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Abstract. The topological method for the reconstruction of dynamics
from time series [23] is reshaped to improve its range of applicability,
particularly in the presence of sparse data and strong expansion. The
improvement is based on a multivalued map representation of the data.
However, unlike the previous approach, it is not required that the rep-
resentation has a continuous selector. Instead of a selector, a recently
developed new version of Conley index theory for multivalued maps [2, 1]
is used in computations. The existence of a continuous, single-valued
generator of the relevant dynamics is guaranteed in the vicinity of the
graph of the multivalued map constructed from data. Some numerical
examples based on time series derived from the iteration of Hénon type
maps are presented.

1. Introduction

Conceptual models for most physical systems are based on a continuum;
values of the states of a system are assumed to be real numbers. At the
same time science is increasingly becoming data driven and thus based on
finite information. This suggests the need for tools that seamlessly and
systematically provide information about continuous structures from finite
data and accounts for the rapid rise in use of methods from topological data
analysis (TDA). However, not surprisingly, there are significant challenges
associated with the sampling or generation of data versus the necessary
coverage from which draw the appropriate conclusions. In this paper we
focus on this challenge in the context of nonlinear dynamics.

The fundamental work of Niyogi, Smale, and Weinberger [28] provides
probabilistic guarantees that the correct homology groups have been com-
puted, but is based on uniform sampling of the manifold. For a nonlinear
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dynamical system one expects that the sampling is influenced by an under-
lying invariant measure that is rarely uniform with respect to the volume of
the underlying phase space. Furthermore, in practice one seldom knows the
underlying subset of phase space on which the dynamics of interest occurs,
e.g. the invariant set. As a consequence one must expect that in applications
we will need to collect considerably more data than a theoretical minimum
would necessitate.

The predominant tool used by the TDA community to overcome the prob-
lem of lack of knowledge of the topological space of interest is persistent
homology that provides homological information at all scales. There are
two challenges associated with this approach. The first is that persistent
homology computations on large data sets can be prohibitively expensive
(there is extensive work being done to address this problem [9, 29, 17]), and
second that the development of a persistence theory of maps is in its early
stages [10, 11, 4]. An alternative technique is to bin the data. This is the
approach we adopt in this paper. In particular, we assume that the data
points are measured via coordinates and thus the binning in phase space
naturally takes the form of cubical sets. The advantage is that we can a pri-
ori choose the bins so that the homological computations are feasible given
time and memory constraints, and almost tautologically the binning process
is a data reduction technique.

Identification of the space is only part of the challenge of understanding
dynamics, we also need to capture the behavior of the nonlinear map that
generates the dynamics. Though an oversimplification, interesting dynam-
ics is often driven by nonlinearities that exhibit significant expansion. As
is made explicit in [12] the amount of data needed to expect a correct di-
rect computation of the induced maps on homology is proportional to the
magnitude of the Lipschitz constant of the map. This will not be a sur-
prise to anyone who has attempted to construct explicit simplicial maps for
nonlinear functions. The significance of the work reported in this paper is
that we can obtain reliable information about the dynamics without directly
identifying the map.

To explain the philosophy before becoming submerged in the technical de-
tails, consider a dynamical system on the unit interval and assume that we
have collected the data { (x, y) ∈ [0, 1]× [0, 1] } as indicated in Figure 1(A).
We interpret this data as providing information about the graph of a con-
tinuous map f : [0, 1] → [0, 1] and the question we ask is: can we extract
information about the dynamics generated by f? The answer is yes. In
fact, under minimal hypotheses we can conclude that there are attractors
that contain a fixed point within the intervals [0, 1

4 ] and [3
4 , 1], and there

exists an unstable invariant set, also containing a fixed point, in the inter-
val [3

8 ,
5
8 ]. These results are obtained by building an upper semi-continuous

acyclic multivalued map from the available data, applying to it a recently
developed new version of Conley index theory for multivalued maps [2, 1]
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in order to identify isolating neighborhoods and index pairs, and then com-
puting the associated Conley indices (definitions and details are provided in
the following sections). The last point requires that we be able to compute
an induced map on homology.

(a) The data marked
by blue dots and the
grid indicated with or-
ange dashed lines.

(b) The bins of data in-
dicated with four squares
shaded with blue.

(c) The expansion of
bins indicated with six
squares shaded with red
and the graph of a con-
tinuous selector in black.

(d) The graph of an
upper semicontinuous
acyclic map F : X ( X
in blue. Isolating neigh-
borhood N marked by
orange line segmant.

(e) The graph of map
F : X ( X in
blue, and its vicinity for
continuous maps sharing
with F isolating neigh-
borhood N and the Con-
ley index, in green.

Figure 1. Construction of an upper semicontinuous acyclic
multivalued map F covering points representing the data.

An outline for the strategy used to perform these identifications is as fol-
lows. As indicated above we bin the data. Using intervals of length 1/4
to define the bins we obtain the blue shaded regions shown in Figure 1(B).
The blue regions are meant to provide a representation F of the graph of the
unknown function f . Of course, as presented this is impossible; the domain
of F is connected but the blue regions are not. One means of addressing this
issue is to expand the representation so that the graph of a continuous func-
tions can be included into the representation, i.e. the representation admits
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a continuous selector. Techniques of this type were successfully employed
in [23]. However, they may easily fail. Applying the method of [23] to the
representation in Figure 1(B) leads to the representation in Figure 1(C).
Actually, this is a minimal expansion which admits a continuous selectors
satisfying f(1

2) = 1
2 . However, the resulting approximation of the dynamics

is too crude: the combinatorial procedure for finding isolation neighbor-
hoods presented in [35, 36] fails to produce an isolating neighborhood for
the fixed point x = 1

2 . On one hand, one can easily check that any other
procedure must fail in this case, because the identity map is among selectors.
On the other hand, using an even larger expansion that produces an outer
approximation [20] and using methods detailed in [7, 8] the desired isolating
neighborhood and index pair can be recovered. However, our experience
is that applying this latter approach to complex time series data even for
two-dimensional examples often results in failure.

Lest the reader think that this is a contrived example, consider the func-
tion f : [0, 1]→ [0, 1] given by f(x) = −nx3 + (1 + n)x and observe that for
n ≥ 1 the points in Figure 1 are consistent with data lying near the graph
of f . The dynamics generated by f consists of stable fixed points at 0 and
1, an unstable fixed point at 1/2 and connecting orbits from the unstable
fixed point to the stable fixed points. Furthermore, as n increases, the min-
imal Lipschitz constant of f given by f ′(1/2) = 4+n

4 increases which results
in dynamics becoming more pronounced. However, from the perspective
of experimental or numerically derived data, we expect the data points to
cluster along the lines y = 0 and y = 1, and thus the observed discontinuity
becomes more pronounced especially if one refines the binning. We take
this to be yet another suggestion that the direct approach of constructing a
representation that admits a continuous selector is not the ideal technique.

As indicated above, we draw conclusions about the continuous dynamics
from induced maps on homology via the Conley index. This suggests that
to obtain motivation for an alternative approach we consider the example
from a purely homological perspective. Consider a function f : [0, 1]→ [0, 1]
and its graph Gf := { (x, y) ∈ [0, 1]2 | y = f(x) }. Let π1 : Gf → [0, 1] and
π2 : Gf → [0, 1] denote the projections from the graph to the domain and
range of f , respectively. Then π1 is a homeomorphism, π1∗ is invertible and,
on the level of homology, f∗ = π2∗◦π−1

1∗ . Observe that if we replace Gf by the
blue shaded regions shown in Figure 1(B) then π1∗ is not invertible, but we
still can deduce the correct map induced by F on homology. This is because
the pre-image π−1

1∗ takes on two values, but these values are mapped to the
same value under π2∗. For a more complete discussion on this perspective
see [16]. What should be clear is that to apply this in general we require a
condition that forces π2∗ to collapse appropriate generators in the homology
of the representation H∗(F ).

With this in mind consider the blue region shown in Figure 1(D). In this
case the fiber’s of π1 are acyclic, thus π1∗ is invertible, and the question of



CONLEY INDEX APPROACH TO SAMPLED DYNAMICS 5

how π2∗ acts on generators is resolved. Because we are interested in extract-
ing dynamics, rather than considering the blue region to be a fiber bundle
over the phase space, we view it as the graph of an upper semi-continuous
acyclic multivalued map F : [0, 1]( [0, 1] and we use F to extract isolating
neighborhoods, index pairs, and ultimately the Conley index.

We note that in this simple one-dimensional example, the choice of the
blue line in Figure 1(D) is obvious. In higher dimensions there are a variety
of means of attempting to resolve the issue of controlling how π2∗ acts on
generators from the pre-image of π1∗ and the identification of optimal meth-
ods remains an open question. In this paper we seek minimal rectangular
regions.

To be more specific we assume that our data consists of a finite set of
points A ⊂ Rd and our understanding of the dynamics is to be derived from
the map g : A→ Rd. We also assume that we have chosen a scale δ > 0 for
the binning and that the bins take the form

[n1δ, (n1 + 1)δ]× [n2δ, (n2 + 1)δ]× · · · × [ndδ, (nd + 1)δ]

where ni ∈ Z. More generally, we work with δ-cuboids, sets of the form

(1) [n1δ,m1δ]× [n2δ,m2δ]× · · · × [ndδ,mdδ],

where (n1, n2, . . . , nd), (m1,m2, . . . ,md) ∈ Zd. An elementary cube is a
cuboid where mi − ni ∈ {0, 1} for i = 1, 2, . . . d. We denote the set of
all δ-cuboids in Rd by Cdδ and the set of all δ-cubes in Rd by Kdδ .

For a bounded subset X ⊂ Rd we introduce the following notation.

Kδ(X) :=
⋃
{Q ∈ Kdδ | X ∩Q 6= ∅ },

and
xXqδ :=

⋃
{Q ∈ Kdδ | conv (X) ∩Q 6= ∅ },

where conv (X) denotes the convex hull of X.
Returning to the map g : A→ Rd its sunflower enclosure is the multival-

ued map F sg,δ : Kδ(A)( Rd defined by

F sg,δ(x) := xg(Kδ(x) ∩A)qδ ⊂ Rd.

We leave it to the reader to check that given { (x, g(x)) ∈ [0, 1]× [0, 1] } as
shown in Figure 1(A), the graph of F sg,δ is as shown in Figure 1(D).

Sunflower enclosures satisfy a variety of nice properties. Recall (cf. [18])
that F : X ( Rd is cubical if

(a) X ⊂ Rn is a cubical set, i.e. it can be written as a finite union of
elementary cubes,

(b) for any x ∈ X the set F (x) is cubical,
(c) for any elementary cube Q = [n1δ,m1δ]×· · ·×[ndδ,mdδ] in X, F|Q̊ is

constant, where Q̊ := (n1δ,m1δ)× · · · × (ndδ,mdδ) and (niδ,miδ) =
{ni} if ni = mi.

The following proposition follows from [14, Proposition 14.5].
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Proposition 1.1. A sunflower enclosure is an upper semicontinuous cubical
map.

When the values of the sunflower enclosure are contractible, then using
algorithms developed in [35] and the formula from [1, Theorem 4.4] one can
identify cubical isolating blocks, cubical weak index pairs and an index map
associated with F sg,δ (see [30] for more details). In particular, a Conley index
can be computed.

From the perspective of identifying dynamics the aforementioned compu-
tation should be viewed as purely formal, e.g. in and of itself it does not
guarantee that there is a continuous map that generates dynamics that is
compatible with the associated Conley indices. The majority of this paper is
dedicated to guaranteeing that the formal computation does in fact lead to
the existence of a large, but explicit, family of nonlinearities that are capa-
ble of producing the observed dynamics. To state our goals more precisely
we introduce the following notation. Let F : X ( X. For simplicity of
notation we identify F with its graph { (x, y) ∈ X ×X | y ∈ F (x) }. Using
the max-norm on the product space X×X, let B(F, ε) ⊂ X×X denote the
open set of points within ε of the graph of F (see Figure 1(E)). Following
[15] (cf. e.g. [14]) we say that a continuous single valued map f : X → X is
a continuous ε-approximation (on the graph) of F : X ( X if f ⊂ B(F, ε).

We denote the set of continuous ε-approximations of F by aε(F ).
Our claim is that Conley index information computed for F : X ( X,

an acyclic upper semicontinous cubical maps, is valid for the dynamics gen-
erated by any continuous function f ∈ aε(F ) for all ε ∈ (0, ε0) sufficiently
small. As the results described below indicate, our approach provides ex-
plicit lower bounds on ε0.

We have, up to this point in the introduction, be rather circumspect
about how the Conley index provides information about nonlinear dynamics.
One of the more powerful results is that it can be used to construct semi-
conjugacies to known dynamics. To be more precise, given two continuous
maps f : X → X and σ : Y → Y , f is semi-conjugate to σ if there exists a
continuous surjective map ρ : X → Y such that

X X

Y Y

ρ

f

ρ

σ

commutes. Semi-conjugacies are of interest if the dynamics of σ is under-
stood, as this implies that the dynamics of f must be at least as complicated,
i.e. one can deduce structure about the dynamics of f from that of σ.

In the context of the Conley theory, one begins with an index pair P =
(P1, P2) (see Section 2 for precise definitions). The homological Conley index
is derived from a map fP∗ : H∗(P1/P2, [P2])→ H∗(P1/P2, [P2]) that itself is
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derived from the action of f on the pointed quotient space (P1/P2, [P2]).
Let N = cl(P1 \P2). The meta form of the desired theorem is that given the
homological Conley index, information about the index pair, and an explicit
dynamical system σ : Y → Y , then there exists a semi-conjugacy

Inv(N, f) Inv(N, f)

Y Y

ρ

f

ρ

σ

where Inv(N, f) denotes the maximal invariant set in N under f .
The potential of the proposed theory in applications is demonstrated in

[3], in particular in examples based on the time series studied in [23]. In
this paper we will prove the following two results.

Theorem 1.2. Consider the time series x̄ = (xi)
30000
i=100 generated by iterating

the Hénon map

H : R2 3 (x, y) 7→ (1− ax2 + by, x) ∈ R2

with the parameter values a = 1.65, b = 0.1, and initial condition (x0, y0) =
(0, 0). Set

Ax̄ := { (xi, xi+1) | i = 100, . . . , 29, 999 }
and let gx̄ : Ax̄ → R2 be given by gx̄(xi, xi+1) = (xi+1, xi+2).

Choose a binning of R2 based on δ := 0.008127 and let F := F sgx̄,δ : Kδ(Ax̄)(

R2 be the sunflower enclosure of gx̄, i.e.

F sgx̄,δ(x) := xg(Kδ(x) ∩Ax̄)qδ ⊂ R2.

Let ε = δ/2.
Then, aε(F ) 6= ∅. Furthermore, there exists a compact set N ⊂ R2 (see

Figure 2) such that for any f ∈ aε(F )

(i) N is an isolating neighborhood of f ,
(ii) there exists a semiconjugacy θf : Inv(N, f) → ΣA onto the subshift

of finite type on six symbols with the transition matrix

A =


0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0


such that for every periodic a ∈ ΣA there exists a periodic point of
f in θ−1

f (a).

In particular, f has positive topological entropy on Inv(N, f).
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Figure 2. Domain of sunflower enclosure for gx̄, an isolating
neighbourhood (in dark sea green), its weak index pair (in
blue violet) and the graph of transitions between components
of an isolating neighborhood.

Theorem 1.3. Consider the time series x̄ = (xi)
30000
i=100 generated by iterating

the delayed Hénon map

H : R3 3 (x, y, z) 7→ (1− ax2 + bz, x, y) ∈ R3

with the parameter values a = 1.65, b = 0.1, and initial point (x0, y0, z0) =
(0, 0, 0). Set

Ax̄ := { (xi, xi+1, xi+2) | i = 100, . . . , 29, 998 }

and let gx̄ : Ax̄ → R3 be given by gx̄(xi, xi+1, xi+2) = (xi+1, xi+2, xi+3).
Choose a binning of R3 based on δ := 0.035258 and let F := F sgx̄,δ : Kδ(Ax̄)(

R3 be the sunflower enclosure of gx̄.
Let ε = δ/2.
Then, aε(F ) 6= ∅. Furthermore, there exists a compact set N ⊂ R3 (see

Figure 3) such that for any f ∈ aε(F )

(i) N is an isolating neighborhood of f , and
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Figure 3. Domain of sunflower enclosure for gx̄, an isolat-
ing neighbourhood (in dark cyan), its weak index pair (in
orange) and the graph of transitions between components of
an isolating neighborhood.

(ii) there exists a semiconjugacy θf : Inv(N, f) → ΣA onto the subshift
of finite type on five symbols with the transition matrix

A =


0 0 0 1 0
0 0 0 0 1
1 1 0 0 0
0 0 1 0 0
0 0 1 0 0


such that for every periodic a ∈ ΣA there exists a periodic point of
f in θ−1

f (a).

In particular, f has positive topological entropy on Inv(N, f).

A natural question arises how sensitive these results are to the choice of
δ, the length of the time series, or the choice of initial condition. The funda-
mental feature of the Conley index is that it does not change under a small
perturbation of the generator of the dynamical systems. Thus, the question
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reduces to the understanding of the stability of the multivalued map repre-
sentation of the data. It is natural to expect that by increasing the length of
the time series or changing the initial condition the semiconjugacy should be
preserved as long as the same isolating neighborhood is used. Experiments
we run confirm this expectation. A more delicate is the question how the
choice of δ affects the results. On one hand, if δ is very small, then the
domain of the multivalued representation becomes a collection of isolated
cubes. Therefore, it cannot properly approximate the phase space which is
a continuum. On the ohter hand, if δ is too large, the multivalued represen-
tation gives a very coarse description of dynamics. Therefore, one cannot
expect that it will give an interesting description of dynamics. Thus, the
optimum is somewhere in the middle. Experiments we run show that small
changes to δ preserve the results and moderate changes lead to a different
matrix A but still let us claim the existence of an invariant set with positive
entropy. An interesting problem is to get the understanding of changes in
the results under varying δ in the spirit of persistent homology. This is left
for future investigations.

We now provide an outline for the paper. Section 2 provides basic defini-
tions related to the Conley index. Section 3 presents results about isolating
neighborhoods in the context of upper semi-continuous multivalued maps.
Section 4 makes use of the results of Section 3 to provide conditions under
which continuous functions in a neighborhoods of the graph of a upper semi-
continuous mulitvalued map F with convex compact images inherit isolating
neighborhoods and their associated Conley index from F . Results of this
form are essential. The isolating neighborhood and Conley index compu-
tations in Theorems 1.2 and 1.3 are done using the sunflower enclosure F ,
but the results of interest concern the dynamics generated by continuous in
aε(F ).

The conclusion of Theorems 1.2 and 1.3 involve the existence of a semi-
conjugacy. As indicated above this is done via the Conley index. Because
we work with upper semi-continuous multivalued maps that need not admit
a continuous selector, we need to work with weak index pairs. The classical
result of Szymczak [34, 35] that proves the existence of a semi-conjugacy
onto symbolic dynamics is based on a stronger definition of an index pair
and therefore cannot be applied directly. Section 9 presents theorems that
are an extension of Szymczak’s results. Sections 6 - 8 provide the necessary
background to prove the results of Section 9.

The fact that Theorems 1.2 and 1.3 contains explicit bounds on the class
of maps, e.g. aε(F ) with ε = δ/2 is important for the development of models.
Section 5 provides explicit information about the preservation of topological
and dynamical properties for continuous functions near F .

Finally, the proofs of Theorems 1.2 and 1.3 are presented in Section 10.
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2. Preliminaries

Throughout this paper by an interval in the set of integers Z we mean the
intersection of a closed interval in R with Z. For n ≥ 1 let In := {1, 2, . . . , n}
and for p ≥ 2 let Zp := {0, 1, . . . , p−1} denote the additive topological group
with addition modulo p and discrete topology.

Given a topological space X and a subset A ⊂ X, by intX A, clX A will
denote the interior of A in X and the closure of A in X respectively. We
omit the symbol of space if the space is clear from the context.

Let X, Y be topological spaces. By F : X ( Y we denote a multivalued
map, that is a map F : X 3 x 7→ F (x) ∈ P(Y ), where P(Y ) is the power
set of Y . A multivalued map F is upper semicontinuous if for any closed
B ⊂ Y its large counter image under F , that is the set F−1(B) := {x ∈
X | F (x) ∩B 6= ∅}, is closed.

Throughout the paper we identify F with its graph, that is the set {(x, y) ∈
X×Y | y ∈ F (x)}. In the sequel, we are interested in multivalued self-maps,
that is multivalued maps of the form F : X ( X.

Let I be an interval in Z with 0 ∈ I. A single valued mapping σ : I → X
is a solution for F through x ∈ X if σ(n+ 1) ∈ F (σ(n)) for all n, n+ 1 ∈ I
and σ(0) = x (cf. [19, Definition 2.3]).

Given a subset N ⊂ X, the set

Inv(N,F ) := {x ∈ N | ∃σ : Z→ N a solution for F through x}

is called the invariant part of N . A compact subset N ⊂ X is an isolating
neighborhood for F if Inv(N,F ) ⊂ intN . A compact subset N ⊂ X is called
an isolating block with respect to F if

N ∩ F (N) ∩ F−1(N) ⊂ intN.

Note that any isolating block is an isolating neighborhood. A compact set
S ⊂ X is said to be invariant with respect to F if S = Inv(S, F ). It is called
an isolated invariant set if it admits an isolating neighborhood N for F such
that S = Inv(N,F ) (cf. [2, Definition 4.1, Definition 4.3]).

By F -boundary of a given set A ⊂ X we mean bdF A := clA∩cl(F (A)\A).
Let N ⊂ X be an isolating neighborhood for F .

Definition 2.1 (cf. [2, Definition 4.7]). A pair P = (P1, P2) of compact
sets P2 ⊂ P1 ⊂ N is called a weak index pair in N if

(a) F (Pi) ∩N ⊂ Pi for i ∈ {1, 2},
(b) bdF P1 ⊂ P2,
(c) Inv(N,F ) ⊂ int(P1 \ P2),
(d) P1 \ P2 ⊂ intN .

Given a weak index pair P in an isolating neighborhood N ⊂ X for F we
set

TN (P ) := (TN,1(P ), TN,2(P )) := (P1 ∪ (X \ intN), P2 ∪ (X \ intN)).
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Recall (cf. e.g. [2, 24]) that FP , the restriction of F to the domain P ,
is a multivalued map of pairs, FP : P ( TN (P ); the inclusion iP : P →
TN (P ) induces an isomorphism in the Alexander–Spanier cohomology; and
the index map IFP

is defined as an endomorphism of H∗(P ) given by

IFP
= F ∗P ◦ (i∗P )−1.

The pair (H∗(P ), IFP
) is a graded module equipped with an endomorphism.

Applying the Leray functor L (cf. [25, 2]) to (H∗(P ), IFP
) we obtain a

graded module with its endomorphism which we call the Leray reduction of
the Alexander–Spanier cohomology of a weak index pair P .

Definition 2.2 (cf. [2, Definition 6.3]). The graded module L(H∗(P ), IFP
),

that is the Leray reduction of the Alexander–Spanier cohomology of a weak
index pair P is called the cohomological Conley index of Inv(N,F ) and
denoted by C(Inv(N,F ), F ).

3. Dynamics of upper semicontinuous maps

Let (X, d) be a metric space. By Br(x) we denote the open ball with the
center in x ∈ X and radius r > 0. Closed balls will be denoted by B̄r(x).
For a given A ⊂ X, Br(A) will stand for an open r-hull of A, that is,

Br(A) :=
⋃
{Br(a) | a ∈ A}.

Let F : X ( X be an upper semicontinuous map. One can easily verify
that (multivalued) selections of F share with F its isolating neighborhood
and a weak index pair. We express this observation here for further refer-
ences.

Proposition 3.1. Assume N is an isolating neighborhood for an upper
semicontinuous F : X ( X, P is a weak index pair for F in N and G : X (
X is an upper semicontinuous map such that G ⊂ F . Then N is an isolating
neighborhood for G, and P is a weak index pair for G in N .

The aim of this section is to show that, to a certain extent, the reverse
implications holds true. To be precise, we have the following theorem.

Theorem 3.2. Let N be an isolating neighborhood with respect to an upper
semicontinuous map F : X ( X. There exists an ε > 0 such that N is
an isolating neighborhood with respect to an arbitrary upper semicontinuous
map G : X ( X with G ⊂ B(F, ε).

We postpone its proof to the end of this section.

Lemma 3.3. Let A ⊂ X be a compact set and let {xn} ⊂ X be a sequence
convergent to x ∈ X. If xn ∈ B(A, 1

n) for n ∈ N then x ∈ A.

Proof. Suppose the contrary and consider an r > 0 such that B(x, r)∩A = ∅.
Observe that, for large enough n ∈ N, we have d(xn, x) ≤ r

2 . Moreover,

there exists a sequence {un} ⊂ A with d(un, xn) ≤ 1
n for n ∈ N. However,

d(xn, un) ≥ d(un, x)− d(xn, x) ≥ r − r
2 = r

2 , a contradiction. � �
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Lemma 3.4. Let F : X ( X be upper semicontinuous and let N ⊂ X be
compact. A solution τ : Z→ N for F through x ∈ N exists provided for any
n ∈ N there exists a solution σ : [−n, n]→ N through x.

Proof. Let σn : [−n, n] → N be a solution with respect to F through x.
By induction we construct a sequence of solutions τn : [−n, n] → N for F
through x such that

(p1) there exists a strictly increasing sequence {mp} ⊂ N such that
τn(k) = limp→∞ σ

mp(k) for any k ∈ [−n, n],
(p2) τn−1 ⊂ τn for n ≥ 1.

Define τ0 : [0] → N by putting τ0(0) := x. Clearly (p1) and (p2) hold.
Suppose τn has been constructed so that (p1) and (p2) hold. Denote σ̄p :=
σmp and take into account a subsequence p̄ such that the sequences σ̄p̄(n+1)
and σ̄p̄(−n− 1) converge to v, w ∈ N , respectively. We define τn+1 : [−n−
1, n+ 1]→ N by

τn+1(k) :=

 τn(k) k| ≤ n
v = n+ 1
w = −n− 1.

It is straightforward to see that conditions (p1) and (p2) hold, and τn+1(0) =
x. It remains to be verified that τn+1 is a solution for F . Since σ̄p is a
solution for F , we have

(2) σ̄p̄(k + 1) ∈ F (σ̄p̄(k)) ∈ Z.

For any k ∈ [−n−1, n+1] the sequence σ̄p̄(k) converges to τn+1(k). Because
the graph of F is closed (cf. [14, Proposition 14.4]), passing to the limit in
(2) we have τn+1(k + 1) ∈ F (τn+1(k)). �

Proof of Theorem 3.2. For contradiction suppose that for any m ∈ N
there exists an upper semicontinuous Gm : X ( X with Gm ⊂ B(F, 1

m) and
such that Inv(N,Gm) ∩ bdN 6= ∅. Let xm ∈ Inv(N,Gm) ∩ bdN . Passing
to a subsequence, if necessary, we may assume that xm converges to an
x ∈ bdN . Let σm : Z → N be a solution for Gm through xm. Fix an
integer n ∈ N, choose a subsequence mp such that for any k ∈ [−n, n] the
sequence σmp(k) is convergent, and define τn : [−n, n] → N by putting
τn(k) := limp→∞ σmp(k) for k ∈ [−n, n]. We have (σmp(k), σmp(k + 1)) ∈
Gmp ⊂ B(F, 1

mp
). Using Lemma 3.3 we infer that (τn(k), τn(k + 1)) ∈ F ,

which means that τn : [−n, n] → N is a solution for F through x. This,
along with Lemma 3.4, yields the existence of a solution τ : Z → N for F
through x. However, x ∈ bdN , a contradiction. �

4. ε-Approximations

In the following we consider the Cartesian product of normed spaces as
the normed space with the max-norm.
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Following [15] (cf. e.g. [14]) we say that a continuous single valued map
f : X → X is a continuous ε-approximation (on the graph) of F : X ( X
if f ⊂ Bε(F ). We denote the set of continuous ε-approximations of F by
aε(F ).

Theorem 4.1. Let Y be a normed space and let X ⊂ Y be compact. Assume
that F : X ( X is an upper semicontinuous map with convex and compact
values, and N is an isolating neighborhood with respect to F . Then:

(i) there exists an ε0 > 0 such that, for any 0 < ε ≤ ε0 there is
a continuous ε-approximation f : X → X of F such that N is
an isolating neighborhood with respect to f , and C(Inv(N,F ), F ) =
C(Inv(N, f), f);

(ii) if X is an ANR then there exists a δ > 0 such that for any contin-
uous δ-approximation g : X → X of F we have C(Inv(N,F ), F ) =
C(Inv(N, g), g).

Proof. Take an ε0 > 0 as in Theorem 3.2 and 0 < ε ≤ ε0. By [6, Theorem 1]
there exists a continuous ε-approximation f : X → X of F . We shall prove
that f satisfies the assertions (i) and (ii).

To this end, for λ ∈ [0, 1], we define Fλ : X ( X by

Fλ(x) := λf(x) + (1− λ)F (x) ∈ X.

It follows from the upper semicontinuity of F and the continuity of f that
Fλ is upper semicontinuous and it is straightforward to observe that Fλ has
convex and compact values.

According to the construction of the ε-approximation f of F in [6], for
arbitrarily fixed x ∈ X there exists an x′ ∈ Bε(x) such that f(x) ∈ Bε(F (x′))
and F (x) ⊂ Bε(F (x′)). Therefore, for any λ ∈ [0, 1], we have Fλ(x) ⊂
Bε(F (x′)), as Bε(F (x′)) is convex. Consequently, Fλ ⊂ Bε(F ). Theorem
3.2 shows that N is an isolating neighborhood with respect to Fλ for every
λ ∈ [0, 1]. Therefore, by the continuation property of the Conley index (cf.
[1, Theorem 6.1]), we have C(Inv(N,F ), F ) = C(Inv(N, f), f).

Let an ε > 0 be as above. By [14, Theorem 23.9] there is a δ ∈ (0, ε]
such that for any f, g : X → X, the δ-approximations of F , there exists
a homotopy h : X × [0, 1] → X joining f and g, such that h(·, t) is an
ε-approximation of F , for all t ∈ [0, 1]. Fix such a δ > 0 and consider
f : X → X, a δ-approximation of F defined as in [6]. Let g : X → X be an
arbitrary δ-approximation of F . Since δ ≤ ε, by [15, Theorem 5.13] (cf. e.g.
[14, Theorem 23.9]) and Theorem 3.2, Inv(N, f) and Inv(N, g) are related
by continuation; hence C(Inv(N, g), g) = C(Inv(N, f), f). This, along with
property (i), completes the proof. � �

5. ε-Approximations of cubical maps

In this section we assume that X ⊂ Rd is a closed subset and F : X ( X
is a multivalued cubical map (cf. e.g. [18]), and % stands for the max metric
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in Rd. For x ∈ Rd by σx we denote the unique elementary cube such that
x ∈ σ̊x. For ε > 0 define maps Fε, F

ε : X ( X by

(3) Fε(x) := F (B̄ε(x))

and

(4) F ε(x) := B̄ε(F (x)).

We refer to maps Fε and F ε as a horizontal and a vertical enclosure of F ,
respectively.

We begin with some auxiliary lemmas.

Lemma 5.1. Assume A1, A2 ⊂ X are cubical, ε ∈ (0, 1
2) and y ∈ B̄ε(A1) ∩

B̄ε(A2). Then, there exists a y′ ∈ A1 ∩A2 such that %(y, y′) ≤ 2ε.

Proof. For i = 1, 2 let yi ∈ Ai be such that %(yi, y) < ε. Then σy1 ∩ σy2 6= ∅
and σyi ⊂ Ai. Let y′ ∈ σy1 ∩ σy2 . Then y′ ∈ A1 ∩ A2 and %(y, y′) ≤
%(y, y1) + %(y1, y

′) ≤ 2ε. �

Lemma 5.2. Assume P ⊂ M ⊂ Rd are cubical and 0 < ε < 1
2 . Then the

inclusion µ : P ∪M → B̄ε(P ) ∪M induces isomorphism in cohomology.

Proof. Consider the multivalued map G : B̄ε(P ) ∪M →M given by

G(x) := {y ∈M | %(x, y) = %(x,M)}.
This map has compact values and is upper semicontinuous (see [27, Lemma
1]). Since G(x) = {x} for x ∈ M , we see that G ◦ µ = idP∪M . We will
show that µ ◦G is homotopic to idB̄ε(P )∪M . One easily verifies that G(x) =

B̄%(x,M)(x) ∩M . Let

Q := {Q ∈ K | Q ⊂M,Q ∩ B̄%(x,M)(x) 6= ∅}

and Q′ := {Q∩ B̄ε(x) | Q ∈ Q}. Then G(x) =
⋃
Q′∈Q′ Q

′. Each Q′ ∈ Q′ is a
rectangle as an intersection of rectangles. Hence it is convex. We claim that⋂
Q′∈Q′ Q

′ 6= ∅. For this end it suffices to show that Q′1 ∩ Q′2 6= ∅ for any

Q′1, Q
′
2 ∈ Q′. Since Q′i 6= ∅, i ∈ {1, 2}, take xi ∈ Q′i. Then x1, x2 ∈ B̄ε(x),

which means that %(x1, x2) ≤ 2ε. Since ε < 1
2 , this implies that Q′1∩Q′2 6= ∅.

Thus, F (x) is star-shaped, hence acyclic.
For λ ∈ [0, 1] let

Gλ(x) := {(1− λ)x+ λy | y ∈ G(x)}
and D(x) :=

⋃
λ∈[0,1]Gλ(x). Note that if x ∈M then Gλ(x) = D(x) = {x}.

Also if x ∈ B̄ε(P ) ∪M then D(x) ⊂ B̄ε(P ) ∪M . Therefore,

[0, 1]× (B̄ε(P ) ∪M) 3 (λ, x) 7−→ Gλ(x) ⊂ B̄ε(P ) ∪M
is the requested homotopy between µ ◦G and idB̄ε(P )∪M . �

As a consequence of the previous lemma we have the following lemma.

Lemma 5.3. Assume A ⊂ Rd is a cubical set and 0 < ε < 1
2 . Then A and

B̄ε(A) are homotopy equivalent. �
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Now we enumerate a few properties of the enclosures.

Lemma 5.4. The map Fε has the following properties:

(i) If A ⊂ X, then F−1
ε (A) = B̄ε(F

−1(A)).
(ii) If F is upper semicontinuous, then so is Fε.
(iii) If ε < 1

2 and F is upper semicontinuous, then for any x ∈ X there
is y ∈ X with F (y) = Fε(x).

(iv) If ε < 1
2 and F is upper semicontinuous and convex-valued, then so

is Fε.
(v) If ε < 1

2 and F is upper semicontinuous and has contractible values,
then so does Fε.

(vi) If ε < 1
2 and F is an upper semicontinuous map with convex values

then Fε admits a continuous selection.
(vii) If A ⊂ X is a cubical set and F is upper semicontinuous, then

Fε(A) = F (A) whenever ε < 1
2 .

Proof. In order to prove inclusion B̄ε(F
−1(A)) ⊂ F−1

ε (A) in (i) take ant x ∈
B̄ε(F

−1(A)) and an x′ ∈ F−1(A) such that x ∈ B̄ε(x′). Then F (x′)∩A 6= ∅.
Take a y ∈ F (x′)∩A. Then y ∈ Fε(x) and Fε(x)∩A 6= ∅ which proves that
x ∈ F−1

ε (A).
In reverse direction, take an x ∈ F−1

ε (A), a y ∈ Fε(x) ∩ A and an x′ ∈
B̄ε(x) such that y ∈ F (x′). It means that F (x′) ∩ A 6= ∅ and x′ ∈ F−1(A).
Therefore x ∈ B̄ε(F−1(A)).

By (i), the large counterimage under Fε of any closed set in its range is
closed. Hence, Fε is upper semicontinuous, and we have (ii) .

In order to show (iii), fix x ∈ X and consider the set

A(x) :=
{
Q̊ | Q̊ is a cell, Q̊ ∩ B̄ε(x) 6= ∅

}
.

Note that A(x) 6= ∅. Since ε < 1
2 , for any Q̊, Q̊′ ∈ A(x) we have Q∩Q′ 6= ∅.

Then P :=
⋂
Q̊∈A(x)Q 6= ∅ and P is an elementary cube. Moreover, P

is a face of every cube Q with Q̊ ∈ A(x). Then, for any y ∈ P̊ we have
F (y) = F (B̄ε(x)) = Fε(x), as F is upper semicontinuous.

Properties (iv) and (v) follow from (iii).

We shall prove (vi). To this end consider F̃ε : X ( X given by

F̃ε(x) := F (Bε(x)) ∈ X.

It is easy to see, by the same reasoning as for Fε, that F̃ε has nonempty
convex and compact values. Moreover, the large counterimage under F̃ε
of any single point in its range is open; hence F̃ε is lower semicontinuous.
Consequently, by the Michael’s selection theorem (cf. e.g. [21]), there exists

a continuous map f : X → X, a selection of F̃ε. Clearly F̃ε ⊂ Fε, hence f is
a continuous selection of Fε, as desired.

In order to prove (vii) take a y ∈ Fε(A). Then there exist an x ∈ A such
that y ∈ Fε(x) and an x′ ∈ B̄(x, ε) such that y ∈ F (x′). Then σx ∩ σx′ 6= ∅,
because %(x, x′) ≤ 2ε < 1. It follows that we can take an x′′ ∈ σx ∩ σx′ .
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By the strong upper semicontinuity of F we set F (x′) ⊂ F (x′′). Hence,
y ∈ F (x′′) ⊂ F (σx) ⊂ F (A). The inclusion in the reverse direction is
obvious. �

Lemma 5.5. The map F ε has the following properties:

(i) If A ⊂ X, then F ε(A) = B̄ε(F (A)).
(ii) If F is usc, then so is F ε.
(iii) If F is convex-valued, then so is F ε.
(iv) If ε < 1

2 and a cubical map F has contractible values, then so does
F ε.

(v) If A ⊂ X is a cubical set and F is cubical, then (F ε)−1(A) = F−1(A)
for any 0 ≤ ε < 1.

Proof. To prove (i) observe that

F ε(A) =
⋃
x∈A F

ε(x) =
⋃
x∈A B̄ε(F (x)) =

=
⋃
x∈A

⋃
y∈F (x) B̄ε(y) =

⋃
y∈F (A) B̄ε(y) = B̄ε(F (A)).

Properties (ii) and (iii) are obvious.
Property (iv) is a consequence of Lemma 5.3.
In order to show inclusion F−1(A) ⊂ (F ε)−1(A) in (v) take x ∈ F−1(A).

It means that F (x) ∩A 6= ∅ and F ε(x) ∩A 6= ∅. Hence x ∈ (F ε)−1(A).
To prove the opposite inclusion take an x ∈ (F ε)−1(A). Since F ε(x)∩A 6=

∅, there exist a y ∈ F ε(x) ∩ A and a y′ ∈ F (x) such that y ∈ B̄ε(y′). We
have σy ∩ σy′ 6= ∅, because %(y, y′) ≤ ε < 1. Take y′′ ∈ σy ∩ σy′ . Then
y′′ ∈ σy′ = cl σ̊y′ ⊂ F (x), because F is cubical. Notice that y ∈ σ̊y ∩ A.
Thus, y′′ ∈ σy ⊂ A, because A is a cubical set. It follows that F (x)∩A 6= ∅
and x ∈ F−1(A) which completes the proof. �

Horizontal enclosures preserve isolating neighborhoods and weak index
pairs. More precisely, we have the following propositions.

Proposition 5.6. Assume F : X ( X is a cubical, upper semicontinuous
multivalued map and N is a cubical isolating neighborhood for F . Then, for
any ε < 1, we have Inv(N,Fε) ⊂ B̄ε(Inv(N,F )). As a consequence, N is an
isolating neighborhood for Fε.

Proof. Take an arbitrary x0 ∈ Inv(N,Fε) and consider x : Z→ N , a solution
for Fε in N through x0. Let n ∈ Z be fixed. We have xn+1 ∈ Fε(xn).
There exists an x′n ∈ N such that Fε(xn) = F (x′n) and %(x′n, xn) ≤ ε < 1.
Therefore we can take an x′′n ∈ σxn ∩ σx′n such that %(x′′n, xn) ≤ ε and
F (x′n) ⊂ F (x′′n), as F is upper semicontinuous. We have xn+1 ∈ F (x′n) and
σxn+1 ⊂ F (x′n), because F is cubical. Moreover, x′′n+1 ∈ F (x′n) ⊂ F (x′′n)
and %(x′′n, xn) ≤ %(x′n, xn) ≤ ε. Since n ∈ Z was arbitrarily fixed, we have
constructed x′′ : Z → N , a solution for F in N , with %(x′′n, xn) ≤ ε. In
particular, x0 ∈ B̄ε(Inv(N,F )), showing that Inv(N,Fε) ⊂ B̄ε(Inv(N,F )).

Since Inv(N,F ) ⊂ intN and ε < 1, the latter inclusion yields Inv(N,Fε) ⊂
B̄ε(Inv(N,F )) ⊂ intN . This completes the proof. �
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Proposition 5.7. Assume F : X ( X is a cubical, upper semicontinuous
multivalued map, N is a cubical isolating neighborhood for F , P is a cubical
weak index pair in N , and ε < 1

2 . Then P is a weak index pair for Fε.

Proof. Properties (a) and (b) are straightforward consequences of Lemma
5.4(vii).

By Theorem 5.6 we have Inv(N,Fε) ⊂ B̄ε(Inv(N,F )) ⊂ int(P1 \P2), and
property (c) follows.

Property (d) is obvious. �
Note that, in general, Fε is not a cubical map. However, it inherits from

F the following property.

Lemma 5.8. If F : X ( X is a cubical map and ε < 1
2 , then

(5) Fε(y) ⊂ Fε(x) whenever σx ⊂ σy.

Proof. Since ε < 1
2 and σx ⊂ σy, for an arbitrary elementary cube σ, con-

dition σ ∩ B̄ε(y) 6= ∅ implies σ ∩ B̄ε(x) 6= ∅. Therefore, taking into account
that F is cubical, we have

Fε(y) = F (B̄ε(y))
=

⋃
z∈B̄ε(y) F (z)

=
⋃
σ∩B̄ε(y)6=∅ F (̊σ)

⊂
⋃
σ∩B̄ε(x)6=∅ F (̊σ)

=
⋃
z∈B̄ε(x) F (z)

= F (B̄ε(x))
= Fε(x).

This completes the proof. �

Proposition 5.9. Assume F : X ( X is a cubical, upper semicontinuous
multivalued map and N is a cubical isolating neighborhood for F . Then N
is an isolating neighborhood for (Fε)

ε for any ε < 1
2 .

Proof. For contradiction, suppose that x0 ∈ bdN and x : Z → N is a solu-
tion for (Fε)

ε in N through x0.
Let n ∈ Z be fixed. We have xn+1 ∈ (Fε)

ε(xn). There exists an x′n+1 ∈
Fε(xn) with %(x′n, xn) ≤ ε < 1

2 . Then σxn+1 ∩ σx′n+1
6= ∅, and we can

take x′′n+1 ∈ σxn+1 ∩ σx′n+1
. Since N is cubical and xn+1 ∈ N , we infer

that σxn+1 ⊂ N . Hence, x′′n+1 ∈ σxn+1 ∩ σx′n+1
⊂ N . Similarly, x′′n+1 ∈

σxn+1 ∩ σx′n+1
⊂ Fε(xn), as x′n+1 ∈ Fε(xn) and Fε(xn) is a cubical set. By

Lemma 5.8 we have Fε(xn) ⊂ Fε(x
′′
n). This, along with x′′n+1 ∈ Fε(xn)

yields x′′n+1 ∈ Fε(x
′′
n). Since n ∈ Z was arbitrarily fixed, we have defined

x′′ : Z→ N , a solution with respect to Fε in N .
Note that x′′0 ∈ bdN , because x0 ∈ bdN , x′′0 ∈ σx0 and bdN is a cubical

set. This contradicts Proposition 5.6, and completes the proof. �
The following theorem is a counterpart of Theorem 4.1 for cubical maps.
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Theorem 5.10. Assume that F : X ( X is an upper semicontinuous cu-
bical map with contractible values and ε < 1

2 . Then aε(F ) 6= ∅. Moreover, if
N is a cubical isolating neighborhood with respect to F , then N is an isolat-
ing neighborhood with respect to arbitrary f ∈ aε(F ), and C(Inv(N, f), f) =
C(Inv(N,F ), F ).

Proof. The existence of an ε-approximation f : X → X of F follows from
[15, Theorem 5.12] (cf. e.g. [14, Theorem 23.8]).

Since F has contractible values then, by Lemma 5.4(v) and Lemma 5.5(iv),
so does (Fε)

ε. Moreover, by Proposition 5.9, N is an isolating neighbor-
hood with respect to (Fε)

ε. Therefore we have well defined Conley in-
dex C(Inv(N, (Fε)

ε), (Fε)
ε). Since, in addition F ⊂ (Fε)

ε, we infer that
C(Inv(N,F ), F ) = C(Inv(N, (Fε)

ε), (Fε)
ε). Note that if f : X → X is an ε-

approximation of F , then we have f ⊂ (Fε)
ε, and the identity C(Inv(N, f), f) =

C(Inv(N, (Fε)
ε), (Fε)

ε) follows. This completes the proof. �
A statement analogous to Proposition 5.7 for map F ε is not true, however

an approximate version holds.

Theorem 5.11. Assume that F : X ( X is an upper semicontinuous map
with cubical values satisfying (5), P is a cubical weak index pair with respect
to F in a cubical isolating neighborhood N , and ε < 1

2 . Then B̄ε(P ) is a

weak index pair for F ε in B̄ε(N).

Proof. For the proof of property (a) fix an i ∈ {1, 2} and take an x ∈ B̄ε(Pi)
and a y ∈ F ε(x)∩B̄ε(N). Then, there exists an x′ ∈ Pi such that %(x, x′) < ε
and by Lemma 5.1 there exists a y′ ∈ F (x)∩N such that %(y, y′) < 2ε < 1.
Then σx ∩ σx′ 6= ∅ and we can take an x′′ ∈ σx ∩ σx′ such that %(x, x′′) < ε.
By (5) we have F (x′′) ⊃ F (x) and since P is cubical, we have x′′ ∈ τ ⊂ Pi.
Similarly, %(y, y′) < 2ε < 1 implies that there exists a y′′ ∈ σy ∩ σy′ such
that %(y, y′′) < ε. Since F (x) and N are cubical and y′ ∈ σ̊y′ ∩F (x)∩N , we
get σy′ ⊂ F (x) ∩ N . Therefore y′′ ∈ F (x) ∩ N ⊂ F (x′′) ∩ N . By property
(a) of P , we have y′′ ∈ Pi. Hence, y ∈ B̄ε(Pi).

In order to prove property (b) assume the contrary. Let x ∈ bdF ε B̄ε(P1)\
B̄ε(P2). It means that x ∈ B̄ε(P1), x ∈ cl(F ε(B̄ε(P1)) \ B̄ε(P1)) and x /∈
B̄ε(P2). Take an x′ ∈ P1 such that %(x, x′) < ε. Then x′ /∈ P2, that is x′ ∈
P1 \ P2. Consider a sequence (xn)n∈N such that xn ∈ F ε(B̄ε(P1)) \ B̄ε(P1)
and xn → x. It follows that for every n ∈ N we have xn ∈ F ε(un) for some
un ∈ B̄ε(P1). Take a u′n ∈ P1 such that %(un, u

′
n) < ε and a zn ∈ F (un)

such that %(xn, zn) < ε. We have zn /∈ P1, because otherwise xn ∈ B̄ε(P1).
By %(un, u

′
n) < ε, we can take u′′n ∈ σun ∩ σu′n . Since P is cubical, we have

u′′n ∈ P1. Since F is cubical, we have F (u′′n) ⊃ F (un). Hence, zn ∈ F (P1)\P1.
Without loss of generality we may assume that zn → z ∈ cl(F (P1) \ P1).
Since

%(z, x′) ≤ %(z, x) + %(x, x′) ≤ 2ε < 1,
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we can find z̄ ∈ σz∩σx′∩σx with %(x, z̄) ≤ ε. We have z̄ ∈ cl(F (P1)\P1)∩P1,
because σ̊z ⊂ cl(F (P1) \ P1) and σx′ ⊂ P1. By property (b) of P , z̄ ∈ P2. It
follows that x ∈ B̄ε(P2), a contradiction.

We shall prove that

(6) Inv(B̄ε(N), F ε) ⊂ B̄ε(Inv(N,F )).

Let x : Z → B̄ε(N) be a solution for F ε in B̄ε(N). For each xi ∈ B̄ε(N),
we can choose an x′i ∈ N such that %(xi, x

′
i) < ε. Since xi+1 ∈ F ε(xi) =

B̄ε(F (xi)), we can take a zi+1 ∈ F (xi) such that %(zi+1, xi+1) < ε. We have
σzi∩σxi∩σx′i 6= ∅, because %(zi, xi) < ε and %(xi, x

′
i) < ε. Since F has cubical

values we get σzi+1 ⊂ F (xi). For each i ∈ Z choose a ui ∈ σzi ∩σxi ∩σx′i . By

(5) we get ui+1 ∈ σzi+1 ⊂ F (xi) ⊂ F (ui). Since N is cubical and x′i ∈ N , we
get ui ∈ σx′i ⊂ N . Thus, ui ∈ Inv(N,F ) and since %(xi, ui) ≤ %(xi, x

′
i) ≤ ε,

we get xi ∈ B̄ε(Inv(N,F )). This proves (6).
Now, since Inv(N,F ) as an intersection of cubical sets is cubical and

Inv(N,F ) ⊂ intP1, we have

B̄ε(Inv(N,F )) ⊂ intP1 ⊂ P1 ⊂ int B̄ε(P1).

And, since Inv(N,F )∩P2 = ∅ and the sets are compact, we have B̄ε(Inv(N,F ))∩
B̄ε(P2) = ∅. Hence, Inv(B̄ε(N), F ε) ⊂ int(B̄ε(P1) \ B̄ε(P2)), which proves
property (c).

In order to prove property (d) it suffices to show that

(7) B̄ε(P1) \ B̄ε(P2) ⊂ N,

because N ⊂ int B̄ε(N). Thus, assume that (7) is not true and take an
x ∈ (B̄ε(P1) \ B̄ε(P2)) \ N and choose an x′ ∈ P1 such that %(x, x′) < ε.
Then x′ /∈ P2. Let x′′ ∈ σx ∩ σx′ . Since P is cubical, we have x′′ ∈ σx′ ⊂ P1.
We cannot have x′′ ∈ P2, because then %(x, x′′) < ε implies x ∈ B̄ε(P2).
Therefore, x′′ ∈ P1\P2 ⊂ intN by property (d) applied to F andN . We have
σ̊x ∩N = ∅, because x /∈ N and N is cubical. Thus, x′′ ∈ N ∩ cl σ̊x ⊂ bdN ,
a contradiction. �

For the sake of simplicity in the next theorem for A ⊂ X we put Aε :=
B̄ε(A) and E(A) := X \ intA.

Theorem 5.12. Let F,G : X ( X be acyclic upper semicontinuous multi-
valued maps such that F ⊂ G. Assume that N ⊂ X is a cubical isolating
neighborhood with respect to F , P is a cubical weak index pair in N , N ε is
an isolating neighborhood with respect to G, and P ε is a weak index pair for
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G in N ε. Then the diagram

H∗(P1, P2) H∗(P1 ∪ E(N), P2 ∪ E(N)) H∗(P1, P2)

H∗(P ε1 ∪ E(N), P ε2 ∪ E(N))

H∗(P ε1 , P
ε
2 ) H∗(P ε1 ∪ E(N ε), P ε2 ∪ E(N ε)) H∗(P ε1 , P

ε
2 )

F ∗ ι∗P

λ∗

κ∗

α∗

G∗ ι∗Pε

α∗

commutes and α∗, κ∗, λ∗ are isomorphisms for 0 < ε < 1
2 .

Proof. Consider the following diagram

(P1, P2) (P1 ∪ E(N), P2 ∪ E(N)) (P1, P2)

(P ε1 ∪ E(N), P ε2 ∪ E(N))

(P ε1 , P
ε
2 ) (P ε1 ∪ E(N ε), P ε2 ∪ E(N ε)) (P ε1 , P

ε
2 ).

α

F

λ

ιP

α

G

κ

ιPε

The above diagram commutes up to inclusion, that is λ ◦F ⊂ κ ◦G ◦α and
λ◦ ιP = κ◦ ιP ε ◦α. Inclusions ιP , ιP ε , κ induce isomorphisms in cohomology
by excision.

Let α|Pi and λ|Pi∪E(N) be restrictions of α, λ to appropriate sets, respec-
tively. By Lemma 5.2, inclusions α|Pi : Pi ↪→ P εi and λ|Pi∪E(N) : Pi∪E(N) ↪→
P εi ∪ E(N) induce isomorphisms in cohomology for i = 1, 2. Since the fol-
lowing diagram

P2 P1 (P1, P2)

P ε2 P ε1 (P ε1 , P
ε
2 )

α|P2
α|P1 α

commutes, the diagram

... Hq(P2) Hq(P1) Hq(P1, P2) Hq−1(P2) ...

... Hq(P ε2 ) Hq(P ε1 ) Hq(P ε1 , P
ε
2 ) Hq−1(P ε2 ) ...

(α|P2
)q (α|P1

)q αq (α|P2
)q−1

also commutes. By Five Lemma, α∗ is an isomorphism. An analogous
argument for pairs (P1 ∪ E(N), P2 ∪ E(N)) and (P ε1 ∪ E(N), P ε2 ∪ E(N))
proves that λ∗ is an isomorphism too. �

Theorem 5.13. Let F : X ( X be cubical, upper semicontinuous multival-
ued map with contractible values. Assume that N ⊂ X is a cubical isolating
neighborhood with respect to F , P is a cubical weak index pair in N and
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0 < ε < 1
2 . Then aε(F ) 6= ∅, and every ε-approximation of F has N as an

isolating neighborhood and R := B̄ε(P )∩N as a weak index pair. Moreover,
index maps IFP

and IfR are conjugate.

Proof. By Propositions 5.6 and 5.7, N is an isolating neighborhood for Fε
and P is a weak index pair for Fε in N . By Lemma 5.4, Fε is upper semi-
continuous and has contractible values. Moreover, F ⊂ Fε, showing that
index maps IFP

and IFεP
are conjugate. By Lemma 5.8 and Theorem 5.11

applied for Fε we infer that B̄ε(N) is an isolating neighborhood for (Fε)
ε

and B̄ε(P ) is a weak index pair for (Fε)
ε in B̄ε(N). Note that, by Lemma

5.5, (Fε)
ε is upper semicontinuous and has contractible values. Therefore,

Theorem 5.12 applied for maps Fε and (Fε)
ε, implies that index maps IFεP

and I(Fε)εB̄ε(P )
are conjugate.

By Proposition 5.9, N is an isolating neighborhood for (Fε)
ε. Hence, by

[2, Lemma 5.1], R is a weak index pair for (Fε)
ε in N . The diagram

(R1, R2) (R1 ∪ E(N), R2 ∪ E(N)) (R1, R2)

(P ε1 , P
ε
2 ) (P ε1 ∪ E(N), P ε2 ∪ E(N)) (P ε1 , P

ε
2 ),

α

(Fε)ε

id

ιR

α

(Fε)ε ιPε

in which inclusions α, ιR and ιP ε are excisions, commutes. This, along with
the fact that pairs (R1, R2) and (P ε1 ∪E(N), P ε2 ∪E(N)) are associate, shows
that index maps I(Fε)εB̄ε(P )

and I(Fε)εR
are conjugate.

Eventually we infer that IFP
and I(Fε)εR

are conjugate.

The existence of an ε-approximation f : X → X of F follows from [15,
Theorem 5.12] (cf. e.g. [14, Theorem 23.8]). Observe that for an arbitrary
ε-approximation f : X → X of F the inclusion f ⊂ (Fε)

ε holds. Therefore,
index maps IfR and I(Fε)εR

are conjugate, and the conclusion follows. �

6. Index map and its iterates

Throughout this section we assume that X is a locally compact metrizable
space and f : X → X is a discrete dynamical system.

For convenience we shall use the notion of associated pairs introduced
in [32]. Namely, we say that a pair of paracompact sets P ′ = (P ′1, P

′
2) is

associated to a weak index pair P with respect to f , if

(a1) P ⊂ P ′;
(a2) P1 \ P2 = P ′1 \ P ′2;
(a3) f(P ) ⊂ P ′.

Note that if P ′ is associated to a weak index pair P then the pair of pairs
(P, P ′) is a weak index quadruple in the sense of [24]. Moreover, by (a2) the
inclusion iPP ′ induces an isomorphism in the Alexander-Spanier cohomology,
and by (a3), we can consider the restriction fPP ′ of f to the domain of P
as a map of pairs fPP ′ : P → P ′.
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Clearly, the pair TN (P ) is associated to P . Another pair associated to P
is

SN (P ) := (SN,1(P ), SN,2(P )) := (P1 ∪ (f(P1) \ intN), P2 ∪ (f(P1) \ intN)).

Observe that SN (P ) is the smallest pair associated to P , i.e. for any pair
P ′ associated to P , we have SN,i(P ) ⊂ P ′i . Indeed, for i = 1 the inclusion
follows directly from (a1) and (a3). Note that in order to show the inclusion
SN,2(P ) = P2 ∪ (f(P1) \ intN) ⊂ P ′2 it suffices to verify that f(P1) \ intN ⊂
P ′2, as P2 ⊂ P ′2 by (a1). Suppose to the contrary that there exists a y ∈
(f(P1)\ intN)\P ′2. Then, by (a3) and (a2), y ∈ P ′1 \P ′2 = P1 \P2. However,
P1 \ P2 ⊂ intN ; hence y ∈ intN , a contradiction.

We have the commutative diagram

(TN,1(P ), TN,2(P ))

(P1, P2) (SN,1(P ), SN,2(P )) (P1, P2)

(P ′1, P
′
2)

fPP ′

fP

fPS(P )

j1

j2
iPP ′

iPS(P )

iP

in which iP , iPP ′ , iPS(P ), j1 and j2 are inclusions. Since any of the pairs in
the diagram is associated to P , each of the inclusions induces an isomorphism
in cohomology. Hence, by the commutativity of the diagram we obtain
IfP = f∗PP ′ ◦ (i∗PP ′)

−1. For reference we state this observation as

Proposition 6.1. Let P be a weak index pair for f and let P ′ be a pair
associated to P . Then

(i) there is a well defined map of pairs fPP ′ : P 3 x 7→ f(x) ∈ P ′,
(ii) the inclusion iPP ′ : P → P ′ induces an isomorphism in cohomology,
(iii) IfP = f∗PP ′ ◦ (i∗PP ′)

−1.

Proposition 6.2. Let M be an isolating neighborhood for f . For any n ∈ N
there exists an open neighborhood U of Inv(M,f), with clU ⊂M , such that
for any x ∈ U we have

fk(x) ∈ intM for k ∈ In.

Proof. Since S is compact and f is continuous, we can find an open set
U ⊃ S, with clU ⊂M , such that f(U) ∪ f2(U) ∪ · · · ∪ fk(U) ⊂ intM . �
The following proposition is straightforward.

Proposition 6.3. If N is an isolating neighborhood for f then for any k ∈ N
we have

(8) Inv(N, f) ⊂ Inv(N, fk).
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Although the converse inclusion is not valid in general, we have the fol-
lowing proposition.

Proposition 6.4. Let S be an isolated invariant set with respect to f . For
any k ∈ N there exists an isolating neighborhood M of S such that

(9) Inv(M,f) = S = Inv(M,fk).

Proof. Let N̂ be an isolating neighborhood of S with respect to f . By Propo-

sition 6.2 we can take an open neighborhood U of S such that
⋃k
i=1 f

k(U) ⊂
int N̂ . Let M ⊂ U be an isolating neighborhood of S. We have S =
Inv(M,f) ⊂ Inv(M,fk). To see the opposite inclusion take an x ∈ Inv(M,fk).
Then f ik(x) ∈ Inv(M,fk) for i ∈ Z. But Inv(M,fk) ⊂ M ⊂ U , therefore

f j(f ik(x)) ∈ int N̂ for j ∈ Ik. Hence, x ∈ Inv(N̂ , f) = S. �

Proposition 6.5. Let S be an isolated invariant set for f . For any n ∈ N
there exist isolating neighborhoods N ⊂M of S and weak index pairs P and
Q, respectively in N and M , such that for each k ∈ In:

(i) P is a weak index pair for S and fk,
(ii) Q is associated to P with respect to fk,
(iii) TN (P ) is associated to Q with respect to f .

Proof. Fix an arbitrary n ∈ N and consider an isolating neighborhood M
of S satisfying (9). Take U ⊂ clU ⊂ M , an open neighborhood of S as in
Proposition 6.2, and a compact set N ⊂ U with S ⊂ intN . Note that such
an N is an isolating neighborhood for fk, for each k ∈ {1, 2, . . . , n}. By [2,
Theorem 4.12] we can find a weak index pair Q = (Q1, Q2) for f and S in M
such that Q1 \Q2 ⊂ intN . Define the pair P := (P1, P2) as the intersection

(10) P := Q ∩N.

According to [2, Lemma 5.1], P is a weak index pair for f in N . We shall
prove that the pairs P and Q satisfy assertions (i), (ii) and (iii).

First we prove that

(11) fk(P ) ⊂ Q for k ∈ In.

We argue by induction with respect to k. Since for i = 1, 2 we have Pi ⊂ N ⊂
U , by Proposition 6.2, we get f(Pi) ⊂M . Therefore, f(Pi) ⊂ f(Qi) ∩M ⊂
Qi, as Pi ⊂ Qi and Qi is positively invariant with respect to f and M . Next,
suppose that for some k ∈ In−1 we have fk(Pi) ⊂ Qi. By Proposition 6.2,
fk+1(Pi) ⊂M . Consequently, fk+1(Pi) ⊂ f(fk(Pi))∩M ⊂ f(Qi)∩M ⊂ Qi.
This completes the proof of (11).

We shall prove that P is a weak index pair with respect to each fk,
k ∈ In. To this end fix an arbitrary k ∈ {2, . . . , n} (recall that for k = 1
the assertion follows from [2, Lemma 5.1]). Since P is a weak index pair in
N ⊂ U with respect to f , we have P1 \ P2 ⊂ intN , as well as, Inv(N, fk) =
Inv(N, f) ⊂ int(P1 \ P2). This shows that P satisfies properties (c) and (d)
of Definition 2.1 of a weak index pair for fk. Since property (a) follows easily
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from (11), it remains to verify property (b), that is bdfk(P1) ⊂ P2. Suppose
to the contrary that there exists a y ∈ bdfk(P1) \ P2. Then y ∈ P1 \ P2 and

y ∈ cl(fk(P1) \ P1). Consider a sequence {yn} ⊂ fk(P1) \ P1 convergent to
y. Since y ∈ P1 \ P2 ⊂ intN , for sufficiently large n we have yn ∈ intN .
Consequently, yn ∈ fk(P1) ∩ intN ⊂ fk(P1) ∩ N , which according to the
property (a) of P yields yn ∈ P1, a contradiction.

To prove (ii) observe that properties (a1) and (a2) are obvious and (a3)
follows from (11).

We shall show (iii). Since N ⊂ M , by (10) it follows that Q ⊂ TN (P ),
showing that (a1) is satisfied. Condition (a2) is a direct consequence of (ii)
and the fact that TN (P ) is associated to P . It remains to verify property
(a3). By (10) and the inclusion N ⊂ M it follows that TM (Q) ⊂ TN (P ).
This, along with the obvious inclusion f(Q) ⊂ TM (Q), implies f(Q) ⊂
TN (P ), and completes the proof. �

Proposition 6.6. Let N ⊂M be isolating neighborhoods of S. Assume that
P is a weak index pair in N with respect to each fk, k ∈ Ip, and Q is a weak
index pair with respect to f in M . Moreover, assume that Q is associated to
P with respect to fk, and TN (P ) is associated to Q with respect to f . Then

(12) IfpP
= IpfP .

Proof. Fix an arbitrary k ∈ Ip. Since Q is associated to P with respect to

fk, by Proposition 6.1 we have

(13) IfkP
= (fkPQ)∗ ◦ (i∗PQ)−1.

Note that, for each k ∈ Ip−1, we have the commutative diagram

(Q1, Q2) (P1, P2)

(P1, P2) (TN,1(P ), TN,2(P )) (P1, P2)

fQTN (P )

iPQ

fPfkPQ

fk+1
P iP

in which iP and iPQ are inclusions. Moreover, the inclusions iP and iPQ
induce isomorphisms in cohomology, as excisions. Therefore, by the com-
mutativity of the diagram and (13) we obtain

Ifk+1
P

= (fk+1
P )∗ ◦ (iP

∗)−1

= (fkPQ)∗ ◦ (i∗PQ)−1 ◦ (fP )∗ ◦ (i∗P )−1

= IfkP
◦ IfP .

Taking into account that the above equality is valid for an arbitrary k ∈ Ip−1,
the assertion follows by induction. �

Proposition 6.7. Assume N is an isolating neighborhood with respect to
f and P is a weak index pair for f in N . Moreover, assume N =

⋃n
i=1Ni

where Ni are pairwise disjoint compact subsets of N . Then, for any I ⊂ In,
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the union
⋃
i∈I Ni =: NI is an isolating neighborhood for f , and Q := P ∩NI

is a weak index pair for f in NI .

Proof. Clearly, NI is compact. Since intNI = NI ∩ intN and N is an
isolating neighborhood for f , we have the inclusions Inv(NI , f) ⊂ Inv(N, f)∩
NI ⊂ intN ∩NI = intNI , showing that NI is an isolating neighborhood for
f .

We shall verify that Q is a weak index pair in NI . It is obvious that Q2 ⊂
Q1 are compact subsets of NI . For the proof of condition (a) in Definition 2.1
observe that f(Qi) ∩NI ⊂ f(Pi) ∩N ⊂ Pi, hence f(Qi) ∩NI ⊂ Pi ∩NI =
Qi. Moreover, we have the inclusions Inv(NI , f) ⊂ intNI ∩ Inv(N, f) ⊂
intNI ∩ int(P1 \ P2) = int(Q1 \Q2), showing that Q satisfies condition (c).
Next, observe that Q1 \Q2 = (P1 \ P2) ∩NI ⊂ intN ∩NI = intNI , which
means that Q satisfies condition (d). We still need to show that Q satisfies
property (b). Suppose to the contrary that there exists a y ∈ bdf (Q1) \Q2.
Then y ∈ Q1 \ Q2 and y ∈ cl(f(Q1) \ Q1). Thus we can take a sequence
{yn} ⊂ f(Q1) \Q1 convergent to y. By the inclusion y ∈ Q1 \Q2 ⊂ intNI ,
it follows that yn ∈ intNI for sufficiently large n. Consequently, yn ∈
f(Q1) ∩ intNI ⊂ f(Q1) ∩NI , which according to the positive invariance of
Q1 with respect to f and NI yields yn ∈ Q1, a contradiction. �

Proposition 6.8. Assume that N is an isolating neighborhood for f and
P is a weak index pair in N . Moreover, assume N = N1 ∪ N2 where N1,
N2 are compact disjoint subsets of N . Let P 1 := P ∩N1, let ι : H∗(P 1) →
H∗(P 1)×H∗(P 2) be the inclusion, and let π : H∗(P 1)×H∗(P 2)→ H∗(P 1)
be the projection. Then

(14) IfP1 = π ◦ IfP ◦ ι.

Proof. By Proposition 6.7, N1 is an isolating neighborhood for f , and P 1 is
a weak index pair in N1. Therefore, we have well defined index maps IfP1

and IfP , associated with the weak index pairs P 1 and P , respectively.
Consider the commutative diagram

(P1, P2) (TN,1(P ), TN,2(P )) (P1, P2)

(P 1
1 , P

1
2 ) (TN1,1(P 1), TN1,2(P 1)) (P 1

1 , P
1
2 )

fP

k

iP

j

fP1 iP1

j

in which iP , iP 1 , j and k are inclusions. Recall that iP and iP 1 induce
isomorphisms in cohomology by the strong excision property. By the com-
mutativity of the diagram we obtain j∗ ◦ f∗P ◦ (i∗P )−1 = f∗P 1 ◦ (i∗P 1)−1 ◦ j∗,
showing that

(15) j∗ ◦ IfP = IfP1 ◦ j∗.
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Consider the commutative diagram

(P1, P2)

(P 1
1 , P

1
2 ) (P1, P2 ∪ P 2

1 )

κ
j

λ

in which κ and λ are inclusions. Note that λ induces an isomorphism in
cohomology as an excision. Moreover, by the commutativity of the diagram,
λ∗ = j∗ ◦ κ∗, showing that

(16) j∗ ◦ (κ∗ ◦ (λ∗)−1) = idH∗(P 1
1 ,P

1
2 ) .

Note that κ∗ ◦ (λ∗)−1 : H∗(P 1)→ H∗(P 1)×H∗(P 2) is an inclusion. Thus,
κ∗ ◦ (λ∗)−1 = ι, and j∗ = π. Now, (14) follows from (15), which completes
the proof. �

7. Determining orbits via Ważewski property of the Conley
index

Let X be a locally compact metrizable space, and let f : X → X be
a discrete dynamical system. Recall that for p ≥ 2 we denote by Zp :=
{0, 1, . . . , p − 1} the topological group with the addition modulo p and the
discrete topology. We define the space X̄ := X × Zp, with the product
topology, and dynamical systems f̄ , f : X̄ → X̄, by

(17) f̄ : X̄ 3 (x, i) 7−→ (f(x), i+ 1) ∈ X̄
and

f : X̄ 3 (x, i) 7−→ (f(x), i) ∈ X̄,
respectively. Consider the homeomorphism

l : X̄ 3 (x, i) 7−→ (x, i+ 1) ∈ X̄
and observe that we have

(18) f̄ = f ◦ l = l ◦ f.

Given A ⊂ X, by Ā we shall denote the set A× Zp.

Proposition 7.1. If N is an isolating neighborhood for f then N̄ is an
isolating neighborhood for both f̄ and f. Moreover, if P is a weak index pair

for f in N then P̄ is a weak index pair in N̄ for both f̄ and f.

Proof. Consider the dynamical system f̄ . Clearly N̄ is compact. We shall
verify that Inv(N̄ , f̄) ⊂ int N̄ . To this end consider x̄ = (x, i) ∈ Inv(N̄ , f̄).
Let σ̄ : Z→ X̄ be a solution for f̄ passing through x̄, which is contained in
N̄ , that is σ̄(0) = x̄, σ̄(Z) ⊂ N̄ and σ̄(k + 1) = f̄(σ̄(k)) for k ∈ Z. Define
σ : Z → X by σ(k) := p(σ̄(k)) for k ∈ Z, where p : X̄ 3 (x, i) 7→ x ∈ X
denotes the projection. One can easily see that σ is a solution for f through
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x in N . Therefore, x ∈ intN , as N is an isolating neighborhood for f . This
shows that x̄ = (x, i) ∈ intN × Zp = int N̄ , and completes the proof.

The verification that P̄ is a weak index pair for f̄ and N̄ is straightforward.
The proof for f is similar. �

For i ∈ Zp define the map

(19) µi : X 3 x 7→ (x, i) ∈ X × {i}.

The following proposition is straightforward.

Proposition 7.2. Assume that N is an isolating neighborhood for f , and
P is a weak index pair in N . For any i ∈ Zp the set N × {i} is an isolating
neighborhood for f , and P ×{i} is a weak index pair in N ×{i}. Moreover,

IfP ◦ µ
∗
i = µ∗i ◦ IfP×{i} .

Proposition 7.3. Assume that N is an isolating neighborhood for f , and
P is a weak index pair in N . We have

(×p−1
i=0µ

∗
i ) ◦ If̄P̄ = (×p−1

i=0 IfP ) ◦ (×p−1
i=0µ

∗
i+1),

where ×p−1
i=0µ

∗
i : H∗(X̄)→×p−1

i=0 H
∗(X).

Proof. By Proposition 7.1 the pair P̄ is a weak index pair with respect to
f . Therefore, the restriction f

P̄
of f to the domain P̄ is a map of pairs

f
P̄

: P̄ → TN̄ (P̄ ).

We claim that

(20) If̄P̄ = If
P̄
◦ l∗.

Indeed, note that l ◦ iP̄ = iP̄ ◦ l. Hence, l∗ ◦ (i∗
P̄

)−1 = (i∗
P̄

)−1 ◦ l∗ and, by the
second equality in (18), we get

If̄P̄ = f̄∗
P̄
◦ (i∗

P̄
)−1

= (l ◦ f
P̄

)∗ ◦ (i∗
P̄

)−1

= f∗
P̄
◦ l∗ ◦ (i∗

P̄
)−1

= f∗
P̄
◦ (i∗

P̄
)−1 ◦ l∗

= If
P̄
◦ l∗.

For i ∈ Zp denote by li the restriction of l to the domain X × {i}, and
observe that li ◦ µi = µi+1. Hence, µ∗i ◦ l∗i = µ∗i+1 and we have

(21) (×p−1
i=0µ

∗
i ) ◦ l∗ = (×p−1

i=0µ
∗
i ) ◦ (×p−1

i=0 l
∗
i ) = ×p−1

i=0 (µ∗i ◦ l∗i ) = ×p−1
i=0µ

∗
i+1.

Therefore, according to (20), in order to complete the proof it suffices to
verify that

(×p−1
i=0µ

∗
i ) ◦ If P̄ = (×p−1

i=0 IfP ) ◦ (×p−1
i=0µ

∗
i ).
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Since P̄ is a union of pairwise disjoint sets P × {i}, we have the prod-

uct decomposition of H∗(P̄ ) =×p−1
i=0 H

∗(P × {i}). Similarly, H∗(TN̄ (P̄ )) =

×p−1
i=0 H

∗(TN (P )×{i}), as the sets TN (P )×{i} are pairwise disjoint. Accord-
ing to the definition of f and Proposition 7.2, we can consider the restriction
f
P×{i} of f to the domain P × {i} as a map of pairs

f
P×{i} : P × {i} → TN (P )× {i}.

Thus, we have

f∗
P̄

= ×p−1
i=0 f

∗
P×{i}.

Similarly,

i∗P̄ = ×p−1
i=0 i

∗
P×{i}.

Consequently,

If
P̄

= f∗
P̄
◦
(
i∗
P̄

)−1

=
(
×p−1
i=0 f

∗
P×{i}

)
◦
(
×p−1
i=0

(
i∗P×{i}

)−1
)

= ×p−1
i=0

(
f∗
P×{i} ◦

(
i∗P×{i}

)−1
)

= ×p−1
i=0 IfP×{i}

.

Now, by Proposition 7.2, we obtain(
×p−1
i=0µ

∗
i

)
◦ If

P̄
=

(
×p−1
i=0µ

∗
i

)
◦
(
×p−1
i=0 IfP×{i}

)
= ×p−1

i=0

(
µ∗i ◦ IfP×{i}

)
= ×p−1

i=0 (IfP ◦ µ∗i )

=
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0µ

∗
i

)
,

which completes the proof. �

From now on we assume that N =
⋃n
i=1Ni, where Ni are pairwise disjoint

compact subsets of N , is an isolating neighborhood with respect to f , and
P is a weak index pair for f in N . Denote P i := P ∩Ni. Let p ∈ N and let

σ := (σ0, . . . , σp−1) ∈ IZp
n . Consider endomorphism Iσ :×p−1

i=0 H
∗(P σi) →

×p−1
i=0 H

∗(P σi) given by

(22) Iσ := ×p−1
i=0

(
πσi ◦ IfP ◦ ισi+1

)
,

where πi : H∗(P ) → H∗(P i) are projections, and ιi : H∗(P i) → H∗(P ) are
inclusions.
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Consider the dynamical system f̄ on X̄ given by (17). For σ ∈ IZp
n set

Nσ :=

p−1⋃
i=0

(Nσi × {i})

and let

(23) Sσ := Inv(Nσ, f̄).

Proposition 7.4. The set Sσ is an isolated invariant set for f̄ , Nσ is its
isolating neighborhood, and there exists a weak index pair R for f̄ and Sσ
such that

(24) Iσ ◦
(
×p−1
i=0µ

∗
i+1

)
=
(
×p−1
i=0µ

∗
i

)
◦ If̄R .

Moreover, Ip
f̄R

and Ipσ are conjugate.

Proof. First note that, by Proposition 7.1, N̄ is an isolating neighborhood
for f̄ , and P̄ is a weak index pair in N̄ . Clearly, Nσ is a compact subset of
N̄ ; hence, according to Proposition 6.7, Nσ is an isolating neighborhood for
f̄ , and R := P̄ ∩Nσ is a weak index pair in Nσ. Therefore, we have a well
defined index map If̄R for f̄ , associated with the weak index pair R.

We shall prove that If̄R and Iσ satisfy (24). To this end consider projec-

tions π̄k,i : H∗(P × {i}) → H∗(P k × {i}) and the inclusions ῑk,i : H∗(P k ×
{i}) → H∗(P × {i}), for k ∈ In and i ∈ Zp. One can observe that, for any
i ∈ Zp, we have

µ∗i ◦ π̄k,i = πk ◦ µ∗i
and

µ∗i ◦ ῑk,i = ιk ◦ µ∗i .
Using the above identities and Proposition 7.3 we obtain

Iσ ◦
(
×p−1
i=0µ

∗
i+1

)
=

(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0 ισi+1

)
◦
(
×p−1
i=0µ

∗
i+1

)
=

(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0

(
ισi+1 ◦ µ∗i+1

))
=

(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0

(
µ∗i+1 ◦ ῑσi+1,i+1

))
=

(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0 IfP

)
◦
(
×p−1
i=0µ

∗
i+1

)
◦
(
×p−1
i=0 ῑσi+1,i+1

)
=

(
×p−1
i=0 πσi

)
◦
(
×p−1
i=0µ

∗
i

)
◦ If̄P̄ ◦

(
×p−1
i=0 ῑσi+1,i+1

)
=

(
×p−1
i=0 (πσi ◦ µ∗i )

)
◦ If̄P̄ ◦

(
×p−1
i=0 ῑσi+1,i+1

)
=

(
×p−1
i=0 (µ∗i ◦ π̄σi,i)

)
◦ If̄P̄ ◦

(
×p−1
i=0 ῑσi+1,i+1

)
=

(
×p−1
i=0µ

∗
i

)
◦
(
×p−1
i=0 π̄σi,i

)
◦ If̄P̄ ◦

(
×p−1
i=0 ῑσi+1,i+1

)
.

Note that×p−1
i=0 π̄σi,i is the projection ofH∗(P̄ ) ontoH∗(R), and×p−1

i=0 ῑσi+1,i+1

is the inclusion of H∗(R) into H∗(P̄ ). Hence, applying Proposition 6.8 we
get (24).
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We shall prove that

(25) Ipσ ◦
(
×p−1
i=0µ

∗
i+1

)
=
(
×p−1
i=0µ

∗
i+1

)
◦ Ip

f̄R
.

Note that f̄R ◦ l = l ◦ f̄R. Hence, (l∗)−1 ◦ f̄∗R = f̄∗R ◦ (l∗)−1. Similarly,
(l∗)−1 ◦ (i∗R)−1 = (i∗R)−1 ◦ (l∗)−1, as iR ◦ l = l ◦ iR. We have

(l∗)−1 ◦ If̄R = (l∗)−1 ◦ f̄∗R ◦ (i∗R)−1

= f̄∗R ◦ (l∗)−1 ◦ (i∗R)−1

= f̄∗R ◦ (i∗R)−1 ◦ (l∗)−1

= If̄R ◦ (l∗)−1.

Therefore, using (24) and (21), we obtain

Ipσ ◦
(
×p−1
i=0µ

∗
i+1

)
= Ip−1

σ ◦
(
×p−1
i=0µ

∗
i

)
◦ If̄R

= Ip−1
σ ◦

(
×p−1
i=0µ

∗
i+1

)
◦ (l∗)−1 ◦ If̄R

= Ip−1
σ ◦

(
×p−1
i=0µ

∗
i+1

)
◦ If̄R ◦ (l∗)−1.

Now, by the reverse induction with respect to p, and the fact that
(
(l∗)−1

)p
is the identity, we get (25). This shows that Ip

f̄R
and Ipσ are conjugate, and

completes the proof. �
We are ready to present main theorems of this section. They show that

from the index map for f , itself, we can extract an information which is
sufficient to justify the existence of an orbit of f , passing through the com-
ponents of N in a given order.

Theorem 7.5. Assume that N =
⋃n
i=1Ni, where Ni are pairwise disjoint

compact subsets of N , is an isolating neighborhood with respect to f , and P is

a weak index pair for f in N . Let p ∈ N and let σ := (σ0, . . . , σp−1) ∈ IZp
n .

If the endomorphism Iσ given by (22) is not nilpotent then there exists a

trajectory τ : Z → Inv(
⋃p−1
i=0 Nσi , f) for f , such that τ(i + kp) ∈ Nσi, for

i ∈ Ip, k ∈ Z.

Proof. By Proposition 7.4, Sσ = Inv(Nσ, f̄) is an isolated invariant set for
f̄ . Thus, we have a well-defined Conley index C(Sσ, f̄) for Sσ and f̄ . Note
that, by Proposition 7.4, there exists a weak index pair R in X̄ for f̄ and Sσ,
such that If̄R and Iσ satisfy (24). Since Iσ is not nilpotent, then so is If̄R .

Consequently, C(Sσ, f̄) 6= 0. By the Ważewski property of the Conley index
(cf. [25, Proposition 2.10]), it follows that Sσ 6= ∅. According to definition
(17) of f̄ , there exists an x ∈ Nσ0 such that (x, 0) ∈ Sσ. Let η : Z → Sσ
be a trajectory for f̄ in Sσ through (x, 0). One easily verifies that then
τ := p ◦ η, where p : X̄ 3 (x, i) 7→ x ∈ X is the projection, is a trajectory
for f satisfying the assertion. �

For a given i ∈ In define endomorphism gi : H∗(P )→ H∗(P ), by

(26) gi := IfP ◦ ιi ◦ πi.
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We are going to prove the following theorem which may be viewed as a coun-
terpart of Theorem 7.5 expressed in terms of compositions of endomorphisms
gi.

Theorem 7.6. Assume that N =
⋃n
i=1Ni, where Ni are pairwise disjoint

compact subsets of N , is an isolating neighborhood with respect to f , and P

is a weak index pair for f in N . Let p ∈ N, let σ := (σ0, . . . , σp−1) ∈ IZp
n

and let endomorphisms gi be given by (26). If the composition gσ0 ◦· · ·◦gσp−1

is not nilpotent then there exists a trajectory τ : Z → Inv(
⋃p−1
i=0 Nσi , f) for

f , such that τ(i+ kp) ∈ Nσi, for i ∈ Ip, k ∈ Z.

For its proof we need an auxiliary lemma. Consider the projections

ri :
p−1

×
i=0

H∗(P σi)→ H∗(P i)

and the inclusions

mi : H∗(P i)→
p−1

×
i=0

H∗(P σi).

Let hi :×p−1
i=0 H

∗(P σi)→×p−1
i=0 H

∗(P σi) be given by

(27) hi := Iσ ◦mi ◦ ri.

Let Perm(Zp) and Cycle(Zp) ⊂ Perm(Zp) stand for the sets of all permuta-
tions and all cyclic translations of Zp, respectively.

Lemma 7.7. Assume Iσ, gi and hi are given by (22), (26) and (27), re-
spectively. Then:

(i) Ipσ = Σs∈Cycle(Zp)(hσs(0)
◦ · · · ◦ hσs(p−1)

),

(ii) hσ0 ◦ · · · ◦ hσp−1 = mσp−1 ◦ πσp−1 ◦ gσ0 ◦ · · · ◦ gσp−1 ◦ ισp−1 ◦ rσp−1.

Proof. One can observe that

(28) Iσ = Σp−1
i=0hσi .

Since hσj ◦ hσi = 0 whenever i− j 6= 1, i, j ∈ Zp, by (28) we have

Ipσ = Σs∈Perm(Zp)

(
hσs(0)

◦ · · · ◦ hσs(p−1)

)
= Σs∈Cycle(Zp)

(
hσs(0)

◦ · · · ◦ hσs(p−1)

)
,

which completes the proof of (i).
For the proof of (ii) first observe that, according to the definitions (22)

and (26) of Iσ and gi, respectively, we have the following representation of
endomorphisms hi given by (27)

(29) hσi+1 = mσi ◦ πσi ◦ gσi+1 ◦ ισi+1 ◦ rσi+1 .

It is straightforward to see that, for each i ∈ In, we have

(30) gσi ◦ ισi ◦ rσi ◦mσi ◦ πσi = gσi .
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Therefore, using (29), we obtain

hσ0 ◦ · · · ◦ hσp−1 = mσp−1 ◦ πσp−1 ◦ gσ0 ◦ · · · ◦ gσp−1 ◦ ισp−1 ◦ rσp−1 .

This completes the proof. �

Proof of Theorem 7.6. According to Theorem 7.5 it suffices to show
that Ipσ is not nilpotent. For contradiction suppose that Ipσ is nilpotent and

consider k ∈ N such that Ikpσ = 0. Note that, by Lemma 7.7 and the fact
that hσj ◦ hσi = 0 for i− j 6= 1, i, j ∈ Zp, it follows that

Ikpσ =
(

Σs∈Cycle(Zp)

(
hσs(0)

◦ · · · ◦ hσs(p−1)

))k
= Σs∈Cycle(Zp)

(
hσs(0)

◦ · · · ◦ hσs(p−1)

)k
.

Hence, according to definition (27) of hi, for each s ∈ Cycle(Zp) we have

(hσs(0)
◦ · · · ◦ hσs(p−1)

)k = 0. In particular, (hσ0 ◦ · · · ◦ hσp−1)k = 0. Conse-

quently, by Lemma 7.7(ii) and (30), we obtain

mσp−1 ◦ πσp−1 ◦ (gσ0 ◦ · · · ◦ gσp−1)k ◦ ισp−1 ◦ rσp−1 = 0,

which implies (gσ0 ◦ · · · ◦ gσp−1)k = 0, a contradiction. This completes the
proof. �.

8. Determining periodic orbits via Lefschetz-type fixed point
theorem

We will continue to deal with determining orbits passing through the
disjoint components of an isolating neighborhood in a prescribed fashion.
Now we focus our attention on periodic orbits.

Throughout this section we use the notation introduced in the preceding
section.

Let ϕ = {ϕi} be an endomorphism of degree zero of a graded vector
space V = {Vi}. Recall that ϕ is called a Leray endomorphism provided the
quotient space V ′ := V/N(ϕ), where N(ϕ) :=

⋃
{ϕ−n(0) | n = 1, 2, . . . }, is

of a finite type. For such a ϕ we define its trace as a trace of an induced
endomorphism ϕ′ : V ′ → V ′, i.e. tr(ϕ) := tr(ϕ′), and the (generalized)
Lefschetz number, by

Λ(ϕ) :=
∞∑
i=0

(−1)i tr(ϕi).

It is worth to mention the case of endomorphisms ϕ,ψ of graded vector
spaces V and W , respectively, such that ϕ = hg and ψ = gh for some
morphisms g : V → W and h : W → V . If one of such endomorphisms
is a Leray endomorphism then so is the other, and Λ(ϕk) = Λ(ψk) for all
k ∈ N (cf. [13], [26, Proposition 2]). It applies, in particular, if ϕ and ψ
are conjugate, that is, there exists an isomorphism g : V → W such that
gϕ = ψg.
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The following Proposition shows that the Lefschetz number of an index
map is independent of the choice of a weak index pair.

Proposition 8.1. Let S be an isolated invariant set for f and let P and R
be arbitrary weak index pairs for f and S. Then, for every k ∈ N, if Λ(IkfP )

is well defined, then so is Λ(IkfR) and we have

(31) Λ(IkfP ) = Λ(IkfR).

Proof. By [2, Theorem 6.4] and its proof it follows that there exists a se-
quence IfP = I1, I2, . . . , Ik = IfR of endomorphisms, with the property that
each two consecutive endomorphisms, Ii and Ii+1, are linked in the sense of
[26, Proposition 2]. Hence, the assertion follows. �

Proposition 8.2. For any weak index pair Q for f̄p and Sσ given by (23),
if Λ(If̄pQ

) is well defined then so is Λ(Ipσ) and we have

Λ(If̄pQ
) = Λ(Ipσ).

Proof. By Proposition 6.4, Sσ is an isolated invariant set with respect to
both f̄ and f̄p. Moreover, according to Proposition 6.5, we can take a pair
P ′, which is a weak index pair for each f̄k, k ∈ Ip and Sσ, and satisfies all
the assumptions of Proposition 6.6. Then Proposition 6.6 implies that

(32) Λ(If̄p
P ′

) = Λ(Ip
f̄P ′

).

Since Q is a weak index pair for f̄p and Sσ, and so is P ′, by Proposition 8.1,
we get

(33) Λ(If̄pQ
) = Λ(If̄p

P ′
).

According to Proposition 7.4 we can take a weak index pair R for f̄ and Sσ,
such that Ipσ and Ip

f̄R
are conjugate; hence,

(34) Λ(Ip
f̄R

) = Λ(Ipσ).

Note that both P ′ and R are weak index pairs for f̄ and Sσ. Therefore,
applying Proposition 8.1 once again, we have

(35) Λ(Ip
f̄P ′

) = Λ(Ip
f̄R

).

Now, the assertion follows from (33), (32), (35), and (34). �

Note that f̄p maps X ×{i} ⊂ X̄ into itself, for any i ∈ Ip. Therefore, the
following proposition is straightforward.

Proposition 8.3. Assume that, for a given i ∈ Ip, K × {i} ⊂ X̄ is an
isolated invariant set for f̄p in its isolating neighborhood M × {i}. Then K
is an isolated invariant set for fp, isolated by M .
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Proposition 8.4. Let f : Rd → Rd be a discrete dynamical system. Set

Rd := Rd × Ip and consider the dynamical system f̄ on Rd given by (17).

Assume that K :=
⋃p−1
i=0 (Kσi × {i}) ⊂ Rd is an isolated invariant set with

respect to f̄p, and M :=
⋃p−1
i=0 (Mσi × {i}) is its isolating neighborhood.

Then, there exists a weak index pair Q for f̄p and K consisting of compact
ANR’s (for the definition of an ANR we refer to [5]).

Proof. Fix an arbitrary i ∈ Ip. First note that Kσi × {i} = Inv(Mσi ×
{i}, f̄p), as f̄p maps Rd × {i} into itself. As a consequence, Mσi × {i} is an
isolating neighborhood of Kσi ×{i} with respect to f̄p. By Proposition 8.3,
Kσi is an isolated invariant set with respect to fp, and Mσi is its isolating
neighborhood. Using [34, Lemma 5.1] we can take a polyhedral index pair
Qσi for fp and Kσi . By [24, Theorem 4.4], Qσi is a weak index pair. Then
the pair Qσi ×{i} consists of compact ANR’s, and constitutes a weak index

pair for f̄p and Kσi×{i}. One can verify that the union Q :=
⋃p−1
i=0 Q

σi×{i}
is a weak index pair with respect to f̄p and K. Moreover, Q1 and Q2 are
ANR’s, as pairwise disjoint unions of ANR’s. �

Theorem 8.5. Let f : Rd → Rd be a discrete dynamical system. Assume
that N =

⋃n
i=1Ni, where Ni are pairwise disjoint compact subsets of N , is

an isolating neighborhood with respect to f , and P is a weak index pair for

f in N . Let p ∈ N, let σ := (σ0, . . . , σp−1) ∈ IZp
n , and let endomorphism Iσ

of×p−1
i=0 H

∗(P σi) be given by (22). If

(36) Λ(Ipσ) 6= 0

then there exists a p-periodic point x ∈ Nσ0 for f such that f i+kp(x) ∈ Nσi,
for k ∈ Z.

Proof. Consider the space Rd := Rd×Ip, and the dynamical system f̄ on Rd,
given by (17). By Proposition 8.2 we infer that Sσ is an isolated invariant
set with respect to f̄p. Thus, according to Proposition 8.4, we can take Q,
a weak index pair for f̄p and Sσ, consisting of compact ANR’s. Then, by
Proposition 8.2, Λ(If̄pQ

) is well defined and we have Λ(If̄pQ
) = Λ(Ipσ) which,

along with (36), yields

Λ(If̄pQ
) 6= 0.

Note that any weak index pair is a proper pair in the sense of [32, Defni-
tion 4]. Therefore, by [32, Theorem 9], there exists an x̄ ∈ cl(Q1 \ Q2)
such that f̄pQ(x̄) = x̄. Without loss of generality we may assume that

x̄ = (x, 0) ∈ Nσ0 × {0}. Then, x ∈ Nσ0 is a p-periodic point for f . Clearly

{f̄k(x̄) | k ∈ Z} ⊂ Sσ; hence {fk(x) | k ∈ Z} ⊂ Inv(
⋃p−1
i=0 Nσi , f). Moreover,

definition (17) of f̄ guaranties that the p-periodic trajectory of f through x

passes through the components of Inv(
⋃p−1
i=0 Nσi , f) in a proper order. �
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We shall express the Lefschetz number of Ipσ in terms of the Lefschetz
number of a composition of endomorphisms gi given by (26). Our goal is to
prove the following theorem.

Theorem 8.6. Let f : Rd → Rd be a discrete dynamical system. Assume
that N =

⋃n
i=1Ni, where Ni are pairwise disjoint compact subsets of N , is an

isolating neighborhood with respect to f . Let p ∈ N, let σ := (σ0, . . . , σp−1) ∈
I
Zp
n , and let P be a weak index pair for f in N . Consider endomorphisms
gi : H∗(P )→ H∗(P ) given by (26). If

(37) Λ(gσ0 ◦ · · · ◦ gσp−1) 6= 0

then there exists a p-periodic point x ∈ Nσ0 for f such that f i+kp(x) ∈ Nσi,
for k ∈ Z.

For the proof we need an auxiliary lemma.

Lemma 8.7. Assume Iσ, gi and hi are given by (22), (26) and (27), re-
spectively. Then:

(i) if Λ(h0 ◦ · · · ◦ hp−1) is well defined then so is Λ(Ipσ), and

Λ(Ipσ) = pΛ(hσ0 ◦ · · · ◦ hσp−1),

(ii) if Λ(gσ0 ◦ · · · ◦ gσp−1) is well defined then so is Λ(Ipσ) and we have

Λ(Ipσ) = pΛ(gσ0 ◦ · · · ◦ gσp−1).

Proof. Note that Ipσ and hp−1◦· · ·◦h0 are endomorphisms of graded modules,
however we consciously skip denoting the dimension in order to simplify the
notation. Observe that, by Lemma 7.7(i) and the cyclic property of the
trace, in each dimension we have the equality

(38) tr(Ipσ) = p tr(hσ0 ◦ · · · ◦ hσp−1).

This completes the proof of (i).
For the proof of (ii) it suffices to verify that, in each dimension, we have

tr(Ipσ) = p tr(gσ0 ◦ · · · ◦ gσp−1).

Using Lemma 7.7(ii), by the cyclic property of the trace, and (30), we can
write

tr(hσ0 ◦ · · · ◦ hσp−1) = tr(mσp−1 ◦ πσp−1 ◦ (gσ0 ◦ · · · ◦ gσp−1) ◦ ισp−1 ◦ rσp−1)

= tr((gσ0 ◦ · · · ◦ gσp−1) ◦ ισp−1 ◦ rσp−1 ◦mσp−1 ◦ πσp−1)

= tr(gσ0 ◦ · · · ◦ gσp−1).

Now, the assertion follows from (i). �

Proof of Theorem 8.6. The theorem follows from Theorem 8.5 and
Lemma 8.7. �
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9. Semiconjugacies to shift dynamics

Given a matrix A ∈ {0, 1}In×In we say that a partial map s : Z9In is
A-admisssible if A(si, si+1) = 1 for any i, i+ 1 ∈ dom s.

Assume V is a finite dimensional graded vector space over the field of
rational numbers. Let Vi ⊂ V for i ∈ In be subspaces of V such that
V = ⊕ni=1Vi is a direct sum decomposition of V and let

pi : V 3 x = (x1, x2, . . . xn) 7−→ (0, 0, . . . 0, xi, 0 . . . , 0) ∈ Vi.
denote the canonical projections.

Consider a linear map L : V → V . We define the transition matrix of L
with respect to the decomposition V = ⊕ni=1Vi as the matrix A ∈ {0, 1}In×In
such that A(i, j) = 1 if and only if pj ◦L◦pi 6= 0. We say that L is Lefschetz-
complete if

Λ(L ◦ ps1 ◦ L ◦ ps2 ◦ · · · ◦ L ◦ psk) 6= 0

for any sequence s : Ik → Ip admissible with respect to the transition matrix
of L.

Let Σn := { s : Z→ In } be the space of bi-infinite sequences of elements
in In with product topology and for a matrix A ∈ {0, 1}In×In let ΣA denote
the subspace of A-admissible sequnces. It is easy to see that the shift map
σ : Σn → Σn defined by σ(s)i := si+1 is a homeomorphism and σ(ΣA) ⊂ ΣA.
Hence, σ is a generator of a dynamical system on ΣA.

Theorem 9.1. Assume N is an isolating neighborhood with respect to f :
Rd → Rd, and P is a weak index pair for f in N . Moreover, assume
N =

⋃n
i=1Ni where Ni are pairwise disjoint compact subsets of N , and the

index map IfP : H∗(P ) → H∗(P ) is Lefschetz-complete with respect to the
decomposition N =

⋃n
i=1Ni. Then there exists a semiconjugacy ρ between

S := Inv(
⋃n
i=1Ni, f) and the shift dynamics σ on ΣA, where A is a transition

matrix of IfP . Moreover, for each periodic s ∈ ΣA there exists a periodic
point of f in ρ−1(s).

Proof. Fix an arbitrary x ∈ S. Since the sets Ni are pairwise disjoint and
S = Inv(

⋃n
i=1Ni, f), for each k ∈ Z there exists a unique i ∈ In with

fk(x) ∈ Ni. By putting ρ(x)k := i we define a continuous map ρ : S → Σn.
Note that, in fact, ρ maps S into ΣA, as ΣA is the subspace of Σn of all
sequences admissible with respect to the transition matrix of IfP .

We shall prove that ρ is a surjection onto ΣA. To this end let s ∈ ΣA be
fixed. For an arbitrary k ∈ N let sk denote the restriction of s to the domain
{−k,−k + 1, . . . , k − 1, k}. Since IfP is Lefschetz-complete, we have

Λ(IfP ◦ ps−k
◦ · · · ◦ IfP ◦ ps0 ◦ · · · ◦ IfP ◦ psk) 6= 0.

By the cyclic property of the trace we obtain

Λ(IfP ◦ psk ◦ IfP ◦ ps−k
◦ · · · ◦ IfP ◦ ps0 ◦ · · · ◦ IfP ◦ psk−1

) 6= 0,

showing that psk◦IfP ◦ps−k
6= 0; hence, (s−k, sk) is A-admissible. As a conse-

quence, the periodic sequence s̃k : Z→ In, given by s̃km := sk(m+k) mod (2k+1)−k
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for m ∈ Z, is A-admissible. By Theorem 8.6, there exists xk ∈ S such that

ρ(xk) = s̃k. Since k ∈ N was arbitrarily fixed, we have constructed a pair of

sequences: {s̃k} ∈ ΣN
A convergent to s, and {xk} ∈ SN, such that ρ(xk) = s̃k

for k ∈ N. By compactness of S, passing to a subsequence, if necessary, we
may assume that {xk} converges to x ∈ S. Then, by the continuity of ρ we
have ρ(x) = s.

The commutativity of the diagram

S S

ΣA ΣA

ρ

f

ρ

σ

is easily readable.
The above shows that ρ constitutes a semiconjugacy from f to the shift

dynamics σ on ΣA.
The last statement of the theorem is a direct consequence of Theorem

8.6. �
Theorem 9.1 has its counterpart in terms of endomorphisms gi given by

(26).

Theorem 9.2. Assume N is an isolating neighborhood with respect to f :
Rd → Rd, and P is a weak index pair for f in N . Moreover, assume
N =

⋃n
i=1Ni where Ni are pairwise disjoint compact subsets of N , and for

each sequence s : Ik → Ip admissible with respect to the transition matrix A
of the index map IfP : H∗(P )→ H∗(P ) the composition gs1 ◦ · · · ◦ gsk is not
nilpotent. Then there exists a semiconjugacy ρ between S := Inv(

⋃n
i=1Ni, f)

and the shift dynamics σ on ΣA.

Proof. The proof runs along the lines of the proof of Theorem 9.1. Therefore,
the details are left to the reader. However, it is worth to mention that

now the admissibility of the periodic sequence s̃k : Z → In constructed
in the proof of Theorem 9.1 follows from the fact that the composition
gs−k

◦ · · · ◦ gs0 ◦ · · · ◦ gsk is not nilpotent. Moreover, the existence of the

corresponding sequence {xk} ∈ SN is guaranteed by Theorem 7.6. �

10. Proof of the main theorems

10.1. Proof of Theorem 1.3. Clearly, F is a cubical map. Its upper semi-
continuity follows from [14, Proposition 14.5]. Using elementary collapses
(cf. [18]) we verify that F has contractible values.

Using algorithms developed in [35], a formula from [1, Theorem 4.4], and
techniques as in [30], we find a cubical isolating block N for F consisting of
five pairwise disjoint compact components N1, . . . , N5, a cubical weak index
pair P in N , and index map IFP

(cf. Figure 3). Direct computations show
that H1(P1, P2) ∼= Z5 and Hq(P1, P2) = 0 for q 6= 1. More precisely, if we
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denote the generators of the cohomology group H1(P ) by ξ1, . . . , ξ5 and put
P i := P ∩Ni, then we have

H1(P i1, P
i
2) =


〈ξ2〉 if i = 1,
〈ξ5〉 if i = 2,
〈ξ3〉 if i = 3,
〈ξ1〉 if i = 4,
〈ξ4〉 if i = 5.

Moreover, using generators ξ1, . . . , ξ5 as a basis, computations based on
algorithms of [22] provide the following matrix representation of the index
map

I1
FP

=


0 0 −1 0 0
−1 0 0 0 0

0 −1 0 0 −1
0 0 1 0 0
0 0 0 −1 0

 .

Let 0 < ε < 1
2 be fixed. By Theorem 5.13 we infer that there exists

an ε-approximation of F , and each ε-approximation of F shares with F an
isolating neighborhood and, up to a conjugacy, an index map.

Property (ii) is a straightforward consequence of Theorem 9.1 under the
assumption that IFP

is Lefschetz-complete. We verify this assumption by
algorithmic computations. Details are presented in [31].

Finally, using the transition matrix A we compute that the topological
entropy of f is greater than ln 1.2599. �

10.2. Proof of Theorem 1.2. The proof of this theorem is similar to the
proof of previous theorem. We just note that the computations result in
H1(P1, P2) ∼= Z7 and Hq(P1, P2) = 0 for q 6= 1. In particular, if ξ1, . . . , ξ7

are generators of the cohomology group H1(P ), then

H1(P i1, P
i
2) =



〈ξ2, ξ6〉 if i = 1,
〈ξ7〉 if i = 2,
〈ξ4〉 if i = 3,
〈ξ1〉 if i = 4,
〈ξ5〉 if i = 5,
〈ξ3〉 if i = 6,

where P i := P ∩ Ni, the components Ni are pairwise disjoint and Ni ⊂ N
for each i = 1, . . . , 6. We have also following matrix representation of the
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index map

I1
FP

=



0 0 0 0 0 1 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 −1
0 0 0 0 −1 0 0
0 0 0 0 0 0 −1
0 0 −1 0 0 0 0
−1 0 0 0 0 0 0


.

The topological entropy of ε-approximation f is greater than ln 1.151. �
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[14] L. Górniewicz. Topological Fixed Point Theory of Multivalued Mappings, 2nd ed.,
Topological Fixed Point Theory and Its Applications 4, Springer Verlag, The Nether-
lands, 2006.
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