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Abstract. This paper presents an analytic model of one dimensional magnetostric-

tion. We show how specific assumptions regarding the symmetry of key micromagnetic

energies (magnetocrystalline, magnetoelastic, and Zeeman) reduce a general three-

dimensional statistical mechanics model to a one-dimensional form with an exact so-

lution. We additionally provide a useful form of the analytic equations to help ensure

numerical accuracy. Numerical results show that the model maintains accuracy over

a large range of applied magnetic fields and stress conditions extending well outside

those produced in standard laboratory conditions. A comparison to experimental data

is performed for several magnetostrictive materials. The model is shown to accurately

predict the behavior of Terfenol-D, while two compositions of Galfenol are modeled

with varying accuracy. To conclude we discuss what conditions facilitate the descrip-

tion of materials with cubic crystalline anisotropy as transversely isotropic, to achieve

peak model performance.
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1. Introduction

Magnetostrictive materials enable the use of numerous technologies including energy

harvesters, ultrasonic transducers, vibration dampers, and even novel antennas [1–10].

These materials intrinsically couple a material’s magnetic and mechanical degrees of

freedom, allowing the magnetization M (H ,σ) and magnetostriction εm(H ,σ) to be

described as a function of the magnetic fieldH and stress σ (or total strain ε). However,

it is difficult to accurately model the strongly coupled nonlinear magneto-mechanical

constitutive response of these materials at the macroscale. The lack of an accurate

non-linear magnetostrictive constitutive model has likely inhibited the design of novel

magnetostrictive technologies.

Figure 1 schematically illustrates two potential magnetization curves M (H ,σ0)

at fixed stress σ0. Two commonly encountered behaviors are highlighted. Type I

curves are concave down until saturation, while Type II curves transition from concave

up to concave down between demagnetization and saturation. Type I curves are

commonly seen in materials like Terfenol-D (Tb0.3Dy0.7Fe19.2) [11, 12], while Type

II curves are encountered in some compositions of Galfenol (e.g., Fe81.6Ga18.4) when

placed in compression [12]. The specific MH curve displayed by a given material is

strongly dependent on its crystalline structure in addition to any externally controlled

anisotropies, like an applied stress. Numerous modeling approaches have been utilized

in an attempt to capture the behaviors seen in Figure 1. Three common approaches

are to either 1) construct polynomial series expansions, 2) assume a modified Langevin

behavior, or 3) utilize statistical mechanics [13–21].

Figure 1. Schematic of two representative MH curves for magnetostrictive materials

at fixed stress. Depending on the crystal structure of the material the responses can

generally be described by curves that are always concave down (Type I) or curves that

transition from concave up to down. (Type II)

Polynomial series expansions start by constructing phenomenological Taylor series

expansion of either the Helmholtz f(H , ε) or Gibbs g(H ,σ) free energy density. Once
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a series is constructed g ≈ −µ0χijHiHj/2 + ..., classical thermodynamics is utilized

to obtain conjugate field variables like the magnetization µ0M = −(∂g/∂H) and

magnetostriction εm = −(∂g/∂σ). These models are straightforward to utilize once

the expansion coefficients (i.e., material properties) are identified [13, 14]. However,

conducting the requisite number of experiments to measure the expansion coefficients

can be technically challenging and costly. Routinely only first order expansions

are utilized, resulting in a preponderance of ’piezomagnetic’ models, even though

piezomagnetism is a fairly rare phenomenon most prevalent in antiferromagnets [22–25].

One important restriction on polynomial approaches is immediately evident from the

curves in Figure 1. Notably, finite expansions are incapable of capturing the saturating

behavior inherent in magnetic phenomena. As a result the use of polynomial models

must be accompanied by knowledge of their bias conditions and limited range of validity.

While the use of higher-order expansions can increase the range of validity, their use

comes at the large cost of rapidly increasing the number of expansion coefficients. In

practice unknowns or variations in test setups can result in difficulties using these

linearized material properties when modeling an actual nonlinear device.

A common alternative to polynomial models is to a priori assume a magnetic

constitutive response that saturates and also assume micromagnetic expressions for

magnetostriction are valid at the macroscale. We refer to this below as ‘Langevin

magnetostriction’. An example of this approach is to assume εm ∝M ⊗M , with M =

MsL(h)ĥ where Ms is the saturation magnetization and L is the Langevin function

depending on the reduced magnetic field h [26, 27]. While the reduced field h(H , T )

is conventionally obtained from a ratio of the magnetic field energy divided by the

thermal energy, several authors have made ad-hoc assumptions that extend h(H ,σ, T )

to depend on stress σ as well [15–18,26–28]. Langevin magnetostriction can qualitatively

simulate a family of the Type I magnetization curves shown in Figure 1, where stress

modulates the susceptibility. While Langevin magnetostriction provides a path to

incorporating saturating behavior and magneto-mechanical coupling, it also introduces

inconsistencies compared to experimental observations, and more advanced models (e.g.,

micromagnetics). One large inconsistency introduced by Langevin magnetostriction

concerns the ∆E effect.

While the assumption εm ∝ M ⊗M is often justified by appealing to the

micromagnetic response εm ∝ M ⊗M/M2
s = m⊗m, it is not generally possible to

simply extend micromagnetic behavior to the macroscale without a suitable averaging

procedure (e.g., it’s more accurate to say εm ∝ 〈m⊗m〉, where 〈.〉 is a relevant thermal

average). Consider that when H = 0 an anhysteretic constitutive model predicts

M = 0, and therefore the assumptions above identically produce zero macroscopic

magnetostriction εm(H = 0,σ) = 0. However, magnetic domains are easily controlled

with stress at zero magnetic field, which is exemplified in numerous experimental

studies that observe the peak ∆E effect occurs when H = 0 [29–31]. This observed

response is explicitly due to zero-field magnetostriction. Attempting to use Langevin

Magnetostriction models while designing a device reliant on the ∆E effect, like a
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magnetometer [32–34], is therefore expected to be a challenging endeavour. Instead

of a priori assuming M = MsL(h)ĥ, we highlight that the Langevin model for classical

paramagnetism is derived using statistical mechanics, indicating these assumptions likely

do not need to be made.

Models constructed with statistical mechanics are capable of capturing the

full nonlinear saturating behavior and strong magneto-mechanical coupling of

magnetostrictive materials. The Gibbs Canonical Ensemble can be used to model a

magnetostrictive material in thermal equilibrium with a heat bath (the environment) at

constant temperature, capable of having work done on it. As shown in Equations (1) -

(2) this can be used to calculate the partition function Z and the expected macroscale

free energy G for a given (microscopic) Landau free energy GL [35].

Z =

∫
M

exp

(
− GL

kbT

)
dm (1)

G = −kbT lnZ (2)

In these equations kbT is the thermal energy and integration is over all possible

states of the system (i.e. M is the set of all admissible magnetization distributions).

The Landau free energy contains any of the relevant energy densities used in

micromagnetics. This allows the impact of external magnetic fields, magnetostatic fields

(demag), magnetocrystalline anisotropy (MCA), exchange energy, and magnetostriction

to be incorporated [35–40]. Once the expected energy G is constructed, classical

thermodynamics can be utilized and a series of partial derivatives leads to the average

properties of the system. For a uniform system with volume V , the average magnetic

moment 〈µ〉 = 〈M〉V = −(∂G/∂H)/µ0, and magnetostriction 〈εm〉 = −(∂G/∂σ)/V .

While statistical models can potentially model paramagnetic, ferromagnetic,

ferrimagnetic, and antiferromagnetic materials with arbitrary anisotropy energies, and

even account for polycrystalline materials [39–41], the requisite integral equations

generally lack closed form solutions and therefore necessitate numerical approximations

[19–21]. This has resulted in common simplifying assumptions including zero

exchange coupling (i.e., paramagnetic behavior) [41–44], potentially with simplified

magnetocrystalline anisotropies that treat polycrystalline cubic materials as transversely

isotropic [43–46]. Improving the computational efficiency of these models has been

the focus of recent research that has shown an excellent ability to fit these models to

experimental data [20,41,43,45–47].

While generating a general 3D model is certainly a goal for this line of research,

simplifying the model to one dimension has several benefits. Most notably, as we

will show below there is a closed form analytical solution for a suitably simplified

1D model. Additionally, we note that most macroscale experimental studies have

utilized conditions where the applied magnetic field and surface tractions are parallel

H ‖ T [11,12,16,47–51]. Each of the cited experimental studies has therefore provided

effectively one-dimensional data, and not tested general 3D loading conditions. In

addition to explaining existing experimental data, a valid 1D model is also expected
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to find use in reduced order models, including magnetostrictive rod and beam theories

[52–54].

The work in this paper presents an analytic constitutive model for magnetostrictive

materials that is derived using statistical mechanics. This is made possible by restricting

the allowed orientations of the applied magnetic field, stress, and MCA, in addition to

restricting the allowable type of MCA. In the following sections we present the necessary

assumptions, derive a 1D magnetostrictive constitutive model, provide a convenient

numerical implementation, and use the model to simulate experimental data from the

literature. Results show this model is capable of accurately simulating the response

of materials with isotropic Joulian magnetostriction when the magnetocrystalline

anisotropy of the material produces Type I magnetization curves as depicted in Figure

1).

2. Model Development

2.1. Boltzmann Statistics

In this section we use the Gibbs Canonical Ensemble to describe a paramagnetic

magnetostrictive material in thermal equilibrium with an environment at constant

temperature, capable of having work done on it. For a paramagnetic material we

focus on the average response of an isolated magnetic moment, allowing us to write

the partition function and expected free energy density as

z =

∫
S

exp (−βgL)dm (3)

g = −β−1 ln z (4)

where gL is the Landau free energy density, β−1 the thermal energy density, and

integration is now restricted to all orientations of m = M/Ms (i.e., over the unit

sphere S). Shown in Equation (5), we consider a free energy density composed of

Zeeman fz, magnetoelastic anisotropy fme, and magnetocrystalline anisotropy fmca
energy densities [35–38].

gL = fz(m;H) + fme(m;σ) + fmca(m;K) (5)

where the notation f(m; ...) indicates m is a prescribed parameter and K is the MCA

tensor. Once the partition function is constructed the equilibrium magnetization and

magnetostriction are calculated by taking partial derivatives of the expected free energy
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in Equation (4), leading to

〈M〉 = Ms
1

z

∫
S

m exp (−βgL)dm

= Ms 〈m〉 (6)

〈εm〉 =
3λs
2

1

z

∫
S

m⊗m exp (−βgL)dm

=
3

2
λs 〈m⊗m〉 (7)

where λs is the saturation magnetostriction. Based on Equations (6) and (7) for the

average magnetization and magnetostriction, we can identify the probability density

function P (m;H ,σ, β) = exp (−βgL)/z. This allows equations (6) and (7) to be

interpreted as thermal averages of the micromagnetic equations for magnetization and

isotropic Joulian magnetostriction.

In addition to obtaining the magnetization and magnetostriction, the nonlinear

material properties can be calculated by taking derivatives of the previous expressions.

The properties are readily shown to be

〈χ〉 = βµ0(〈M ⊗M〉 − 〈M〉⊗ 〈M〉) (8)

〈Sm〉 = β(〈εm⊗ εm〉 − 〈εm〉⊗ 〈εm〉) (9)

〈q〉 = β(〈M ⊗ εm〉 − 〈M〉⊗ 〈εm〉) (10)

where 〈χ〉 is the magnetic susceptibility at constant stress, 〈Sm〉 the magnetostrictive

compliance at constant magnetic field, and 〈q〉 the piezomagnetic coupling tensor defined

by 〈q〉 = ∂ 〈M〉 /∂σ = µ−10 ∂ 〈εm〉 /∂H . We briefly note that the total compliance

S = Sel + 〈Sm〉, where Sel is the elastic compliance (e.g., inverse Young’s modulus

for 1D loading). The form of Equations (8)-(10) reveals that the macroscopic material

properties are proportional to the statistical variance / fluctuation of the underlying

microscopic fields (i.e., var(x) = 〈x2〉 − 〈x〉2).
We briefly note that equations (3) - (10) can commonly be simplified by shifting

the free energy with functions that are independent of m. The magnetization 〈M̃〉 and

magnetostriction 〈ε̃m〉 obtained from the free energy g̃L = gL + f(H ,σ) is related to

the average magnetization 〈M〉 and magnetostriction 〈εm〉 obtained from gL by

z̃ =

∫
S

exp (−βg̃L)dm = z exp(−βf) (11)〈
M̃
〉

= − 1

µ0

∂f

∂H
+ 〈M〉 (12)

〈ε̃m〉 = − ∂f
∂σ

+ 〈εm〉 . (13)

In practice, a function independent of m can be added to gL to ensure the Boltzmann

term exp (−βg̃L) ≤ 1 which aids in numerical calculations (i.e., so the exponential

doesn’t lead to numerical inaccuracies when gL << −1). In what follows, terms with



Nonlinear One-Dimensional Constitutive Model for Magnetostrictive Materials 7

tilde overbars are understood to include an energy offset as described in Equations

(11)-(13).

As previously stated the integrals used in Boltzmann statistics do not generally

possess closed form solutions. However, we now show that exact closed form solutions

exist for a specific type of MCA and restrictions on the orientations of the magnetic

field and stress.

2.2. Quadratic Anisotropy

A closed form solution to Equations (3) - (10) can be obtained under the following

assumptions: 1) the MCA can be represented as a quadratic form fmca = m ·Km, 2)

the material displays isotropic magnetostriction (i.e., λ100 = λ111 = λs), 3) the combined

magnetoelastic anisotropy and MCA is transversely isotropic, and 4) the magnetic field is

perpendicular to the isotropic anisotropy plane. To satisfy these requirements we assume

the material has transversely isotropic MCA, with only two unique eigenvalues Ki. We

assume the unique direction to be the 1-direction, while the 23-plane is isotropic (i.e.,

K1 6= K2 = K3). Additionally, we assume the stress state has only 2 unique principal

stresses σ1 6= σ2 = σ3, where the stress and MCA eigenvectors are parallel. These

stress assumptions are commonly satisfied for long rod or beam-like materials with one

unique axis, and are consistent with numerous experimental studies [11, 12, 16, 47–51].

The assumption of transversely isotropic MCA is a key mathematical assumption in this

model that restricts the possible materials this model is suitable for. This point will be

examined further in the results section.

To see how these assumptions lead to a closed form solution we first construct the

total anisotropy energy density fA

fA = fmca + fme (14)

fmca = m ·Km = Kijmimj (15)

fme = m ·Σm = −3

2
λsσijmimj, (16)

where the isotropic magnetostriction is described by Σ = −3λsσ/2 and σ is the Cauchy

stress. Both K and Σ are symmetric rank 2 tensors. We combine them to define

the non-dimensionalized anisotropy tensor A = −β (K + Σ). The non-dimensionalized

magnetic field is h = βµ0MsH .

Expressing these energies with components parallel to the eigenvectors of A,

−βgL = Aim
2
i +himi, where Ai are the eigenvalues of A. Additionally, the transversely

isotropic A has only two unique eigenvalues A1 6= A2 = A3, and following assumption 4)

h = hê1 is parallel to the 1-axis. Accounting for the fact that |m| = 1 is a unit vector,

and discarding the resultant term independent of m, we have −βgL = Am2
1 + hm1,

where A = A1 − A2 is the change in anisotropy energy from the isotropic plane to

the transverse axis. Summarizing, based on the assumptions above we can simplify
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Equation (3) to

z = 2π

∫ 1

−1
exp

(
Am2

1 + hm1

)
dm1 (17)

The solution to the integral in (17) is a summation of Dawson functions D().

However, when A < 0 the Dawson function produces complex numbers and calculations

using this function can rapidly accumulate large numerical errors. In that case the

integral can be simplified and written in terms of the error function Erf() as summarized

in Equation(18)

z

2π
=

z+ = exp (A+h)D(α+)+exp (A−h)D(α−)√
A

A > 0

z− = −
exp

(
− h2

4A

)√
π(Erf(γ+)−Erf(γ−))

2
√
−A A < 0

(18)

where α± = (2A ± h)/(2
√
A) and γ± = (h ± 2A)/(2

√
−A). Following equations (6) to

(10) above, derivatives of these expressions can be used to obtain the magnetization,

magnetostriction, and nonlinear material properties. However, we first make several

refinements to these equations as there are numerous points where, although they are

analytically correct, they can accrue large numerical errors when evaluated.

The first point at which the current solutions can become inaccurate is when

h >> |A|. Notice that in (18) as A→ 0 the equations become indeterminate. A simple

fix for this problem is to utilize a series expansion of the partition function (Equation

(17)) for small anisotropy values about A = 0. The general form of the series expansion

is provided in the Appendix in section 5.1. Additionally this approximation can be used

to solve for the magnetization, magnetostriction, and material properties. The series

expansion should be used when |A|/h < ε, where ε will depend on the specific numerical

implementation. When testing second order expansions using Matlab we found a cutoff

ratio of |A|/h < 10−7 preserved accuracy in the magnetization and magnetostriction.

The use of the error function Erf(x) is susceptible to numerical errors when x >> 1.

The numerical accuracy can be improved by introducing the scaled complimentary error

function Erfcx(x), where Erf(x) = 1 − exp(−x2) Erfcx(x). This has the advantage of

simplifying several exponential terms, and helping to avoid arithmetic underflow [55].

As previously stated these solutions can be further simplified by shifting the free energy.

The specific energy offsets used below were all chosen to ensures that exponential

terms in the solutions remain bounded as the magnetic field and stress become large.

Combined these changes simplify Equation (18) to

z̃

2π
=


z̃+ = D(α+)+exp (−2h)D(α−)√

A
A > 0

z̃− = −
√
π(−Erfcx(γ+)+exp (−2h) Erfcx(γ−))

2
√
−A A < 0, γ+ > 0

z̃− = −
√
π(−2+exp (−γ2+)Erfcx(γ+)+exp (−γ2−)Erfcx(γ−))

2
√
−A A < 0, γ+ < 0,

(19)
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where the energy offsets applied to Equation (19) are

f =


−A− h A > 0

−A− h A < 0, γ+ > 0

h2/4A A < 0, γ+ < 0.

(20)

These offsets were selected to ensure the exponential terms in (18) converge to zero as

{h, A} → ∞. The derivatives of equations (19) and (20) with respect to h results in

the average magnetization,

〈M〉
Ms

=


− h

2A
− −1+exp(−2h)

2A z̃+
A > 0

− h
2A
− 1−exp(−2h)

2A z̃−
A < 0, γ+ > 0

− h
2A

+
exp (−γ2+)−exp (−γ2−)

2A z̃−
A < 0, γ+ < 0.

(21)

Additionally, the derivative of (18) with respect to A results in an average

magnetostriction of

2

3

〈εm〉
λs

=


h2−2A
4A2 + h

z̃+

(
1+exp (−2h)

2Ah
− 1−exp (−2h)

4A2

)
A > 0

h2−2A
4A2 + h

z̃−

(
1+exp (−2h)

2Ah
− 1−exp (−2h)

4A2

)
A < 0, γ+ > 0

h2−2A
4A2 + h

z̃−

(
exp (γ2+)+exp (−γ2−)

2Ah
− exp (γ2+)+exp (−γ2−)

4A2

)
A < 0, γ+ < 0

(22)

Expressions for the nonlinear material properties in Equations (8) - (10) can be

obtained through additional derivatives of the equations above. As these expressions

are reasonably lengthy, we provide them in section 5.2 of the Appendix.

As a final note, the equations above are written assuming that h ≥ 0. Values for

h < 0 can readily be obtained by noting the magnetization is an odd function with

respect to h, while the magnetostriction is even (i.e., for h < 0 M(h) = −M(|h|). We

also note that in contrast to the Langevin Magnetostriction models discussed in the

introduction, when h = 0 the magnetostriction 〈εm〉 6= 0 in this model. Instead, when

h = 0 a net magnetostriction is induced due to the competing MCA and magnetoelastic

anisotropy energies. Finally, similar equations for 〈M〉 and 〈εm〉 have previously

appeared in the literature, most closely matching the results in Equation (21) and (22)

when A > 0 [56, 57]. However the authors believe this is the first time a numerically

accurate solution for both A < 0 and A > 0 has been presented.

3. Results and Discussion

This section provides 1) a numerical comparison of the closed form solutions presented

in equations (19), (21), and (22) to conventional numerical integration, 2) a qualitative

assessment of material response these solutions produce, and finally 3) assesses the

model’s ability to simulate the experimentally measured response of several common

magnetostrictive materials.
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Table 1. Accuracy compared to numerical integration

Function Avg. Error Max Error

z̃ 2.4× 10−3 6.8× 10−1

〈M〉 1.9× 10−11 2.3× 10−9

〈εm〉 2.4× 10−5 3.9× 10−3

3.1. Numerical Accuracy

To evaluate the numerical accuracy of these solutions they were compared to standard

numerical integration. A grid of N = 100 logarithmically spaced field points 10−2 ≤ h ≤
106 and N = 200 logarithmically spaced anisotropies 10−2 ≤ |±A| ≤ 106 were generated

for Ntotal = 20, 000 points. At each grid point numerical integration was performed using

Matlab’s integral() function with relative and absolute errors of 10−12. The relative

errors for each equation were calculated as |fnum− feqn|/fnum, where f is the parameter

of interest. While we utilized Matlab’s built-in scaled complimentary error function

erfcx(), the built-in Dawson function was quite slow, and instead we approximated

D() using McCabe’s continued fraction. This achieves a precision to 10−15, and has a

simple and fast numerical implementation [58].

The accuracy results are summarized in Table 1. Additionally, detailed error

surfaces are shown in section 5.3 of the Appendix. The data in Table 1 shows 1)

the average relative error per grid point (i.e., sum of individual errors divided by Ntotal)

and 2) the maximum relative error at a single grid point. The relative errors of all three

functions were approximately 10−14 for the majority of the tested grid points. The only

region where the solutions became inaccurate was when the series expansion was used for

|A|/h < 10−7. The maximum errors were all measured in the expansion region. It should

be noted that without the series expansion the error can quickly climb above 100% in

that region (i.e., the expansion worked). While the partition function had a maximum

error of over 50% for the expansion, the resulting magnetization and magnetostriction

still remained accurate as they depend on derivatives of z not its absolute value. The

max relative error in the magnetostriction only reached 0.4%.

To provide more context for this information, if we consider the material properties

for Terfenol-D that are presented in Section 3.3 below, we can show that accuracy

analysis above is valid for applied fields 0 ≤ H ≤ 200 T and stresses 0 ≤ σ ≤ 10

TPa, respectively. This range is clearly far outside those used in standard laboratory

settings, leaving the authors to conclude the presented equations remain numerically

accurate for fields and stress conditions typically applied to these materials. Material

failure and additional phenomena would need to be considered before these equations

become numerically inaccurate.
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Figure 2. Model predictions of (a) magnetization and (b) magnetostriction and (c)

the ∆E effect for possible h and A values.

3.2. Qualitative Assessment

Having shown the equations above accurately solve the integral expressions used in

statistical mechanics, we now turn our attention to analyzing the qualitative response of

the resulting model. Figure 2 illustrates the (a) magnetization and (b) magnetostriction

curves at fixed anisotropy A. Figure 2 (c) shows the ∆E effect this model predicts at

fixed values of h. Starting with Figure 2 (a) we note that in addition to properly

saturating, the model has a lower susceptibility when A is negative (compression) and a

higher susceptibility when A is positive (tension). Furthermore, when A = 0 the model

reduces to the Langevin function as required. Finally, while only small values of A are

presented in Figure 2(a), over the entire range of tested values 10−2 ≤ |±A| ≤ 106 only

Type I behavior was observed. This model does not qualitatively describe materials

with Type II MH curves.

Figure 2 (b) shows the predicted magnetostriction curves as a function of h with

different lines at fixed anisotropy A. Note that the zero field magnetostriction has been

subtracted from each curve to clearly display all curves on the same graph. Therefore

the plot shows 〈εm(h,A)〉 − 〈εm(0, A)〉. For a positive magnetostrictive material in

tension A > 0, the model correctly predicts a small change in magnetostriction as h

increases. For this case tension produces an initial magnetization configuration where

the microscale magnetization starts either parallel or anti-parallel to the magnetic field

direction. Upon increasing h the anti-parallel domains transition to parallel, however

there is no resulting magnetostriction as εm ∝ m2
1 is even in the magnetization.

Conversely, compression causes the magnetization to initially align perpendicular to

the applied field direction. Increasing the applied magnetic field then forces the

domains to become parallel. For a large enough initial compression this results in

〈εm(h,A)〉 − 〈εm(0, A)〉 = 3λs/2 as h increases.

Concluding with Figure 2 (c) the total Young’s modulus of the material Etot was
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calculated using the using the magnetostrictive compliance Sm and elastic Young’s

Modulus Eel,

Etot = (1/Eel + 〈Sm〉)−1. (23)

As the intention of Figure 2 is qualitative assessment of the predicted behavior, a Young’s

Modulus of 1 Pa was chosen. Changing this value changes the amplitude of Etot and

∆E, but not the locations of the peaks. The trends in this graph are consistent with

experimental data in which the largest ∆E effect is observed at zero magnetic field [29].

Furthermore, recalling that A is composed of MCA and magnetoelastic anisotropy, this

model shows that in order to maximize the ∆E effect an applied stress that cancels out

MCA is required. The maximum value of 〈Sm〉 obtained from Equation (9) is equal to

βλ2s/5, leading to the maximum ∆E = Eel − Etot.

max ∆E =

(
1

Eel
+

5

βλ2sE
2
el

)−1
(24)

3.3. Experimental Comparison

In addition to confirming the numerical accuracy of the magnetization and

magnetostriction in Equations (21) and (22), the solutions were compared to

magnetization and magnetostriction curves found in the literature for three different

materials. We digitized data for Terfenol-D Tb0.3Dy0.7Fe19.2 [11], and two compositions

of Galfenol Fe79.1Ga20.9, and Fe81.6Ga18.4 [12]. The saturation magnetization Ms and

saturation magnetostriction λs were directly obtained from the experimental data, with

Ms = max(|M |), and λs = 2/3 max(|εm|). The magnetostriction calculation came from

curves where we assume the initial bias stress was large enough to exclusively produce

180◦ domain walls in the material when H = 0. After Ms and λs were obtained, the only

remaining unknowns in the model are the magnetocrystalline anisotropy coefficient K,

and the thermal energy density term β. For each material K and β were identified by

minimizing the relative error between the constitutive model and the experimental data.

This calculation produces error surfaces that only depend on two variables. Therefore

we did not use a nonlinear optimization routine, but instead calculated the error over a

grid of K and β values. These error surfaces are presented in the results below.

The values of K and β obtained from this procedure, along with the average and

maximum relative error between the modeled and experimental data are presented

in Table 2. As we calculate errors when comparing the 1) magnetization and 2)

magnetostriction data, we present three sets of values for {K, β}, and their errors for

each material. The three cases are for 1) fitting the combined data set, 2) fitting only

the magnetization data, and 3) fitting only the magnetostriction data. The last two fits

can be utilized for models requiring only 〈M〉 or 〈εm〉 (i.e., in one-way-coupled models).

Figure 3 parts (a) and (b) compare the model with experimental data for Terfenol-

D using the combined fit parameters in Table 2. The solid lines are the digitized

experimental data, while the circular markers are modeled data points. Figures 3 (c)-(e)
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Table 2. Model Parameters and Results*

Material Fit K β
Avg. Error Max. Error

〈M〉 〈εm〉 〈M〉 〈εm〉

Tb0.3Dy0.7Fe19.2 Combined -4697 6.5× 10−4 7.8 % 3.0 % 33 % 20 %

Ms = 7.8× 105 Only 〈M〉 6515 1.6× 10−4 5.0 % — 55 % —

λs = 1.4× 103 Only 〈εm〉 -4697 6.6× 10−4 — 3.0 % — 19 %

Fe79.1Ga20.9 Combined 363.6 1.1× 10−3 6.4 % 12 % 26 % 38 %

Ms = 1.2× 106 Only 〈M〉 -767.7 7.4× 10−4 4.0 % — 13 % —

λs = 1.3× 102 Only 〈εm〉 1010 2.8× 10−3 — 6.7 % — 37 %

Fe81.6Ga18.4 Combined 909.2 1.7× 10−3 6.8 % 7.0 % 23 % 31 %

Ms = 1.2× 106 Only 〈M〉 1333 1.6× 10−3 6.5 % — 22 % —

λs = 1.7× 102 Only 〈εm〉 1636 4.6× 10−3 — 5.7 % — 31 %

*Units: Ms (A/M), λs (ppm), K (J/m3), β (m3/J)

Figure 3. (a) Magnetization and (b) magnetostriction of Tb0.3Dy0.7Fe19.2 at constant

stress values compared to the 1D constitutive model with {K,β} minimizing the

combined error. Relative errors of (c) the combined data, (d) only the magnetization,

and (e) only the magnetostriction for a parametric sweep of K and β. In parts (c)-

(e) the red triangular markers are the locations of minimum combined error, while the

yellow circular markers are locations of of minimum magnetization or magnetostriction

error. Data digitized from [11].

show the average relative error per data point for the data in 3(a) and 3(b). The red

triangular markers show the location of the optimal values for the combined error, while

the yellow circles are the locations of minimum error when fitting just the magnetization

/ magnetostriction. When using the {K, β} that minimize the combined error, there is

7.8% and 3.0% relative error per data point in the magnetization and magnetostriction
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comparison, respectively. It is worth noting that the best fit parameters for the

magnetization 3(d) and magnetostriction 3(e) occur for different {K, β}. The combined

result in 3(c) is skewed towards the optimal magnetostriction location as a wide range

of {K, β} values produce errors close to the global magnetization minima of 5.0% (as

seen in 3(d)). It is possible to reduce the average error to 5.0% if only the magnetization

is compared, or 3.0% if only the magnetostriction is compared.

Figure 4 parts (a) and (b) show a comparison of the experimental data for

Fe79.1Ga20.9 using the combined fit parameters, with formatting identical to 3. Figures

4(c)-(e) show the average relative error for the data in 4(a) and 4(b) is 6.4% and 12% per

data point respectively. For this material the magnetization data is accurately described,

while the model struggles to capture the magnetostriction data in compression. It is

possible to reduce the average error to 4.0% if only the magnetization is compared, or

6.7% if only the magnetostriction is compared (i.e., the presented magnetization is close

to its best fit, while the magnetostriction can be improved).

Figure 4. (a) Magnetization and (b) magnetostriction of Fe79.1Ga20.9 at constant

stress values compared to constitutive model. Relative errors of (c) the magnetization

(d) the magnetostriction and (e) the combination of the two over a parametric

sweep of K and β. In parts (c)-(e) the red triangular markers are the locations of

minimum combined error, while the yellow circular markers are locations of of minimum

magnetization or magnetostriction error. Data digitized from [12].

Figure 5 parts (a) and (b) show a comparison of the experimental data for

Fe81.6Ga18.4 using the combined fit parameters. Figures 5 (c) shows the average relative

error for the data in 5(a) and (b) is 6.8% and 7% per data point respectively. Once

again the combined result in 5(c) is skewed towards the optimal magnetization. Despite

this low relative error, a close look at 5(a) shows that the constitutive model doesn’t

qualitatively capture the nonlinear (Type II) behavior that occurs when the material is



Nonlinear One-Dimensional Constitutive Model for Magnetostrictive Materials 15

subjected to large compressive stresses. As a result, we do not recommend using the

analytical model for this composition of Galfenol.

Figure 5. (a) Magnetization and (b) magnetostriction of Fe81.6Ga18.4 at constant

stress values compared to constitutive model. Relative errors of (c) the magnetization

(d) the magnetostriction and (e) the combination of the two over a parametric

sweep of K and β. In parts (c)-(e) the red triangular markers are the locations of

minimum combined error, while the yellow circular markers are locations of of minimum

magnetization or magnetostriction error. Data digitized from [12].

Revisiting the anisotropy assumptions utilized in this model can help explain

when the model is expected to accurately simulate experimental data. A relatively

small restriction was placed on the isotropic magnetostrictive and Zeeman energies by

assuming the principle stresses σ1 6= σ2 = σ3, with a magnetic field H ‖ ê1. We note

this mimics the field / stress combinations applied in the experimental studies compared

to above, and therefore should not decrease the accuracy of the model. Even for a non-

isotropic magnetostrictive material, as long as the stress and field are parallel to the

〈100〉 direction the model accurately describes the magnetostrictive energy. Conversely,

a significant restriction was placed on the MCA by requiring it to be transversely

isotropic. Due to this assumption the model is only capable of modeling Type I MH

curves. The crystalline structure of Terfenol-D and Galfenol are typically cubic with

MCA of the form,

fcubic = K1(m
2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1) +K2(m

2
1m

2
2m

2
3). (25)

While the use of cubic MCA is expected to produce a more accurate model, there is no

known closed form solution to the integral equations above once an MCA of this form

is utilized. However, we can analyze the effect K1 and K2 have on magnetization curves
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Figure 6. MH curves under 50 MPa of compression with (a) Transversely Isotropic

MCA, K = −4500J/m
3
, (b) Cubic MCA for Fe79.1Ga20.9, K1 = −1e3J/m

3
and

K2 = 1e4J/m
3
, (c) and Cubic MCA for Fe81.6Ga18.4, K1 = 3.5e4 J/m

3
and K2 = −8e4

J/m
3

[59]. Inset graphs contain the probability density of the systems at Points 1 and

2

by relying on numerical integration (e.g., Riemann sums), to compare cubic MCA to

transversely isotropic.

Figure 6 (a) shows a Type I MH curve produced using the proposed model under 50

MPa of compression, and a K value of -4500 (J/m3), simulating the Terfenol-D modeled

above. To understand how the MH curve saturates we examine the probability landscape

of two points along the curve. For each point of interest, the probability density of the

system in spherical coordinates is calculated using P (θ;H, σ, β) = exp (−βgL)/z. The

inset of Figure 6 (a) plots the probability density against the possible magnetization

directions θ. Starting at Point 1, µ0H = 15 mT in the negative z direction, the applied

field has moved the peak probability from θ = π/2 a small amount towards θ = π. As

µ0H increases to 20 mT and we transition along the MH curve to Point 2, the peak

again gradually shifts to the right. As the field is continually increased past Point 2, the

location of peak probability continues to gradually shift towards θ = π. It is this gradual

change in the probable direction of magnetization that produces Type I behavior. The

only noticeable change in the MH curve is the final approach to saturation. This occurs

when the location of peak probability is exactly at θ = π, and instead of moving, it

simply becomes more and more probable (i.e., corresponding to an increasingly large

energy minima at that point).

Figure 6 (b) shows an MH curve for Fe79.1Ga20.9 produced using K1 = −1e3 J/m3

and K2 = 1e4 J/m3 [59] and placing the material under 50 MPa of compression. For

this MCA energy minima occur in the 〈100〉 family of directions when h = 0 and σ = 0.

Applying stress causes the minima to appear exclusively in the 〈100〉, 〈1̄00〉, 〈010〉, and

〈01̄0〉 directions (i.e., ±x and ±y). To plot the 2D probability landscape in a single

line the inset of Figure 6 (b) shows P (θ) = P (θ, φ = π/4). In the inset of Figure 6
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(b) the exact same trend as the inset of Figure 6 (b) is observed. Starting at Point 1,

µ0H = 15 mT, and moving to point 2, µ0H = 20 mT, we see the same gradual shift in

the probable direction of magnetization which produces Type I behavior.

Finally, 6 (c) shows an MH curve for Fe81.6Ga18.4 produced using K1 = 3.5e4 J/m3

and K2 = −8e4 J/m3 [59] and placing the material under 50 MPa of compression. Of

note the points of interest were specifically chosen to highlight the Type II transition

from concave up to down and again occur at µ0H = 15 mT and 20 mT. Also as this

is another cubic material, the single line plotted in the inset graph is the maximum

probability, P (θ) = P (θ, φ = 0). At Point 1 the direction with the highest probability

is slightly to the right of θ = π/2. However, as we move to Point 2 there is a significant

change in the probability landscape. The global minima abruptly shifts to θ = π and

an additional probability peak emerges. This abrupt change in the probable direction

of magnetization is what causes the magnetization curve to change from concave up

to down, and the presence of this second peak is what has kept the material from

saturating. Due to the assumption of transversely isotropic MCA the model in this

paper is incapable of simulating Fe81.6Ga18.4, or other materials with similar anisotropies

that produce abrupt changes in the probability landscape.

4. Conclusion

This paper provides an analytical one-dimensional constitutive model for magnetostric-

tion. Closed form analytical solutions were provided to calculate the average magneti-

zation, magnetostriction, susceptibility, compliance, and piezomagnetic coupling coeffi-

cient. Additionally, it was demonstrated that the analytical model maintains numerical

accuracy over a large range of applied magnetic fields and stress / anisotropy conditions.

Finally, the model was used to simulate experimental data for three different materials.

This comparison only required fitting two model parameters to the data. Comparisons

between the experimental and modeled results indicate that the model is capable of sim-

ulating Terfenol-D and is expected to also accurately describe certain cubic materials

as long as they have probability landscapes that are well approximated as transversely

isotropic.
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5. Appendix

5.1. Low Anisotropy Series Expansion

As previously stated, the solutions become indeterminate when A = 0. By performing

a series expansion of exp (Am2
1) about A = 0 we not only provide a solution for when

A = 0, but also obtain an accurate solution when h >> |A|. Expanding the exponential

about A = 0 and substituting it into the partition function we find that,

z/2π =
N∑
n=0

zn =
N∑
n=0

1∫
−1

(−Am2
1)
n

n!
exp (hm1)dm1 (26)

which has the general solution

zn =
(2n)!(−A)n(−h)−2n

hn!

(
(−1)4n+1 − 1 +

2n∑
k=0

(−h)keh + (−1)4n+1hke−h

k!

)
. (27)

This expression has been provided in terms of polynomial expansions, however slightly

more compact expressions can be obtained in terms of gamma functions. As the

expressions can become very lengthy, the authors utilized a computer algebra system

(Mathematica) to simplify the expressions and export them for use in Matlab.

Using the thermodynamic relationships described above both the average material

response and material properties can be found by taking partial derivatives of zn with

respect to h and A for a desired level of accuracy, controlled by N . In the error analysis

below, a value of N = 2 was utilized.

5.2. Material Properties

Magnetization and magnetostriction (Equations (6) and (7)) are proportional to 〈m〉
and 〈m⊗m〉. When restricted to one dimensional behavior, this can be simplified to

〈M〉 = Ms 〈m〉 (28)

〈εm〉 =
3

2
λs
〈
m2
〉

(29)

Using this new notation the relationships in equations (8) - (10) can be rewritten as

〈χ〉 = βµ0M
2
s

[ 〈
m2
〉
− 〈m〉2

]
(30)

〈Sm〉 = β

(
3λs
2

)2 [ 〈
m4
〉
−
〈
m2
〉2 ]

(31)

〈q〉 = βMs
3λs
2

[ 〈
m3
〉
− 〈m〉

〈
m2
〉 ]

(32)

The definitions for 〈m〉 and 〈m2〉 were previously presented in equations (21)

and (22). The only terms yet to be defined are the tensor products



Nonlinear One-Dimensional Constitutive Model for Magnetostrictive Materials 19

{〈m⊗m⊗m〉 , 〈m⊗m⊗m⊗m〉} simplified in one dimension as {〈m3〉 , 〈m4〉} re-

spectively. These two terms and are shown here.

〈
m3
〉

=



1
z̃+8A7/2

(√
A
(
4A2

(
1− e−2h

)
− 2A

(
e−2h(h− 2) + h+ 2

)
+
(
1− e−2h

)
h2
))
− 6Ah+h3

8A3 A > 0

1
z̃−8A3

(
4A2

(
1− e−2h

)
− 2A

(
e−2h(h− 2) + h+ 2

)
+
(
1− e−2h

)
h2
)

+ 6Ah−h3
8A3 A < 0, γ+ > 0

1
z̃−8A3

(
e−γ1

2−γ22 ((1
2

(
eh − e−h

)
(6Ah+ 8(A− 1)A+ 5h2)

+1
2

(
e−h + eh

)
h(2A+ 3h)

)
eγ1

2+h − 3eγ2
2
h(2A+ h)

))
+ 6Ah−h3

8A3 A < 0, γ+ < 0

(33)

〈
m4
〉

=



1
z̃+8A4

(
A
(
e−2h + 1

)
(4A2 − 6A+ h2)

−1
2

(
1− e−2h

)
h (2A(2A− 5) + h2)

)
+ 12A2−12Ah2+h4

16A4 A > 0

1
z̃−16A4

(
e−2h

(
8A3

(
e−2h + 1

)
− 4A2

(
e−2h(3− h) + h+ 3

)
+2Ah

(
e−2h(h− 5) + h+ 5

)
−
(
1− e−2h

)
h3
))

+ 12A2−12Ah2+h4
16A4 A < 0, γ+ > 0

1
z̃−16A4

(
e−γ2

2 (
8A3

(
e2h + 1

)
+ 4A2

(
h− e2h(h+ 3)− 3

)
−2Ah

(
−6heγ2

2−γ12 + 5e2h(h− 1)− h+ 5
)
− h3

(
−6eγ2

2−γ12 + 7e2h − 1
)))

+12A2−12Ah2+h4
16A4 A < 0, γ+ < 0

(34)

5.3. Error Surfaces

The following figures are the error surfaces generated by comparing the presented

model to numerical integration. A grid of N = 100 logarithmically spaced field points

10−2 ≤ h ≤ 106 and N = 200 logarithmically spaced anisotropies 10−2 ≤ | ± A| ≤ 106

were generated for Ntotal = 20, 000 points. At each grid point numerical integration

was performed using Matlab’s integral() function with relative and absolute errors

of 10−12. The relative errors for each equation were calculated as |fnum − feqn|/fnum,

where f is the parameter of interest.

Figure 7 examines equation (19) for z̃ which notably includes the energy offsets

shown in (20). Including these offsets changes the numerical value of the partition

function, however only the slope of z̃ produces observable quantities, so the shift has

negligible physical impact. The yellow triangular region, which has relative errors

ranging from 10% to 100%, is where the low anisotropy series expansion was employed
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Figure 7. Logarithmically scaled relative error of the equation (19) for z̃ compared

to standard numerical integration with absolute errors 10−12

(|A|/h < 10−7). While this error is quite high Figures 8 and 9 below show that

the low anisotropy expansion maintained low relative errors for the magnetization

and magnetostriction, respectively. Outside the expansion region the equations for z̃

maintains an average relative error near 10−14.

Figure 8 compares equation (21) for 〈M〉 to numerical integration. Over all

tested field values the relative error ranged from only 10−16 to 10−8 showing that the

magnetization solutions maintain significant numerical accuracy for all applied fields and

stresses. The error starts increasing as h/|A| grows, however once the low anisotropy

expansion is utilized the error returns to 10−13.

Finally, Figure 9 compares equation (22) for 〈εm〉 to numerical integration. The

maximum observed error in this graph remains ≤ 10−3. While the error once again

climbs as both h/|A| grows, the low anisotropy expansion prevents the error from

climbing any larger.
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Figure 8. Logarithmically scaled relative error of equation (21) for 〈M〉 compared to

standard numerical integration with absolute errors 10−12

Figure 9. Logarithmically scaled relative error of equation (22) for 〈εm〉 compared to

standard numerical integration with absolute errors 10−12

References

[1] Claeyssen F, Lhermet N, Le Letty R and Bouchilloux P 1997 Journal of Alloys and Compounds

258 61–73 ISSN 0925-8388

[2] Davino D, Giustiniani A, Visone C and Adly A 2011 Journal of Applied Physics 109 07E509 ISSN

0021-8979

[3] Deng Z and Dapino M J 2018 Smart Materials and Structures 27 113001 ISSN 0964-1726, 1361-

665X

[4] Lafont T, Gimeno L, Delamare J, Lebedev G A, Zakharov D I, Viala B, Cugat O, Galopin N,

Garbuio L and Geoffroy O 2012 Journal of Micromechanics and Microengineering 22 094009



Nonlinear One-Dimensional Constitutive Model for Magnetostrictive Materials 22

ISSN 0960-1317

[5] Li P, Liu Q, Zhou X, Xu G, Li W, Wang Q and Yang M 2021 Journal of Vibration and Control

27 573–581 ISSN 1077-5463

[6] Narita F and Fox M 2018 Advanced Engineering Materials 20 1700743 ISSN 1438-1656

[7] Wang L and Yuan F G 2008 Smart Materials and Structures 17 045009 ISSN 0964-1726

[8] Wang N j, Liu Y, Zhang H w, Chen X and Li Y x 2016 China Foundry 13 75–84 ISSN 2365-9459

[9] Zenkour A M and El-Shahrany H D 2020 Applied Mathematics and Mechanics 41 1269–1286 ISSN

1573-2754

[10] Domann J P and Carman G P 2017 Journal of Applied Physics 121 044905 ISSN 0021-8979

[11] Zhao X G and Lord D G 1998 Journal of Applied Physics 83 7276–7278 ISSN 0021-8979

[12] Mahadevan A, Evans P G and Dapino M J 2010 Applied Physics Letters 96 012502 ISSN 0003-6951

[13] Carman G P and Mitrovic M 1995 Journal of Intelligent Material Systems and Structures 6 673–

683 ISSN 1045-389X

[14] Wan Y, Fang D and Hwang K C 2003 International Journal of Non-Linear Mechanics 38 1053–

1065 ISSN 0020-7462

[15] Shi P, Jin K and Zheng X 2016 Journal of Applied Physics 119 145103 ISSN 0021-8979

[16] Zhang D G, Li M H and Zhou H M 2015 AIP Advances 5 107201

[17] Zhou H M, Li M H, Li X H and Zhang D G 2016 Smart Materials and Structures 25 085036 ISSN

0964-1726

[18] Kim S, Kim K, Choe K, JuHyok U and Rim H 2020 AIP Advances 10 085304

[19] Atulasimha J 2006 Characterization and Modeling of the Magnetomechanical Behavior of Iron-

Gallium Alloys Ph.D. thesis University of Maryland URL https://drum.lib.umd.edu/handle/

1903/3951

[20] Evans P G and Dapino M J 2008 IEEE Transactions on Magnetics 44 1711–1720 ISSN 1941-0069

[21] Armstrong W D 1997 Journal of Applied Physics 81 2321–2326 ISSN 0021-8979, 1089-7550

[22] Dzialoshinskii I E 1957 Journal of Experimental and Theoretical Physics 2

[23] Newnham R E 2005 Properties of Materials: Anisotropy, Symmetry, Structure (OUP Oxford)

ISBN 978-0-19-852075-7

[24] Ibrahim M and Salehian A 2015 Journal of Intelligent Material Systems and Structures 26 1259–

1271 ISSN 1045-389X

[25] Yan Z 2018 Smart Materials and Structures 27 015016 ISSN 0964-1726, 1361-665X

[26] Sablik M J, Kwun H, Burkhardt G L and Jiles D C 1987 Journal of Applied Physics 61 3799–3801

ISSN 0021-8979

[27] Li J and Xu M 2011 Journal of Applied Physics 110 063918 ISSN 0021-8979

[28] Wang Z D, Deng B and Yao K 2011 Journal of Applied Physics 109 083928 ISSN 0021-8979

[29] Datta S, Atulasimha J, Mudivarthi C and Flatau A B 2010 Journal of Magnetism and Magnetic

Materials 322 2135–2144 ISSN 0304-8853

[30] Datta S 2009 Quasi-Static Characterization and Modeling of the Bending Behavior of Single Crystal

Galfenol for Magnetostrictive Sensors and Actuators Ph.D. University of Maryland, College Park

United States – Maryland URL https://www.proquest.com/docview/304924991/abstract/

3D4C6C6294454CCFPQ/1

[31] Hubert O and Daniel L 2010 IEEE Transactions on Magnetics 46 401–404 ISSN 1941-0069

[32] Nan C W, Bichurin M I, Dong S, Viehland D and Srinivasan G 2008 Journal of Applied Physics

103 031101 ISSN 0021-8979

[33] Hatipoglu G and Tadigadapa S 2015 Applied Physics Letters 107 192406 ISSN 0003-6951

[34] Viehland D, Wuttig M, McCord J and Quandt E 2018 MRS Bulletin 43 834–840 ISSN 0883-7694,

1938-1425

[35] Bertotti G 1998 Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers

(Gulf Professional Publishing) ISBN 978-0-12-093270-2

[36] Chikazumi S 2009 Physics of Ferromagnetism second edition ed International Series of Monographs

on Physics (Oxford, New York: Oxford University Press) ISBN 978-0-19-956481-1

https://drum.lib.umd.edu/handle/1903/3951
https://drum.lib.umd.edu/handle/1903/3951
https://www.proquest.com/docview/304924991/abstract/3D4C6C6294454CCFPQ/1
https://www.proquest.com/docview/304924991/abstract/3D4C6C6294454CCFPQ/1


Nonlinear One-Dimensional Constitutive Model for Magnetostrictive Materials 23

[37] Cullity B D and Graham C D 2009 Introduction to Magnetic Materials 2nd ed (Hoboken, N.J:

IEEE/Wiley) ISBN 978-0-471-47741-9

[38] O’Handley R C 2000 Modern Magnetic Materials: Principles and Applications (New York: Wiley)

ISBN 978-0-471-15566-9

[39] Kardar M 2007 Statistical Physics of Particles (Cambridge University Press) ISBN 978-1-139-

46487-1

[40] Landau L D and Lifshitz E M 1976 Mechanics: Volume 1 (Butterworth-Heinemann) ISBN 978-0-

7506-2896-9

[41] Atulasimha J, Flatau A B and Cullen J R 2008 Journal of Applied Physics 103 014901 ISSN

0021-8979

[42] Smith R C, Dapino M J and Seelecke S 2003 Journal of Applied Physics 93 458–466 ISSN 0021-

8979

[43] Evans P G and Dapino M J 2010 Journal of Applied Physics 107 063906 ISSN 0021-8979

[44] Wahi S K, Kumar M, Santapuri S and Dapino M J 2019 Journal of Applied Physics 125 215108

ISSN 0021-8979

[45] Evans P G and Dapino M J 2009 Journal of Applied Physics 105 113901 ISSN 0021-8979

[46] Evans P G and Dapino M J 2013 Journal of Magnetism and Magnetic Materials 330 37–48 ISSN

03048853

[47] Atulasimha J and Flatau A 2011 Smart Materials and Structures 20 043001

[48] Clark A, Restorff J, Wun-Fogle M, Lograsso T and Schlagel D 2000 IEEE Transactions on

Magnetics 36 3238–3240 ISSN 1941-0069

[49] Elhajjar R, Law C T and Pegoretti A 2018 Progress in Materials Science 97 204–229 ISSN 0079-

6425

[50] Wun-Fogle M, Restorff J B and Clark A E 2006 Journal of Intelligent Material Systems and

Structures 17 117–122 ISSN 1045-389X

[51] Moffett M B, Clark A E, Wun-Fogle M, Linberg J, Teter J P and McLaughlin E A 1991 The

Journal of the Acoustical Society of America 89 1448–1455 ISSN 0001-4966

[52] Nayfeh A H, Younis M I and Abdel-Rahman E M 2005 Nonlinear Dynamics 41 211–236 ISSN

0924-090X, 1573-269X

[53] Wang Q, Li X, Liang C Y, Barra A, Domann J, Lynch C, Sepulveda A and Carman G 2017 Applied

Physics Letters 110 102903 ISSN 0003-6951, 1077-3118

[54] Younis M, Abdel-Rahman E and Nayfeh A 2003 Journal of Microelectromechanical Systems 12

672–680 ISSN 1941-0158

[55] Cody W J 1993 ACM Transactions on Mathematical Software 19 22–30 ISSN 0098-3500, 1557-7295

[56] Raghunathan A, Melikhov Y, Snyder J E and Jiles D C 2009 Applied Physics Letters 95 172510

ISSN 0003-6951

[57] Talleb H, Do T A, Gensbittel A and Ren Z 2020 IEEE Transactions on Magnetics 56 1–4 ISSN

1941-0069

[58] McCabe J H 1974 Mathematics of Computation 28 811–816 ISSN 0025-5718, 1088-6842

[59] Rafique S, Cullen J R, Wuttig M and Cui J 2004 Journal of Applied Physics 95 6939–6941 ISSN

0021-8979, 1089-7550


	1 Introduction
	2 Model Development
	2.1 Boltzmann Statistics
	2.2 Quadratic Anisotropy

	3 Results and Discussion
	3.1 Numerical Accuracy
	3.2 Qualitative Assessment
	3.3 Experimental Comparison 

	4 Conclusion
	5 Appendix
	5.1 Low Anisotropy Series Expansion
	5.2 Material Properties
	5.3 Error Surfaces


