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Abstract

Background: Gait analysis and research have been developed to obtain characteristics
of movement patterns of people while walking. However, traditional measuring systems
present different drawbacks that reduce their use and application. Among those drawbacks
one can find: high price, low sampling frequency and limiting number of steps to
be analyzed. Traditional measuring gait systems carry out their measurement at frequencies
oscillating between 60 to 100 Hz. It can be argued about the need of higher sampling
rates for gait measurements. However small displacements of the knee or hip for example,
cannot be seen with low frequencies required a more detailed sampling and higher
frequency sampling. Bearing this in mind, in this paper is presented a 250 Hz system
based on accelerometers for gait measurement, and the particularities of knee and hip
angles during gait are highlighted.

Methods: The system was designed with a PCI data acquisition card instrumented with
an FPGA to achieve a rate sample of 250 Hz. The accelerometers were placed in thighs
and legs to calculate the joint angles of hip and knee in the sagittal plane. The angles
were estimated using the acceleration polygon method without integrating the
acceleration and without filters.

Results: The gait of thirty healthy people of Mexican phenotype was analyzed over a
flat floor free of obstacles. The results showed the gait phases and particularities
associated with the walking style and people's laterality; the movement patterns were
similar in the thirty persons. Based on the results, the particularities as the maximum
amplitude in the angles and the shape in the movement patterns were related to the
anthropometry and people phenotype.

Conclusions: The sampling frequency was essential to record 340 samples in single gait
cycle and so registering the gait cycle with its particularities. In this work were recorded an
average of 8 to 10 gait cycles, and the results showed variation regarding works carried out
in biomechanics laboratories; this variation was related to the method and reference frame
used to obtain the joint angles and the accuracy of measurement system.

Background
The process of human locomotion has been the subject of numerous studies in order
to comprehend the movements of the lower limb joints during gait. In general, the
purpose of the movement analysis during locomotion is to record in real-time the
different movements that the joints of the lower limbs perform during gait, without
quantifying the forces produced by muscles [1].
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In the last two decades technological advances have allowed to develop new bio-

mechanics laboratories which are instrumented with camera systems, force platforms

and electromyography systems. These laboratories permit to estimate: the kinematics of

the lower extremities in 2D and 3D, ground reaction forces, and muscle activity at each

step [2,3]. In these laboratories some patterns have been established to describe the

movement of the lower limb joints during the gait cycle [4-8]. These patterns have been

considered as standard patterns of normal gait in orthopedics rehabilitation and

biomedical engineering because they are representative of people without considering

sex, age and anthropometry. The patterns are widely used not only to assess a normal

or pathological gait but also to design prosthetics, orthotics and exoskeletons for lower

limbs to improve the level in human-machine coordination [9-13]. Biomechanical

laboratories have some disadvantages such as: 1) the camera systems are expensive and

need complex instrumentation and environment setting, 2) the number of steps that

are analyzed are few because the analysis area in the laboratory is limited by the num-

ber of cameras and the force plates [2,14-16].

Another method to analyze human motion can be achieved through the portable sys-

tems. These systems have been developed as an alternative to gait analysis and reduce

some disadvantages of biomechanics laboratories. The portable measuring systems used

some inertial sensors like accelerometers, gyroscopes and magnetometers to obtain the

joint angles in the lower extremities. The portability of these systems allows to record

the kinematics of the lower limbs during several steps. The systems developed with

accelerometers measure the relative acceleration in corporal segments of the lower

limbs with respect to a framework. The measured acceleration reflected the intensity

and frequency in human movements.

The studies made with accelerometers for human movement analysis have increased

in the last decade. One aim of these studies is to capture movements of the joints

during daily activities to analyze positions and classify the different movements.

The systems instrumented with accelerometers have advantages such as the portabi-

lity of the system due to the size of the devices and the several gait cycles captured.

However, one main disadvantage is to obtain the joint angle through the integrating of

angular acceleration or angular velocity [2,9,17].

Willemsen et al. [18] developed a method that estimates the joint angles of the lower

limb without integrating the acceleration obtained in accelerometers. This method

requires two accelerometer pairs mounted on adjacent segments in the lower limb.

Dejnabadi et al. [2] reported a new technique to obtain the joint angles without inte-

grating the acceleration, so the angles are free of any source drift. Kun et al. [19] instru-

mented accelerometers and magnetometers to estimate the knee kinematics. The

method was based on two algorithms: 1) Based on the differences of measurement

obtained of fixed sensors, and 2) Based on the difference of measurement of virtual

sensors. Both algorithms were used to calculate the angles of flexion-extension,

abduction-adduction and inversion-eversion.

Correa and Balbinot [20] developed a measurement system based on accelerometers

to analyze the human gait. It is a wireless system with a virtual model of the human

body which has a sampling rate of 50Hz. The Accelerometers were placed on the thigh

and leg to measure the joint angles in hip and knee during the walking. This system
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was compared with one videometry based system which showed a variation in the thigh

angle of 8.6 degrees, and the leg variation was about 21.8 degrees.

Godwin et al. [21] analyzed the accuracy of the inertial sensors (IMSs). The accuracy

was assessed through a planar pendulum in three situations: static, quasi-static and

dynamic. The results were compared with a Vicon gold-standard camera system. The

errors in quasi-static and static situations were of 0.3 degrees, and in the dynamic test

were between 1.9 and 3.5 degrees.

Several studies about motion analysis that have been made with accelerometers have

not reported the different phases of the gait cycle yet as the studies made in biomech-

anics laboratories. The major causes are related with the problems to obtain the joint

angles through the acceleration obtained by accelerometers placed at body segments,

and by low rate sample achieved by the systems developed.

The main problems of the systems developed with accelerometers are because of the

method to obtain the joint angles through the acceleration recorded by the accelerome-

ters, and by the low sampling frequencies achieved for developed systems.

This paper presents the characterization of one gait cycle obtained from a measure-

ment system developed with accelerometers. These inertial sensors have a measure-

ment rate of ±1.7 gravities. The measurement system achieved a sample rate of 250 Hz.

The accelerometers were placed on the thighs and legs to get the tilt angle in each cor-

poral segment using the method of polygon of acceleration considering the gravity vec-

tor as a reference point. Taking into account that the movements of the joints during

walking are cyclical in both lower limbs, the movement patterns in the joints should be

similar and then should show alternation in the movements of the right lower limb and

the left lower limb. The aim of the system was to record the joint angles during mul-

tiple cycles to obtain the motion pattern in the persons, and with it identify the particu-

larities and phases of gait.
Methods
Human locomotion process is an activity developed by the lower extremities which

have the aim to move the center-mass toward the forehead. The movements performed

by the joints and corporal segments during gait have a frequency from 5 to 40 Hz [22].

According to [1] some physical activities such as walking, posture and transitional

activities can be classified using accelerometers placed in different segments of the body.
Method to obtain the tilt angle

The measurement electronic systems developed with accelerometers analyze the

motion through the acceleration measurement in the body segments of interest. This

method measures the acceleration of each segment, along an orthogonal system of

reference which reflects intensity and frequency in movements. Thus, to obtain the

kinematics of the lower limbs: first the tilt angles of the thighs and legs were obtained

independently and subsequently the kinematics to each lower limb was calculated.

The tilt angles were obtained with accelerometers of two axes. According to [15] an

accelerometer of two axes have one proof mass, two frame and two springs as show

Figure 1. The accelerometer measurement the acceleration in the proof mass, which is
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Figure 1 Representation of accelerometer for two-axis.

Martínez-Solís et al. BioMedical Engineering OnLine 2014, 13:34 Page 4 of 21
http://www.biomedical-engineering-online.com/content/13/1/34
the sum of specific force and the gravity acceleration by unit mass. If the mass is

considered m = 1, the acceleration in proof mass is:

am
→ ¼Fs

→ þ g
→ ð1Þ

Thus, the specific force is given by:

Fs
→¼ k� d

→ þk � dx ¼am
→ − g

→ ð2Þ

where k is the spring stiffness constant, d
→

is the displacement caused by stretching of

the spring, am
→

is the acceleration of the test- mass and g
→

the gravity.

The acceleration determined by the accelerometer is:

a
→¼ −gþ am

→ ¼ an þ at ð3Þ

where: αn is normal acceleration and αt is tangential acceleration.

In this way, when the acceleration a→ is the value of gravity, it is considered as

constant acceleration and can be determined by:

a
→¼ −g sin θð Þ þ cos θð Þð Þ ð4Þ

In this case the tilt angle can be estimated through the acceleration polygon method

and using the gravity vector like reference point, so the tilt angle is determined by:

θ ¼ tan−1
ax
ay

ð5Þ

where αx and αy are the accelerations measured by the accelerometer in the frame x’-y’.

Then, to obtain the cinematic of the lower limb, the tilt angles in each body segment

were obtained through equation 5. Thus, first the tilt angles of the thighs and legs were

obtained independently in each lower limb. The accelerometers were placed in each

body segment to obtain its tilt angle as shown in Figure 2. In Figure 2, the bar with

reference frame X-Y represents a body segment; the Y-axis of the reference frame is



Figure 2 Tilt angle.
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parallel to the gravity vector and the sagittal plane. So, on the bar an accelerometer is

placed to obtain the tilt angle. The accelerometer frame is x'-y '. When the bar changes

from P1 to P2, the accelerometer´s frame (x´ y y´) suffers rotation respect to the initial

frame X-Y. The tilt angle θ can be obtained by equation 5.

θ ¼ θr ¼ tan−1
ax
ay

Where θ is the tilt angle, θr the angle of rotation in the accelerometer´s frame repect

to X-Y, αx the acceleration in x-axis and αy the acceleration in y-axis.

The accelerometer was tied to a flexible plastic bar which was attached to the body

segment with elastic tape to avoid the accelerometers change position during gait

analysis. In order to obtain the kinematics of the lower limb, it was necessary to set up

a new reference frame X”-Y” with origin in the hip joint as shown in Figure 3. The body
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Figure 3 Estimation of angles for hip and knee.
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segments are presented with two rigid links L1 and L2 that represent thigh and leg

respectively.

In accordance to [8], the hip angle may be measured in two different ways: 1) the

angle between the vertical and femur which is known as absolute angle, and 2) the

angle between pelvis and femur known as relative angle. Then considering that during

a normal gait, the trunk stays in a perpendicular position; the angle hip was obtained

using the first method. In this way to Figure 3 the angle θ1 is the tilt angle of the thigh

and it can be considered like the absolute angle of hip, which is given by:

q1 ¼ θ1 ð6Þ

In similar way to obtain the knee angle, the second method by [8] was used. Firstly
the tilt angle of the leg was obtained through the accelerometer 2 (see Figure 3), and

finally from L1 projection, the relative angle of the knee can be estimated by:

q2 ¼ θ1−θ2 ð7Þ

where q2 is a relative angle of the knee, θ1 is the tilt angle of the thigh and θ2 is the tilt

angle of the leg.
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In Figure 3 the total length of the lower limb is determined by:

α ¼ cos−1
L1k k2 þ L2k k2− Rk k2

2 L1k k L2k k

 !
ð8Þ

R2 ¼ L12 þ L22 ð9Þ

where L1 and L2 are the length in thigh and leg, and R is the total length.

Measurement system

Winter [11] reported that the gait analysis made over 71 Hz provides useful particularities

to determine the gait pattern. However, it may be possible that for an upper sample rate,

the movement patterns can present some particularities associated to the walking style of

people. Therefore, the sampling rate in the measurement system in this work was above

71Hz. Figure 4 presents the block diagram of the measurement system: 1) four accelerom-

eters MEMS as angle sensor; 2) One PCI Card to data acquisition; 3) One computer to

visualize and record the data. Some characteristics of electronic devices and system used

to develop the measurement system are the following:

SENSORS: four accelerometers ADIS16209 were used to measure the acceleration in the

X-Y axes in each body segment; these accelerometers have a measurement range of ±1.7

gravities and 12 bits of resolution (bit LSB is equal to 0.97 mg) and bandwidth of 1.5 KHz.

Each accelerometer provides the measured acceleration through the SPI (Serial Peripheral

Interface) protocol.

PCI CARD: the acquisition, processing and control of data flow between the PC and

accelerometers were performed with the PCI card through different protocols for data

transfer. This PCI card is a modular card of open architecture instrumented with an

FPGA of 8256 logics gate which can work up to 100 MHZ. The configuration and
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reading of each accelerometer, saving and sending the data to a PC for their

visualization and also to record them in a file text, was performed by a FPGA via firm-

ware. The firmware was designed in blocks (Figure 5): 1) PCI Block (to read-write): this

block was developed for data transfer of 32 bits between the PCI card and the PC

through PCI protocol, 2) SPI Block: it was developed to generate the serial handshaking

master-slave SPI to communicate the accelerometers and the PCI card, and finally, 3)

Control Block: it was developed to control the flow of data of all the blocks. The PCI

and SPI blocks were developed through timing diagrams reported by [23,24]. The firm-

ware was designed to configure and to sequentially read the four accelerometers in

831 μs. The sequential reading mode generates a delay between the configuration and

the reading time for every accelerometer and one dead time between the readings (see

Figure 6). Thus, the maximum delay was 724 microseconds; it was presented between

the accelerometer 1 and the accelerometer 4 as shown in Figure 6. Considering that

the body movements have a frequency of 4 to 40 Hz, the delay time between readings

can not be considered as a mistake to estimate the tilt angle.

DATA PROCCESING: one virtual instrumentation software was used to process, to

visualize and to watch the obtained data. The software allows data transference by the

PCI bus in real-time. The data transference and the sample time between the FPGA-

accelerometers and FPGA-PC can be manipulated through software and firmware.

Figure 7 presents the flowchart developed to read the data of four accelerometers.
Assessment of the measurement system

The method to obtain the tilt angle and the measurement electronic system was

assessed through elbow of a manipulator robot of three degrees freedom reported by

[25,26]. The joint elbow has an incremental encoder with 655,360 p/rev as angle sensor,

this is used to position and trajectory control.
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Figure 5 Data transfer between the PC and the PCI card.
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The accelerometer was tied on the link of elbow such as shown in Figure 2. The

robot elbow was controlled through trajectory tracking control reported by [26]; the

base and shoulder robot were fixed at zero degrees without movement. The trajectory

was determined by:

x ¼ 90 � sin tð Þ ð10Þ
The elbow link described an oscillation from 90 to -90 degrees with the vertically as
reference point; the trajectory was constant velocity of 1 rad/sec. The trajectory tracking

control presented an error of 0.68 degrees during the evaluation test.

The accelerations αx and αy obtained by the accelerometer are shown in Figure 8.

The Y-axis presents the acceleration in m
s2 , and the X-axis present the time in second. In

this figure is possible to see that the αx acceleration (blue line) has a behavior oscilla-

tory that starts at zero, and subsequently, it has an oscillation from 9.8 to -9.8 m
s2 .

Similarly αy acceleration (red line) has a behavior oscillatory from -9.8 a 0 m
s2.

The encoder is used as an angle sensor to measure the position of the elbow, which is

used by the control algorithm to estimate the torque. Indirectly, the elbow joint angle was

estimated with one accelerometer through equation 5 with the accelerations αx and αy.

Figure 9 shows the elbow joint angle obtained with encoder and accelerometer. The

angle, obtained with the accelerometer, had one error of 0.75° respect to the encoder.

Test protocol

The gait analysis was performed on thirty healthy subjects of Mexican phenotype with

ages around 20 and 30 years old. Table 1 presents the characteristics people’s sex, age,

laterality, height and weight. The length of the thigh and leg were obtained from

anthropometric tables considering the body height and weight of every person. Each

subject walked an average distance of 10 m in their natural manner. The procedure for

analysis was as follows:

� The accelerometers were placed on the thighs and legs as shown in Figure 4.

� One test for adaptation and validation of the system was developed.

� Each subject walked an average distance of 10 m over a flat floor and free of obstacles.

� Two gait test were developed to each subject.
Figure 8 Accelerations: αx blue line and αy red line.
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� The subjects stayed without movement for 5 sec at the beginning and end of each

gait analysis to establish the reference point.

� The data obtained by the measurement system were recorded in real-time at one

text file for subsequent analysis.

Finally, Figure 10 shows the implementation of the electronic measuring system in a

test subject and the placement of the accelerometers on the thighs and legs. The port-

ability of the system allowed to record longer distances, and in consequence an increase

of the number of steps recorded. The average distance was 20 m, which is around three

to four times the distance of regular methods.

The estimation of the tilt angle had a maximum error of 1.5° as a consequence of the

alignment of the accelerometers with the reference frame. Thus, the maximum error

was 3° and it was presented in the estimation of the knee angle.
Results
In each test an average of 8 to 10 gait cycles were recorded on both lower limbs. A

single gait cycle of the dominant lower limb was selected of each subject. Finally, the

gait cycle of a 25 years old healthy woman (subject 7) was used to describe the phases

of gait cycle.

Figure 11 shows the evolution of the lower limb kinematic during a gait cycle. It

allows to watch different positions of thigh (red line) and leg (blue line), and hip and

knee angles recorded during gait. Figure 11 reveals three characteristics in kinematics:

the first over 10% represented by rectangle A, the second over 20% represented by rect-

angle B, and the third on 80% represented by rectangle C. The peculiarities at A (10%)

and C (80%) are changes in the hip angle sign which is reflected in the knee angle and

the lower limb length. According to the results, the particularity B was considered as a



Table 1 Anatomic and anthropometric data in people analyzed

Subjects Anatomical data

Sex (M/F) Age (years) Laterality (right-handed/ left handed) Height (m) Weight (kg)

Subject 1 M 24 Right-handed 1.90 80

Subject 2 M 25 Right-handed 1.69 90

Subject 3 M 24 Right-handed 1.70 69

Subject 4 M 24 Right-handed 1.70 78

Subject 5 M 28 Left-handed 1.70 79

Subject 6 M 26 Right-handed 1.75 74

Subject 7 F 25 Right-handed 1.65 64

Subject 8 F 26 Right-handed 1.58 52

Subject 9 M 24 Left-handed 1.65 63

Subject 10 F 25 Right-handed 1.60 60

Subject 11 M 24 Right-handed 1.70 71

Subject 12 M 28 Right-handed 1.78 80

Subject 13 F 28 Right-handed 1.56 63

Subject 14 M 25 Right-handed 1.60 65

Subject 15 F 27 Right-handed 1.55 60

Subject 16 M 24 Left-handed 1.60 65

Subject 17 F 25 Right-handed 1.60 75

Subject 18 M 25 Right-handed 1.70 72

Subject 19 M 27 Right-handed 1.62 65

Subject 20 M 27 Right-handed 1.70 80

Subject 21 F 26 Right-handed 1.62 70

Subject 22 F 27 Right-handed 1.55 65

Subject 23 M 25 Left-handed 1.78 95

Subject 24 M 26 Right-handed 1.76 80

Subject 25 M 30 Right-handed 1.76 82

Subject 26 M 27 Right-handed 1.62 85

Subject 27 M 26 Right-handed 1.75 80

Subject 28 M 28 Left-handed 1.80 85

Subject 29 M 23 Right-handed 1.83 84.5

Subject 30 M 28 Right-handed 1.75 80
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possible screw-home motion of the knee and its description is beyond the scope of this

work.

The particularity A shows the movements of flexion-extension at the beginning of

gait cycle which generates the human body movements toward forehead; this particu-

larity shows the stance phase. The particularity C is associated with the maximum

extension of the hip; the particularity C starts at the point where the lower limb thrust,

and it concluded until completion the gait cycle; this particularity shows the swing

phase. Also, Figure 11 shows that the lower limb stays more time in vertical position

(equilibrium movements from 15% to 75%) than in flexion-extension movements.

Figure 12 presents the joint angles of the right hip (subject 7); it reveals the gait cycle

phases: from 0 to 80% is the stance phase, and from 80 to 100% is the swing phase.
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Figure 10 Implementation of the electronic system in a test subject.
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To describe the gait cycle, the stance phase was divided into four events: 1) Initial

flexion-extension movement (E.I.F): this event begins with a flexion movement as con-

sequence of load variation (loading response), subsequently, one extension movement

was made to achieve a vertical position in the lower limb. The amplitude in these

movements varies according to the walking style of each person. 2) One possible

screw-home movement of the knee (S.H). 3) Transition zone (T.S): In this zone, the
A B C

Figure 11 Kinematic of the dominant lower limb (thigh red line and leg blue line) during a gait
cycle (subject 7): rectangle "A" movements of flexion-extension at the beginning of gait cycle by
loading variation; rectangle "B" motion screw-home of the knee, and rectangle "C" movements of
extension-flexion at swing phase.
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Figure 12 Sagittal plane joint angles of the right hip during a single gait cycle.
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foot is in full contact with ground, ready for transition of the complementary lower limb.

Finally, 4) Pre_oscilacion (P-O): in this event the lower limb performed movements to be

placed in a push position for the next step; the stance phase ends with this event.

Swing phase: this phase presents only one final flexion (F.F); the flexion starts in push

position (end of the stance phase) and finishes when the gait cycle ends.

Likewise, Figure 13 presents the joint angles of the right knee (subject 7); it shows the

gait cycle phases: the stance phase of 0-80%, and swing phase of 80-100% approximately.

To describe the gait cycle, the stance phase was divided into four events: 1) Move-

ment Initial flexion-extension (E.I.F): this event begins with a flexion movement gener-

ated in response of variation load (loading response) and subsequently, one extension

movement was made to achieve a vertical position of the lower limb. These movements

are related with hip movements. 2) One possible screw-home movement of the knee

(S.H). 3) Transition zone (T.Z): in this event the lower limb is quasi vertical with angle

values less than 10° necessary to keep the body standing. Also during this event was

performed the transition of the complementary lower limb. 4) Pre-oscillation stage

(P-O): the movements in this stage are to put the lower limb in the push position and

with this finish the stance phase.
I.F.E T.Z P-O F.F.F

S.H

Stance Phase Swing Phase

Figure 13 Sagittal plane joint angles of the right knee during a single gait cycle.
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The swing phase showed only one movement of flexion-extension (F.E.F): first, the

knee generates one flexion movement to avoid to trip up and to allow free oscillation

subsequently, the knee generates one extension movement which determines the length

and end of the step.

The results shown that movement patterns of the dominant lower limb are similar in

shape and amplitude. Figure 14 shows the similarities in the patterns of the hip joint

angles where an approximate variation of 15° in the maximum amplitudes between gait

cycles can be seen.

Likewise, Figure 15 reveals the similarities in the motion patterns of the knee; the

variation is about 20°. In both cases (Figures 14 and 15), the changes were related to

walking style, anthropometry, and the phenotype of individuals.

Generally, the results described rhythmic alternating movements of the lower limbs

during walking. The alternation could be observed only in the movements of the hip

joints in the same subject. Also, the amplitude of the joint angles of the right hip and

left do not have the same amplitude; the dominant limb has a greater amplitude respect

to the complementary limb as shown in Figure 16.

Finally the results of the gait analysis are presented in Table 2. This table shows

parameters of gait as the laterality of people, the angles of flexion and extension of the

hip and knee, also the duration time of the gait cycle. A statistical analysis was devel-

oped to obtain the standard deviation in hip and knee angles. In the hip, in stance

phase, the standard deviation in extension maximum angle was of 3.004; in the swing

phase, the standard deviation in the flexion angle was of 2.569. The knee angles, in

stance phase, the standard deviation in extension maximum angle was of 5.425; in the

swing phase the standard deviation in the flexion angle was of 4.653.
Discussion
In the last decade, accelerometers have been widely used in design of portable measure-

ment systems developed primarily to human motion analysis. Systems have different
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Figure 14 Behavior of hip joint angles of thirty people in the sagittal plane.



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Gait cycle (%)

A
ng

le
 (

de
gr

ee
s)

Figure 15 Behavior of knee joint angles of thirty people in the sagittal plane.
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purpose, these can be utilized to assess physical activity and the inclined of terrains

[1,2,27]. However, the accelerometers are the inertial sensors most used to gait analysis.

Nevertheless these sensors have some problems to obtain the knee and hip joint angles.

The main problem is to obtain the joint angles through acceleration. Some research about

gait analysis have reported the joint angles of knee and hip in gait cycle, but these have

not described the characterization of events and phases in gait cycle [9,14,19,26]. Djuric-

Jovicic et al. [28] reported one method to estimate the joint angles through a system devel-

oped with accelerometers which do not need the integration of the acceleration to get the

joint angles. The system was evaluated with goniometers and the error was of 6°.

Measurement systems for gait analysis instrumented with cameras are expensive due

to the number of cameras and the software utilized for the analysis of movement. The

average costs of one system with eight cameras and motion tracking software was pub-

lished by [29], this system is ideal for human movement analysis. The measurement

system developed in this work costs only 7.6% of the camera system reported above.

The system achieved a frequency of 250 Hz, and the joint angles were obtained without

integrating the acceleration and without using filters.
Gait cycle (right) Gait cycle (left)

Figure 16 Joint angles of the hip in sagittal plane during one normal gait: blue line right hip and
red line left hip.



Table 2 Gait test results

Subjects Laterality Hip Knee

Variation in maximum amplitude
(degrees) and laterality

(Right-handed/Left-handed)

Maximum flexion
(degrees)

Maximum extension
(degrees) Stance phase Swing phase

Gait cycle
time (sec)

Flexion (degrees) Extension (degrees) Flexion (degrees) Extension (degrees)

Subject 1 2.5, Right-handed 25.5 -11 8 41 37 5 1.412

Subject 2 2, Right-handed 18 -5.5 2 30 30 7 1.444

Subject 3 2, Right-handed 24.6 -10 5 38 32 7 1.508

Subject 4 2, Right-handed 21 -5.5 1 30 30 7 1.516

Subject 5 4, Left-handed 22 -7.3 3 36 40 7 1.412

Subject 6 2, Right-handed 21.8 -9 3 46.5 46.7 5 1.512

Subject 7 3, Right-handed 22.5 -6 3 27 32.4 7 1.396

Subject 8 1.3, Right-handed 21 -9.5 5 35 37 6 1.252

Subject 9 5.2, Left-handed 25.6 -8.5 6 43 43 6 1.236

Subject 10 3.5, Right-handed 24 -5.5 2 34.5 37 5 1.386

Subject 11 2, Right-handed 24.3 -5.3 6 44.5 41.5 5 1.226

Subject 12 2, Right-handed 25.3 -3 5 37.2 40 7 1.576

Subject 13 3, Right-handed 24.2 -4 4 41.7 42 6 1.356

Subject 14 3, Right-handed 52 -6 5 42 40.3 5 1.246

Subject 15 2, Right-handed 23.6 -5 2 32 40.7 9 1.156

Subject 16 2, Left-handed 28.7 -17 8 39 39.8 5 1.286

Subject 17 2, Right-handed 25.5 -12 6 37 40 8 1.296

Subject 18 2, Right-handed 21.2 -4.4 5 34.8 39.3 9 1.316

Subject 19 2, Right-handed 24.4 -5 7 42.4 43 9 1.226

Subject 20 1.5, Right-handed 21.5 -7.5 6 27.3 28.4 6 1.414

Subject 21 2, Right-handed 21.1 -9.1 3 35.5 35.5 3.5 1.284
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Table 2 Gait test results (Continued)

Subject 22 1.5, Right-handed 18.9 -8.5 6 3 .1 30.1 6 1.408

Subject 23 3, Left-handed 28.2 -3.6 7 3 .9 39.4 7 1.460

Subject 24 2, Right-handed 19.6 -9.1 7 2 .7 31.1 9 1.448

Subject 25 5, Right-handed 21.6 -8.7 7 2 .5 29.4 9 1.408

Subject 26 1.7, Right-handed 22.8 -8 7 6 33.2 6.5 1.384

Subject 27 4, Right-handed 24.7 -8.5 3 3 .2 34.8 3.7 1.368

Subject 28 2.5, Left-handed 19.8 -6.2 8 2 36.5 12 1.476

Subject 29 1.7, Right-handed 22.9 -10 6 2 .5 26.8 8 1.484

Subject 30 2, Right-handed 25.3 -5.3 5 3 .2 40 6.5 1.457
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The angles had an error on account of two factors: 1) the alignment of the acceler-

ometer with the vertical, and 2) the small displacement that could have the accelerom-

eter during analysis, these without considering the error of tilt angle of 0.75°. So the

maximum error in the hip angle was 1.55°, and 3.1° (approximately) in the knee angle,

the latter was higher because the angle knee depends on the tilt angles in the thigh and

leg. The average of the sample record in a single gait cycle was of 340 samples. The

aim was obtain the joint angles in knee and hip and its particularity to characterized

the even and phases in gait cycle; and additionally see as these could change when the

measurement system use a mobile reference frame. The method to calculate the tilt

angle only can be considered to angular velocities of 1 rad/sec.

The results described motion patterns of the joint of hip and knee with particularities

associated with people walking style. The capture of multiple gait cycles revealed a dif-

ference in the maximum amplitudes of the hip joint which was associated with the lat-

erality of the subject. Also, the results indicate that there are not two equal consecutive

motion patterns even if it is the same subject.

Regarding the characterization of the gait cycle, several works describe the joint angles of

hip and knee in the sagittal plane. These works show a standard movement pattern of the

lower limb joints [7,8,11,13,22]. Particularly the work reported by [8] shows the motion

pattern of hip and knee in the sagittal plane with the following characteristics: 1) in hip

reported three movements: two flexions about 29 degrees, one at beginning and another at

the cycle ends; and one extension of -15° about 50% of the gait cycle, 2) in knee reported

two flexion-extension movements: one of 0 to 30% of the gait cycle with an amplitude

approximately of 15°, and another in 30-100% of the gait cycle with an amplitude of 50°.

In this paper, the characterization of the gait cycle was performed in the sagittal

plane. Figures 12 and 13 present hip and knee angles with the gait phases (stance phase

and swing phase), as several authors have reported in [7,8,11].

For the characterization of the hip joint angle, it was necessary to divide the gait cycle in

5 events as shown in Figure 12. The gait cycle starts with a flexion movement about 6°

which determines the maximum amplitude. This movement is caused by the weight

change owing transition of the lower limb. As for the pattern the knee (see Figure 13), it

presents two movements of flexion-extension: one of 0-15% and other of 85-100% of the

gait cycle. The movements indicate that the gait cycle starts with an angle greater than 15°,

and it ends with an angle of similar amplitude. The average angular velocity registered dur-

ing gait was of 0.7 rad/sec it was presented at stance phase. Based on the obtained results,

it was observed that the angles vary as a consequence of the style walking, anthropometric

characteristics and people phenotype, but they are similar to the movement patterns.

Finally, the evolution of the joint movement of the dominant lower limb was showed

in Figure 11 to reproduce each captured movement by the measuring system. Graphic-

ally it was possible to observe that the flexions at the beginning and the end the cycle

ends are performed in time short intervals with regard to the movements made in the

transition and the movements of equilibrium to keep up body standing.

Conclusions
In this work the kinematics of the lower limbs was obtained through a measurement

system developed with accelerometers. The results described different movement patterns

in comparison with the papers reported in literature. These differences are considered as
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a consequence of the reference frame used to obtain the joint angles. The aim was to

obtain the gait cycle with the advantages and disadvantages that the method have.

The results showed the particularities that were related with the laterality of people

and one possible screw-home movement of the knee. Moreover, according to the

parameter similarities, the characterization could be used to obtain normal gait

patterns like the ones obtained in biomechanical laboratories.

The measurement system presented some advantages such as: 1) Portability: it

allowed to record several steps during the gait (a average 8 to 10 gait cycles). 2) Cheap

system: the electronic devices implemented are low cost and the instrumentation is not

complex, furthermore it is not necessary to adapt the system to the environment. 3)

The obtaining of the tilt angle without integrating the acceleration: this allowed that

the error in the joint angles was related with the accelerometers alignment.

The FPGA instrumented on PCI card allows to increase the number of accelerome-

ters or sensors others without affect the samples per second.

The length of the power cord limited the portability of the system, for this reason in

a future work, the accelerometers will be wireless to remove the power cord between

the accelerometers and the Pc.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FM; Conducted the study, the analysis the data and wrote the manuscript. SV, VO and MV design the measurement
system and helped in the interpretation of the results. JR and AC were involved in the design of study, interpreted of
results and reviewed the manuscript for scientific content. All the authors read and approved the final manuscript.

Acknowledgements
Fermin Martinez Solis wishes to acknowledge the financial support of the National Council of Science and Technology
from México (CONACYT).

Author details
1Department of Electronics, National Center for Research and Technological Development, Cuernavaca, Morelos, Mexico.
2Department of Mechanics, National Center for Research and Technological Development, Cuernavaca, Morelos, Mexico.
3Autonomous University of Puebla, Puebla, Mexico. 4Autonomous University Benito Juárez of Oaxaca, Oaxaca, Mexico.

Received: 10 November 2013 Accepted: 5 March 2014
Published: 31 March 2014

References

1. Che-Chang Y, Yeh-Liang H: A review of accelerometry-based wearable motion detectors for physical activity

monitoring. Sensor 2010, 10:7772–7788.
2. Dejnabadi H, Jolles BM, Aminian K: A new approach to accurate measurement of uniaxial joint angles based

on a combination of accelerometers and gyroscopes. IEEE Trans Biomed Eng 2005, 52:1478–1484.
3. Huang H, Kuiken TA, Lipschutz RD: A strategy for identifying locomotion modes using surface

electromyography. IEEE Trans Biomed Eng 2009, 56:65–73.
4. Villa MA, Gutiérrez GE, Pérez MJ, Villa MA, Gutiérrez GE, Pérez MJ: Consideraciones para el análisis de la marcha

humana. Técnicas de videogrametría, electromiografía y dinamometría 1. Rev Ing Bioméd 2008, 2:16–26.
5. Oberg T, Karsznia A, Oberg K: Joint angle parameters in gait: reference data for normal subjects, 10-79 years

of age. J Rehabil Res Dev 1994, 31:199–213.
6. Pérez J, Pichardo A, Chávez D: Análisis de parametros cinemáticos de la marcha normal. Estudio y análisis de

patrones de marcha normal. Rev Mex Ortop Traum 1998, 19:372–376.
7. Donal A: Kinesiology of the Musculoskeletal System. 1st edition. USA: Mosby, Inc; 2002:2002.
8. Whittle MW: Gait Analisis an Introduction. 4th edition. London/GB: Elsevier Health Sciences; 2007:244.
9. Tao W, Liu T, Zheng R, Feng H: Gait analysis using wearable sensors. Sensors 2012, 12:2255–2283.
10. Detrembleur C, Vanmarsenille J, De CF: Relationship between energy cost, gait speed, vertical displacement of centre

of body mass and ef ciency of pendulum-like mechanism in unilateral amputee gait. Gait Posture 2005, 21:333–340.
11. Winter D: Biomechanics and Motor Control of Human Movement. 2nd edition. Waterloo Ontario, Canada: John

Wiley & Sons, Inc.; 2005.
12. Dugan SA, Bhat KP: Biomechanics and analysis of running gait. Phys Phys Med Rehabil Clin North Am 2005,

16:603–621.
13. Dollar AM, Herr H: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE

Trans Robot 2008, 24:144–158.



Martínez-Solís et al. BioMedical Engineering OnLine 2014, 13:34 Page 21 of 21
http://www.biomedical-engineering-online.com/content/13/1/34
14. Dejnabadi H, Jolles BM, Casanova E, Fua P, Aminian K: Estimation and visualization of sagittal kinematics of
lower limbs orientation using body-fixed sensors. IEEE Trans Biomed Eng 2006, 53:1385–1393.

15. Liu T, Inoue Y, Shibata K, Shiojima K: Three-dimensional gait analysis system with mobile force plates and
motion sensors. In 8th Int Conf Ubiquitous Robot Ambient Intell. IEEE; 2011:107–110.

16. Liu T, Inoue Y, Shibata K: A mobile force plate and three-dimensional motion analysis system for three-dimensional
gait assessment. IEEE Sensor J Sensor J 2012, 12:1461–1467.

17. Mayagoitia RE, Nene AV, Veltink PH: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive
alternative to optical motion analysis systems. J Biomech 2002, 35:537–542.

18. Willemsen A, Frigo C, Boom H: Lower extremity angle measurement with accelerometers-error and sensibility
analysis. IEEE Trans Biomed Eng 1991, 38:1186–1193.

19. Kun L, Inoue Y, Shibata K, Enguo C: Ambulatory estimation of knee-joint kinematics in anatomical coordinate
system using accelerometers and magnetometers. IEEE Trans Biomed Eng 2011, 58:435–442.

20. Correa D, Balbinot A: Accelerometry for the motion analysis of the lateral plane of the human body during
gait. Heal Technol 2011, 1:35–46.

21. Godwin A, Agnew M, Stevenson J: Accuracy of inertial motion sensors in static, quasistatic, and complex
dynamic motion. J Biomech Eng 2009, 131:1–5.

22. Pons JL, Moreno JC, Brunetti FJ, Rocon E: Lower-Limb Wearable Exoskeleton. In Proc Rehabil Robot. Viena,
Australia: I-Tech Education and Publishing; 2007:471–498.

23. ADIS16209. http://www.analog.com/static/imported-files/data_sheets/ADIS16209.pdf.
24. Shanley T, Anderson D: PCI System Architecture, Fourth. USA: MindShare, Inc; 1999:123–139.
25. Reyes F: Robótica: Control de Robots Manipuladores. 1st edition. México: Alfaomega; 2001.
26. Reyes F, Rosaldo A: Polynomial family of PD-type controllers for robot manipulators control engineering practice.

Control Eng Pract 2005, 13:441–450.
27. Wang N, Redmond SJ, Ambikairajah E, Celler BG, Lovell NH: Can triaxial accelerometry accurately recognize

inclined walking terrains? IEEE Trans Biomed Eng 2010, 57:2506–2516.
28. Djuric-Jovicic MD, Jovicic NS, Popovic DB: Kinematics of gait: new method for angle estimation based on

accelerometers. Sensors 2011, 11:10571–10585.
29. Moltenbrey K: Spotlight: your resourse for products, user publications, news, and market research.

Comput Graph World 2009, 7:32.
doi:10.1186/1475-925X-13-34
Cite this article as: Martínez-Solís et al.: A portable system with sample rate of 250 Hz for characterization of knee
and hip angles in the sagittal plane during gait. BioMedical Engineering OnLine 2014 13:34.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.analog.com/static/imported-files/data_sheets/ADIS16209.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Method to obtain the tilt angle
	Measurement system
	Assessment of the measurement system
	Test protocol

	Results
	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

