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Abstract: This paper is devoted to investigate the existence and multiplicity of the normalized solutions for
the following fractional Schrödinger equation:
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where < <s0 1, a, >μ 0, ≥N 2, and < < ∗p2 2s. We consider the L2-subcritical and L2-supercritical cases.
More precisely, in L2-subcritical case, we obtain the multiplicity of the normalized solutions for problem ( )P
by using the truncation technique, concentration-compactness principle, and genus theory. In L2-super-
critical case, we obtain a couple of normalized solution for ( )P by using a fiber map and concentration-
compactness principle. To some extent, these results can be viewed as an extension of the existing results
from Sobolev subcritical growth to Sobolev critical growth.
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1 Introduction

Over the past two decades, there has been a lot of interest in the following fractional Schrödinger equation:

( ) ( ) ( )− + = ∈u V x u f u xΔ , Ω,s

where < <s0 1, ( )−Δ s denotes the fractional Laplacian of order s, � �→V : N is an external potential
function, ( )f u is the nonlinearity, and �⊂Ω N is a bounded or unbounded domain. It was introduced by
Laskin [20,21] and comes from an expansion of the Feynman path integral from Brownian-like to Lévy-like
quantum mechanical paths, where the Feynman path integral leads to the classical Schrödinger equation
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and the path integral over Lévy trajectories leads to the fractional Schrödinger equation. Such kind of
equation is of particular interest in fractional quantum mechanics in the study of particles on stochastic
fields modeled by Lévy processes [3]. It also appeared in several areas such as optimization, finance, phase
transitions, stratified materials, crystal dislocation, flame propagation, conservation laws, materials
science and water waves. This is one of the reasons why, recently, fractional problems are widely studied
by more and more scholars.

Especially recently, the following time-dependent fractional Schrödinger equation
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attracts much attention, where < < < ∗p q2 2s, < ≤ +∞∗T0 , � � �× →ψ : N is a wave function that repre-
sents the quantummechanical probability amplitude for a given unit mass particles to have position x at time
t (the corresponding probability density is ∣ ( )∣ψ t x, 2), >μ 0 stands focusing situation and <μ 0 stands
defocusing situation, �∈λ is a frequency. Furthermore, (1.1) can describe the dynamics of a Bose-Einstein
condensate in�N , in which all the quantum and particles are in the same ( )ψ t x, . If we consider initial data in

�( )Hs N (see below for its definition), then (1.1) enjoys mass and energy conservation law. That is, if we set
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then
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and

( ( )) ( ( )) ( )= =E ψ t x E ψ x E ψ, 0, .0

Mathematically, it is of great interest to consider standing waves for (1.1), whose solutions are of the
form ( )e u xiλt , where the real-valued function u solves

�( ) ∣ ∣ ∣ ∣− + = + ∈− −u λu μ u u u u xΔ , .s p q N2 2 (1.2)

Now, there exist two substantially different view points in terms of the frequency λ in (1.2). One is to regard
the frequency λ as a given constant. In this situation, solutions of equation (1.2) are critical points of the
corresponding action functional ( )J uλ on �( )Hs N , where
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In this case, many scholars are more concerned about ground state solutions, which are important for both
physical and mathematical points of view since they share further properties, like stability, positivity, and
symmetry. They can be defined as minimizers of the aforementioned functional Jλ among its nontrivial
critical points, i.e., the minimizers of

�{ ( ) ( ) { } ( ) }≔ ∈ ′ =m J u u H J u: \ 0 , 0 .λ λ
s N

λ

Equivalently, they can be defined as minimizers of Jλ on the associated Nehari manifold

�{ ( ) { } ( ) }≔ ∈ ⟨ ′ ⟩ =� u H J u u\ 0 : , 0λ
s N

λ

(see [32]).
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The other one is to regard the frequency λ as an unknown quantity to problem (1.2). In this situation,
it is natural to prescribe the value of the mass so that λ can be interpreted as a Lagrange multiplier.
As mentioned earlier, ∣ ( )∣ψ t x, 2 represents the probability density of a single particle appearing in
space x at time t. Hence, it seems appropriate to investigate the solutions that satisfy the normalized

condition
�

∣ ( )∣∫ =ψ t x x, d 12
N . For the n body system, the wave function for the whole condensate becomes

( ) ( )͠ =ψ t x n ψ t x, , , and so the wave function is normalized according to the total number of the particles,

i.e.,
�
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On the constraint manifold
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Nowadays, some physicists are very interested in the solutions satisfying
�

∣ ∣∫ = >u x cd 02
N for a priori

given c. This is not only because the wave function ( )ψ t x, enjoys mass conservation law but also because
the mass admits a clear physical meaning. For example, from a physical point of view, the mass

�( )
‖ ‖u L

2
N2

may represent the number of particles of each component in Bose-Einstein condensates or the power supply
in the nonlinear optics framework. In addition, such solutions can give a better insight into the dynamical
properties, like orbital stability or instability, and can describe attractive Bose-Einstein condensates, >μ 0
can represent the strength of the attractive interaction among the cold atoms. This type of solution is
usually called prescribed L2-norm solutions or normalized solutions in mathematics.

Comparing with research on fixed-frequency solutions, relatively fewer results about normalized solu-
tions have been obtained, but it starts gaining much more attention in recent years. To the best of our
knowledge, Jeanjean [18] first considered such type of problem, where he considered a semilinear elliptic
equation:

�( )− = + ∈u λu g u xΔ , ,N (1.3)

where ≥N 1, �∈λ , and g satisfies some suitable conditions. In the light of a minimax procedure, he
showed that for each >c 0, equation (1.3) admits at least a couple � �( ) ( )∈ × −u λ H,c c

N1 of weak solution
satisfying

�
∣ ∣∫ =u x cdc

2
N . But, afterward, there was a little progress about the study of normalized solutions

for a long time. One of the main reasons is that it is hard to prove the boundedness of constrained Palais-
Smale sequence when the functional is unbounded from below on the constraint manifold. Recently,
Bellazzini et al. [6] obtained the existence and instability of standing waves for (1.3). Furthermore, Bartsch
and de Valeriola [5] obtained infinitely many normalized solutions for (1.3). For more references dealing
with applications, we can refer to [1,11,23,27,29,30] and their references therein.

If we consider the time-dependent nonlinear fractional Schrödinger equation
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it is well known to us that there is a natural scaling invariance associated with (1.4). Precisely, the scaling

( ) ( )= −ψ t x ω ψ ω t ωx, ,ω
s2s
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leaves (1.4) invariant for all >ω 0. A simple calculation tells us that
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According to the mass conservation law, = +r̄ 2 s
N
4 can leave the mass invariant. That is why +2 s

N
4 is called

L2-critical exponent or mass critical exponent, which is the threshold exponent for many dynamical proper-
ties such as global existence, blow-up, the stability, or instability of ground states. And it strongly affects
the geometrical structure of the corresponding functional. Hence, the study of normalized solutions is
attracting much attention of more and more researchers. Recently, Du et al. [13] studied the existence,
nonexistence, and mass concentration of normalized solutions for nonlinear fractional Schrödinger
equations:

�( ) ( ) ( )− + = + ∈u V x u μu af u xΔ , ,s N

where f is a Sobolev subcritical nonlinearity. Chen and Liu [8] studied the asymptotic behavior of ground
states for the fractional Schrödinger equation with combined L2-critical and L2-subcritical nonlinearities
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ground states as normalized ground states. Feng et al. [16] studied the existence and the instability of
normalized standing waves for the fractional Schrödinger equation:
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fractional Schrödinger equation:
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where < < ∗p2 2s if >N s2 and < < +∞p2 if ≤N s2 . In addition, by studying the normalized solutions of
the fractional Schrödinger equation:
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proved that the standing waves are orbitally stable by applying the profile decomposition of bounded
sequences in �( )Hs N and variational methods; in L2-critical case, i.e., = + −p 2 s b

N
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the standing waves are strongly unstable by the blow-up method. Yang [33] studied the existence and
asymptotic properties of normalized solutions for the fractional Choquard equation:
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α N .
By using a refined version of the min-max principle, they showed that the aforementioned problem
admitted a mountain pass type solution uμ for some <λ 0 and gave some asymptotic properties of the
solutions. Li and Luo [24] considered the existence and multiplicity of normalized solutions for a class of
nonlinear fractional Choquard equation:

�( ) [ ∣ ∣ ]∣ ∣− + = ∗ ∈−u λu I u u u xΔ , ,s
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p p N2
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where ≥N 3, ( )∈s 0, 1 , ( )∈α N0, , and { }( )∈ + +
−
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and instability of normalized standing waves for the fractional Choquard equation:
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by using localized virial estimates and the profile decomposition theory in �( )Hs N .
From the aforementined commentaries, the existing work is mainly focused on the existence of normal-

ized solutions for the fractional Schrödinger equations with the Sobolev subcritical growth. A natural
question is whether we can obtain some results for critical fractional Schrödinger equations. As for the
multiplicity, even existence of normalized solutions for the fractional Schrödinger equation with critical
Sobolev exponent ∗2s, as far as we know, there are no results in this direction. In this article, we shall give
some answers about this topic. Motivated by the works aforementioned and [1,2,26], where they all con-
sidered classical local semilinear equations, we address the study of normalized solutions for nonlocal and
Sobolev critical probelm ( )P .

For convenience, we define the homogeneous fractional Sobolev space:
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We are now in a position to state the main results of this paper.

Theorem 1.1. If < < +p2 2 s
N
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Theorem 1.2. If + < < ∗p2 2s
N s
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Remark 1.1. It is well known that problem ( )P on whole space�N is invariant under translations. Obviously,
for any �( )∈u Hs N and �∈y N , the sequence �{ } { ( )} ( )≔ + ⊂u u x ny Hn

s N is a bounded minimizing
sequence that cannot be precompact in any �( )Lt N for < < ∗t2 2s. So, roughly speaking, the problem ( )P
possesses bounded minimizing sequences that do not converge. This is caused by the invariance of �N with
respect to translations. How to overcome this difficulty? A natural way is to guess that translational
invariance is the only reason that leads to the lack of compactness, so we try to work in a space of functions
where translations are not allowed. This is possible in this case, because the problem ( )P is also invariant
under rotations, so we can take the space of radial functions �( )H s N

rad as the working space, where

� �( ) { ( ) }≔ ∈H u H u: is radially decreasing .s N s N
rad

To be precise, we will consider the functional � �( ) →I H: s N
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restricted to the following sphere in �( )L N2
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Here, we point out that there is another way to overcome this difficulty, i.e., by adding a perturbation term
( )V x u, where V is usually assumed to be coercive, see [9,10,13,17].

Furthermore, Sobolev critical exponent ∗2s also leads to the lack of compactness. Even the embedding of

the radially symmetric space of �( )H s N
rad into �( )

∗L N2s is not compact. This is one of the most dramatic cases
of loss of compactness and has been studied intensively in the last decades, starting with the pioneering
paper [7]. In [25], Luo and Zhang studied the normalized solutions of the fractional Schrödinger equation:

�( ) ∣ ∣ ∣ ∣− + = + ∈− −u λu μ u u u u xΔ , ,s q p N2 2

where < < < ∗q p2 2s. Under different assumptions on <q p, �∈μ , they obtained some existence and
nonexistence results about the normalized solutions. Compared with [25], we consider the case = ∗p 2s
and multiplicity of normalized solutions. We point out that the Sobolev critical case (i.e., = ∗p 2s) is
much more challenging and less straightforward since � �( ) ( )↪

∗H Ls N N
rad

2s is not compact. On the other
hand, since � �( ) ( )↪H Ls N N

rad
2 is also not compact, we see that the weak limit of Palais-Smale sequences

could leave the constraint manifold ( )S a . Hence, in both cases, we have to show that the Lagrange multi-
pliers are negative, which is vital in obtaining the compactness. With the aid of the compactness-compact-
ness principle in fractional Sobolev spaces, we overcome the difficulty.

Next, no matter < < +p2 2 s
N
4 or + < < ∗p2 2s

N s
4 , the energy functional ( )I u on the constraint manifold

( )S a is all unbounded from below. Hence, it is unlikely to obtain a solution to problem ( )P by minimizing
problem. Naturally, we would hope to overcome this difficulty by finding other ways. Recently, much
attention is paid to the existence of normalized solutions when the corresponding energy functional is
unbounded from below on the constraint manifold. In the L2-subcritical case, motivated by [1,2,26], we
adopt a truncation technique that ensures the truncation functional is bounded from below and coercive. In
the L2-supercritical case, although I admits a mountain-pass geometry on ( )S a that leads to the existence of
Palais-Smale sequence, we cannot obtain the boundedness of the Palais-Smale sequence. Motivated by

[18], by introducing a fiber map ( )∗ =τ u e u e xτ τN
2 , which ensures that ( ) ( )≔ ∗∼I τ u I τ u, on �( ) ×S a

possesses the same type of geometric structure as I on ( )S a , together with the additional property of the
Palais-Smale sequence for I , we obtain the boundedness of the Palais-Smale sequence.

Finally, since problem ( )P is nonlocal, which brings new mathematical difficulties that make the study
of such type of equations particularly interesting, some fine estimates are necessary.
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2 Proof of Theorem 1.1

We first recall the definition of genus. Let X ba a Banach space and A be a subset of X . The set A is said to be
symmetric if ∈u A implies that− ∈u A. Denote by Σ the family of closed symmetric subsets A of X such that

∉ A0 , i.e.,

{ { } }= ⊂a X AΣ \ 0 : is closed and symmetric with respect to the origin .

For ∈A Σ, define
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k

and { ( ) }= ∈ ≥A γ A kΣ Σ :k . In the following, we give some lemmas that are necessary for us to prove
Theorem 1.1.

Lemma 2.1. ([8], Lemma 2.3, or [10], Lemma 2.7) Let ≥N 2. The embedding � �( ) ( )↪H Ls N t N
rad is compact
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functional” [31] given by
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defined for �( )∈u Hs N with ≢u 0. To be exact, � ( )( ) { }= ∈ J uinfC u H
1

\ 0s N t
s N

, ,
.

Lemma 2.3. ([28], Theorem 5) Let �⊆Ω N be an open set and { }un be a sequence in ( )� Ωs,2 weakly converging
to u as → ∞n and such that
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2s
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If, in addition, Ω is bounded, then there exists a positive measure �( )∈ �μ̃ N with ⊂sptμ̃ Ω and positive
numbers { } ∈μj j J such that
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where δxj denotes the Dirac delta function at xj.

Lemma 2.4. ([35], Lemma 3.3) Let �{ } ( )⊂ �un
s N,2 be such that ⇀u un in �( )Ds N,2 ,

�∣( ) ∣ ∣ ∣ ( )− ⇀ ⇀
∗

�u μ and u ν inΔ n n
N2 2s

s2
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as → ∞n , and define
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The quantities ∞μ and ∞ν are well defined and satisfy

� �

∣( ) ∣∫ ∫− = +
→∞

∞u x μ μlimsup Δ d d
n

n
2

N

s

N

2

and

� �

∣ ∣∫ ∫= +
→∞

∞
∗u x ν νlimsup d d .

n
n

2

N

s

N

Lemma 2.5. ([35], Lemma 3.4) Let �{ } ( )⊂ �un
s N,2 be such that ⇀u un in �( )Ds N,2 ,

�∣( ) ∣ ∣ ∣ ( )− ⇀ ⇀
∗

�u μ and u ν inΔ n n
N2 2s

s2

as → ∞n . Then ( ({ }))≤ −
∗

ν S μ xj j
1 s2

2 for any ∈j J and ( )≤∞
−

∞

∗

ν S μ1 s2
2 .

For ( )∈u S a , by Lemma 2.2 and Sobolev embedding theorem, it easy to see that

� � �

�

( ) ∣( ) ∣ ∣ ∣ ∣ ∣

∣( ) ∣ ( ) ( )

( )

( )
( )

( )

∫ ∫ ∫

∫

= − − −

≥ − − − −
⋅

−

≔ −

∗

−
−

∗

∗

−

∗

∗

I u u x μ
p

u x u x

u x μ
p

a C u
S

u

M u

1
2

Δ d d 1
2

d

1
2

Δ d Δ 1

2
Δ

Δ ,

p

s

p
s N p

N p
s

s

2 2

2
, ,

2

2
2

2

2

2

N

s

N N

s

N

s N p
s

s

s

s s

s

2

2
2

2 2
2
2

2

2

where

( )
( ) ( )

= − −
⋅

−
∗

− −

∗
∗M t t μ

p
a C t

S
t1

2
1

2
.p

s N p

s

2
, ,

2N p
s

N p
s

s
s

2
2

2
2

2
2

By < < +p2 2 s
N
4 , we obtain ( ) < <− ∗2 2N p

s s
2

2 , and there exists >α 0 such that as
( )

≤− −
μa αp N p

s
2

2 , the function
( )⋅M attains its positive local maximum. More precisely, there exists two constants < < < +∞R R0 1 2 such

that ( )⋅ <M 0 in the interval ( )R0, 1 or ( )+∞R ,2 , and ( )⋅ >M 0 in the interval ( )R R,1 2 . Let �( ) ( [ ])⋅ ∈ ∞ +τ C , 0, 1
be a nonincreasing function such that ( ) =τ t 1 for ≤t R1 and ( ) =τ t 0 for ≥t R2.

Define the truncated functional as follows:

� � �

( ) ∣( ) ∣ ∣ ∣
( )

∣ ∣
( )∫ ∫ ∫= − − −

−
∗

∗I u u x μ
p

u x
τ u

u x1
2

Δ d d
Δ

2
d .τ

p

s

2 2 2

N

s

N

s

N

s2

2

For ( )∈u S a , again by Lemma 2.2 and Sobolev embedding theorem, one has


�

( ) ∣( ) ∣ ( )
( )

( )

( )

( )
( ) ( )

( )
∫≥ − − − −

−

⋅
−

≔ −

−
−

∗

−

∗

∗

I u u x μ
p

a C u
τ u

S
u

M u

1
2

Δ d Δ
Δ

2
Δ

Δ ,

τ
p

s N p

N p
s

s

2
, ,

2

2
2 2

2

2

2

N

s N p
s

s

s

s

s s

s

2
2

2 2

2

2
2

2

2
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where

( ) ( )( ) ( )
= − −

⋅
−

∗

− −

∗
∗M t t μ

p
a C t τ t

S
t1

2 2
.p

s N p

s

2
, ,

2N p
s

N p
s

s
s

2
2

2
2

2
2

Then by the definition of ( )⋅τ , we know that when ⎜
⎛
⎝

⎤
⎦⎥

( )( )∈ − −a 0, α
μ

s
N p N s

2
2 2

, ( )⋅ <M 0 in the interval ( )R0, 1 and

( )⋅ >M 0 in the interval ( )+∞R ,1 . In what follows, we always assume ⎜
⎛
⎝

⎤
⎦⎥

( )( )∈ − −a 0, α
μ

s
N p N s

2
2 2

. Without loss of

generality, we may assume that

[ ]−
⋅

≥ ∈ <
∗

∗
∗r

S
r r R R S1

2
1

2
0 for 0, and .

s

2 2
1 1

2
s

s
N
s

2
2

2 (2.1)

Lemma 2.6.
(i) � �( ( ) )∈I C H ,τ

s N1
rad .

(ii) Iτ is coercive and bounded from below on ( )S a .Moreover, if ≤I 0τ , then ( )− ≤u RΔ
2

1
s
2 and ( ) ( )=I u I uτ .

(iii) ∣ ( )Iτ S a satisfies the ( )PS c condition for all <c 0.

Proof. ( )i and ( )ii can be proved by using of a standard argument. For ( )iii , let { }un be a ( )PS c sequence of Iτ

restricted to ( )S a with <c 0, i.e., ( ) → <I u c 0τ n and ∣ ( )( )‖ ′ ‖ →I u 0τ S a n as → ∞n . By ( )ii , ( )− ≤u RΔ n
2

1
s
2 for

large n, and { }un is also a ( )PS c sequence of ∣ ( )I S a with <c 0. Then, { }un is bounded in �( )H s N
rad . Hence,

extracting subsequences if necessary, there exists �( )∈u H s N
rad such that ⇀u un in �( )H s N

rad and →u un in

�( )Lt N for < < ∗t2 2s and ( ) ( )→u x u xn a.e. on �N . Since < < + < ∗p2 2 2s
N s
4 ,

� �

∣ ∣ ∣ ∣∫ ∫=
→∞

u x u xlim d d .
n

n
p p

N N

Furthermore, ≢u 0. Otherwise,
�

∣ ∣∫ =→∞ u xlim d 0n n
p

N , and whence by (2.1), we see that

� � �

�

�

( )

⎡

⎣

⎢
⎢
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⎤

⎦

⎥
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⎡
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⎢
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⎥
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∫

∫
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∗

∗

∗

c I u

u x μ
p
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p
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S

u

μ
p
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lim 1
2

Δ d d 1
2

d

lim 1
2

Δ d 1

2
Δ

lim d 0,

n
n

n
n n

p

s
n

n
n n

p

s

n

n
n

p

2 2

2

2

2

2
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s

N N

s
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N
s

s s

N

2
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a contradiction. On the other hand, let �
�

( ) ∣ ∣ ( )∫≔ ∀ ∈v v x v HΦ d , s N1
2

2
N , then ( ) ( ){ }= −S a Φ a1

2

2
. By

Proposition 5.12 in [32], there exists �∈λn such that

( ) ( )‖ ′ − ′ ‖ →I u λ uΦ 0n n n

as → ∞n , which means that

�( ) ∣ ∣ ∣ ∣ ( ) ( ( ))− − − = +− − ∗∗u μ u u u u λ u o HΔ 1 in ,s
n n

p
n n n n n

s N2 2 2
rads (2.2)

where �( ( ))∗H s N
rad is the dual space of �( )H s N

rad . Therefore, for �( )∈φ H s N
rad ,

� � � �

( ) ( ) ∣ ∣ ∣ ∣ ( )∫ ∫ ∫ ∫− − − − = + ‖ ‖− −∗u φ x μ u u φ x u u φ x λ u φ x o φΔ Δ d d d d 1 .n n
p

n n n n n
2 2 2

N

s s

N N

s

N

2 2 (2.3)
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Especially,

� �

( ) ∣ ∣ ∣ ∣ ( )∫ ∫− − − = +
∗u μ u x u x λ a oΔ d d 1 .n n

p
n n

2

2 2 2s

N N

s2

The boundedness of { }‖ ‖un yields that { }λn is bounded in � . Then, up to a subsequence, there exists �∈λa
such that →λ λn a as → ∞n . By (2.2), using a standard argument, we can conclude that

( ) ∣ ∣ ∣ ∣− − − =− −∗u μ u u u u λ uΔ .s p
a

2 2 2s (2.4)

Indeed, for any �( )∈φ H s N
rad , it follows by the definition of weak convergence that

� �

( ) ( ) ( ) ( )∫ ∫− − → − −u φ x u φ xΔ Δ d Δ Δ dn
N

s s

N

s s
2 2 2 2

as → ∞n . Noting that →λ λn a as → ∞n , we easily deduce

� �

∫ ∫→λ u φ x λ uφ xd dn n a
N N

as → ∞n . Furthermore, since ∣ ∣{ }−∗u un n
2 2s is bounded in �( )

∗
∗−L Ns
s

2
2 1 and

�∣ ( )∣ ( ) ∣ ( )∣ ( )→− −∗ ∗u x u x u x u x a.e. on ,n n
N2 2 2 2s s

then

�∣ ∣ ∣ ∣ ( )⇀− −∗ ∗
∗

∗−u u u u Lin ,n n
N2 2 2 2s s

s
s

2
2 1

which yields that

� �

∣ ∣ ∣ ∣∫ ∫→− −∗ ∗u u φ x u uφ xd dn n
2 2 2 2

N

s

N

s

as → ∞n .
In the following, we show <λ 0a . In fact, since u is a weak solution of (2.4), we have the following

Pohozaev identity:

� � �

( ) ∣ ∣ ∣ ∣ ∣ ∣∫ ∫ ∫= + − − − + − + − + − ∗N s u N λ u x N p
p

μ u x N s u x0 2 2
2

Δ 2
2

d d 2 2
2

d .a
p

2

2 2 2s

N N N

s2

Moreover,

� � �

( ) ∣ ∣ ∣ ∣ ∣ ∣∫ ∫ ∫− − − − =
∗u λ u x μ u x u xΔ d d d 0.a

p
2

2 2 2s

N N N

s2

Consequently, by the aforementioned two identities, we deduce that

� �

∣ ∣ ( ) ∣ ∣∫ ∫⋅ = − − <s λ u x p N s N
p

μ u xd 2 2
2

d 0a
p2

N N

since < < + < ∗p2 2 2s
N s
4 and ≢u 0, which indicates that <λ 0a .

In the sequel, we shall prove →u un in �( )
∗L N2s by using the concentration-compactness principle in

fractional Sobolev spaces. In fact, since ( )− ≤u RΔ n
2

1
s
2 for large n, by Prohorov’s theorem (see Theorem

8.6.2 in [4]), there exist two positive measures �( )∈ �μ ν, N such that

�∣( ) ∣ ∣ ∣ ( )− ⇀ ⇀
∗

�u μ u νΔ and inn n
N2 2s

s2 (2.5)

as → ∞n . Then, Lemmas 2.3–2.5 hold and by Lemma 2.3, either →u un in �( )
∗

L N
loc
2s or there exists a (at most

countable) set of distinct points �{ } ⊂∈xj j J
N and positive numbers { } ∈νj j J such that
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∣ ∣= + ∈
∗ν u x ν δd Σ .j J j x

2s
j

If the latter occurs, we can also deduce that →u un in �( )
∗

L N
loc
2s . We divide the proof into three steps.

Step 1: We prove that ({ }) =μ x νj j, where ({ })μ xj comes from Lemma 2.5.

Let �( )∈ ∞φ C N
0 be a cut-off function with ≤ ≤φ0 1, ≡φ 1 in ( )B 01

2
, ≡φ 0 in � ( )B\ 0N

1 . For any >ρ 0,

set ( ) ( )≔ −φ x φρ
x x

ρ
j . Then

( )
⎧

⎨
⎩

∣ ∣

∣ ∣
=

− ≤

− ≥
φ x

x x ρ

x x ρ

1, 1
2

,

0, .
ρ

j

j

By the boundedness of { }un in �( )H s N
rad , we know that { }φ uρ n is also bounded in �( )H s N

rad . So

� � �

( ) ( ) ( ) ( ) ( ) ∣ ∣ ∣ ∣∫ ∫ ∫= ⟨ ′ ⟩ = − − − −
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p
ρ n

2

N

s s

N N
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It is easy to see that
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For I1, by (2.5),
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Moreover,
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=
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≤
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2

Similar computations of Lemma 3.4 in [35] show that

�

∣ ( )∣ ∣ ( ) ( )∣

∣ ∣∫
−

−
=
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u x φ x φ y
x y

x ylim lim d d 0.
ρ n
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N s0
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2
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Consequently,

�

( ) ( ) ( ) ({ })∫ − − =
→ →∞

u φ u x μ xlim lim Δ Δ d .
ρ n

n ρ n j
0

N

s s
2 2
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By the definition of φρ and the absolute continuity of the Lebesgue integral, one obtains

� �

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣

∫ ∫ ∫= = =
→ →∞ → →

− ≤

φ u x φ u x φ u xlim lim d lim d lim d 0.
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p
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p
ρ

x x ρ
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p
0 0 0
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j

Again by (2.5), one obtains

� �
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→ →∞ →

∗φ u x φ ν ν x νlim lim d lim d .
ρ n ρ n

ρ ρ j j
0

2
0

N

s

N

Summing up, from (2.6), taking the limit over n, and then the limit as →ρ 0, we obtain

({ }) =μ x ν .j j

Step 2: We prove that =∞ ∞μ ν , where ∞μ and ∞ν come from Lemma 2.4.

Let �( )∈ ∞ψ C N be a cut-off function with ≤ ≤ψ0 1, ≡ψ 0 in ( )B 01
2

, ≡ψ 1 in � ( )B\ 0N
1 . For any >R 0,

set

( ) ⎛
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⎞
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⎨
⎩

∣ ∣

∣ ∣
≔ =

≤

≥
ψ x ψ x

R
x R

x R

0, 1
2

,

1, .
R

Again by the boundedness of { }un in �( )H s N
rad , we see that { }ψ uR n is also bounded in �( )H s N

rad . As a
consequence,

� � �
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It is easy to calculate that
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For I3, again by (2.5),
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Furthermore,
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From the aforementioned proof, it is easy to see that

� �
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Consequently,
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Arguing as in the proof of Lemma 3.3 of [35], one obtains
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N
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And so, (2.7) yields that =∞ ∞μ ν .
Step 3: We prove that =ν 0j for any ∈j J and =∞ν 0. We argue by contradiction. Suppose that there

exists ∈j J0 such that >ν 0j0 or >∞ν 0. Steps 1 and 2 of Lemma 2.5 imply that
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n

ρ n ρ n
ρ ρ

j

1
2

0 2

2

0 2
2

0
2

0

2
2

s

s

N

s

s

N

s

s N
s

2

2
2

2
2

0
2

which contradicts with (2.1). If the last case is true, then

( )≥ − ≥ = ≥
→ →∞ ∞ ∞R u μ ν Slim lim Δ ,

ρ n
n1

2
0 2

2s N
s2 2

which also contradicts with (2.1).
Consequently, by Lemma 2.3, we know that →u un in �( )

∗
L N

loc
2s , which together with Lemma 2.4 yields

that →u un in �( )
∗L N2s ,

Taking into account of (2.3)–(2.4), we obtain

⎡
⎣

( ) ⎤
⎦

( ) ( )[ ]− − ‖ ‖ = ‖ ‖ + ‖ ‖ + = ‖ ‖ + ‖ ‖ = − − ‖ ‖
→∞ →∞

∗
∗

∗
∗

u λ u μ u u o μ u u u λ ulim Δ lim 1 Δ .
n

n a n
n

n p
p

n p
p

a
2

2
2
2

2
2

2
2

2

2
2
2s

s
s

s
s s

2 2 (2.8)

Since <λ 0a ,
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( ) ( )

⎡
⎣

( ) ⎤
⎦

( )

− ‖ ‖ ≤ − ‖ ‖ ≤ − ‖ ‖

≤ − ‖ ‖ + − − −

≤ − − ‖ ‖ − −

= − ‖ ‖

→∞ →∞

→∞ →∞

→∞

λ u λ u λ u

λ u u u

u λ u u

λ u

liminf limsup

limsup liminf Δ Δ

limsup Δ Δ

,

a
n

a n
n

a n

n
a n

n
n

n
n a n

a

2
2

2
2

2
2

2
2

2

2

2

2

2

2
2
2

2

2

2
2

s s

s s

2 2

2 2

and so

− ‖ ‖ = − ‖ ‖
→∞

λ u λ ulim .
n

a n a2
2

2
2

Then,

‖ ‖ = ‖ ‖
→∞

u ulim ,
n

n 2
2

2
2

and by (2.8), one obtain

( ) ( )− = −
→∞

u ulim Δ Δ .
n

n
2

2

2

2s s
2 2

Hence, →u un in �( )H s N
rad and ‖ ‖ =u a2 . This completes the proof. □

For >ε 0, set

� �{ ( ) ( ) ( ) } ( )= ∈ ∩ ≤ − ⊂−I u H S a I u ε H: .τ
ε s N

τ
s N

rad rad

By the fact that Iτ is even and continuous on �( )H s N
rad , −Iτ

ε is closed and symmetric. Then, we have the
following lemma, whose proof is similar to Lemma 3.2 in [2].

Lemma 2.7. Given �∈n , there exist ( )≔ >ε ε n 0n and ( )≔ >μ μ n 0n such that as < ≤ε ε0 n and
≥μ μn, ( ) ≥−γ I nτ

ε .

Set

�{ ( ) ( ) ( ) }≔ ⊂ ∩ ≥D H S a D γ D kΣ : is closed and symmetric , ,k
s N
rad

and

( )≔ > −∞
∈ ∈

c I uinf supk
D u D

τ
Σk

for all �∈k by Lemma 2.6( )ii . To prove Theorem 1.1, let us define

�{ ( ) ( ) ( ) ( ) }≔ ∈ ∩ ′ = =K u H S a I u I u c: 0, .c
s N

τ τrad

Then, the following lemmas hold.

Lemma 2.8. If = = = ⋯=+ +c c c ck k k r1 , then ( ) ≥ +γ K r 1c . In particular, Iτ possesses at least +r 1 nontrivial
critical points.

Proof. For >ε 0, it is easy to see that ∈−I Στ
ε . For any �∈k , by the previous lemma, there exists

( )= >ε ε k 0k and ( )= >μ μ k 0k such that if < ≤ε ε0 k and ≥μ μk, we obtain ( ) ≥−γ I kτ
ε . Then ∈−I Στ

ε
kk , and

( )≤ = − <
∈ −

c I u εsup 0.k
u I

τ k
τ

εk

Suppose that > = = = ⋯=+ +c c c c0 k k k r1 , then Lemma 2.6( )iii implies that Iτ satisfies the ( )PS c condition.
Hence, Kc is a compact set. By Theorem 2.1 in [2] or Theorem 2.1 in [19], ∣ ( )Iτ S a possesses at least +r 1 critical
points. □
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Proof of Theorem 1.1. By Lemma 2.6( )ii , the critical points of Iτ founded in Lemma 2.8 are the critical points
of I . So Theorem 1.1 is proved. □

3 Proof of Theorem 1.2

In this section, we study case + < < ∗p2 2s
N s
4 . Since ( ) >− 2N p

s
2

2 , it follows that the truncated functional Iτ is

still unbounded from below on ( )S a . Therefore, we cannot use the truncation technique in Section 2 to study
problem ( )P .

For convenience, we set ( ) ∣ ∣ ∣ ∣= +− −∗f t μ t t t tp 2 2 2s for all �∈t and introduce the following auxiliary
functional:

� �( ) ( ) ( )× → ↦ ∗∼I S a u τ I τ u: , , ,

where ( )( ) ( )∗ ≔τ u x e u e xτ τN
2 . Then simple calculations show that

� �

∣( ) ( )∣ ∣( ) ∣∫ ∫− ∗ = −τ u x e u xΔ d Δ dτs2 2 2

N

s

N

s
2 2

and

� �

∣ ∣ ∣ ∣ [ ]∫ ∫∗ = ∀ ∈ ∗−
τ u x e u x qd d , 2, 2 .q Nτ q

s
N

q

N

2
2

Then

� �

� �

� � �

( ) ( ) ( ( ))

∣( ) ( )∣ ( )

∣( ) ∣ ( ( ))

∣( ) ∣ ∣ ∣ ∣ ∣

∫ ∫

∫ ∫

∫ ∫ ∫

= ∗ =

= − ∗ − ∗

= − −

= − − ⋅ − ⋅

∼

−

∗
− ∗− ∗

I u τ I τ u I e u e x

τ u x F τ u x

e u x e F e u x x

e u x μ
p

e u x e u x

,
1
2

Δ d d

1
2

Δ d d

1
2

Δ d d 1
2

d .

τ τ

τs Nτ

τs Nτ p

s

Nτ

2

2 2

2 2 2

N

N

s

N

N

s

N

Nτ

N

s p

N

s

N

s

2

2

2 2

2
2

2
2 2

2

Clearly, the aforementioned estimates imply Lemma 3.1.

Lemma 3.1. ([25], Lemma 5.1) Let ( )∈u S a be arbitrary but fixed. Then

(i)
�

∣( ) ( )∣∫ − ∗ →τ u xΔ d 02
N

s
2 and ( ) →∼I u τ, 0 as → −∞τ .

(ii)
�

∣( ) ( )∣∫ − ∗ → +∞τ u xΔ d2
N

s
2 and ( ) → −∞∼I u τ, as → +∞τ .

With the aid of fractional Gagliardo-Nirenberg inequality (see Lemma 2.2), we can obtain the next
lemma.

Lemma 3.2. ([25], Lemma 5.2) There exists ( ) >K a 0 sufficiently small such that

( ) ( ) ( )> ∈ < <
∈ ∈

I u for u A and I u I u0 0 sup inf ,
u A u B

where

�

⎧

⎨
⎩

( ) ∣( ) ∣ ( )
⎫

⎬
⎭

∫≔ ∈ − ≤A u S a u x K a: Δ d2

N

s
2
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and

�

⎧

⎨
⎩

( ) ∣( ) ∣ ( )
⎫

⎬
⎭

∫≔ ∈ − =B u S a u x K a: Δ d 2 .2

N

s
2

As a consequence of Lemmas 3.1 and 3.2, we see that for fixed ( )∈u S a0 , there exists two constants τ τ,1 2
satisfying < <τ τ01 2, such that

� �

∣( ) ∣ ( ) ∣( ) ∣ ( )∫ ∫− < − >u x K a u x K aΔ d
2

, Δ d 21
2

2
2

N

s

N

s
2 2

and

( ) ( )> <I u I u0, 0,1 2

where ( )≔ ∗ ∈u τ u S a1 1 0 and ( )≔ ∗ ∈u τ u S a2 2 0 . In the following, denote the mountain pass level ( )γ aμ by

( ) ( ( ))
[ ]

≔
∈ ∈

γ a I g tinf max ,μ g tΓ 0,1

where

{ ([ ] ( )) ( ) ( ) }≔ ∈ = =g C S a g u g uΓ 0, 1 , : 0 , 1 .1 2

Then for any ∈g Γ,
( ( )) { ( ) ( )}

[ ]
>

∈
I g t I u I umax max , .

t 0,1
1 2

It yields that ( ) >γ a 0μ . About ( )γ aμ , the following lemma holds.

Lemma 3.3. ( ) =
→+∞

γ alim 0
μ μ .

Proof. Taking ( ) [( ) ]≔ − + ∗ ∈g t t τ tτ u1 Γ0 1 2 0 , then

� � �

� �

⎜ ⎟

( ) ( ( )) ([( ) ] )

⎧

⎨
⎩

∣( ) ∣ ∣ ∣ ∣ ∣
⎫

⎬
⎭

⎧

⎨
⎩

∣( ) ∣ ∣ ∣
⎫

⎬
⎭

⎛
⎝

⎞
⎠

( )

[ ] [ ]

[ ]
[( ) ] [( ) ] [( ) ]

( )

( )

∫ ∫ ∫

∫ ∫

< ≤ = − + ∗

= − − ⋅ − ⋅

≤ − − ⋅

≤ → → +∞

∈ ∈

∈
− + − +

∗
− +

≥

− ∗− ∗

−

− −

γ a I g t I t τ tτ u

e u x μ
p

e u x e u x

r u x μ
p

r u x

C
μ

μ

0 max max 1

max 1
2

Δ d d 1
2

d

max 1
2

Δ d d

1 0 .

μ t t

t
t τ tτ s N t τ tτ p

s

N t τ tτ

r
s p

0,1
0

0,1
1 2 0

0,1
2 1

0
2 1

0
1

0
2

0
2

0
2

0

N

s p

N

s

N

s

N

s N p

N

s
N p s

1 2 2
2

2 1 2
2 2

2 1 2

2
2

2

4
2 4

This completes the proof. □

By Proposition 2.2 in [18] and Proposition 5.4 in [25], there exists a sequence { } ( )⊂u S an satisfying

( ) ( ) ∣ ( ) ( )( )→ ‖ ′ ‖ → →I u γ a I u Q uand 0 and 0n μ S a n n

as → ∞n , where

� � �

( ) ∣( ) ∣ ( ) ( )∫ ∫ ∫= − + −Q u s u x N F u x N f u u xΔ d d
2

d .n n n n n
2

N

s

N N

2

In the sequel, like Section 2, set �
�

( ) ∣ ∣ ( )∫≔ ∀ ∈v v x v HΦ d , s N1
2

2
N , then ( ) ( ){ }= −S a Φ a1

2

2
. By Proposition

5.12 in [32], there exists �∈λn such that
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( ) ( )‖ ′ − ′ ‖ →I u λ uΦ 0n n n

as → ∞n , and so

�( ) ( ) ( ) ( ( ))− − = + ∗u f u λ u o HΔ 1 in .s
n n n n

s N
rad (3.1)

Therefore, for �( )∈φ H s N
rad ,

� � �

( ) ( ) ( ) ( )∫ ∫ ∫− − − = + ‖ ‖u φ x f u φ x λ u φ x o φΔ Δ d d d 1 .n n n n
N

s s

N N

2 2 (3.2)

We have the following two lemmas.

Lemma 3.4. There exists a constant ( )= >C C N s p, , 0 such that

�

( ) ( )∫ ≤
→∞

F u x Cγ alimsup d
n

n μ
N

and

�

( ) ( )∫ ≤
→∞

f u u x Cγ alimsup d
n

n n μ
N

and

�

∣( ) ∣ ( )∫ − ≤
→∞

u x Cγ alimsup Δ d .
n

n μ
2

N

s
2

Proof. Since ( ) ( )→I u γ an μ and ( ) →Q u 0n as → ∞n ,

� �

� �

( ) ( ) ( ) ( )

∣( ) ∣ ( )

⎡

⎣

⎢
⎢

( ) ( ) ( )
⎤

⎦

⎥
⎥

( )

∫ ∫

∫ ∫

+ = +

= + − −

= + + + −

Nγ a o NI u Q u
N s u x N f u u x

N s γ a F u x o N f u u x

1
2

2
Δ d

2
d

2
2

2 2 d 1
2

d ,

μ n n

n n n

μ n n n

2

N

s

N

N N

2

hence,

� �

� �

�

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

∫ ∫

∫ ∫

∫

+ = − +

≥ − +

= − +

sγ a o N f u u x N s F u x

Np F u x N s F u x

Np N s F u x

2 1
2

d 2 d

2
d 2 d

2 2
2

d ,

μ n n n

n n

n

N N

N N

N

i.e.,

�

( )
( )

( )∫ ≤
− +→∞

F u x s
Np N s

γ alimsup d 4
2 2

,
n

n μ
N

and then,

�

( ) ( )∫ ≤
→∞

f u u x Cγ alimsup d
n

n n μ
N
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and

� � �

∣( ) ∣
⎡

⎣

⎢
⎢

( ) ( ) ( )
⎤

⎦

⎥
⎥

( )∫ ∫ ∫− = + + ≤
→∞ →∞

u x F u x γ a o Cγ alimsup Δ d limsup 2 d 2 1 .
n

n
n

n μ μ
2

N

s

N N

2

This completes the proof. □

By Lemma 3.4, we can estimate λn as follows.

Lemma 3.5. { }λn is bounded in � and ∣ ∣ ( )≤→∞ λ γ alimsupn n
C
a μ2 and

�

( ) ∣ ∣ ( )∫= − ⋅ − − ⋅ +λ
a

N N s p
sp

μ u x o1 2 2
2

d 1 .n n
p

2
N

Proof. By (3.2) and the fact that ( )∈u S an ,

� � �

∣( ) ∣ ( ) ∣ ∣ ( ) ( )∫ ∫ ∫− − = + = +u x f u u x λ u x o λ a oΔ d d d 1 1 ,n n n n n n
2 2 2

N

s

N N

2

which indicates that

� �

⎡

⎣

⎢
⎢

∣( ) ∣ ( )
⎤

⎦

⎥
⎥

( )∫ ∫= − − +λ
a

u x f u u x o1 Δ d d 1 .n n n n2
2

N

s

N

2

By the boundedness of { }un in �( )H s N
rad , we know that { }λn is bounded in �. Lemma 3.4 means that

∣ ∣ ( )≤→∞ λ γ alimsupn n
C
a μ2 . Moreover, combining with ( ) →Q u 0n as → ∞n , we see that

� � �

� �

� �

�

�

⎜ ⎟

⎜ ⎟

⎡

⎣

⎢
⎢

( ) ( ) ( )
⎤

⎦

⎥
⎥

( )

⎡

⎣

⎢
⎢

( ) ( )
⎤

⎦

⎥
⎥

( )

⎡

⎣

⎢
⎢

∣ ∣ ∣ ∣ ⎛
⎝

∣ ∣ ∣ ∣ ⎞
⎠

⎤

⎦

⎥
⎥

( )

⎛
⎝

⎞
⎠

∣ ∣ ( )

( ) ∣ ∣ ( )

∫ ∫ ∫

∫ ∫

∫( ) ∫

∫

∫

= − − +

= − − +

= − + − + +

= − − +

= − ⋅ − − ⋅ +

∗
∗ ∗

λ
a

N
s

f u u x N
s

F u x f u u x o

a
N s

s
f u u x N

s
F u x o

a
N s

s
μ u u x N

s
μ
p

u u x o

a
N s

s
N
sp

μ u x o

a
N N s p

sp
μ u x o

1
2

d d d 1

1 2
2

d d 1

1 2
2

d 1
2

d 1

1 2
2

d 1

1 2 2
2

d 1 .

n n n n n n

n n n

n
p

n n
p

s
n

n
p

n
p

2

2

2
2 2

2

2

N N N

N N

N

s

N

s

N

N

This completes the proof. □

From the boundedness of { }un in �( )H s N
rad , up to a subsequence, there exists �( )∈u H s N

rad such that ⇀u un

in �( )H s N
rad and →u un in �( )Lt N for < < ∗t2 2s and ( ) ( )→u x u xn a.e. on �N . Since + < < ∗p2 2s

N s
4 , then

� �

∣ ∣ ∣ ∣∫ ∫=
→∞

u x u xlim d d .
n

n
p p

N N
(3.3)

Lemma 3.6. There exists ( )= >∗ ∗μ μ a 0 such that ≠u 0 for all ≥ ∗μ μ .
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Proof.We argue by contradiction. Suppose that =u 0. Then taking into account of (3.3) and Lemma 3.5, one

has
�

∣ ∣∫ =→∞ u xlim d 0n n
p

N and =→∞λlim 0n n . Combining with (3.2), we obtain

�

∣( ) ∣ ( )∫ − − ‖ ‖ =∗
∗

u x u oΔ d 1 .n n
2

2
2

N

s

s
s2

Up to a subsequence,

�

∣( ) ∣∫ − → ≥u x lΔ d 0n
2

N

s
2

and

‖ ‖ →∗
∗

u ln 2
2

s
s

as → ∞n . If =l 0, we can deduce from the expression of ( )I un that ( ) =γ a 0μ . It is a contradiction. Hence,
>l 0. By the definition of S, we have

�
∣( ) ∣∫

≤
−

‖ ‖
→ =

∗ ∗
S

u x

u
l

l
l

Δ dn

n

2

2
2

N

s

s s

s
N

2

2
2

2

as → ∞n . It follows that ≥l S N
s2 . Consequently, by (3.3), we have

� � �

⎜ ⎟

( ) ( )

⎧

⎨
⎩

∣( ) ∣ ∣ ∣ ∣ ∣
⎫

⎬
⎭

⎛
⎝

⎞
⎠

∫ ∫ ∫

=

= − − −

= − = ≥

→∞

→∞ ∗

∗

∗

γ a I u

u x μ
p

u x u x

l s
N

l s
N

S

lim

lim 1
2

Δ d d 1
2

d

1
2

1
2

,

μ n
n

n
n n

p

s
n

s

2 2

N

s

N N

s

N
s

2

2

a contradiction to Lemma 3.3. □

Subsequently, by virtue of the concentration-compactness principle (see Section 2), we can obtain the
following lemma. Since the proof is similar, we omit it here.

Lemma 3.7. →u un in �( )
∗L N2s for ≥ ∗μ μ .

Proof of Theorem 1.2. Fixed ≥ ∗μ μ . By Lemma 3.5, we may assume that →λ λn a as → ∞n . Combining
with Lemma 3.6 and (3.3), it is easy to see that

�

�

( ) ∣ ∣

( ) ∣ ∣

∫

∫

= − ⋅ − − ⋅

= − ⋅ − − ⋅ <

→∞ →∞
λ

a
N N s p

sp
μ u x

a
N N s p

sp
μ u x

lim 1 2 2
2

lim d

1 2 2
2

d 0,

n
n

n
n

p

p

2

2

N

N

and so <λ 0a . Arguing as the proof of that in Section 2, by (3.1), we have

�( ) ( )− − = ∈u f u λ u xΔ , .s
a

N

Then, (3.3) yields that
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� �

�

�

�

�

∣( ) ∣ ( )

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

⎡⎣∣( ) ∣ ⎤⎦

⎡⎣∣( ) ∣ ⎤⎦

∫ ∫

∫[ ]

∫[ ]

∫

∫

− − ‖ ‖ =

= +

= +

= − −

= − −

→∞

→∞

→∞

∗

∗

u x λ u f u u x

μ u u x

μ u u x

u λ u x

u λ u x

Δ d d

d

lim d

lim Δ d

lim Δ d .

a

p

n
n

p
n

n
n n n

n
n a n

2
2
2

2

2

2 2

2 2

N

s

N

N

s

N

s

N

s

N

s

2

2

2

Since <λ 0a , with a similar argument as the proof in Section 2, we can derive that

( ) ( )− = − ‖ ‖ = ‖ ‖
→∞ →∞

u u u ulim Δ Δ and lim .
n

n
n

n
2

2

2

2
2
2

2
2s s

2 2

Hence, →u un in �( )H s N
rad and ‖ ‖ =u a2 . This completes the proof. □
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