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Analytical Properties and Solutions

of the FitzHugh –Rinzel Model

A. I. Zemlyanukhin, A.V.Bochkarev

The FitzHugh –Rinzel model is considered, which differs from the famous FitzHugh –
Nagumo model by the presence of an additional superslow dependent variable. Analytical
properties of this model are studied. The original system of equations is transformed into
a third-order nonlinear ordinary differential equation. It is shown that, in the general case, the
equation does not pass the Painlevé test, and the general solution cannot be represented by Lau-
rent series. Using the singular manifold method in terms of the Schwarzian derivative, an exact
particular solution in the form of a kink is constructed, and restrictions on the coefficients of
the equation necessary for the existence of such a solution are revealed. An asymptotic solution
is obtained that shows good agreement with the numerical one. This solution can be used to
verify the results in a numerical study of the FitzHugh –Rinzel model.

Keywords: neuron, FitzHugh –Rinzel model, singular manifold, exact solution, asymptotic
solution

1. Introduction

The fundamental experimental and theoretical work of Hodgkin –Huxley [1], in which the
propagation of nerve impulses along the axon of a squid’s nerve cell was studied, excited interest
in mathematical modeling of wave modes in biologically active media. This model included
four differential equations for variables describing the membrane potential and three types of
potential-dependent ion channels, as well as eight auxiliary algebraic equations. The model sat-
isfactorily predicted the response of a separate neuron to external stimulation, but for modeling
two- and three-dimensional arrays of connected neurons it turned out to be too complicated.

Received November 28, 2018
Accepted March 05, 2019

Alexander I. Zemlyanukhin
zemlyanukhinai@sstu.ru

Andrey V.Bochkarev
ab2009sar@list.ru

Gagarin State Technical University
ul. Politekhnicheskaya 77, Saratov, 410054 Russia

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(1), 3–12



4 A. I. Zemlyanukhin, A.V.Bochkarev

The reduction of this system, the FitzHugh –Nagumo (FN) model [2–4], consists only of two
differential equations for fast and slow variables and is widely used for numerical simulation of
the active media wave dynamics.

For example [5], in numerical experiments with two-dimensional self-oscillating active me-
dia described by the FN model equations, solutions were found and studied that correspond to
a phase concave spiral wave, which rotates continuously around a circular obstacle in a finite-
sized medium. A concave spiral wave is an anomalous phenomenon for reaction-diffusion pro-
cesses. Such a wave has a doublet structure, when the main pulse of excitation in the active
medium is followed by a second pulse of much smaller amplitude. In contrast to normal spiral
waves, the doublet structure waves can be elastically reflected from each other and from the
boundaries of the medium, thereby exhibiting soliton properties.

Replacing the constant coefficients of the FN model, which defines the threshold between
electrical silence and electrical firing as well as the external current through the membrane,
by periodic functions of time leads to a periodic FN model [6]. The authors of [7] proposed
a design method based on bifurcation analysis to generate bursting responses in the FN model
with a simple periodic external force.

In [8], the FN model is used to study trigger waves, which are a recurring biological phe-
nomenon involved in transmitting information quickly and reliably over large distances. Well-
characterized examples of trigger waves include action potentials propagating along the axon of
a neuron, calcium waves in various tissues, and mitotic waves in Xenopus eggs. The richness
of the dynamic modes of the FN model allowed examining different types of trigger waves —
spatial switches, pulses, and oscillations — and to show how they arise. In the recent work [9]
it is shown that apoptosis, which is an evolutionarily conserved form of programmed cell death,
propagates through the cytoplasm as a trigger wave.

The analytical properties of the initial and perturbed FN models are investigated and classes
of their exact and asymptotic solutions are constructed in [10, 11].

In the original version of the FN model, there is no burst generation mode during which
periods of rapid action potential spiking are followed by quiescent periods. At the same time,
spiking and bursting observed in nerve membranes seem to be important when one investigates
information representation models of the brain [7]. To eliminate this drawback, the FN system
was supplemented with a third equation for the superslow variable in the FitzHugh –Rinzel (FR)
model [12]:

vt = v − 1

3
v3 − w + y + Iext,

wt = δ (v − βw),

yt = μ (σ − v − γy),

(1.1)

where v(t), w(t) and y(t) are, respectively, fast, slow and superslow variables and Iext, β, γ,
δ, μ, σ are constants defining the dynamic mode of the model. The subscript hereinafter means
differentiation by the corresponding variable.

Currently, the FR model (1.1) is fairly well known. In [13] various networks of diffusively
coupled identical neurons modeled by a system of FR coupled differential equations were con-
sidered. Synchronization conditions in a network in which the central element modeling the
pacemaking neuron is linked to the group of uncoupled neurons were presented. Using the
Poincaré return mappings, the authors of [14] were able to examine in detail the bifurcations
that underlie the complex activity transitions between: tonic spiking and bursting, bursting and
mixed-mode oscillations, and finally, mixed-mode oscillations and quiescence in the FR model.
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This paper is devoted to clarifying the analytical properties of the FR model. In the 2nd
part of the paper, the original system of equations reduces to a single 3rd-order equation. In
the 3rd part, its particular exact solution is constructed. In the 4th part, the exact solution of
the original system is found. Finally, in the last part, an asymptotic solution is obtained and
good agreement with the numerical solution is established.

2. Reducing the system to a single equation

We reduce system (1.1) to one equation for the fast variable v(t). To do this, we differentiate
term by term the first equation of (1.1) with respect to t and replace the first-order derivatives
vt, wt and yt with the right-hand sides of the corresponding equations of system (1.1). Repeat
this operation with the resulting equation and replace the 2nd and 3rd lines of the original
system with two new equations obtained in this way:

vt = v − 1

3
v3 − w + y + Iext,

vtt = f1 (v,w, y),

vttt = f2 (v,w, y).

(2.1)

The functions f1 and f2 do not contain derivatives and are not given here because of their
bulkiness. The first two equations of system (2.1) are linear in the functions (w, y) and can be
rewritten in the form

w − y = f3 (v, vt),(
βδ + v2 − 1

)
w −

(
γμ+ v2 − 1

)
y = f4 (v, vtt).

(2.2)

Assuming that the determinant of system (2.2)

Δ = −βδ + γμ (2.3)

is nonzero, we find (w, y) and substitute the result in the 3rd equation of (2.1) to get:

vttt +
(
v2 + a− 1

)
vtt + 2v(vt)

2 +
(
av2 + c

)
vt +

1

3
bv3 + ev − (Iextγ + σ) βμδ = 0, (2.4)

where
a = βδ + γμ, b = βδγμ, c = b− a+ δ + μ, e = μδ (β + γ)− b. (2.5)

Hereinafter we will assume that the parameters of the model satisfy the condition

Iextγ + σ = 0. (2.6)

The substitution v (t) = a0t
−p into the leading terms of Eq. (2.4):

vttt + v2vtt + 2v(vt)
2 (2.7)

gives a fractional value p = 1
2

for the pole order of its exact solution and −1, 3
2
, 5
2
for cor-

responding Fuchs indices. Therefore, Eq. (2.4) fails the Painlevé test and its general solution
cannot be decomposed into a Laurent series. However, it is easy to show that the corresponding
Puiseux series contains three arbitrary constants, that is, Eq. (2.4) passes the Painlevé test in
a weak form [15]. This fact gives us the possibility of finding single-valued partial solutions in
a closed form.
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3. Finding an exact limited solution of the single equation

After replacing the variable v (t) =
√

u (t), equation (2.4) is reduced, taking into ac-
count (2.6), to the homogeneous equation

u2uttt + u

(
u (u+ a− 1)− 3

2
ut

)
utt +

3

4
(ut)

3 −

− 1

2
u (a− u− 1) (ut)

2 + u2 (au+ c) ut +
2

3
u3 (bu+ 3e) = 0,

(3.1)

the solution of which has a simple pole.

In accordance with the singular manifold method [16–18], we will seek a solution to Eq. (3.1)
in the form

u =
u0 (t)

F (t)
+ u1 (t) . (3.2)

Substituting (3.2) into (3.1) and collecting terms with the largest (in absolute value) negative
degrees of F (t), we express the functions u0 and u1 in terms of F (t). Substitution (3.2) takes
the form

u =
3

2
+

3

2

Ft

F
− 3

4

Ftt

Ft
, (3.3)

therefore, the function u(t) satisfies the Riccati equation

ut = A+Bu+ Cu2, (3.4)

where

B = 2, C = −2/3, A = −3

2
− 3

4
(SF ), (3.5)

and (SF ) is the Schwarzian derivative for the function F (t):

(SF ) =
Fttt

Ft
− 3

2

(
Ftt

Ft

)2

. (3.6)

Note that the expression (3.6) is in the general case a function of time. Let us show that in our
case it is a constant.

Let us express from (3.4) ut, utt and uttt in terms of the function u and the Schwarzian
derivative:

ut = −2

3
u2 + 2u− 3

2
− 3

4
(SF ),

utt =
8

9
u3 − 4u2 + 6u− 3− 3

4
(SF )t +

(
u− 3

2

)
(SF ),

uttt = −16

9
u4 +

32

3
u3 − 24u2 + 24u− 9− 3

4
(SF )tt +

+

(
u− 3

2

)
(SF )t −

3

4
(SF )2 −

(
8

3
u2 − 8u+ 6

)
(SF ).

(3.7)
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Substituting (3.7) into (3.1) and demanding that the coefficients with the same powers of u be
zero, we have

7 (SF ) + 2− 8 (a+ c− b) = 0,

(SF )t +
1

2
a (SF )− 3a− 4 (c+ e) = 0,

(SF )tt + (a− 2) (SF )t +
1

4
(SF )2 + (c+ 2) (SF ) + 2c+ 3 = 0,

[(SF ) + 2] [3(SF )t + ((SF ) + 2) (a− 4)] = 0,

[(SF ) + 2]3 = 0.

(3.8)

From the last equation of system (3.8) it follows that

(SF ) = −2, (3.9)

therefore, the Schwarzian derivative (3.6) does not depend on the variable t. The remaining
equations of system (3.8) are satisfied if we take

a = − (c+ e), b = −e. (3.10)

Equalities (3.10) are conditions on the coefficients of Eq. (3.1), under which it is equivalent to
the homogeneous Riccati equation

ut = 2u− 2

3
u2, (3.11)

the general solution of which contains the integration constant C1 and gives an exact kink-shaped
solution to Eq. (2.4):

v =
√
u =

(
3

1 + C1e−2t

)1/2

=

[
3

2

(
1 + tanh

(
t− lnC1

2

))]1/2
. (3.12)

The solution (3.12) of Eq. (2.4) can be obtained in a simpler way. Noting that (2.4) does
not explicitly contain an independent variable, by replacing

x = v, g (x) = vt (3.13)

the order of Eq. (2.4) can be reduced to the second one:

g2gxx + g(gx)
2 +

(
x2 + a− 1

)
ggx + 2xg2 +

(
ax2 + c

)
g + x

(
1

3
bx2 + e

)
= 0. (3.14)

Compensation of the leading terms of Eq. (3.14) with the substitution g = a0x
−p is achieved

at p = −3. This means that the solution of Eq. (3.14) can be found in the form of a 3rd-order
polynomial in x:

g = b0 + b1x+ b2x
2 + b3x

3. (3.15)

The equations obtained after substituting (3.15) into (3.14) and grouping in powers of x are
satisfied when the equalities

b0 = 0, b1 = 1, b2 = 0, b3 = −1

3
(3.16)

are fulfilled along with conditions (3.10). Subsequent substitution of (3.16) into (3.15), then (3.15)
into (3.13) gives a 1st-order equation for the function v(t):

vt = v − 1

3
v3, (3.17)

the general solution of which coincides with (3.12).
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4. Finding an exact solution of the initial system

Let us go back from Eq. (2.4) to the original system (1.1). Conditions (3.10), under which
there is an exact solution (3.12) of Eq. (2.4), lead to equalities for the coefficients of system (1.1):

γ = −β, μ = −δ. (4.1)

When conditions (4.1) are fulfilled, the determinant (2.3) becomes zero and Eq. (2.4) loses its
connection with system (1.1) from which it was derived. Substituting conditions (4.1) directly
into system (1.1) leads to its degeneration:

vt = v − 1

3
v3 − w + y +

σ

β
,

wt = δv − δβw,

yt = δv − δβy − δσ.

(4.2)

In fact, after substituting

y = w − σ

β
(4.3)

in (4.2), the 3rd equation can be eliminated from the system, since it identically coincides with
the 2nd one:

vt = v − 1

3
v3,

wt = δv − δβw.
(4.4)

The 1st of the two remaining equations of the system (4.4) does not differ from (3.17) and has
the same general solution (3.12). The 2nd equation of (4.4) has a general solution

w = e−βδt

(√
3δ

∫
eβδt√

1 + C1e−2t
dt+ C2

)
, (4.5)

where C2 is the integration constant. The integral in (4.5) after the change of the variable
z = exp (βδt) is expressed in terms of the generalized hypergeometric function depending on z.

Equalities (3.12), (4.5) and (4.3) give an exact solution to system (1.1) under condi-
tions (4.1), and this fact is easily verified by direct substitution. This solution contains only two
arbitrary constants C1 and C2 because between the variables w and y there is an algebraic de-
pendence (4.3) instead of a differential one and the true order of the degenerate system (4.2) is 2.
Thus, in the process of solving Eq. (2.4) using the singular manifold method, conditions (4.1)
were found under which not only Eq. (2.4), but also the original system (1.1) has an exact
solution. Note that the exact particular solution to Eq. (2.4) is included in the exact solution
to system (1.1) as an integral part, despite the fact that the equation cannot be derived from
the system when conditions (4.1) are fulfilled.

The graphs of the functions v(t) and w(t) of the exact solution (3.12), (4.5) for different
values of β, δ, σ and initial conditions are shown in Figs. 1a–1d.

As we see, in all cases the system asymptotically tends to a stationary state:

v =
√
3, w =

√
3

β
, y =

√
3− σ

β
, (4.6)

which is a solution to system (1.1), if the time derivatives are set to zero in it. Linear stability
analysis shows that state (4.6) is stable to small deviations of functions v(t), w(t) and y(t) from
stationary values at βδ > 0.
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Fig. 1. Plots of the exact solution (3.12), (4.5); v(t) — solid line, w(t) — dashed line.

5. Asymptotic solution

Equation (2.4) under condition (2.6) has a solution in the form of a simple exponent v (t) =
= Ae−mt when the equalities

e = m3 + (1− a)m2 + cm, b = 3m (a− 3m) (5.1)

are true. Such a solution is not limited, but it has a physical meaning when considering the
evolution of a system from some initial instant of time if m > 0. As t → +∞, the system tends
to a stationary state

v = 0, w = 0, y =
2

3
σ

(
m+ 1− δ

βδ −m

)
. (5.2)

We will try to find a solution to Eq. (2.4) in the form

v (t) = A (z) e−mt, (5.3)

where A(z) and z = f(t) are unknown functions. Substituting (5.3) into (2.4), we group the
result in powers of the function A(z) and its derivatives.
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Equating constant coefficients at A and A3 to zero, we obtain conditions (5.1). The coef-
ficients at Az, Azz and A2Az give an overdetermined system of linear homogeneous equations
for f (t):

fttt + (a− 3m− 1) ftt +
(
c+ 2 (1− a)m+ 3m2

)
ft = 0,

3ftt + (a− 3m− 1) ft = 0,

ftt + (a− 6m) ft = 0.

(5.4)

System (5.4) becomes consistent and has a solution

f (t) = C1 + C2e
(6m−a)t, (5.5)

where C1 and C2 are arbitrary constants, under the conditions

a =
1

2
(15m− 1), c =

1

2

(
33m2 − 12m+ 1

)
. (5.6)

The remaining nonzero terms containing Azzz, A
2Azz and A(Az)

2 form a variable coefficient
3rd-order nonlinear equation:

Azzz −
2

(3m− 1)C2
e
−1
2
(m+1)t

A
[
2(Az)

2 +AAzz

]
= 0. (5.7)

In the case of m > −1, we can consider the asymptotic reduction of equation (5.7) in the limit
t → +∞:

Azzz = 0. (5.8)

The general solution of Eq. (5.8) allows us, taking into account (5.3), (5.5) and (5.6), to write
down the asymptotic solution of Eq. (2.4):

v (t) = B1e
−1
2
(5m−1)t

+B2e
−(4m−1)t +B3e

−mt, (5.9)

containing three arbitrary constants B1, B2, B3.
Expression (5.9) is bounded when t > 0, m � 1/4 and can be used as an analytical

approximation of a numerical solution. The graphs of the asymptotic solution (5.9) for two
sets of constants B1, B2, B3 and the corresponding numerical solution of Eq. (2.4) with the
same initial conditions are shown in Figs. 2a–2b. The numerical solution is obtained on the
basis of the Maple computing environment using the Rosenbrock method. Note that, in the case
of m � −1, the solution in the form (5.3) is unboundedly increasing in absolute value as t → +∞
and, therefore, has no physical meaning.

6. Conclusion

We have considered the analytical properties of the FitzHugh –Rinzel model describing the
bursting activity of a neuron. We have found that the model’s system of equations is reduced
to a 3rd-order nonlinear differential equation, which does not pass the Painlevé test. With the
help of direct substitution, an exact exponential solution of the equation was found. The exact
kink-shaped solution of the equation was obtained in two ways: by the singular manifold method
and by the order reduction method. The conditions were found under which there are exact
solutions for both the equation and the original system. If these conditions are met, then the
differential order of the system is reduced by one. It is shown that the asymptotic solution of
the equation in the form of a sum of three exponential functions agrees well with the numerical
solution. Graphs of exact and asymptotic solutions for different sets of parameters are given.
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Fig. 2. Plots of numeric (solid line) and asymptotic (dashed line) solutions.
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