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X-ray crystallography (XRC) has visualised biological macromolecules in exquisite detail for over 50 years, relying on a com-
bination of mathematical principles to offer insight into atomic structures. Crystals can diffract various electromagnetic
waves aside from the conventional X-ray, offering an alternative approach to crystallographic structural analysis.
Microcrystal electron diffraction (MicroED) illuminates crystals with electron waves instead of X-rays. Two specialised groups
have demonstrated that MicroED can give high-resolution (often atomic) data, and now appears to be developing into a
powerful alternative method to XRC or electron microscopy of macromolecules. How MicroED compares to XRC will be key
to assessing it as a stand-alone crystallographic technique. This review presents a critical analysis of MicroED, with comments
on theoretical and practical aspects and suggestions of further work and development.
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Introduction
Life is dependent on the ability of cells to perform a myriad of
functions alone or in communities as tissues. When cellular
processes falter, diseases can arise depending on the aberrant
process. Understanding these processes is therefore essential
to understanding the cellular basis of disease pathology.
Cellular functions depend on proteins, of which there are
likely over 19 000 in humans (Ezkurdia et al., 2014), each
with unique functions and interacting with various biomole-
cules (Rolland et al., 2014). Proteins act as nano-scale cellular
‘tools’ with functions that are intimately linked to their
unique structure; the role that protein architecture plays in
biomolecular interactions has a long history, most commonly
typified in the mind of the public by the ‘lock-and-key’
hypothesis (Koshland, 1994). Since proteins are incredibly
small (for example haemoglobin has a diameter of ~1/200
000th of a mm) (Erickson, 2009), structural studies require

the use of complex experimental methods, denoting the field
of ‘structural biology’. There are three main methods used to
assess protein structure: Electron microscopy (EM), Nuclear
magnetic resonance, and X-ray crystallography (XRC)
(Curry, 2015), with XRC having the richest history of the
three (Wilkins, 2013). This review focusses on a new crystal-
lographic method (microcrystal electron diffraction;
MicroED) that uses electrons instead of X-rays, outlining a
brief history of both and then presenting a critical comparison
of theoretical and practical aspects.

A short history of crystallography
XRC has been the primary macromolecular structural meth-
od for over 50 years (Jaskolski, Dauter and Wlodawer,
2014). The theory of the method is simple: a pure crystal con-
taining exquisitely ordered repeating units of identical mole-
cules are placed in the path of an X-ray beam, which is
scattered by the molecules within the crystal to produce a
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constellation-style pattern (Fig. 1). While beautiful to the
naked eye, the symmetry and ‘brightness’ of each spot of the
‘diffraction pattern’ contains crucial structural information
about the molecules that scattered the X-rays (Sweet, 1985).
Crystallographers use the information from diffraction pat-
terns to elucidate the atomic structures of biomolecules,
allowing us to gain an atomistic perspective of nature’s tools.
X-rays were first used in crystallography by Max von Laue,
who hypothesised that X-ray wavelengths are short enough
to be diffracted by atoms within a 3-dimensional crystal
(Eckert, 2012). Incoming X-rays excite the electrons sur-
rounding atoms of the protein molecules in the crystal, and
the X-ray energy is subsequently redistributed in all directions
as a wave. In certain directions, the diffracted X-rays of each
identical molecule interfere coherently (in phase) to produce
observable diffraction ‘spots’. The Braggs showed that these
angles of observation depend on the X-ray wavelength and
the spacing between molecules in the crystal (Bragg and
Bragg, 1913) and that the characteristic ‘spotting’ of diffrac-
tion patterns results from these two properties. The spots are
observed because the scattered X-rays of the repeating mole-
cules only amplify when they overlap with each other in
phase, which occurs at discrete angles relative to the crystal to
create a ‘reciprocal lattice’ of spotting. The brightness of each
spot results from the cumulative X-ray waves scattered from
every atom of every molecule, overlapping in unique phases
at each angle to give an average phase that produces a charac-
teristic spot intensity (i.e. spot ‘brightness’). Each crystal
therefore gives a unique diffraction pattern (Fig. 1), which is
measured and used to determine the exact atomic positions of

the molecules within the crystal to solve the atomic structure
of the molecules.

Electron crystallography
X-rays interfere weakly with matter compared to electrons, so
XRC requires large volumes of matter create sufficient X-ray dif-
fraction before the destructive effects of the radiation degrade
the crystal (Henderson, 1995). The damaging effects are because
X-rays deposit 1333× more energy than electrons into the crys-
tal per elastic scattering (ES) event (single scattering of a wave
without loss of amplitude or phase) (80 keV vs 60 eV per ES
respectively) but electrons interact more frequently, degrading
crystals very quickly (Glaeser, 1971). To accommodate for this
challenge, 2-dimensional electron crystallography (2DEC) was
developed in the 1970s, using thin crystals that reduce electron
interaction, thereby reducing noise and enabling crystal illumin-
ation with electrons. The technique successfully determined the
structure of purple membrane protein (today known as the
light-driven proton pump ‘bacteriorhodopsin’) and the enzyme
catalase (Henderson and Unwin, 1975; Unwin and Henderson,
1975) and had the unique ability to form 2-dimensional crystals
of proteins within a lipid bilayer (an important property of
native membrane proteins, Gonen et al., 2005; Andrews,
Reichow and Gonen, 2008; Wisedchaisri, Reichow and Gonen,
2011). During the late 2000s, Jan Pieter Abrahams applied elec-
tron crystallography to cryogenic 3-dimensional macromolecu-
lar crystals to create a method termed 3-dimensional electron
crystallography (3DEC), gaining single diffraction patterns from
microcrystals of Lysozyme which had previously proved difficult
to achieve (Georgieva et al., 2007b). As it turned out, the indi-
vidual diffraction patterns provided a challenge as the relative
orientation of the crystal lattice for each pattern was unknown,
so merging diffraction data from multiple crystals was difficult.
Data processing methods were then developed (Jiang et al.,
2009) (Abrahams, 2010), before improved detectors yielded bet-
ter signal-to-noise ratios (SNR) (Nederlof et al., 2011).
Reducing electron dosage (to 0.1 e−Å−2 s−1) prevented degrad-
ation and acquired more diffraction patterns per crystal
(Nederlof et al., 2013), allowing patterns to be orientated.

The history of MicroED

Low dose electron beams using 3D
microcrystals
MicroED (hereon used as a catch-all term for MicroED/
3DEC) was developed by Tamir Gonen, using cryogenically
treated 3D Lysozyme microcrystals of 2 μm × 2 μm × 0.5 μm
to demonstrate proof of concept (Fig. 2) (Shi et al., 2013). As
with Abrahams, Gonen found that after 9e−/Å2 the diffrac-
tion patterns deteriorated, thus by using ~0.5 μM3 microcrys-
tals and a 0.01e−Å−2 s−1 dosage over 10 second exposures
per angle, they collected 90 diffraction patterns per crystal,
three times more than (Nederlof et al., 2013). A wavelength
of 0.025 Å (with a 200 kV acceleration current) was used, sig-
nificantly shorter than typical XRC wavelengths (~1 Å).

Figure 1. The X-ray diffraction pattern of glycine modified mono-
acetoacetyl insulin. Protein crystals give unique diffraction patterns
due to the atomic arrangement of the protein (i.e. the structure of the
macromolecule). Each crystal has a characteristic diffraction pattern
that can be analysed to determine the atomic structure of the
crystallised molecule. Above is the diffraction pattern of glycine
modified mono-acetoacetyl insulin, which presents a symmetrical six-
sided pattern. This research was originally published in the Biochemical
Journal (Lindsay and Shall 1969), reprinted with permission.
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Consequently, the Bragg angles are more acute and show
more diffraction spots in a single illumination; the Ewald
sphere (a mathematical tool to determine accessible reciprocal
lattice points from a single illumination) is so large that it’s
surface is virtually flat, producing slices through reciprocal
space instead of the lunes seen in XRC, sampling more lattice
points (Fig. 3, Nannenga and Gonen, 2014). Crystals were
rotated 1° between illuminations by tilting the specimen stage,
with each spot averaging 34 observations from multiple
angles. Since the slices through reciprocal space do not inter-
sect spots perfectly, true spot intensities were difficult to
derive, leading to loss of intensity data. Crude intensity
approximations were made by assuming that the highest spot
intensity represented the ‘true’ value. Using this initial
approach, the Lysozyme structure was solved to 2.9 Å, using
molecular replacement (MR, a technique that derives phase
information from prior experiments of the same molecule)
(Cipriani et al., 2012).

Continuous crystal rotation in MicroED
The Gonen group introduced ‘continuous rotation’MicroED;
uninterrupted observation of diffraction data during contin-
ual crystal rotation, with frame rates of 4 s/frame with 0.09°/s
rotation (Nannenga et al., 2014b). The subsequent lysozyme
pattern compared better with XRC diffraction data than
static-MicroED (2.5 vs 2.9 Å respectively, Fig. 4), likely
because (a) rotation allows proper intersection of reciprocal
lattice points with the Ewald sphere and (b) rotation reduces
beam contact time, lessening inelastic-scattering (IES, where
incident electrons are deflected by atomic electrons and
impart some energy into the crystal) and multiple elastic-
scattering (MES, where electrons elastically scatter multiple
times), both of which interfere with diffracting waves to cre-
ate noise in data (see ’MicroED and XRC’ section). This

matched previous observations that rotation reduces IES/
MES contribution to diffraction data (Georgieva et al.,
2007a; Gjonnes et al., 1998; Gemmi et al., 2003), resulting in
continuous rotation becoming standard in MicroED. A sug-
gestion that larger unit cells (the repeating unit of molecules
throughout the crystal) and lower symmetry (the orientation
of proteins within the unit cell) of the static vs CR Lysozyme
structure may have increased noise due to lower protein/solv-
ent ratios, increasing solvent contribution to the diffraction
pattern and lowering resolution (see ’Optimal crystal sizes’
section). Further MicroED work used XRC software to gener-
ate a Catalase structure to 3.2 Å (Nannenga et al., 2014b).

The resolution breakthrough
More MicroED macromolecular structures were solved, lead-
ing to protocols outlining data collection and analysis
(Hattne et al., 2015, 2016; Shi et al., 2016) including micro-
crystal acquisition from macro-crystals (de la Cruz et al.,
2017). Two breakthrough studies using MicroED without
complementary X-ray MR data were published: the structure
of α-synuclein gained by MR that utilised β-strand motifs as a
search model for this simple protein (Rodriguez et al., 2015)
and an Sup35 amyloid core component (GNNQQNY, a hep-
ta-peptide) (Sawaya et al., 2016). This marked a turning point
for MicroED; solving protein structures without prior XRC
data (ab initio), an achievement previously applied only to
organic compounds (van Genderen et al., 2016). The first
novel macromolecule structure, TGF-βm; TβRII, was published
soon after (de la Cruz et al., 2017). More than 17 structures

Figure 2. A comparison of Lysozyme microcrystals for MicroED (black
arrows) and large crystals for XRC (white arrows). Microcrystals are ~6
orders of magnitude smaller than XRC crystals. Microcrystals are
~0.5–1 μM thick with ~55 × 106 unit cells. Crystals are screened by
initial illumination to assess diffraction quality. For discussions on
volume limitations, see optimal crystal sizes. Scale bar is 50 μM. This
research was originally published in eLIFE (Shi et al., 2013). Image has
undergone a minor edit to include white arrows.

Figure 3. Illumination using electrons creates slices (left) through
reciprocal space instead of lunes typically observed in XRC (right).
Diffraction patterns of lysozyme are shown. The images show that at
an angle perpendicular to a crystal axis, every reciprocal lattice point
within the plane was observed using electron sources (with a complete
absence of lune formation), while the XRC experiment demonstrated
circular lunes. This research was originally published in Current Opinion
in Structural Biology (Nannenga and Gonen, 2014), published under the
CC-BY-NC-ND license.
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have been solved by MicroED (Rodriguez, Eisenberg and
Gonen, 2017), with subsequent structures appearing in litera-
ture on a semi-regular basis (Krotee et al., 2017; Gallagher-
Jones et al., 2018; Guenther et al., 2018), many within the sub-
angstrom range such as the fused in sarcoma (FUS) protein
amyloid forming core to 0.73Å (Luo et al., 2018). Recent
reviews highlight MicroED’s history and future improvements
(Rodriguez, Eisenberg and Gonen, 2017) and mathematical
and theoretical principles (Clabbers and Abrahams, 2018).

Technical requirements and
method procedure

Can the typical EM department implement MicroED? A com-
prehensive guide with a trouble-shooting section was recently
outlined (Nannenga and Gonen, 2018), explaining that stand-
ard equipment used in single particle analysis/typical EM

suites (EM, tilting stage, carbon grids and liquid ethane vitrifi-
cation) are sufficient for MicroED. MicroED requires a high
frame rate camera fast enough to capture individual reflec-
tions and prevent spot overlap, and high-speed detectors to
minimise between-frame readout times, such as direct electron
detectors (as used previously by the Abrahams group, van
Genderen et al., 2016). A previous guide was also outlined
explaining how to make a device to control continuous crystal
tilt (Shi et al., 2016) and which equipment, data acquisition
and processing methods are necessary. Briefly, the process
involves crystallisation and microcrystal identification, EM/
stage height/tilt calibration and setting up data collection pro-
cesses. Data can now be processed and refined using standard
XRC software, and structural models can be built using
COOT, as outlined by Hattne et al., 2015. Thus, aside from
an appropriate camera, MicroED is readily available to any
department equipped for single particle analysis, with sup-
porting protocols and guides to aid researchers.

Figure 4. Lysozyme diffraction data of CR MicroED, static-frame MicroED and XRC experiments. The (001) diffraction plane of lysozyme using
continuous rotation MicroED (c), static-MicroED (a) and XRC (b) are shown. Continuous rotation MicroED shows the best agreement with the XRC
diffraction pattern. The Pearson correlation coefficients shown in (d) were 0.76 between continuous rotation MicroED (c) and X-ray data (b), vs 0.56
for static-frame MicroED (a) and X-ray data (b). Reprinted by permission from Springer Nature: Springer Nature Methods (Nannenga et al., 2014b).
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MicroED and XRC
To critically assess the efficacy and technical requirements of
MicroED, it is useful to compare it with the current leading
methods in XRC. Synchrotron facilities and X-ray free-elec-
tron lasers (XFELs) generate continuous or pulsed X-rays use-
ful for the determination of high-resolution XRC structures.
Fortunately, MicroED and XFELs have acquired multiple
lysozyme structures (a molecule often used when developing
and validating crystallographic methods), which offers a use-
ful means of comparison. XFELs have yielded a 0.65 Å lyso-
zyme structure (Wang et al., 2007) compared to the 1.8 Å
structure fromMicroED (de la Cruz et al., 2017), demonstrat-
ing that XRC techniques are currently still superior to
MicroED for macromolecular crystallography. The difference
in resolution may be partially due to MicroED’s unique chal-
lenges with relation to the manner in which electrons/matter
interactions give rise to IES and MES. Complications arising
from IES for XRC/MicroED result from the addition of noise
(as lower-energy deflected electrons interfere with diffracted
waves) and crystal degradation. It is interesting to note that
the ratio of IES/ES is much lower for electron interactions
than X-ray interactions, implying that with further refine-
ment, MicroED might have a lower IES-induced noise base-
line than XRC. Conversely, the fact that electrons interact
strongly with matter compared to X-rays creates significantly
more scattering and more MES effects for MicroED, due to
the weak scattering of X-rays by matter. In conventional
XRC multiple scattering events are rare and presumed negli-
gible, with individual diffraction spots derived mostly from
single ES events (aka ‘kinematical scattering’) rather than
more complicated multiple scattering events (aka ‘dynamical
scattering’). While dynamic scattering in rotational electron
crystallography can be modelled (Oleynikov and Hovmöller,
2007), the complexity often obfuscates correct data interpret-
ation, and should be reduced as much as possible. While
MicroED might present with unique challenges, there are
potentially some advantages that MicroED has over XRC.
MicroED undoubtedly offers a cheaper and more accessible
alternative to high-quality X-ray sources; many research insti-
tutes have an EM suite on site with short wait times, whereas
synchrotron/XFEL facilities tend to only be found in regional
hubs that typically require long wait times (Shi et al., 2016).
MicroED also requires a single or a few crystals compared to
XFELs that require many, often taking time to produce.
Crystallisation of macromolecules is often the critical time-
consuming bottleneck in XRC studies. When crystallisation
fails to produce large crystals (for synchrotron sources), such
‘failed’ conditions often produce MicroED-suitable micro-
crystals (Stevenson et al., 2014, 2016). While previously
regarded as a by-product of improper crystallisation,
MicroED (and XFEL analysis) allows microcrystals to be use-
ful for structural studies, allowing crystallographers to make
use of more crystallisation conditions. MicroED methodology
currently uses wavelengths of ~0.025 Å compared to ~0.55 Å
in the highest resolution XRC structure, which is Cambrin
(Schmidt et al., 2011), with some considering the wavelength

limit for XRC to be 0.5 Å (Jelsch et al., 2000). With more
development, one might consider it plausible that MicroED
will surpass XRC. XRC currently achieves higher resolution
than MicroED for macromolecules indicating that more
refinement is required, but understanding how variables affect
resolution may significantly close this gap (see ‘Improvements
for MicroED’ section). One notable difference between XRC
and MicroED lies in the ‘phase problem’; while XRC rou-
tinely uses experimental methods to acquire phase informa-
tion, such methods are challenging in electron
crystallography, requiring a dependence on XRC MR data or
ab initio phasing (see ‘Overcoming the phase problem’). A
better understanding of the critical MicroED parameters that
affect resolution and development of phasing methods is
required to improve resolution.

Challenges facing MicroED
Nannenga et al. (2014b) noted that large crystals may con-
tribute more MES events, while separate work predicted that
≥0.1 μm thickness would give unusable data (Subramanian
et al., 2015). Surprisingly, proteinase K crystals of 0.1–1 μm
thickness acquired good resolution when studied by whereby
crystal disorder was suggested to explain the disparity
between the experiment and predictions. Nonetheless, a nega-
tive correlation between crystal volume and resolution was
observed; thick crystals absorbed electrons more frequently.
This presents a problem; crystals must be large enough for
observable ES, while minimising IES/MES. IES occurs three
times more than ES to add noise, presenting an apparent chal-
lenge (Henderson, 1995). Phasing methods present another
challenge; acquiring phases is challenging for X-ray (Taylor,
2003), electron (Dorset, 1997) and neutron crystallography
(Hauptman and Langs, 2003). XRC overcomes this using
Isomorphous Replacement (IR: heavy metal soaking of crys-
tals to off-set phases and infer the original phases) and anom-
alous scattering (AS: whereby X-ray wavelength is altered to
deposit energy into heavy metals which off-set phases to infer
original phases) (Hendrickson and Ogata, 1997), but
MicroED has not implemented IR/AS so far, an area of
research that requires further investigation.

Improvements for MicroED

Rotation scope
MicroED typically uses a ±70° crystal tilt, which becomes
problematic depending on crystal symmetry; most crystals
present with space groups (notations denoting the repeating
symmetry of proteins within unit cells) of P212121 and P21
(Wukovitz and Yeates, 1995), giving unique diffraction spots
over 180°. A ±70° tilt limits the accessible data to 140° from
a single crystal (commonly known as the ‘missing wedge’ of
EM, Bartesaghi et al., 2008). A larger tilt might improve sam-
pling, and efforts to create innovative solutions (such as those
attempted by Barnard et al., 1992) could be explored in the
future.
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Optimal crystal sizes
Crystals require sufficient volume to provide signal, while
excessively large crystals generate significant MES/IES,
prompting to suggest an upper limit of 500 μm for optimal
diffraction. Microcrystals can be acquired from larger
(>500 μm) crystals (de la Cruz et al., 2017), but understand-
ing the volume/resolution relationship is necessary.
Interestingly, the highest resolution data currently derives
from small unit cell crystals with complex symmetry (see
Table 1), suggesting that perhaps the protein atomicity of a
crystal (i.e. protein molecules per Å3) or high solvent content
(e.g. when protein atomicity is low) contributes to volume/
resolution relationships. It is already known that solvents gen-
erate noise (Bragg and Perutz, 1952) (Fraser, MacRae and
Suzuki, 1978), and are typically disordered and not uniformly
oriented in crystals (Weichenberger et al., 2015), which could
increase noise when protein atomicity is low (since solvents
occupy more volume). When reviewing MicroED structures
(Table 1), an observable trend between protein atomicity and
resolution appears (Fig. 5), however this compares structures
over years from many laboratories, so variability is likely sig-
nificant. Interestingly, Sawaya et al. (2016) analysed
GNNQQNY in two different symmetries; the higher sym-
metry crystal gave better resolution, providing insight into
atomicity/resolution relationships. Further research is essen-
tial to characterise the relationship between ES/MES/IES and
crystal volume and atomicity.

Reducing electron dosage – crystal rotation
speed
Electrons deposit less IES per ES than X-rays and less energy per
IES, but interact more frequently with matter leading to quicker
crystal degradation (Henderson, 1995). Electron dosage is kept
below a critical threshold (Shi et al., 2013) and continuous rota-
tion reduces electron exposure to different crystal locations
(Nannenga et al., 2014a). Rotation speeds and frame rates are a
compromise between adequate sampling of diffraction spots
while preventing spot overlap (Hattne et al., 2015).

A faster rotation with a shorter frame rate might reduce
electron dosage while preventing spot overlap. Rotation
speeds varied over experiments, from 0.1°/s (Vergara et al.,
2017) to 0.29o/s (de la Cruz et al., 2017), but Table 1 shows
that resolution vs rotation speed (Fig. 6) and frame scope (the
angle covered by a single frame, Fig. 7) appears to show no
apparent trend; different rotation speeds and frame scopes
did not correlate with resolution; however, the data likely
include significant inter-laboratory and inter-assay variability
which may contribute to resolution quality. Indeed, the
Gonen group attribute increased resolution over their three
lysozyme structures to improved data collection and process-
ing (Nannenga and Gonen, 2018). To date, no published
work specifically dedicated to the effect of rotation speeds is
available. Further research is required to probe rotation
speed/frame rate contribution to diffraction patterns using
identical crystals to control for other variables.

Reducing electron dosage – electron
wavelength
The incident beam might be adjusted to reduce electron dos-
age; electrons with shorter wavelengths degrade crystals
slower and improve longevity (Glaeser, 1971). While
MicroED uses an electron wavelength of 0.025 Å, no work
assessing wavelength effect on ES/IES/MES has been pub-
lished. Electron exposure was assessed in proteinase K and
GSNQNNF crystals; high-resolution spots degraded at the
0.025 Å wavelength (likely due to their typical low signal)
with high-resolution data (<2.0 Å) being severely degraded at
≥3 e−Å−2 (Hattne et al., 2018). At low doses electrons were
absorbed and shielded atoms from proper ES, e.g. at ≥0.9 e−

Å−2 disulphide bridges deteriorated and broke at 5.78 e−Å−2,
while glutamate/aspartate residues lost carboxyl density at
≥2 e−Å−2, which was absent at 5 e−Å−2, meaning electron
dosage contributes to structural quality and is an important
element to control. Higher frequency electrons interact with
matter less frequently (Birkhoff, 1958); further research could
build on the work of Hattne et al. (2018) to determine
whether shorter wavelengths might reduce interactions and
IES/MES to improve resolution.

Overcoming the phase problem
2DEC IR techniques have been attempted, but shielding of
metal nuclei by large electron clouds weakened IR interfer-
ence (Ceska and Henderson, 1990), however some argued
that heavy metal phase contributions can theoretically give
sufficient information to solve phases (Burmester and
Schröder, 1997). While MicroED has successfully used direct
methods to process data (Sawaya et al., 2016; de la Cruz
et al., 2017; Vergara et al., 2017), these computational meth-
ods require resolution to be 1.2 Å or better, (aka ‘Sheldricks
rule’, Sheldrick, 1990; Morris and Bricogne, 2003).
Consequently, this method is currently limited to small mole-
cules, which tend to give the highest resolution data (Taylor,
2010) as seen in the Sawaya et al. (2016) publication. Direct
methods have been used on macromolecular data of ~2 Å in
XRC by prospective MR using archetypal α-helices/β-sheets
as search models, solving the structure of a previously
unknown 111-residue protein (Rodriguez et al., 2009). While
useful, this may not be appropriate for macromolecules lack-
ing sufficient α-helix and β-sheet structures. XRC also over-
comes the phase problem using AS, requiring wave
absorption by heavy atoms (Hendrickson and Ogata, 1997)
an effect that electrons are believed to be capable of achieving
(Burmester and Schröder, 1997). A breakthrough is needed in
MicroED analogous to IR/AS to find dependable phasing
methods for macromolecular crystals.

Improvements to equipment and data
processing
The electron detector used in an EM plays a key part in detec-
tion and analysis of diffracted waves. Traditionally, EMs
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Table 1. crystal rotation speed, frame rate and resolution

Molecule Crystal rotation
speed (°/s)

Frame rate
(s/frame)

Rotation per
frame (°)

Space
group

Molecules
per unit cell

Unit cell
volume (Å3)

Volume per
molecule (Å3)

Resolution
(Å)

Reference

Proteinase
K

0.090 4.0 0.360 P43212 8 452 897 56 612 1.60 de la Cruz et al.
(2017)

0.089 5.1 0.454 P43212 8 452 267 56 533 1.71 Hattne et al. (2018)

0.090 4.0 0.360 P43212 8 457 776 57 222 1.75 Hattne et al. (2016)

Lysozyme 0.090 4.0 0.360 P43212 8 215 821 26 978 1.80 de la Cruz et al.
(2017)

0.152 0.5 0.076 P21212 4 228 046 57 012 2.11 Clabbers et al. (2017)

0.450 2.0 0.900 P21212 4 222 650 55 663 2.20 Xu et al. (2018)

0.090 4.0 0.360 P43212 8 212 691 26 586 2.50 Nannenga et al.
(2014b)

N/A 10.0 N/A P43212 8 219 373 27 422 2.90 Shi et al. (2013)

Catalase 0.09 6.0 0.540 P212121 4 2 125 468 531 367 3.20 Nannenga et al.
(2014a)

0.75a 2.0a 1.500a P212121 4 2466 129 616 532 3.20 Yonekura and Maki-
Yonekura (2016)

GNNQQNY 0.30 2.0 0.600 P212121 4 4625 1156 1.05 Sawaya et al. (2016)

0.30 2.0 0.600 P21 2 2726 1363 1.10 Sawaya et al. (2016)

The table shows MicroED experiments that used crystals of four proteins (proteinase K, lysozyme, catalase and the hepta-peptide GNNQQNY) under different crystal rotation speeds, frame rates, crystal unit cells
and volumes, along with the resultant resolution of the final structures. References to relevant publications are given in the table. The relationship of resolution plotted against protein atomicity (density within the
unit cell, defined as the volume per molecule), crystal rotation speed and frame scope (the total angle sampled by a single frame) are shown in Figs 5– 7, respectively.
aNote: for this catalase experiment, various frame rates and rotation speeds were used from 0.5 to 1.0° over 1–3 s per frame median values of these ranges are displayed in the table.
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have used two types of indirect detectors, Charge-Coupled
Devices and Complementary Metal-Oxide-Semiconductors
(CMOS). Both convert electrons to photons using a scintillator
which are then detected by the sensor (a comparison is outlined
in Allé et al., 2016). The scintillation inherently introduces scat-
ter, and bulky detectors can scatter photons laterally into neigh-
bouring pixels, spreading the peak, making indirect detectors
sub-optimal for electron crystallography (Faruqi, 2001). Hybrid
detectors detect charge directly from electrons to prevent
scintillator-associated scatter but due to the strong electron/mat-
ter interactions, they are easily damaged by the electron beam.
Initial studies suggested that hybrid detectors may nonetheless
perform better than indirect detectors to generate signal,

provided that electron dosage was not sufficiently high to dam-
age the detector (Clough, Moldovan and Kirkland, 2014). Tim
Gruene’s group is actively engaging in detector development
(Nederlof et al., 2013; van Genderen et al., 2016; Clabbers
et al., 2017; Matheson et al., 2017), recently demonstrating a
novel ultrathin hybrid detector that samples smaller pixel areas
and has shorter dead time between frames, reducing data loss
from pixel-related overlap of intensities (Tinti et al., 2018). The
detector circuitry was specifically designed with beam resistance
to reduce damage at energies of 100, 200 and 300 keV, while
the Abrahams group applied new DIALS integration software
(Clabbers et al., 2018). The Gonen group noted that IES elec-
trons may be filtered out of the diffraction data by using energy
filters to remove IES (Nannenga et al., 2014b) and improve
SNR in line with other work (Yonekura, Maki-Yonekura and
Namba, 2002; Leis et al., 2009), but have seemingly not yet uti-
lised this approach. Future innovation and development of
equipment and data processing to improve SNR will greatly
improve resolution, and energy filters may be an attractive
option to remove IES from diffracting waves.

MicroED in the wider community
The worldwide structural biology community is increasingly
using MicroED in structural studies and are taking an interest
in the technical and theoretical aspects. One group published
Lysozyme structures to 2.2 Å and commented on MicroED’s
main challenges, stating that crystal degradation and gonio-
metric imperfections in crystal rotation are key challenges to
overcome (Xu et al., 2018). The first use of MicroED to study
amyloid fibrils outside of the Gonen group was published
recently, solving the (FUS) amyloid core to 0.73 Å (Luo et al.,
2018). Other groups are attempting to improve the technique
and contribute to MicroED theory; some are researching and
commenting on the relationship between microcrystal size
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and diffraction spots (Williams et al., 2017), while others sug-
gest that maps generated from MicroED might be utilising
sub-optimal MR methods as structure factors fail to take
negative contributions from IES into account (Wang, 2017).
While the technique is still very young, it is likely that the
future will see a growing rate of MicroED structures being
solved and published as the community begins to delve deeper
into the intricacies of the method and develop it further.
While the work of the Gonen and Abrahams group have
undoubtedly contributed significantly to the technique, the
wider community is now beginning to realise the potential
that this novel method has within structural biology.

Conclusion
MicroED is an exciting crystallographic method utilising short
wavelengths to offer better theoretical resolution limits than
XRC, while simultaneously sampling more reciprocal space per
illumination. While modern macromolecular EM work typically
relies on single particle analysis without phasing methods or crys-
tals (Orlova and Saibil, 2004), MicroED offers significantly high-
er resolution; a characteristic that makes crystallographic
methods so popular (Wilkins, 2013). MicroED offers an afford-
able and accessible XRC alternative by utilising EMs commonly
used in many structural laboratories with minor adjustments.
Continuous rotation MicroED and XRC diffraction software
have improved the method, but more work is required to charac-
terise the effect of crystal volume, unit cell packing, electron wave-
length, crystal rotation speed, frame rate capture, detector type
and the use of energy filters on resolution. While MicroED works
very well with small molecule crystals, its use on larger molecules
lacks comparable resolution, likely due to solvent/protein ratios
of large unit cells with low symmetry crystals creating noise. For
high macromolecular resolution, MicroED depends on MR from
XRC studies. To be a stand-alone technique, MicroED must
develop phasing methods for macromolecular datasets.
Computational methods have somewhat addressed this challenge
at resolutions of 1.2Å and 2.0Å, but macromolecules typically
give lower resolutions than 1.2Å and even at 2.0Å may not pre-
sent sufficient secondary structures to utilise the phasing method,
therefore phasing is particularly troublesome and must be
addressed by developing innovative phasing methods. As it
stands, MicroED is a powerful technique for small molecules, elu-
cidating these structures in unprecedented detail and might per-
haps be considered better than XRC in terms of resolution and
practicality for this class of molecules. Further work and innov-
ation will be essential for solving the MicroED phase problem,
and given that the wider community is beginning to contribute to
the technique, we may very well be on the cusp of producing the
next series of breakthroughs for this impressive technique.
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