending traces.

• Increasing data block sizes can quickly overwhelm the cheaper HopliteBuf (FIFO) switches throughout

the NoC. That pressure can be relieved by MLE’s switch discovery by selectively replacing these pinched

HopliteBuf switches with HopliteBP switches. However, univariate unilaterally lower rates for all traces

which in turn increases HopliteBuf’s feasibility, thus not exposing these switch level decisions to the MLE

algorithm. In contrast, multivariate and MLE are able to work in tandem to lower rates as a last resort;

only where pressure cannot be relieved by Buf->BP swaps. Thus, the search space of MLE’s switch level

learning and multivariate’s rate learning are well composed when they interact; with each being in

lock-step with other, thus allowing for a more eicient optimization for the requested QoR.

We now compare the quality of solutions generated by multivariate and univariate learning for diferent

RANDOM, LOCAL and REAL benchmarks. Rate learning and switch learning algorithms are conigured to optimise

the combined QoR of��������� ∗ ���� :
• In Fig. 16, we plot the eicacy of routing 10 diferent RANDOM traic benchmarks each across NoC sizes of 4x4

and 5x5 while varying data block sizes between 4 and 8. We observe that multivariate rates outperform

univariate rates by upto ≈1.5×.
• In Fig. 17, we plot the eicacy of routing 10 diferent LOCAL traic benchmarks each across NoC sizes of 4x4

and 5x5 while varying data block sizes between 4 and 8. We observe that multivariate rates outperform

univariate rates by upto ≈1.3×.
• In Fig. 18, we plot the eicacy of routing 14 diferent REAL traic benchmarks from Graph and SpMV suites in

progressively diicult routing conditions; increasing NoC sizes to 4x4 and increasing data block sizes from

1 to 4. These REAL benchmarks are characterised by very high load factors (% of active traces in benchmark

out of � 4 maximum). As noted in section 6.2.1.4, this leads to traic traces within the NoC to interact in a

spaghetti like efect, where multiple traic traces interact with each other at multiple switch points. This

results in any contention ultimately afecting every other traic trace in the NoC. While linearly searching

over regulation rates in sec 6.2.1.4, this afect was evident in low feasibility and exploding worst case

0

1

2

3

4

5

6

7

8

9

75K 150K 225K 300K 375K

L
O

C
A

L
 T

ra
c
e

 I
D

(a) Size=4x4, Block size=4

200K 400K 600K 800K

(b) Size=4x4, Block size=8

150K 300K 450K 600K

(c) Size=5x5, Block size=4

300K 600K 900K 1.2M 1.5M

(d) Size=5x5, Block size=8

←− Worst Latency*NoC Cost −→

Univariate Multivariate

Fig. 17. QoR (Worst case Latency∗NoC Cost) achieved by univariate and multivariate rate learning strategies, compared

for data block sizes of 4, 8 and NoC sizes of 4x4, 5x5 for 10 diferent LOCAL traces.

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:27

add20

amazon

bomhof1

bomhof2

bomhof3

dac

gene2

google

memplus

ram2k

roadnet

soc

stanford

wiki

50K 100K 150K

G
ra

p
h
/

S
p
M

V
 T

ra
c
e
s

(a) Size=3x3, Block size=1

50K 100K 150K 200K 250K 300K

(b) Size=3x3, Block size=2

100K 200K 300K 400K 500K 600K

(c) Size=3x3, Block size=4

add20
amazon

bomhof1
bomhof2
bomhof3

dac
gene2
google

memplus
ram2k

roadnet
soc

stanford
wiki

200K 400K 600K

Worst Lantecy * NoC Cost

G
ra

p
h

/
S

p
M

V
 T

ra
c
e

s

(d) Size=4x4, Block size=1

200K 400K 600K 800K 1M 1.2M

Worst Lantecy * NoC Cost

(e) Size=4x4, Block size=2

1M 3M 5M 7M

Worst Lantecy * NoC Cost

(f) Size=4x4, Block size=4

Univariate Multivariate

Fig. 18. QoR (Worst case Latency∗NoC Cost) achieved by univariate and multivariate rate learning strategies, compared

for data block sizes of 1,2 and 4 (horizontal facets) and NoC sizes of 3 and 4 (vertical facets) for REAL traces.

latencies. Both univariate and multivariate are able to learn regulation rates to best mitigate this efect,

achieving feasible combination of rates and switch conigurations across all 14 benchmarks. Continuing

the trend observed in RANDOM and LOCAL, multivariate outperforms univariate across the board by as

much as ≈1.2×, owing to its better ability to detangle (by regulating) conlicting traces within the NoC.

6.2.2.2 Analyzing Learnt Rates: With this experiment, we compare and contrast the breakdown of distribution

of rates, speciically 1. if multivariate rates are able to able to achieve a wider spread of rates, implying traic

aware regulation and 2. if multivariate is able to achieve, on average, higher rates than univariate. We focus

on REAL benchmarks for this experiment due to their particularly high susceptibility to regulation; owing to

their high load factor induced spaghetti like contention. We also choose real benchmarks for this experiment

due to the high diversity of traic behaviour within a benchmark. This allows us to evaluate the degree of acute

homogeneity introduced by univariate learning and its worsening impact by achieving much lower rates and

ACM Trans. Reconig. Technol. Syst.

1:28 • Malik, et al.

contrasting this with multivariate’s ability to instead exploit this diversity for faster rates overall. For this, we

plot, for a NoC of size 4x4, the range of learnt multivariate rates for all 14 REAL benchmarks while increasing

the data block sizes from 1, 2 and inally to 4 in Fig. 19. We also plot the average multivariate rates and compare

it with univariate.

We observe that the mean multivariate rate is higher than the univariate rate for nearly every benchmark

across every data block size; up to ≈1.4× higher. This suggests that multivariate learns to irst lower the rates

of most contentious traces in the benchmarks, thus allowing other traces to achieve ≈3.1× higher regulated

injection rates, further evidence that turning down the "heat" in certain parts of the network helps other traces

immensely. This is also evidenced, in benchmarks like dac, roadnet etc, by the observation that the minimum

of the multivariate rates is actually ≈1.8× lower than its univariate counterpart, despite its average being

higher than univariate. Another implication of this is that the "one size its" all strategy of having each trace be

regulated by the same amount leaves quite a bit of NoC bandwidth on the table, explained by the NoC being

pushed more easily into infeasibility because any "superhot" contention zone within the NoC afects the entire

interconnect, thus forming a bottleneck for regulation. Multivariate, on the other hand, will simply lower

regulation rate for traces involved in such contentions.

6.2.3 Learning Regulation Rates for Vanilla Hoplite NoCs

In this section, we analyze the efectiveness of multivariate over univariate learning when learning regu-

lation rates for traces that need to be routed on a vanilla Hoplite coniguration, that is, all switches are either

HopliteBuf (ifo) or HopliteBP (bp). Vanilla HopliteBuf NoCs’ FIFOs can quickly ill up as a result of increased

contention induced bufering. HopliteBP NoCs sufer from pessimistic analysis, born out of long chain of back-

pressure signals that can throttle all links across a row. We investigate if multivariate and univariate learning

can help alleviate some of these inherent weaknesses of vanilla NoCs, while also comparing both rate learning

techniques against each other.

6.2.3.1 Analyzing Distribution of Latency Improvement: In Fig. 20, we plot the latency improvement distribution

of multivariate over univariatewhile routing 100 diferent RANDOM benchmarks (Fig. 20a), 100 diferent LOCAL

benchmarks (Fig. 20b) and all 14 REAL benchmarks (Fig. 20c) on 4x4 HopliteBuf (ifo) and HopliteBP (bp) NoCs

while varying data block sizes between 1, 2 and 4. We observe that multivariate achieves better latency by

as much as ≈1.6×. As data block size increases, we see bigger latency improvements (the distribution shifts to

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

burst: 1 burst: 2 burst: 4

0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03

google
soc

gene2
amazon
roadnet

wiki
stanford

add20
bomhof2

dac
bomhof1
bomhof3
memplus

ram2k

Rate Distribution

G
ra

p
h
/

Sp
M

V
 T

ra
ce

s

Average Rate ● multivariate univariate

Fig. 19. Range (as whisker plot) and average rates of learnt multivariate rates on a per trace basis along with univariate

rates for REAL benchmarks for a NoC of size 4x4, over a range of data block sizes (burst).

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:29

the right) across all 3 benchmarks and for both Hoplite designs. Recall that in the case of HopliteBuf, FIFOs

are able to absorb packets over a larger time horizon for a low data block size of 1. Hence, in this case, we see

univariate being quite competitive across all benchmarks, with improvement limited to ≈1.3×. But as data
block size increases, FIFO’s quickly run out of capacity to absorb packets, with multivariate continuing to

improve over univariate. While not being as sensitive to data block size owing to lack of FIFOs in their switch

design, HopliteBP also has Multivariate outperform univariate by ≈1.5×, helped by multivariate’s more

granular regulation resulting in fewer row spanning backpressure stalls.

bp fifo

1.0 1.2 1.4 1.61.0 1.2 1.4 1.6

0

1

2

3

4

5

Latency Improvement Ratio

C
o
u
n
t

1
2
4

(a) Improvements for 100 RANDOM traces

bp fifo

1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5

0

2

4

6

Latency Improvement Ratio

C
o
u
n
t

1
2
4

(b) Improvements for 100 LOCAL traces

bp fifo

1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5

0

2

4

6

Latency Improvement Ratio

C
o
u
n
t

1
2
4

(c) Improvements for REAL traces

Fig. 20. Latency improvements of multivariate learning over univariate learning, for vanilla HopliteBuf (fifo) and

HopliteBP (bp) NoCs of size 4x4, routing RANDOM, LOCAL and REAL traces.

6.2.3.2 Routing REAL Benchmarks: In this section, we dive deeper into routing of REAL benchmarks by vanilla

HopliteBuf (ifo) and HopliteBP (bp), with regulation rates being learnt by univariate and multivariate

learning. In Fig. 21, we plot the worst latency for routing 14 diferent REAL benchmarks from Graph/ SpMV suites

on vanilla HopliteBuf and HopliteBP NoCs on size 4x4, while varying data block sizes between 1,2 and 4.

We observe that latency progressively increases for HopliteBPwith increasing data block size, with multivariate

tapping down latency by as much as ≈1.2× compared to univariate. We observe a similar scaling behaviour

in the case of HopliteBuf with data block size of 1 and 2, with multivariate resulting in ≈1.3× lower latency.
However, we observe that both multivariate and univariate perform very poorly when the data block size is

increased to 4 for HopliteBuf; with only ram2k and roadnet resulting in feasible designs. All other benchmarks

are not even feasible on a vanilla HopliteBuf, despite best eforts by regulation learning algorithms. We have

previously discussed this artifact of FIFOs illing up quickly in the face of contention and increasing data block

size in sec. 3. This afect is particularly ampliied in the case of REAL benchmarks owing to their high load

factor. This highlights the importance of combining regulation rate learning with switch level discovery. While

multivariate is able to better manage contention at a traic trace level by tuning regulation of ofending traces

involved in the contention, it is not as efective at mitigating contention induced in the NoC as an artifact of

the underlying switch architecture. Thus learning switch conigurations in tandem with regulation rates works

best; as similar experiments of Fig. 18 were able to discover feasible NoC designs and regulation rates for all 14

benchmarks in the REAL suite.

6.2.3.3 Understanding Multivariate Rate Learning: In Fig. 22, we present how multivariate rates are learn

using Covariance Matrix Adaptation for a 4x4 HopliteBP NoC routing roadnet benchmark with a data block size

of 1. As discussed in section 5.3, multivariate learning is split into three phases: 1. Rate Halving, 2. Univariate

rate learning and inally 3. Multivariate rate learning.

ACM Trans. Reconig. Technol. Syst.

1:30 • Malik, et al.

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

NF

fifo

1

fifo

2

fifo

4

bp

1

bp

2

bp

4

0 50 100 150 200 0 100 200 300 400 0 500 1000 1500

0 200 400 600 800 0 500 1000 0 500 1000 1500 2000
add20

amazon
bomhof1
bomhof2
bomhof3

dac
gene2
google

memplus
ram2k

roadnet
soc

stanford
wiki

add20
amazon

bomhof1
bomhof2
bomhof3

dac
gene2
google

memplus
ram2k

roadnet
soc

stanford
wiki

Worst case latency

G
ra

p
h
/S

p
M

V
 T

ra
ce

s

Univariate Multivariate

Fig. 21. Univariate and multivariate rate learning compared for vanilla HopliteBuf (fifo) and (HopliteBP) NoCs of size

4x4 while routing REAL traces of data block size of 1,2 and 4. "NF" tagged flowsets could not be routed feasibly for both

learning types on vanilla HopliteBuf NoCs.

The phases of Rate Halving and Univariate learning are motivated by reducing the search space for the

multivariate phase by irst inding a universal regulation rate (applied to regulate all traic traces) that can

achieve the best QoR. Rate halving comprises of starting from a universal rate of 1 (no regulation) and halving it

every next iteration until the NoC can sustainably route the benchmark at hand. Fig. 22a shows the rate being

halved at every iteration until sustainability can be conirmed for all traces in the benchmark. For roadnet, this

rate is 1
26
.At this stage, the rate is modelled as a univariate gaussian distribution with a mean � (Fig. 22b) and

standard deviation � (Fig. 22e) which is then learnt over multiple iterations to optimise for the requested QoR.

The termination condition of the univariate phase is determined by the trajectory of best QoR over past iterations

and the convergence of standard deviation (notice it reduce after every iteration to rest at ≈0.005).
Finally, a multivariate gaussian distribution is modelled to represent the rate of each trace individually, starting

of with the same mean for very dimension, set equal to the best rate found at the termination of the univariate

phase, as shown in Fig. 22c. The standard deviation, in Fig. 22f, for every dimension is initialised to the 10% of

multivariate’s initial rate . This gaussian distribution’s parameters: mean and standard deviation for each

dimension, are then learnt over the course of multiple iterations. Notice that the mean rates for every trace

diverge to settle at values that best optimise the QoR, spread over the entire range, with some of the inal rates

being almost ≈3× faster than others. Multivariate learning is terminated by analyzing the trajectory of best

QoR over the iteration history as well as convergence of standard deviation of each rate, with standard deviations

converging from ≈ 7 ∗ 10−4 to ≈ 5 ∗ 10−5.

ACM Trans. Reconig. Technol. Syst.

HopliteML: Evolving application customized FPGA NoCs with adaptable routers and regulators • 1:31

●

●

●

●
●

●●0.00

0.25

0.50

0.75

1.00

0 2 4 6

M
e
a
n

(a) Mean -

Halving

●

●

● ●
● ● ●

● ● ●
●0.008

0.010

0.012

6 8 10 12 14 16

(b) Mean - Univariate (c) Mean - Multivariate

●●●●●●●

−0.050

−0.025

0.000

0.025

0.050

0 2 4 6

M
e
a
n

(d) SD - Halving

●

●

●

●
●

●

●

● ● ●

●

0.004

0.005

0.006

0.007

6 8 10 12 14 16

(e) SD - Univariate (f) SD - Multivariate

←− Iteration Number −→

Fig. 22. Chronological updates to mean and standard deviation (SD) of a multivariate gaussian distribution for a 4x4

HopliteBP NoC routing the roadnet benchmark with a data block size of 1. Note the 3 stages of learning: 1. Rate Halving, 2.

Univariate and finally the dominant 3. multivariate. Also note the 0 SD for rate halving.

7 Conclusions

In this paper, we show how to evolve hybrid FPGA NoC parameters (switch conigurations and trace regulation)

to deliver a combination of feasibility, worst-case latency, and cost improvements over homogeneous FPGA NoCs.

We demonstrate switch learning by combining HopliteBuf, a stall-free FPGA NoC, with HopliteBP, a lightweight

backpressure-based FPGA NoC using a ine-grained per-switch static coniguration model. We use Maximum

Likelihood Estimation technique to evolve NoC conigurations that ofer ≈2-3× improvements in feasibility,

≈1ś6.8× in worst-case latency over synthetic and real world applications. We model rate learning by casting each

traic trace’s regulation rate as a random variable from a multivariate gaussian distribution. We using Covariance

Matrix Adaptation Evolutionary Strategy (CMA-ES) to learn rates in-tandem with switch coniguration and

achieve achieve ≈1.5× lower cost constrained latency, ≈3.1× faster individual rates and ≈1.4× faster mean rates.

References

[1] Ronald F Boisvert, Roldan Pozo, Karin Remington, Richard F Barrett, and Jack J Dongarra. 1997. Matrix market: a web resource for test

matrix collections. In Quality of Numerical Software. Springer, 125ś137.

[2] Bradley P Carlin and Thomas A Louis. 2010. Bayes and empirical Bayes methods for data analysis. Chapman and Hall/CRC.

[3] Alberto Costa and Giacomo Nannicini. 2018. RBFOpt: an open-source library for black-box optimization with costly function evaluations.

Mathematical Programming Computation 10, 4 (01 Dec 2018), 597ś629. https://doi.org/10.1007/s12532-018-0144-7

[4] Tushar Garg, Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. 2019. HopliteBuf: FPGA NoCs with Provably Stall-Free FIFOs. In

Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA ’19). ACM, New York, NY, USA,

222ś231. https://doi.org/10.1145/3289602.3293917

[5] Tushar Garg, Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. 2020. HopliteBuf: Network Calculus-Based Design of FPGA

NoCs with Provably Stall-Free FIFOs. ACM Trans. Reconigurable Technol. Syst. 13, 2, Article Article 6 (Feb. 2020), 35 pages. https:

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1145/3289602.3293917
https://doi.org/10.1145/3375899
https://doi.org/10.1145/3375899

1:32 • Malik, et al.

//doi.org/10.1145/3375899

[6] Nikolaus Hansen. 2016. The CMA evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772 (2016).

[7] Yutian Huan and A DeHon. 2012. FPGA optimized packet-switched NoC using split and merge primitives. In Field-Programmable

Technology. 47ś52.

[8] S. Jeon, J. Cho, Y. Jung, S. Park, and T. Han. 2011. Automotive hardware development according to ISO 26262. In 13th International

Conference on Advanced Communication Technology (ICACT2011). 588ś592.

[9] N. Kapre and J. Gray. 2015. Hoplite: Building austere overlay NoCs for FPGAs. In Field Programmable Logic and Applications. 1ś8.

https://doi.org/10.1109/FPL.2015.7293956

[10] Nachiket Kapre and Jan Gray. 2017. Hoplite: A Delection-Routed Directional Torus NoC for FPGAs. ACM Trans. Reconigurable Technol.

Syst. 10, 2, Article 14 (March 2017), 24 pages. https://doi.org/10.1145/3027486

[11] Nachiket Kapre, Harnhua Ng, Kirvy Teo, and Jaco Naude. 2015. InTime: A Machine Learning Approach for Eicient Selection of FPGA

CAD Tool Parameters. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA ’15).

ACM, New York, NY, USA, 23ś26. https://doi.org/10.1145/2684746.2689081

[12] M. Karol, M. Hluchyj, and S. Morgan. 1987. Input Versus Output Queueing on a Space-Division Packet Switch. IEEE Transactions on

Communications 35, 12 (1987), 1347ś1356.

[13] Evangelia Kasapaki, Martin Schoeberl, Rasmus Bo Sùrensen, Christoph Müller, Kees Goossens, and Jens Sparsù. 2015. Argo: A real-time

network-on-chip architecture with an eicient GALS implementation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems

24, 2 (2015), 479ś492.

[14] Gwangsun Kim, Michael Mihn-Jong Lee, John Kim, Jae W Lee, Dennis Abts, and Michael Marty. 2012. Low-overhead network-on-chip

support for location-oblivious task placement. IEEE Trans. Comput. 63, 6 (2012), 1487ś1500.

[15] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Springer-

Verlag.

[16] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. (June 2014).

[17] Gurshaant Malik, Ian Elmor Lang, Rodolfo Pellizoni, and Nachiket Kapre. 2020. Learn the Switches: Evolving FPGA NoCs with Stall-Free

and Backpressure Based Routers. In 2020 30th International Conference on Field-Programmable Logic and Applications (FPL). IEEE, 18ś25.

[18] G. S. Malik and N. Kapre. 2019. Enhancing Butterly Fat Tree NoCs for FPGAs with Lightweight Flow Control. In 2019 IEEE 27th Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM). 154ś162.

[19] Michael K Papamichael and James C Hoe. 2012. CONNECT: re-examining conventional wisdom for designing nocs in the context of

FPGAs. In Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate Arrays. ACM, 37ś46.

[20] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer, StephenW

Keckler, and William J Dally. 2017. Scnn: An accelerator for compressed-sparse convolutional neural networks. ACM SIGARCH Computer

Architecture News 45, 2 (2017), 27ś40.

[21] Tomas Picornell, José Flich, Carles Hernández, and Jose Duato. 2020. Enforcing predictability of many-cores with DCFNoC. IEEE Trans.

Comput. 70, 2 (2020), 270ś283.

[22] Anastasios Psarras, Junghee Lee, Ioannis Seitanidis, Chrysostomos Nicopoulos, and Giorgos Dimitrakopoulos. 2015. PhaseNoC: Versatile

network traic isolation through TDM-scheduled virtual channels. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 35, 5 (2015), 844ś857.

[23] Anastasios Psarras, I Seitanidis, Chrysostomos Nicopoulos, and Giorgos Dimitrakopoulos. 2015. PhaseNoC: TDM scheduling at the

virtual-channel level for eicient network traic isolation. In 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, 1090ś1095.

[24] Ali Sheikholeslami, Ryuji Yoshimura, and P Glenn Gulak. 1998. Look-up tables (luts) for multiple-valued, combinational logic. In

Proceedings. 1998 28th IEEE International Symposium on Multiple-Valued Logic (Cat. No. 98CB36138). IEEE, 264ś269.

[25] Ian Swarbrick, Dinesh Gaitonde, Sagheer Ahmad, Brian Gaide, and Ygal Arbel. 2019. Network-on-Chip Programmable Platform in

VersalTM ACAP Architecture. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA

’19). ACM, New York, NY, USA, 212ś221. https://doi.org/10.1145/3289602.3293908

[26] Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. 2017. HopliteRT: An eicient FPGA NoC for real-time applications. In F. Program.

Technol. (ICFPT), 2017 Int. Conf. IEEE, 64ś71.

[27] Wasly, Saud, Pellizzoni, Rodolfo, and Kapre, Nachiket. 2017. Worst Case Latency Analysis for Hoplite FPGA-based NoC. (2017).

http://hdl.handle.net/10012/12600

[28] Hassan MG Wassel, Ying Gao, Jason K Oberg, Ted Hufmire, Ryan Kastner, Frederic T Chong, and Timothy Sherwood. 2013. Surfnoc:

A low latency and provably non-interfering approach to secure networks-on-chip. ACM SIGARCH Computer Architecture News 41, 3

(2013), 583ś594.

ACM Trans. Reconig. Technol. Syst.

https://doi.org/10.1145/3375899
https://doi.org/10.1145/3375899
https://doi.org/10.1145/3375899
https://doi.org/10.1109/FPL.2015.7293956
https://doi.org/10.1145/3027486
https://doi.org/10.1145/2684746.2689081
https://doi.org/10.1145/3289602.3293908
http://hdl.handle.net/10012/12600

	Abstract
	1 Introduction
	2 Switch Design
	2.1 HopliteBuf and HopliteBP
	2.2 Xilinx FPGA Mapping

	3 Motivating Example
	3.1 Learning Switch Configuration
	3.2 Learning Regulation Rates

	4 Latency and Backlog Analysis
	4.1 Flow Model
	4.2 Traffic regulation
	4.3 Injection Latency
	4.4 Analysis for FIFO Mode
	4.5 Analysis for Backpressure Mode
	4.6 Hybrid NoC Analysis

	5 Evolutionary Learning of NoC Parameters
	5.1 Learning NoC Switches
	5.2 Learning Regulated Injection Rates
	5.3 Nested Learning

	6 Evaluation
	6.1 Methodology
	6.2 Results

	7 Conclusions
	References

