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In this paper, free vibrations of Porous Functionally Graded Beams (P-FGBs), resting on two-parameter elastic foundations, and 
exposed to three forms of thermal �eld, uniform, linear, and sinusoidal, are studied using a Re�ned Higher-order shear Deformation 
­eory. ­e present theory accounts for shear deformation by considering a constant transverse displacement and a higher-order 
variation of the axial displacement through the thickness of the beam. ­e stress-free boundary conditions are satis�ed on the 
upper and lower surfaces of the beam without using any shear correction factor. ­e material properties are temperature-dependent 
and vary continuously through the depth direction of the beam, based on a modi�ed power-law rule, in which two kinds of 
porosity distributions, uniform, and nonuniform, through the cross-section area of the beam, are considered. Hamilton’s principle 
is applied to obtain governing equations of motion, which are solved using a Navier-type analytical solution for simply supported 
P-FGB. Numerical examples are proposed and discussed in detail, to prove the e�ect of the thermal environment, the porosity 
distribution, and the in�uence of several parameters such as the power-law index, porosity volume fraction, slenderness ratio, and 
elastic foundation parameters on the critical buckling temperatures and the natural frequencies of the P-FGB.

1. Introduction

­e use of structural components made of composite materials 
is broadly used in various engineering applications, especially 
those subjected to thermo-mechanical loading. In conven-
tional laminated composite structures, homogeneous elastic 
laminas are bonded together to obtain enhanced mechanical 
and thermal properties. However, the abrupt change in mate-
rial properties across the interface between di�erent materials 
can result in large interlaminar stresses leading to delimitation, 
cracking, and other damage mechanisms.

To remedy such defects, Functionally Graded Materials 
(FGMs) have been proposed, because the mixture ratio of their 
constituents varies smoothly, and the material characteristics 
continually change along some preferred direction. ­is 
largely avoids the stress concentration, induced by the material 
property discontinuities, typically observed in laminated and 
�ber-reinforced composites.

­e FGMs exhibit many attractive properties. One can 
mention the multi-functionality, the possibility to control 
deformation, resistance, dynamic response, to minimize or 
completely remove stress concentrations, to smooth thermal 
stress transition and increase resistance to oxidation. Typically, 
these materials are made from a mixture of ceramics and metal 
or a combination of di�erent materials. Ceramic provides 
high-temperature resistance due to its low thermal conduc-
tivity and protects metal from oxidation. ­e metal, a ductile 
material, on the other hand, prevents fracture caused by the 
stresses due to high-temperature gradients. In addition, a mix-
ture of a ceramic and a metal with a continuously varying 
volume fraction can be easily manufactured [1].

­e rapid development of composite materials and struc-
tures in recent years has drawn increased attention from many 
engineers and researchers, because of their multiple potential 
applications, and particularly their growing use in aeronautic 
and aerospace engineering as heat shields. ­is includes 

Hindawi
Advances in Acoustics and Vibration
Volume 2019, Article ID 7986569, 17 pages
https://doi.org/10.1155/2019/7986569

https://orcid.org/0000-0001-6123-2890
mailto:
mailto:
mailto:
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7986569


Advances in Acoustics and Vibration2

nuclear reactors, rocket nozzles, and heat engine components. 
Indeed, FGM’s are among the advanced high temperature 
materials capable of withstanding extreme temperature envi-
ronments. �us, there is a need to be able to accurately analyze 
the dynamic behavior of the FGMs in thermal environments. 
�is necessity has led researchers to investigate several struc-
tures made of FGM using a considerable amount of new struc-
tural theories. Investigations into the dynamic characteristics 
of FG structures have been an area of intensive research over 
the last decade (see Refs. [2–18]).

In view of the advantages of FGMs, several investigations 
dealing with thermal behaviors have been published in the 
scientific literature. Recently, Trinh et al. [19] presented an 
analytical method based on the state space approach to study 
the vibration and buckling behaviors of Functionally Graded 
(FG) beams with various boundary conditions under mechan-
ical and thermal loads. �ey used Hamilton’s principle to 
derive the equations of motion taking into account the thermal 
effect. El-Megharbel [20] introduced a mathematical analysis 
to study the FG beam under a thermal loading by assuming 
two cases of heat distribution along the beam depth: Power 
and exponential distributions. Şimşek [21] investigated the 
buckling of the two-dimensional FG beams with different 
boundary conditions. It was assumed that the material prop-
erties of the beam vary in both axial and thickness directions 
according to the power-law form. �e material properties of 
2D-FG beams are assumed to vary in both axial and thickness 
directions according to the power-law form, and the critical 
buckling load of 2D-FG beams based on the Timoshenko 
beam theory (TBT) is obtained using the Ritz method. 
Shahsiah et al. [22] studied the thermal buckling of FG beams. 
�e normalized functions proportional to the thermal buck-
ling loads for thin beams made of FGMs are derived when the 
beam is under a uniform temperature rise and an axial tem-
perature difference. Eltaher et al. [23] investigated the size-de-
pendent static-buckling behavior of FG nanobeams based on 
the nonlocal continuum model. �e Euler–Bernoulli beam 
theory is used to modelling nano-beam, and the equilibrium 
equations are derived using the principle of virtual displace-
ment. �e finite element method was used to discretize the 
model and obtain a numerical approximation of equilibrium 
equations. A size-dependent inhomogeneous beam model, 
which accounts for the through-length power-law variation 
of a two-constituent axial FGM was used by Li et al. [24] to 
analyze the bending, buckling, and vibration of axial FG beams 
based on nonlocal strain gradient theory. To consider the sig-
nificance of strain gradient stress field and nonlocal elastic 
stress field, respectively, a material length scale parameter and 
a nonlocal parameter are introduced, respectively, in the axial 
FG beam model. Concentrated and uniformly distributed 
loads were considered. On the other hand, Davoodinik et al. 
[25] derived an analysis of the thermal behavior of FG beams. 
�ey assumed that the distribution of material properties fol-
lowed an exponential function, while for a thermal loading, 
the steady state of heat conduction with exponential and 
hyperbolic variations through the thickness of FG beam is 
considered. Different types of boundary conditions, such as 
clamped, simply supported, and rolled edges are assumed for 
edge supports. Based on the nonlinear First-order shear 

deformation Beam �eory (FBT) and the physical neutral 
surface concept, Ma et al. [26] derived the governing equations 
for both the static behavior and the dynamic response of a FG 
beam subjected to a uniform in-plane thermal loading. Giunta 
et al. [27] investigated the mechanical behavior of three-
dimensional beams subjected to thermal stresses. �e temper-
ature field was obtained by exactly solving Fourier’s heat 
conduction equation. It is considered as an external load 
within the mechanical analysis. In addition, Mahi et al. [28] 
studied the free vibration of a FG beam subjected to thermal 
environment based on a unified higher order shear deforma-
tion theory. �ey utilized an analytical method to obtain the 
natural frequencies for various boundary conditions. Based 
on a new third-order shear deformation theory, �om and 
Kien [29] investigated the free vibrations of two-directional 
functionally graded material beams in a thermal environment. 
�e material properties were considered to be temperature-de-
pendent and are assumed to change along both the thickness 
and longitudinal directions by a power law distribution.

Structures resting on elastic foundations have been widely 
adopted by many researchers to model the interaction between 
elastic media and structures for various engineering problems. 
�ere exist a number of previous studies on the effect of elastic 
foundations on the free vibration of beams. Akgoz and Civalek 
[30] investigated the thermo-mechanical size-dependent 
buckling behavior of FG micro beams resting on elastic foun-
dations in a thermal environment. A general solution for the 
free vibration analysis of isotropic beams on variable Winkler 
elastic foundations was presented by Zhou [31]. An exact 
method for the vibration analysis of isotropic beams on vari-
able one- and two-parameter elastic foundations was pre-
sented by Eisenberger [32]. Sun et al. [33] numerically 
investigated buckling and post-buckling under thermo-
mechanical deformations of a FG Timoshenko beam resting 
on a two-parameter nonlinear elastic foundation and sub-
jected to only a temperature rise with the shooting method. 
Akbas [34] investigated the free vibration and static bending 
of FG beams resting on Winkler foundations within the Euler 
Bernoulli beam theory and the Timoshenko beam theory. �e 
material properties of the beam changed in the thickness 
direction according to power-law distributions. Esfahani et al. 
[35] studied the thermal buckling and post-buckling of FG 
Timoshenko beams resting on a nonlinear elastic foundation. 
Matsunaga [36] analyzed the natural frequencies and buckling 
stresses of isotropic deep beam- columns resting on a two-pa-
rameter elastic foundation, by using the power series expan-
sion method, based on the higher-order shear deformation 
beam theory. �e differential quadrature element method was 
used by Chen [37], for the free vibration analysis of nonpris-
matic Bernoulli–Euler beams, resting on Winkler elastic foun-
dations. Malekzadeh and Karami [38] used a mixed differential 
quadrature and finite element methods to study the free vibra-
tion and buckling of isotropic thick beams resting on a two-
parameter elastic foundation. Based on the two-dimensional 
theory of elasticity, exact solutions for the bending, and free 
vibration of simply supported FG beams resting on a Winkler–
Pasternak elastic foundation were presented by Ying et al. [39]. 
A differential quadrature element method (DQEM) for the 
free vibration analysis of arbitrary nonuniform Timoshenko 
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beams with attachments, i.e., concentrated mass and rotary 
inertia, resting on elastic supports was proposed by Karami 
et al. [40]. Pradhan and Murmu [41] analyzed the thermo-
mechanical vibration of a FG sandwich beam under various 
elastic foundations by the differential quadrature method. 
Teifouet et al. [42] examined the buckling of axially function-
ally graded and nonuniform Timoshenko beams based on the 
nonlocal TBT. �e material properties of 2D-FG beams are 
assumed to vary in the axial direction and the nanobeam is 
modelled as a nonuniform Timoshenko beam resting on a 
Winkler-Pasternak foundation. Rayleigh quotients for the 
buckling load are derived and the numerical solution is 
obtained by using Chebyshev polynomials based on the 
Rayleigh-Ritz method. A unified higher order beam theory, 
which contains various beam theories, and based on the mod-
ified couple stress theory, has been presented by Şimşek and 
Reddy [43] for the buckling of FG microbeam embedded in 
elastic Pasternak medium.

With the rapid progression in the technology of structural 
elements, structures with a graded porosity can be mentioned 
among the latest developments in FGMs. �e microstructure 
pores are taken into account via a variable local density. 
Researches have their eyes on the development of manufac-
turing methods applicable to FGMs such as the powder met-
allurgy, the vapor deposition, the self-propagation, the 
centrifugal casting, and the magnetic separation [44–48]. 
�ese methods have some disadvantages such as high costs 
and complexity of the technique. One of the flexible and suit-
able ways to manufacture FGM is the sintering process. During 
this process, due to the big difference in solidification between 
the material constituents, however, the porosities or the micro 
voids through the material can happen regularly [49]. Much 
research has been done on porosities occurring inside FGM 
samples manufactured by a multi-step sequential infiltration 
technique [50]. According to this work, it is important to take 
into consideration the porosity effect when designing and 
analyzing FGM structures. Porous FG structures have many 
interesting combinations of mechanical properties, such as 
high stiffness in conjunction with very low specific weight 
[51]. �e studies on the vibration response of porous FG are 
still limited in number. For porous plates, the nonlinear free 
vibrations analysis of FG porous annular plates resting on 
elastic foundations have been presented by Boutahar et al. [52]. 
�ey concluded that porosity volume fraction and type of 
porosity distribution have a significant influence on the 
geometrically nonlinear free vibration response of the FG 
annular plates at large amplitudes. Wattanasakulpong and 
Ungbhakorn [53] investigated linear and nonlinear vibrations 
of porous Euler FG beams with elastically restrained ends. �e 
material properties of the porous FG beam have been described 
by a modified rule of mixture. Ebrahimi and Mokhtari [54] 
provided a differential transformation method for analyzing 
the vibration of rotating Timoshenko FG beams with porosi-
ties. Moreover, Wattanasakulpong and Chaikittiratana [55] 
predicted the flexural vibrations of porous FG beams using 
the Timoshenko beam theory. �ey found that the porosities 
yield a reduction in the beams’ FG mass and strength. Ebrahimi 
and Zia [56] investigated the large vibration amplitudes of 
porous FG Timoshenko beams by utilizing the nonlinear 

Galerkin and multiple scales methods. Ait Atmane et al. [57] 
applied an efficient beam theory to study the effects of thick-
ness stretching and porosity on the mechanical responses of 
FG beams resting on elastic foundations. For beams subjected 
to thermal environments, the first effort is due to Ebrahimi 
and Salari [58] who studied the vibration of porous FG Euler 
beams subjected to thermal loadings. In the above-mentioned 
study, only one specific porosity distribution was considered 
and no detailed discussion concerning the effects of different 
porosity distributions on the thermo-mechanical behavior of 
porous beams was given. Ebrahimi and Jafari [59] utilized the 
Timoshenko and Reddy beam theories to investigate the 
effects of temperature on the vibration of FG beams with two 
kinds of porosity distributions. In another study [60], the same 
authors investigated the thermomechanical vibration charac-
teristics of porous FG Reddy beams subjected to various ther-
mal loadings by using a Navier solution method. Zahedinejad 
[61] studied the free vibration of FG beams with various 
boundary conditions resting on a two-parameter elastic foun-
dation in the thermal environment by using the third-order 
shear deformation beam theory. �e Differential Quadrature 
Method (DQM) in conjunction with Hamilton’s principle is 
adopted to discretize the governing equations. In the papers 
mentioned above, concerned with the thermo-mechanical 
vibration of FG porous beams utilized the Classic Beam 
(CBT), the Timoshenko Beam (TBT), and the Reddy Beam 
�eories (RBT). �e CBT ignores the effect of the shear defor-
mation and is not appropriate for thick beams and higher 
modes of vibration. �e first-order shear deformation theory 
(TBT) overcomes the limitation of the CBT by introducing a 
shear correction factor in the thickness direction of the beam. 
However, as it does not lead to the expected zero shear stress 
on the top and bottom surfaces of the beam, it appeared nec-
essary to develop a Higher order shear Deformation �eory 
(HDT) which predicts the transverse shear stresses properly 
without introducing any shear correction factor. By employing 
the HDT, many researchers investigated the thermo-mechan-
ical behavior of FGM structures. Kadoli et al. [62] investigated 
the static response of FG beams in a thermal environment 
using the HDT. Larbi et al. [63], followed by Vo et al. [64] 
developed, respectively, an efficient shear deformation beam 
theory and a refined theory for investigating the static and 
vibrational behavior of FG beams.

�is present research focuses on the thermo-mechanical 
performance of simply supported porous thick FGBs on elastic 
foundations, subjected to various thermal loadings with two 
different porosity distributions based on the RHDT. �ree 
types of temperature distributions, through the thickness 
direction of the beam, are supposed: Uniform (UTR), Linear 
(LTR), and Sinusoidal (STR) Temperature Rises. �e material 
properties are assumed to be temperature-dependent and 
graded through the beam thickness according to a modified 
power-law model. A uniform and a nonuniform porosity dis-
tribution, through the thickness direction, are considered. �e 
RHDT is extended to include the influence of several param-
eters on the linear transverse free vibration of porous FG 
beams. �is theory superimposes the effects of both the bend-
ing and shear stresses, and permits a higher-order variation 
of the axial displacement through the depth of the beam so 
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­e power law of the ceramic volume �� is de�ned by [65]:

(�) is the thickness coordinate measured from the middle sur-
face of the beam (−ℎ/2 ≤ � ≤ +ℎ/2). ­e power law index  
(�) de�nes the material variation pro�le across the beam 
thickness, and can be varied to get the optimum distribution 
of the component materials. ­e variation of the material vol-
ume fraction across the FGB thickness associated with the 
power law distribution is plotted in Figure 3. ­is �gure and 
Eq. (3) show that if � vanishes the beam reduces to a pure 
ceramic one. As the gradient index � increases, the ceramic 
volume fraction decreases until it tends to zero, leading to a 
pure metal beam.

Hence, all the properties of P-FGB can be written as:

For example, Young’s modulus, the material density and 
Poisson’s ratio expressions of the P-FGB can be formulated as 
follows:

(3)��(�) = (�ℎ +
1
2)
�; � ≥ 0,

(4)�(�) = (�� − ��)(�ℎ +
1
2)
� + �� − �2(�� + ��).

(5a)�(�) = (�� − ��)(�ℎ +
1
2)
� + �� − �2(�� + ��),

(5b)
�(�) = (�� − ��)(�ℎ +

1
2)
� + �� − �2(�� + ��),

that there is no need for any shear correction factor. ­e equa-
tions of motion of the P-FGB are determined by applying 
Hamilton’s principle and a Navier-type analytical solution.

Several graphical and numerical results are given to illus-
trate the e�ects of various speci�c parameters such as the 
material index, the porosity volume fraction, the elastic foun-
dation parameters, the porosity distribution, and the thermal 
environment on the buckling temperatures and natural fre-
quencies of simply supported P-FGBs.

2. General Formulation

2.1. Problem De�nition. Consider the thick P-FGB shown 
in Figure 1 having the following characteristics: length (�), 
rectangular cross section width (�), and height (ℎ). ­e P-FGB is 
assumed to rest on a Winkler–Pasternak type elastic foundation 
with a Winkler sti�ness (��) and a shear sti�ness (��).
2.2. Mechanical Properties of P-FGB. ­e P-FGB examined 
here is made of a mixture of ceramic and metal, whose 
compositions vary from the top to the bottom surfaces. ­e 
top surface (� = +ℎ/2) of the beam is ceramic-rich, whereas 
the bottom surface (� = −ℎ/2) is metal-rich. ­e e�ective 
material property � (e.g., Young’s modulus �, mass density �, thermal expansion coe¨cient �, and Poisson’s ratio �) is 
assumed to vary through the beam thickness as a function of 
the volume fraction, the properties of the constituent materials 
and the porosity volume fraction (� ≪ 1). For the perfect FGB � is set to zero. As shown in Figure 2, two kinds of porosity 
distribution, uniform, and nonuniform through the cross-
section area of the beam, between the top and bottom surfaces, 
are considered in this study.

If the porosity distribution is assumed to be uniform, the 
rule of mixture is modi�ed as follows [52]:

in which �� and �� are the ceramic and metal volume fractions, 
respectively, related by:

(1)�(�) = ��(�� − �2) + ��(�� −
�
2),

(2)�� + �� = 1.
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Figure 1: Geometry and coordinate system of the P-FGB resting on elastic foundations.
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Figure 2: Porosity distributions through the cross-section area of 
P-FGB.
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the structure dynamic behavior has to take into account this 
temperature-dependency. ­erefore, the e�ective Young’s 
modulus (��) and (��), the material densities (��) and (��),  
and the coe¨cients of thermal expansion (��) and (��) are 
assumed to be temperature-dependent and expressed by 
nonlinear functions of the temperature [68]:

where �0, �−1, �1, �2, and �3 are the temperature-dependent 
coe¨cients given in Table 1 for Si3N4 and SUS304 [69]. ­e 
bottom surface (� = −ℎ/2) of P-FGB is pure metal (SUS304), 
whereas the top surface (� = +ℎ/2) is pure ceramic (Si3N4).

­e Young’s modulus, the material density, the thermal 
expansion, and the Poisson’s ratio are both temperature and 
position dependent, and can be expressed in the uniform 
porosity distribution case as:

and in the nonuniform porosity distribution case as:

­e variations of Young’s modulus through the P-FGB thick-
ness, corresponding to both kinds of porosity distribution, are 
presented in Figures 4 and 5. In Figure 4, in which the porosity 
is uniformly distributed, a regular decrease in Young’s modu-
lus is observed in the beam cross-section.

(7)�(�) = �0(�−1�−1 + 1 + �1� + �2�2 + �3�3),

(8a)
�(�, �) = [��(�) − ��(�)](�ℎ +

1
2)
� + ��(�) − [��(�) + ��(�)] �2 ,

(8b)
�(�, �) = [��(�) − ��(�)](�ℎ +

1
2)
� + ��(�) − [��(�) + ��(�)] �2 ,

(8c)

�(�, �) = [��(�) − ��(�)](�ℎ +
1
2)
� + ��(�) − [��(�) + ��(�)] �2 ,

(8d)
�(�, �) = [��(�) − ��(�)](�ℎ +

1
2)
� + ��(�) − [��(�) + ��(�)] �2 ,

(9a)
�(�, �) = [��(�) − ��(�)](�ℎ +

1
2)
�

+ ��(�) − �2[��(�) + ��(�)](1 −
2|�|
ℎ ),

(9b)
�(�, �) = [��(�) − ��(�)](�ℎ +

1
2)
�

+ ��(�) − �2[��(�) + ��(�)](1 −
2|�|
ℎ ),

(9c)
�(�, �) = [��(�) − ��(�)](�ℎ +

1
2)
�

+ ��(�) − �2[��(�) + ��(�)](1 −
2|�|
ℎ ),

(9d)
�(�, �) = [��(�) − ��(�)](�ℎ +

1
2)
�

+ ��(�) − �2[��(�) + ��(�)](1 −
2|�|
ℎ ).

In the multi-step sequential in�ltration technique used to 
produce FGM samples, the porosities occur mostly at the 
beam middle zone [50] in which it is di¨cult to in�ltrate 
completely the materials, while at the top and bottom zones 
the process of material in�ltration can easily be performed. 
­erefore, in P-FGB with a nonuniform distribution, the 
porosities are centralized around the middle zone of the 
cross-section, and the amount of porosity decreases and tends 
to zero at the cross-section top and bottom. In this case, the 
e�ective material property variations are replaced by the fol-
lowing form [53]:

2.3. Description of the �ermal Environment. For FGMs 
working at high temperatures, signi�cant variations in the 
thermal and mechanical properties of the materials may be 
expected [66]. For example, the Young’s modulus of stainless 
steel and zirconia are reduced by 37% and 31%, respectively, 
when the temperature increases from a room temperature of 
300°K to 1000°K [67]. ­erefore, an accurate description of 

(5c)�(�) = (�� − ��)(�ℎ +
1
2)
� + �� − �2(�� + ��).

(6a)
�(�) = (�� − ��)(�ℎ +

1
2)
�

+ �� − �2(�� + ��)(1 −
2|�|
ℎ ),

(6b)
�(�) = (�� − ��)(�ℎ +

1
2)
�

+ �� − �2(�� + ��)(1 −
2|�|
ℎ ),

(6c)
�(�) = (�� − ��)(�ℎ +

1
2)
�

+ �� − �2(�� + ��)(1 −
2|�|
ℎ ).
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h
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Figure 3: Variation of volume fraction (��) across the thickness of 
FGB for di�erent values of the gradient index (�).
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2.4.3. Sinusoidal Temperature Rise (STR). ­e temperature 
distribution across the thickness direction follows a sinusoidal 
variation as in [71]:

3. General Theory

3.1. Displacement Field of the Beam. According to the Re�ned 
Higher-order Shear Deformation ­eory (RHSDT), the axial 
and transverse displacements of the beam are given by:

In which �0 is the axial displacement of a current point of the 
beam mid-line along the �-axis. ��, �� are the corresponding 
bending and shear components of the transverse displacement 
and � is the time.

(11)� = �� + Δ�(
�
ℎ +
1
2); Δ� = �� − ��.

(12)

�(�) = �� + Δ�(1 − ���[�2 (
�
ℎ +
1
2)]), Δ� = �� − ��.

(13a)�(�, �, �) = �0(�, �) − ������ − �(�)
����� ,

(13b)�(�, �, �) = ��(�, �) + ��(�, �).

In Figure 5, in which the porosities are concentrated 
around the middle zone of the cross section, a higher decrease 
in Young’s modulus is observed in this zone.

Figure 6 shows a comparison of Young’s modulus of the 
perfect (without porosities) and porous FGB in both kinds of 
porosity distributions.

2.4. Temperature Distribution. In order to accurately describe 
the e�ect of the temperature rise through the P-FGB thickness, 
di�erent temperature distributions (see Figure 7) are taken 
into account in the present analysis, i.e., uniform (UTR), linear 
(LTR), and sinusoidal (STR) temperature distributions. Each 
case is accurately de�ned below.

2.4.1. Uniform Temperature Rise (UTR). ­e reference 
temperature is �0 = 300∘K. At �0, the P-FGB is free of stresses 
and the temperature is uniformly raised to a �nal temperature � , with Δ� de�ned by:

2.4.2. Linear Temperature Rise (LTR). ­e temperature of the top 
surface (Ceramic-rich) of the beam is �� and varies linearly from �� to the bottom surface (Metal-rich) temperature ��. ­erefore, 
the temperature rise through the thickness is given by [70]:

(10)Δ� = � − �0.

0.5 p = ∞
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Figure 4: Variation of Young’s modulus through the P-FGB thickness 
for di�erent values of the gradient index (�): �rst kind of porosity 
distribution for (� = 0.2).
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Figure 5: Variation of Young’s modulus through the P-FGB thickness 
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distribution for (� = 0.2).

Table 1: Temperature-dependent coe¨cients of Young’s modulus (�), ­ermal expansion coe¨cient (�), mass density (�), and Poisson’s 
ratio (�) for silicone nitrite Si3N4 and stainless steel SUS304.

Material Properties �0 �−1 �1 �2 �3

Ceramic silicone nitrite Si3N4

� (Pa) 348.43e + 9 0 −3.070e − 4 2.160e − 7 −8.946e − 11
� (K−1) 5.8723e − 6 0 9.095e − 4 0 0
� (Kg/m3) 2370 0 0 0 0
� 0.24 0 0 0 0

Metal stainless steel SUS304

� (Pa) 201.04e + 9 0 3.079e − 4 −6.534e − 7 0
�(K−1) 12.330e − 6 0 8.086e − 4 0 0
� (Kg/m3) 8166 0 0 0 0
� 0.3262 0 −2.002e−4 3.797e − 7 0
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in which �1, �2 are the initial and end time, U  is the beam strain 
energy, U�� is the potential energy of the elastic foundation, 
V  is the load potential, and K  is the kinetic energy.

(i)  ­e variation of the Kinetic energy of the P-FGB can 
be expressed as follows:

where (�0, �1, �2, �1, �2, �2) are mass inertias, de�ned 
as follows:

­e dot-superscript convention corresponds to di�er-
entiation with respect to the time variable (�).

(ii)  ­e variation of the strain energy U  of the P-FGB is 
calculated by:

(18)

�K = ∫�
0
∫ℎ/2
−ℎ/2
�(�)(�̇��̇ + �̇��̇)�����

= ∫�
0
{�0[�̇0��̇0 + (
̇� + 
̇�)(�
̇� + ̇�
�)]
−�1[�̇0 ��
̇��� +

�
̇��� ��̇0] + �2
�
̇���
��
̇���

−�1[�̇0 ��
̇��� +
�
̇��� ��̇0]

+�2[�
̇���
��
̇��� +

�
̇���
��
̇��� ]

+�2 �
̇���
��
̇��� }��,

(19a)(�0, �1, �2) = ∫
ℎ/2

−ℎ/2
(1, �, �2)�(�)���,

(19b)(�1, �2, �2) = ∫
ℎ/2

−ℎ/2
(�, ��, �2)�(�)���.

­e shape function �(�) de�nes the distributions of the 
transverse shear strain and shear stress through the beam 
thickness. ­is function is chosen to satisfy the stress-free 
boundary conditions on the top and bottom surfaces of the 
beam. So, it does not require use of any shear correction factor. 
Based on the hyperbolic shear deformation theory proposed 
by Zenkour [72], the shape function �(�) can be expressed as:

­e nonzero strains associated with the displacement �eld in 
Equations (13a) and (13b) can be expressed as follows:

where ��� and ��� are the normal and shear strains 
respectively.

By assuming that the material of P-FGB obeys Hooke’s law, 
the following linear elastic constitutive equation can be written as:

where �(�, �) is the Shear modulus related to Young’s modulus �(�, �) by:

3.2. Governing Equations. Hamilton’s principle has been used 
herein to derive the equations of motion. ­e principle can be 
stated in an analytical form as follows:

(14)�(�) = � − ℎ sin ℎ(�ℎ) + [cos(
1
2)]
4�3
ℎ2 .

(15a)��� = ���� =
��0�� − �
�2����2 − �(�)

�2����2 ,

(15b)��� = �(�)����� ; �(�) = (1 −
��(�)
�� ),

(16a){������ } = [
�(�, �) 00 �(�, �) ]{ ������ },

(16b)�(�, �) = �(�, �)2(1 + �(�, �)) .

(17)
∫�2
�1
(�K − �U −�U �� + �V )�� = 0,
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Figure 6: Comparison of the variation of Young’s modulus through 
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3.3. Boundary Conditions. In this study, we are concerned with 
the analytical solution for a hard simply supported P-FGB. In 
this case, both ends of the beam are not free to move towards 
the longitudinal direction. ­us, the following conditions are 
imposed:

Substituting the expressions for �U , �U��, �V  and �K  from 
Equations (18), (20), (24) and (25) into Equation (17), the 
following equations of motion are obtained by integrations 
by parts taking into account the previous boundary condi-
tions, and putting together the coe¨cients of ��0, ���,  
and ���.

Eqs. (28a), (28b), and (28c) can be expressed in terms of the 
displacements �0, �� and �� by using Eq. (20) as follows:

(27)

at� = 0, �,
�0 = w� = w� = 0,
� = 0 �� ���0�� − �

�2w���2 − ��
�2w���2 = 0,

�� = 0 �� ���0�� − �
�2w���2 − ��

�2w���2 = 0,
�� = 0 �� �� ��0�� − ��

�2w���2 − ��
�2w���2 = 0,

� = 0 �� � � �w��� = 0.

(28a)��0 : ���� = �0�̈0 − �1
��̈��� − �1

��̈��� ,

(28b)

��� : �
2����2 + ��

�2(�� + ��)��2 − �� �
2(�� + ��)��2+ ��(�� + ��) = −�0(�̈� + �̈�)

− �1 ��̈0�� + �2
�2�̈���2 + �2

�2�̈���2 ,

(28c)
��� : �

2����2 −
��
�� + ��

�2(�� + ��)��2
− �� �

2(�� + ��)��2 + ��(�� + ��)
= −�0(�̈� + �̈�) − �1 ��̈0�� + �2

�2�̈���2 −�2
�2�̈���2 .

(29a)

��0 : ��
2�0��2 − �
�3����3 − ��

�3����3 = �0�̈0 − �1
��̈��� − �1

��̈��� ,

(29b)

��� : ��
3�0��3 − �

�4����4 − ��
�4����4 − ��

�2(�� + ��)��2
+ �� �

2(�� + ��)��2 − ��(�� + ��) = �0(�̈� + �̈�)
+ �1 ��̈0�� − �2

�2�̈���2 − �2
�2�̈���2 ,

where �,��,��, and � are the stress resultants, 
de�ned as:

Using Equations (16a), (16b), (19a), and (19b), the 
stress resultants can be expressed as:

where (�, �,�, ��, ��, ��, � �) are the P-FGB sti�ness, 
de�ned by:

(iii)  ­e variation of the potential energy of the elastic 
foundation is expressed as follows:

­e applied external load, denoted by ��, is considered to 
be due only to the thermal environment. ­e variation of 
this potential load can be expressed as follows:

in which �� is de�ned by:

where � is the thermal expansion coe¨cient that is typi-
cally positive and very small, and Δ� is the temperature 
di�erence de�ned previously for each temperature �eld.

(20)

�U = ∫�
0
∫ℎ/2
−ℎ/2
(������� + �������)�����

= ∫�
0
(����0�� −
�

�2�����2 −
�
�2�����2 + �

������ )���,

(21a)(�,��,��) = ∫
ℎ/2

−ℎ/2
���(1, �, �(�))��,

(21b)� = ∫ℎ/2
−ℎ/2
����(�)��.

(22){{
{{
{

�
�����

}}
}}
}
= [[
[

�
�
��0

����0

������0

000� �
]]
]

{{{{{{{{{{
{{{{{{{{{{
{

��0��
−�2w���2
−�2w���2�w���

}}}}}}}}}}
}}}}}}}}}}
}

,

(23a)(�, �,�) = ∫ℎ/2
−ℎ/2
(1, �, �2)�(�, �)��,

(23b)(��, ��, ��) = ∫
ℎ/2

−ℎ/2
(�, ��, �2)�(�, �)��,

(23c)� � = ∫
ℎ/2

−ℎ/2
�2�(�, �)��.

(24)�U �� = ∫
�

0
(����� + �� ���� ��)���.

(25)�V = ∫�
0
�� �(�� + ��)��

��(�� + ��)�� ���,

(26)�� = ∫ℎ/2
−ℎ/2
�(�, �)�(�, �)Δ���,
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in which

4. Numerical Results and Discussion

­e P-FGB examined is made of Steel (SUS304) and Silicon 
nitride (Si3N4) whose properties are given in Table 1. It is sup-
posed that the temperature rise at the fully metal surface from 
the reference temperature �0 of the beam is �� − �0 = 5∘K [67].

­e nondimensional natural frequencies can be calculated 
by the following relation:

In Table 2, numerical results obtained here for the nondimen-
sional natural frequencies are compared with results of 
Ebrahimi and Jafari [59], based on the Di�erential Transform 
Method (DTM) used to solve the equations of motions, and 
with result of Simsek [73], obtained using Lagrange’s 
equations.

­e shape function used in both works is based on the 
Reddy beam theory and de�ned as:

­e material constituents of the FG beam used are ceramic 
“Alumina (Al2O3)” and metal “Aluminum (Al)”, with the fol-
lowing material properties:

Alumina (Al2O3): (�� = 380���, �� = 3960��/�3, �� = 0.3).
Aluminum (Al): (�� = 70���, �� = 2702��/�3, �� = 0.3).
It is observed that the fundamental frequency parameters 

obtained in the present work are in a good agreement with the 
published results, which validates the present approach.

As a �rst veri�cation and illustration example, the e�ects 
of the power law exponent and the slenderness ratio on the 
fundamental nondimensional frequency of the simply sup-
ported P-FGB are evaluated.

­e variation of dimensionless fundamental frequencies 
in terms of the power law index is plotted in Figure 8. It can 
be seen from this �gure that the frequencies decrease with 
the increase in the power-law index. In fact, increasing the 

(34)

�11 = −��2;
�12 = ��3;
�13 = ���3,
�22 = ���2 − ��4 + ���2 + ��,
�23 = ���2 − ���4 + ���2 + ��,
�33 = ���2 − ���4−���2 + ���2 + ��,
�11 = −�0;�12 = �1�;�13 = �1�,
�22 = −�0 − �2�2;
�23 = −�0 − �2�2;
�33 = −�0 − �2�2;

(35)�� = ���
2

ℎ √
���� .

(36)�(�) = 4�33ℎ2 .

3.4. Analytical Solution for a Simply Supported P-FGB. An 
analytical solution, based on the Navier type method of 
the equations of motion of a simply supported P-FGB is 
provided. ­e displacement variables �0, ��, and �� are 
expanded as combinations of unknown coe¨cients, that will 
be determined for each value of ‘‘�’’, multiplied by known 
trigonometric functions satisfying the governing equations 
and end conditions. ­e displacements are written as:

in which �� is the eigen frequency associated with the ��ℎ eigen 
mode, � = ��/�, and ��,���,��� are the unknown coe¨-
cients that will be determined for each value of  ‘‘�’’. Substituting 
Eq. (30) into Eq. (29) leads to the following Equations:

Analytical solutions may be obtained from the eigenvalue sys-
tem below for any �xed value of ‘‘�’’:

where,

(29c)

��� : �� �
3�0��3 − ��

�4����4 − ��
�4����4

− � � �
2����2 − ��

�2(�� + ��)��2 + �� �
2(�� + ��)��2

− ��(�� + ��) = �0(�̈� + �̈�) + 
1 ��̈0�� − 
2
�2�̈���2

−�2 �
2�̈���2 .

(30)[
[
�0(�, �)��(�, �)��(�, �)
]
]
= ∞∑
�=1

[
[

�� cos (��)�������� sin (��)�������� sin (��)�����
]
]
,

(31a)
−��2�� + ��3��� − ���3��� − �2�[−�0�� + �1���� + �1����] = 0,

(31b)

��3�� + (���2 − ��2 + ���2 + ��)
��� + (���2 − ���4 + ���2 + ��)���
− �2�[�1��� − (�0 + �2�2)��� − (�0 + �2�2)���] = 0,

(31c)

���3�� + (���2 − ���4 + ���2 + ��)���
+ (���2 − ���4−���2 + ���2 + ��)���
− �2�[�1��� − (�0 + �2�2)��� − (�0 + �2�2)���] = 0.

(32)([K] − �2�[M]){Δ} = {0},

(33)

[�] = [
[
�11 �12 �13�12 �22 �23�13 �23 �33

]
]
;

[�] = [
[
�11 �12 �13�12 �22 �23�13 �23 �33

]
]
;

{�} = {{
{

�������
}
}
}
,
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­e reason is that, over other cases of thermal loads, rigidity 
of the P-FGB for sinusoidal thermal load is greatest.

According to results of these tables, it can be seen that, 
when the percentage of the metal is lower than ceramic (� < 1)
the frequencies increase with increase in the porosity index 
for the three thermal loads and both porosity distributions. 
­e increase of internal pores in the P-FGBs increases their 
rigidity, and this situation is more eminent for lower values of 
the power-law index. Also, at constant temperature when the 
percentage of the metal is higher than ceramic (� > 1) the 
fundamental frequencies decrease by increasing the porosity 
index for both porosity distributions.

Comparing the frequency of P-FGB with a uniform and a 
nonuniform porosity distribution revealed that when the pow-
er-law index is in the range of [0–0.5], natural frequencies of 
a uniform porosity distribution are higher than a nonuniform 
porosity distribution. Unlike in the case where the power-law 
index is greater than 0.5. At constant values of the temperature 
and the gradient index, the changes in the porosity index lead 
to more variations in frequencies for a uniform distribution 
in comparison with a nonuniform distribution. So, the impact 
on the natural frequencies of P-FGB is more signi�cant with 
a uniform than with a nonuniform porosity distribution.

To show the impact of temperature on the frequencies, 
Figure 11 presents the dimensionless natural frequency varia-
tion versus the temperature, for various power-law indexes and 
a constant value of slenderness ratio. ­e beam with a uniform 

material index from 0 to 10 changes the composition of the 
FG beam from a fully ceramic beam to a beam with a com-
bination of ceramic and metal. By increasing the metal com-
position, the sti�ness of the structure decreases because of 
the smaller value of the metal’s Young’s modulus, compared 
with that of ceramic. Also, in this kind of composition, the 
density of the metal is greater than the density of ceramic and 
the total mass of the FG beam increases by increasing the 
metal proportion in the beam, which makes it so¿er. 
­erefore, the frequency decreases by increasing the material 
index �.

Figure 9 shows the nondimensional frequency versus the 
slenderness ratio for a constant value of the power law index. 
It can be found that increasing the slenderness ratio yields a 
decrease in the frequencies, and this decrease grows with the 
increase in temperature.

It can be seen also in Figure 10 that the full ceramic beam 
(� = 0) has the highest frequency and the full metallic beam 
(� → ∞) has the lowest frequency. ­is is due to the fact that 
an increase in the value of the power law index results in a 
decrease in the elasticity modulus. In other words, the beam 
becomes more �exible as the volume fraction exponent 
increases, inducing a decrease in the natural frequencies.

­e results given below correspond to various values of 
the temperature change, the power-law index, the porosity 
parameters for three types of temperature rise, i.e., UTR, LTR, 
and STR and two porosity distributions, i.e., uniform and non-
uniform. ­e results given in Tables 3(a) and 3(b) show that 
the natural frequencies of P-FGB decrease with increasing the 
power-law exponents. In fact, when � is zero, the beam is fully 
ceramic and has the greatest frequency. By increasing �, the 
composition of the P-FGB changes from a fully ceramic beam 
to a beam with a combination of ceramic and metal, which 
results in a decrease in the natural frequencies, as explained 
above. ­ese Tables show also that increasing the temperature 
for di�erent types of thermal loads (UTR, LTR, and STR) 
yields a decrease in the natural frequencies. It is clear that 
increasing the temperature yields a decrease in Young’s mod-
ulus and this e�ect is more accentuated at higher temperatures. 
So the e�ect of the temperature change on the natural frequen-
cies cannot be neglected. It is found from both the tables that 
the natural frequencies of P-FGB subjected to a sinusoidal 
temperature rise are higher than that under a linear or a uni-
form temperature rise. Also the di�erence between the fre-
quencies of the three types of thermal loads UTR, LTR, and 
STR becomes larger by increasing the temperature change. 
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Figure 8: E�ect of the power-law index (�) on the dimensionless 
fundamental frequency of P-FGB subjected to sinusoidal temperature 
rise (Δ� = 100°K) for �/ℎ = 20 and � = 0.2.

Table 2: Comparison of the dimensionless fundamental frequency (�1) of perfect simply-supported FGB for Δ� = 0°K .

�/ℎ Solution method
�

0 0.2 0.5 1 2

5
Ebrahimi and Jafari [59] DTM 5.1524 4.8060 4.4106 3.9965 3.6447

Simsek [73] Lagrange’s equations 5.1524 4.8065 4.4083 3.9902 3.6343
Present Navier solution 5.1527 4.8080 4.4106 3.9904 3.6264

20
Ebrahimi and Jafari [59] DTM 5.4603 5.0813 4.6511 4.2055 3.8375

Simsek [73] Lagrange’s equations 5.4603 5.0826 4.6513 4.2050 3.8367
Present Navier solution 5.4603 5.0815 4.6511 4.2050 3.8361



11Advances in Acoustics and Vibration

5

1
0 5 10 15

L/h
20 25 30

D
im

en
sio

nl
es

s f
un

da
m

en
ta

l f
re

qu
en

cy

4.5

4

3.5

3

2.5

2

1.5

∆T = 0°K ∆T = 30°K
∆T = 60°K ∆T = 120°K

Figure 9:  E�ect of slenderness ratio (�/ℎ) on the dimensionless 
fundamental frequency of P-FGB subjected to sinusoidal temperature 
rise for di�erent values of Δ�. � = 0.5, � = 0.2.

p = 0

8

7

6

5

4

3

2

1

0 0 5 10 15 20 25 30
L/h

p = 0.5
p = 1 p = 5

D
im

en
sio

nl
es

s f
un

da
m

en
ta

l f
re

qu
en

cy

Figure 10:  E�ect of slenderness ratio (�/ℎ) on dimensionless 
fundamental frequency of P-FGB subjected to sinusoidal temperature 
rise for di�erent values of �(Δ� = 100∘K), � = 0.2.

porosity distribution is subjected to a uniform temperature 
rise. As can be seen, for all gradient indexes the natural fre-
quency decreases with the increase in the temperature until it 
gets to near zero, where the critical temperature corresponding 
to the buckling temperature of the beam. ­is is because of the 
increment in total �exibility of the beam, considering geomet-
rical sti�ness decreases when temperature rises. On the other 
hand, a¿er this critical temperature this behavior is vice versa. 
Furthermore, the temperature change can so¿en P-FGB at 
pre-buckling region in a way that when the temperature rises 
this e�ect will be increased. It is observed also from the results 
of this �gure that if the power-law index increases, the buckling 
temperature and natural frequency of P-FGB will decrease.

To display the impact of the porosity volume fractions with 
a uniform porosity distribution on the buckling temperature 
and natural frequency, Figure 12 presents the frequency results 
versus the temperature for various porosity parameters at con-
stant values of the slenderness ratio and power-law index. ­e 
higher natural frequencies are obtained before the buckling 
temperature for the higher value of porosity index. ­is behav-
ior is reversed a¿er this temperature. It can be so stated that 
the temperature rise can bring P-FGB to buckling. As it is 
shown in this �gure, an increase of the porosity parameter leads 
a decrease in the buckling temperature, because the higher 
porosity indexes will cause an increase of structure sti�ness.

­e e�ect of the thermal �eld type on the frequencies is 
plotted in Figure 13. ­e beam with a uniform porosity distri-
bution is subjected to three thermal loadings (UTR, LTR, and 
STR) for constant values of the porosity volume fraction, the 
power law index, and the slenderness ratio. It can be found that 
the buckling temperature of P-FGB subjected to STR is higher 
than the other temperature risings.

Figure 14 displays the variations of the dimensionless nat-
ural frequencies of P-FGB with a uniform porosity distribution 
versus the temperature, for di�erent values of the slenderness 
ratio, and constant values of the porosity volume fraction and 
the power law index. ­e beam is subjected to a uniform 

temperature rise. It can be found that the buckling temperature 
decreases with the increase in the slenderness ratio. As it is 
also known for the buckling of straight beams, the Euler crit-
ical-load decreases with increase in the beam slenderness ratio.

In order to analyze the in�uence of elastic foundations on 
the natural frequencies, Figures 15 and 16 present the variation 
of the nondimensional natural frequencies of P-FGB versus 
both elastic foundation parameters. ­e beam with a uniform 
porosity distribution is subjected to a uniform temperature 
rise.

Variation of dimensionless frequencies versus the 
Winkler’s parameter by cancelling Pasternak’s parameter, for 
di�erent values of the porosity parameter is plotted in Figure 
15. ­en, this variation versus the Pasternak’s parameter by 
cancelling Winkler’s parameter, for di�erent values of the 
porosity index is plotted in Figure 16. It can be seen from 
theses curves that, for any values of the porosity index, the 
natural frequencies increase with increasing the Winkler’s and 
Pasternak’s parameters. ­is is due to the fact that by increas-
ing both elastic foundation parameters, the total sti�ness of 
the system increases, and consequently the dimensionless 
frequencies increase. ­e higher frequencies are obtained for 
the higher value of porosity index.

As revealed by Figure 17, Pasternak’s parameter exhibits 
more e�ects on natural frequencies than Winkler’s parameter 
and the higher frequencies are obtained by combining both 
elastic foundation parameters.

5. Conclusions

­e present work was concerned with the modelling of the 
dynamic behavior for Porous Functionally Graded Beams 
(P-FGB) resting on a two-parameter elastic foundation in a 
thermal environment. ­e FG Material properties were sup-
posed to be temperature-dependent and to vary through the 
beam thickness according to a modi�ed rule of mixture 
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Table 3: E�ect of the porosity volume fraction �, the power law index �, and the thermal �eld on the fundamental dimensionless frequency 
of P-FGB, subjected to di�erent temperature changes Δ� for (�/ℎ = 20.)

(a) Uniform porosity distribution

Δ� Porosity volume fraction � ­ermal load type
�

0 0.1 0.3 0.5 1 5 10

30∘K

0
UTR 6.5813 5.7743 4.8752 4.3840 3.7859 3.0276 2.8606
LTR 6.6030 5.7923 4.8889 4.3953 3.7943 3.0330 2.8652
STR 6.6167 5.8037 4.8976 4.4024 3.7995 3.0364 2.8681

0.1

UTR 7.2139 6.1576 5.0580 4.4839 3.8055 2.9805 2.8037
LTR 7.2378 6.1768 5.0721 4.4951 3.8134 2.9852 2.8075
STR 7.2530 6.1891 5.0810 4.5023 3.8184 2.9881 2.8099

0.2

UTR 8.2198 6.7060 5.2937 4.6038 3.8206 2.9161 2.7286
LTR 8.2474 6.7271 5.3083 4.6150 3.8279 2.9198 2.7316
STR 8.2650 6.7405 5.3176 4.6222 3.8325 2.9222 2.7334

60∘K

0
UTR 6.1875 5.3952 4.5128 4.0313 3.4468 2.7111 2.5452
LTR 6.2437 5.4428 4.5505 4.0635 3.4724 2.7308 2.5633
STR 6.2731 5.4676 4.5701 4.0801 3.4856 2.7408 2.5724

0.1

UTR 6.8441 5.8083 4.7299 4.1674 3.5043 2.7036 2.5283
LTR 6.9050 5.8581 4.7678 4.1987 3.5281 2.7207 2.5438
STR 6.9368 5.8842 4.7875 4.2150 3.5403 2.7293 2.5516

0.2

UTR 7.8658 6.3828 4.9985 4.3225 3.5568 2.6782 2.4928
LTR 7.9347 6.4364 5.0370 4.3532 3.5785 2.6924 2.5054
STR 7.9709 6.4645 5.0571 4.3692 3.5897 2.6996 2.5118

120∘K

0
UTR 5.3070 4.5322 3.6640 3.1873 2.6072 1.8767 1.6932
LTR 5.4484 4.6581 3.7733 3.2882 2.6996 1.9680 1.7859
STR 5.5174 4.7190 3.8254 3.3357 2.7422 2.0091 1.8273

0.1

UTR 6.0363 5.0317 3.9802 3.4289 2.7782 1.9954 1.8089
LTR 6.1816 5.1563 4.0834 3.5213 2.8592 2.0716 1.8853
STR 6.2531 5.2171 4.1330 3.5652 2.8968 2.1061 1.9196

0.2

UTR 7.1104 5.6809 4.3395 3.6816 2.9356 2.0850 1.8933
LTR 7.2670 5.8079 4.4384 3.7668 3.0061 2.1477 1.9554
STR 7.3450 5.8705 4.4864 3.8076 3.0391 2.1761 1.9834

(b) Nonuniform porosity distribution

Δ� Porosity volume fraction � ­ermal load type
�

0 0.1 0.3 0.5 1 5 10

30∘K

0
UTR 6.5813 5.7743 4.8752 4.3840 3.7859 3.0276 2.8606
LTR 6.6030 5.7923 4.8889 4.3953 3.7943 3.0330 2.8652
STR 6.6167 5.8037 4.8976 4.4024 3.7995 3.0364 2.8681

0.1

UTR 6.9423 6.0210 5.0258 4.4934 3.8542 3.0590 2.8869
LTR 6.9650 6.0396 5.0397 4.5047 3.8624 3.0641 2.8913
STR 6.9795 6.0514 5.0486 4.5119 3.8676 3.0673 2.8940

0.2

UTR 7.3775 6.3067 5.1932 4.6124 3.9261 3.0902 2.9129
LTR 7.4015 6.3260 5.2074 4.6238 3.9342 3.0950 2.9169
STR 7.4167 6.3383 5.2165 4.6310 3.9393 3.0981 2.9195

60∘K

0
UTR 6.1875 5.3952 4.5128 4.0313 3.4468 2.7111 2.5452
LTR 6.2437 5.4428 4.5505 4.0635 3.4724 2.7308 2.5633
STR 6.2731 5.4676 4.5701 4.0801 3.4856 2.7408 2.5724

0.1

UTR 6.5645 5.6605 4.6844 4.1628 3.5384 2.7674 2.5970
LTR 6.6227 5.7092 4.7222 4.1946 3.5633 2.7859 2.6139
STR 6.6532 5.7345 4.7418 4.2111 3.5760 2.7953 2.6224

0.2

UTR 7.0131 5.9630 4.8713 4.3025 3.6324 2.8222 2.6470
LTR 7.0740 6.0129 4.9093 4.3341 3.6565 2.8395 2.6627
STR 7.1058 6.0390 4.9291 4.3504 3.6689 2.8483 2.6707
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Table 3: Continued.

(b) Nonuniform porosity distribution

Δ� Porosity volume fraction � ­ermal load type
�

0 0.1 0.3 0.5 1 5 10

120∘K

0
UTR 5.3070 4.5322 3.6640 3.1873 2.6072 1.8767 1.6932
LTR 5.4484 4.6581 3.7733 3.2882 2.6996 1.9680 1.7859
STR 5.5174 4.7190 3.8254 3.3357 2.7422 2.0091 1.8273

0.1

UTR 5.7317 4.8521 3.8977 3.3856 2.7723 2.0187 1.8367
LTR 5.8736 4.9763 4.0030 3.4812 2.8577 2.1001 1.9185
STR 5.9432 5.0366 4.0534 3.5265 2.8974 2.1370 1.9552

0.2

UTR 6.2204 5.2027 4.1405 3.5855 2.9324 2.1494 1.9670
LTR 6.3646 5.3262 4.2426 3.6767 3.0118 2.2225 2.0398
STR 6.4357 5.3867 4.2919 3.7201 3.0489 2.2558 2.0727
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Figure 11: E�ect of the temperature change Δ� on the dimensionless 
fundamental frequency of P-FGB with a uniform porosity 
distribution, subjected to a uniform temperature rise, for di�erent 
values of � and �/ℎ = 20, � = 0.2.
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Figure 12: E�ect of the porosity volume fraction � on the buckling 
temperature of P-FGB, with a uniform porosity distribution, subjected 
to a uniform temperature rise, for � = 0.2 and �/ℎ = 20.

0 100 200 300
∆T(°K)

400 500 600

UTR LTR

STR

7

6

5

4

3

2

1

0

D
im

en
sio

nl
es

s f
un

da
m

en
ta

l f
re

qu
en

cy

Figure 13:  E�ect of the thermal �eld shape on the buckling 
temperature and dimensionless fundamental frequency of P-FGB 
with a uniform porosity distribution, subjected to UTR, LTR, and 
STR, for � = 0.2,� = 0.2, and �/ℎ = 20.
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Figure 14:  E�ect the slenderness ratio of �/ℎ on the buckling 
temperature of P-FGB with a uniform porosity distribution, subjected 
to a uniform temperature rise, for � = 0.2, � = 0.2.
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­e e�ects of several parameters such as the power-law 
index, the porosity index, the slenderness ratio of the beam, 
and the porosity distribution on the critical temperature of 
buckling and the natural frequencies of the P-FGB have been 
studied. ­e numerical results obtained show that:

(i)  ­e increase in the material index � leads to a 
decrease in the natural frequency.

(ii)  ­e natural frequency tends to increase when the 
beam becomes shorter (or thicker).

(iii)  ­e increase in the temperature causes a decrease 
in the natural frequency. ­is is due to the fact that 
increasing the temperature leads to a decrease in the 
rigidity of the material of the beam, while its mass 
remains constant.

(iv)  ­e distribution of the temperature �eld has an enor-
mous e�ect on the beam natural frequency and buck-
ling temperature. ­e natural frequency and buckling 
temperature under the (STR) are greater than those 
under the (UTR) and the (LTR).

(v) For a uniform porosity distribution, the increase in 
the porosity causes �rst an increase in the natural 
frequency and buckling temperature. However, this 
trend is reversed for upper values of the gradient 
index �. ­is behavior is dependent on the gradient 
index �.

(vi)  For a nonuniform porosity distribution, increasing 
the porosity causes an increase in the natural fre-
quencies and buckling temperature for all values of 
the gradient index �.

(vii)  ­e variation of the elastic foundation sti�ness con-
siderably a�ects the natural frequencies and buckling 
temperatures. ­e increase in both elastic foundation 
parameters increases the total sti�ness of the system, 

including the porosity. ­e heat distribution along the beam 
height was examined in three cases: a uniform temperature 
rise (UTR), a linear temperature rise (LTR), and a sinusoidal 
temperature rise (STR). Two kinds of porosity distributions 
(uniform and nonuniform) were proposed. ­e Higher-order 
Shear Deformation ­eory was extended to peruse the impact 
of several parameters on the linear bending vibration behavior 
of P-FGBs. ­e equations of motion have been derived using 
Hamilton’s principle and the simply supported beam end con-
ditions. ­e Navier-solution was used to solve the governing 
partial di�erential equations.
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Figure 15: E�ect of Winkler’s parameter �� on the dimensionless 
fundamental frequency of P-FGB with uniform porosity distribution 
for di�erent porosity parameters �, subject to uniform temperature 
rise Δ� = 120∘K, �/ℎ = 20, � = 0.2, and �� = 0.
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Figure 16: E�ect of Pasternak’s parameter �� on the dimensionless 
fundamental frequency of P-FGB with uniform porosity distribution 
for di�erent porosity parameters �, subject to uniform temperature 
rise Δ� = 120∘K, �/ℎ = 20, � = 0.2, and �� = 0.
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Figure 17: E�ect of the combination of Winkler’s and Pasternak’s 
foundation parameters on the buckling temperature of P-FGB with 
a uniform porosity distribution subject to a uniform temperature rise 
for � = 0.2, � = 0.2, and �/ℎ = 20.
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and consequently the natural frequency and buckling 
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It is concluded that various factors, such as the material 
power-law index, the porosity parameter, the elastic founda-
tion parameters, the porosity distribution, and the thermal 
�eld shape have a notable e�ect on the buckling temperatures 
and natural frequencies of porous FGBs. ­erefore, these 
e�ects must be taken into account in the dynamic analysis of 
FG structures working in a thermal environment.
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