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Abstract. Two groups have a common model geometry if they act properly and cocompactly by
isometries on the same proper geodesic metric space. The Milnor-Schwarz lemma implies that groups
with a common model geometry are quasi-isometric; however, the converse is false in general. We
consider free products of uniform lattices in isometry groups of rank-1 symmetric spaces and prove,
within each quasi-isometry class, residually finite groups that have a common model geometry are
abstractly commensurable. Our result gives the first examples of hyperbolic groups that are quasi-
isometric but do not virtually have a common model geometry. Indeed, each quasi-isometry class
contains infinitely many abstract commensurability classes. We prove that two free products of closed
hyperbolic surface groups have a common model geometry if and only if the groups are isomorphic.
This result combined with a commensurability classification of Whyte yields the first examples of
torsion-free abstractly commensurable hyperbolic groups that do not have a common model geome-
try. An important component of the proof is a generalization of Leighton’s graph covering theorem.
The main theorem depends on residual finiteness, and we show that finite extensions of uniform
lattices in rank-1 symmetric spaces that are not residually finite would give counterexamples.

1. Introduction

The study of the large-scale geometry of finitely generated groups seeks to relate three notions:
the quasi-isometry class of a group, the abstract commensurability class of a group, and geometric
actions of a group on proper geodesic metric spaces. Within this framework, first suggested by
Gromov [Gro87], quasi-isometry and abstract commensurability define equivalence relations on the
class of finitely generated groups. Moreover, abstract commensurability and geometric actions on a
common proper geodesic metric space imply a quasi-isometry (the latter being the Milnor-Schwartz
lemma).

The large-scale geometry of a free product of finitely generated hyperbolic groups depends only
on the one-ended factors; the quasi-isometry classification in this setting was given by Papasoglu–
Whyte [PW02]. Martin–Światkowski [MS15] further proved that the boundary of such a group is
determined up to homeomorphism by the homeomorphism types of the boundaries of the one-ended
factors. Thus, there is a great deal of flexibility in creating quasi-isometric groups by free product
constructions. In contrast, we prove in this paper that a strong form of rigidity may hold if one
requires the groups act geometrically on the same space.

A model geometry for a group is a proper geodesic metric space on which the group acts geometri-
cally, i.e. properly and cocompactly by isometries. In parallel to the notion of quasi-isometric rigidity,
we define a group G to be action rigid if any group that shares a common model geometry with G
is abstractly commensurable to G. For example, closed hyperbolic n-manifold groups are not action
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rigid for each n ≥ 3, as they all act geometrically on Hn, but there are infinitely many abstract
commensurability classes of such groups. On the other hand, any group that is quasi-isometrically
rigid is action rigid. We consider action rigidity within classes of groups for which the quasi-isometry
and abstract commensurability classifications do not coincide.

The first examples of hyperbolic groups that are quasi-isometric but do not have a common model
geometry were given by Mosher–Sageev–Whyte [MSW03]. Let Gp = Z/pZ ∗ Z/pZ for some prime
p > 2. A group in the class {Gp | p > 2 is prime} is virtually free and has a natural action on
the Bass-Serre tree associated to its splitting as a free product. Although all groups in the set
{Gp | p > 2 is prime} are quasi-isometric, Mosher–Sageev–Whyte [MSW03] showed that the groups
Gp and Gq have a common model geometry if and only if p = q. All groups in this class virtually
have a common model geometry, meaning that two such groups have finite-index subgroups that
have a common model geometry. Indeed, any pair of finitely generated, non-abelian free groups act
geometrically on the 4-valent tree. The torsion in Gp is precisely the obstruction to finding a common
model geometry – the proof exploits the fact that any proper, minimal action of Gp on a simplicial
tree must be the natural action on the p-regular tree. A class of groups called simple surface amalgams
gives examples of torsion-free hyperbolic groups that are quasi-isometric but do not have a common
model geometry, as shown by the authors [SW18].

Outside the setting of hyperbolic groups, Das–Tessera [DT16, Theorem 1.1] proved that if Γg
denotes the fundamental group of a genus g ≥ 2 surface, then Γg × Z and the canonical central
extension Γ̃g of Γg, are not integrably measure equivalent. However, these groups are quasi-isometric.
Having a common model geometry implies that two groups are integrably measure equivalent, and
integrably measure equivalence is an equivalence relation implied by abstract commensurability. Thus,
Γ̃g and Γg × Z are quasi-isometric, but do not virtually have a common model geometry.

In this paper we give the first examples of hyperbolic groups that are quasi-isometric and do
not virtually have a common model geometry. We study action rigidity for free products of closed
hyperbolic manifold groups, and, more generally, for the quasi-isometry class of such groups; see
Theorem 6.1 for a more general statement.

Theorem 1.1. Let G = H1 ∗ . . . ∗ Hk ∗ Fn, where Hi is a uniform lattice in the isometry group
of a rank-1 symmetric space for 1 ≤ i ≤ k, and Fn is a finitely generated free group. Suppose that
G′ is residually finite. If G and G′ have a common model geometry, then G and G′ are abstractly
commensurable.

Note that in the case where k = 0, this theorem is just the abstract commensurability of finitely
generated free groups. Theorem 6.1 is phrased in terms of Stallings-Dunwoody decompositions and
we show that after quasi-conjugating the action to a new model geometry, the groups are weakly
commensurable in the isometry group the new model geometry.

Recall, the classification of non-compact rank-1 symmetric spaces consists of real hyperbolic space
Hn = HnR, complex hyperbolic space HnC, quaternionic hyperbolic space HnH (all for n ≥ 2), and the
“exceptional case” of the Cayley hyperbolic plane H2

Ca. We will use the notation HnF to denote any
one of these possible rank-1 symmetric spaces, and we define a closed hyperbolic manifold group to
be the fundamental group of a closed manifold that admits the geometry of HnF for some n and F.
See [Mos73] for details.
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It is an open question of considerable interest in the field if hyperbolic groups are residually finite.
So the residual finiteness assumption in Theorem 1.1 could in principal be redundant. Conversely,
in Section 7, we show that if there exists a non-residually finite finite extension of a uniform lattice
in a rank-1 symmetric space, then there exists a pair of groups G and G′ that share a common
model geometry such that G decomposes as in the statement of the theorem, G′ is not residually
finite, and G and G′ are not even virtually isomorphic. Note that if G′ decomposes as a free product
of uniform lattices in a manner similar to G′, then G′ is residually finite since these lattices are
finitely generated and linear, hence residually finite, and free products of residually finite groups are
residually finite. As a consequence of the resolution of the Virtual Haken Conjecture [Ago13, Wis], if
G′ is cocompactly cubulated, then G′ is residually finite. If each Hi is quasi-isometric to H2 or H3,
then the residual finiteness assumption is satisfied. More generally, it is not known if finite extensions
of uniform lattices in rank-1 symmetric spaces are residually finite. Indeed, finite central extensions of
lattices in Sp(n, 1) are considered by some to be likely candidates for a non-residually finite hyperbolic
group. In [GJZZ08, GJZPZ14] the authors study “cohomological goodness”, a criterion for residual
finiteness to be preserved in finite extensions. See [Del78, Hil19] for non-residually finite examples of
(non-hyperbolic) extensions of arithmetic groups.

Free products of closed hyperbolic manifold groups is a family closed under passing to finite-index
subgroups. Moreover, each quasi-isometry class contains infinitely many commensurability classes;
see Lemma 2.13. Thus, we have the following.

Corollary 1.2. There are torsion-free hyperbolic groups which are quasi-isometric but cannot virtually
act on a common model geometry. Moreover, there are examples G and G′ for which the ratios of the

non-vanishing `2-Betti numbers are equal: b
(2)
k (G)

b
(2)
k (G′)

= C.

Remark 1.3. After the initial preprint for this paper was presented, Kevin Schreve observed that
Corollary 1.2 can also be deduced for certain examples among the groups considered here via an
application of the proportionality principal for `2-Betti numbers due to Gaboriau [Gab02, Gab]. This
principal states that if G and G′ are uniform lattices in a locally compact, second countable group H,
then their `2-Betti numbers are related as follows:

b
(2)
k (G)

Vol(G\H)
=

b
(2)
k (G′)

Vol(G′\H)
,

where volume in the formula is given by the Haar measure on H. If G and G′ have a common model
geometry X, then they embed as uniform lattices in the isometry group H = Isom(X), which is locally

compact and second countable (see [CdlH16, Lemma 5.B.4]). Thus, the ratio b
(2)
k (G)

b
(2)
k (G′)

of all the non-

vanishing `2-Betti numbers of G and G′ must be equal. Moreover, since both `2-Betti numbers and
covolume scale by degree upon passing to finite-index subgroups, the ratio is preserved for finite-index
subgroups. Thus, if some ratios are not equal for G and G′, then the corresponding ratios will not be
equal for any pair of finite-index subgroups G0 6 G and G′0 6 G.

To construct a pair of quasi-isometric free products with no common model geometry by these meth-
ods, let M and M ′ be closed hyperbolic 4-manifolds with distinct Euler characteristic. The `2-Betti
numbers of π1(M) and π1(M ′) vanish aside from the second, which equals the Euler characteristic.
Let G = π1(M) ∗ Z and G′ = π1(M ′) ∗ Z, which by Mayer-Vietoris will have b(2)

1 (G) = b
(2)
1 (G′) and

b
(2)
2 (G) 6= b

(2)
2 (G′). In contrast, these methods cannot be applied to free products of surface groups or

closed 3-manifold groups, which have only one non-vanishing `2-Betti number.
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The strongest form of action rigidity occurs when the groups considered here are surface groups
and there are exactly two factors.

Theorem 1.4. Let G ∼= π1(Sg1) ∗π1(Sg2) and G′ ∼= π1(Sh1
) ∗π1(Sh2

) be free products of fundamental
groups of closed orientable surfaces of genus at least two. The groups G and G′ have a common model
geometry if and only if the groups G and G′ are isomorphic.

Whyte [Why99, Theorem 1.6] proved that if G = π1(Sg1) ∗ π1(Sg2) and G′ = π1(Sh1
) ∗ π1(Sh2

) are
free products of fundamental groups of closed orientable surfaces of genus at least two, then G and G′

are abstractly commensurable if and only if χ(G) = χ(G′), which is equivalent to g1 + g2 = h1 + h2.
For example, G ∼= π1(S2) ∗ π1(S4) and G′ ∼= π1(S3) ∗ π1(S3) are abstractly commensurable but do
not have a common model geometry by Theorem 1.4. Moreover, if Ĝ is isomorphic to finite-index
subgroups of G and G′, then both G and Ĝ have a common model geometry, as do G′ and Ĝ, but G
and G′ do not, so the property of having a common model geometry is not transitive on this family
of groups. Thus, in combination with Theorem 1.4, we have the following corollary.

Corollary 1.5. (1) There are torsion-free abstractly commensurable hyperbolic groups that do not
have a common model geometry.

(2) The relation of having a common model geometry is not a transitive relation on the class of
torsion-free hyperbolic groups.

(3) For each n > 0 there exist n free products of closed hyperbolic manifold groups in the same
abstract commensurability class that pairwise do not have a common model geometry.

Question 1.6. Is there a commensurability class of hyperbolic groups that contains an infinite subset
consisting of groups that do not pairwise share a common model geometry?

The homeomorphism type of a cover of a closed surface by degree d is determined by d, but this fails
for higher-dimensional examples. A hyperbolic 3-manifold may have many non-homeomorphic covers
of the same degree; for example, see the discussion by Friedl–Park–Petri–Raimbault–Ray [FPP+].
Nonetheless, if the free product with amalgamation is of higher-dimensional hyperbolic manifold
groups, information can still be deduced.

Theorem 1.7. Let G ∼= π1(M1) ∗ π1(M2) and G′ ∼= π1(M ′1) ∗ π1(M ′2) be free products of fundamental
groups of closed orientable hyperbolic manifolds. If the groups G and G′ have a common model
geometry, then, after possibly permuting the factors, the manifolds Mi and M ′i have the same volume.

The results in this paper provoke the following questions:

Question 1.8. If H and H ′ are one-ended residually finite hyperbolic groups, is H ∗H ′ action rigid?

Question 1.9. If H and H ′ are one-ended residually finite hyperbolic groups that act geometrically
on the same simplicial complex, are H and H ′ abstractly commensurable?

Both questions are false in general outside of the hyperbolic setting by work of Burger–Mozes [BM00].
The case that H and H ′ are closed hyperbolic manifold groups is handled in Proposition 4.7.

A closed hyperbolic n-manifold group is not quasi-isometrically rigid for all n ≥ 3, although the
class of such groups is quasi-isometrically rigid in the sense that any group quasi-isometric to HnF does
in fact act geometrically on HnF . Moreover, a closed hyperbolic manifold group is not action rigid. The
following corollary states that when one starts taking connect sums of closed hyperbolic 3-manifolds,
the resulting fundamental groups become action rigid.
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Corollary 1.10. Let M be a finite non-trivial connected sum of closed hyperbolic 3-manifolds. Then
π1(M) is action rigid.

Proof. Suppose that G′ shares a common model geometry with π1(M). The result follows from
Theorem 1.1 if we can show that G′ is residually finite. As G has infinitely many ends, so does
G′, and the one-ended vertex groups in its Stallings-Dunwoody decomposition will be quasi-isometric
to H3 by [PW02]. Any group quasi-isometric to H3 surjects onto a closed hyperbolic 3-manifold
group with finite kernel by [Tuk86]. Thus, by [BW12] we know that G′ acts geometrically on a
proper, hyperbolic CAT(0) cube complex, so by [Ago13] we know G′ is virtually special and therefore
residually finite. �

The corollary provokes the following related question:

Question 1.11. Is the fundamental group of a compact, non-geometric 3-manifold action rigid?

As explained in the next two subsections, the proof of the theorems above has two main steps,
each of independent interest. The first step is geometric; we show that geometric actions of two
infinite-ended non-free hyperbolic groups on an arbitrary common model space can be promoted to
geometric actions on a model space with more structure. This strategy to prove action rigidity was
also employed by Mosher–Sageev–Whyte [MSW03] for the virtually free groups defined above and by
the authors [SW18] for the class of simple surface amalgams. The second step is topological; we prove
a generalization of Leighton’s graph covering theorem [Lei82], following the methods developed by
Woodhouse [Woo], and Shepherd and Gardam–Woodhouse [SGW].

1.1. Common simplicial and hyperbolic model geometries. A central theorem we employ to
obtain the results above is the following, which can be viewed as a generalization of the work of
Mosher–Sageev–Whyte [MSW03] on virtually free groups. We say that a model geometry Y for G
decomposes as a tree of spaces if there is a G-equivariant map p : Y → T , where T is a simplicial tree,
and the preimage of a vertex Yv := p−1(v) is a vertex space, and the preimage of the interior of an
edge decomposes as a product of the edge space and open interval Ze × (0, 1) := p−1(e◦).

Theorem 1.12. Let G be a hyperbolic group with infinitely many ends, and suppose G is not virtually
free. Let X be a model geometry for G and let H = Isom(X). Then, there exists a locally finite, simply
connected simplicial complex Y such that:

(1) there is an H-action on Y ;
(2) Y decomposes as an H-equivariant tree of spaces with each edge space a point and each vertex

space either one-ended or a point;
(3) there is a quasi-isometry f : X → Y that quasi-conjugates the respective H actions. That is

to say, there is a constant B > 0 such that

dY (h · f(x), f(h · x)) < B.

As a consequence, Y is a model geometry for G, and the one-ended vertex spaces in Y are quasi-
isometric to the one-ended vertex groups in the Stallings–Dunwoody decomposition of G.

The assumption that the group G is infinite-ended is necessary in general. For example, we show
in Proposition 4.7 that, while non-commensurable closed hyperbolic manifold groups have a common
model geometry, HnF , they cannot act geometrically on the same simplicial complex.
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A hyperbolic group admits a Stallings–Dunwoody decomposition [Sta68, Dun85] as a finite graph
of groups with finite edge groups and vertex groups with at most one end. We note that while the
graph of groups decomposition is not necessarily unique, the one-ended vertex groups are unique (up
to conjugation). While a quasi-isometry need not induce an isomorphism from a Bass-Serre tree for a
Stallings–Dunwoody decomposition of G to a Bass-Serre tree for a Stallings–Dunwoody decomposition
of G′, the common model geometry given in Theorem 1.12 defines an isomorphism from a Bass-Serre
tree for G to a Bass-Serre tree for G′. This isomorphism is a crucial component in the proof of action
rigidity for free products of hyperbolic manifold groups.

To prove Theorem 1.12 in Section 3 we use the visual boundary of hyperbolic groups with infinitely
many ends. Each conjugate of a one-ended vertex group corresponds to a component in the boundary.
We build a locally finite simplicial complex admitting geometric actions by G and G′ by considering
the set of weak convex hulls of these components. We take R-neighborhoods of these weak convex
hulls and define a graph with vertices corresponding to certain intersections of these subsets. We
apply the Rips complex construction to this graph to obtain a simply connected model geometry for
both G and G′. Finally, we use Dunwoody’s tracks [Dun85] to collapse this simplicial complex to the
desired tree of spaces described in Theorem 1.12.

In the case that the one-ended vertex groups of G and G′ are closed, real hyperbolic manifold
groups, we apply the work of Tukia [Tuk86], Hinkkanen [Hin85, Hin90] and Markovic [Mar06] to
replace the one-ended vertex spaces in the simplicial complex Y with copies of HnF , for varying n > 1.
In the complex, quarternionic and Cayley hyperbolic cases we apply corresponding results due to
Chow and Pansu [Cho96, Pan89]. See Section 4.

1.2. Symmetry Restricted Leighton’s Theorem. Having promoted the common model geometry
to a tree of spaces X constructed from copies of HnF and simplicial graphs, we are able to formulate the
problem of showing that groups G,G′ 6 Isom(X) are (weakly) commensurable in topological terms.
Let χ = G\X and χ′ = G′\X. Both χ and χ′ are graphs of spaces with respective fundamental groups
G and G′, and isomorphic universal covers. To show that G and G′ are commensurable it therefore
suffices to prove that χ and χ′ have homeomorphic finite covers (see Theorem 6.2). Note that if G
and G′ were one-ended with X ∼= H3 and a trivial graph of groups decomposition, then constructing
a common finite cover would be impossible. On the other hand, if χ and χ′ were both graphs, with
no one-ended vertex spaces isometric to HnF , then the existence of a common finite cover is Leighton’s
graph covering theorem [Lei82]. Our argument shows that our situation is closer to the latter than
the former.

We take a moment to compare this problem with work of Behrstock–Januszkiewicz–Neumann [BJN09]
concerning free products of free abelian groups. In contrast to the groups considered here, they prove
that if G and G′ are quasi-isometric free products of free abelian groups, then G and G′ are abstractly
commensurable. Note that a finite-index subgroup of Zn is isomorphic to Zn; equivalently, a finite-
sheeted cover of a torus is still a torus. The fact that the volume of a closed hyperbolic manifold
increases when finite covers are taken, and that the groups do not remain isomorphic, is a source of
subtlety and difficulty.

A key ingredient we employ in the proof of Theorem 6.2 is a generalization of Leighton’s graph
covering theorem to lattices inside symmetry restricted automorphism groups of trees. Let T be a
locally finite simplicial tree with cocompact automorphism group G = Aut(T ). We assume, after
possibly subdividing edges or passing to an index-two subgroup of G (see [Bas93, Proposition 6.3]),
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that G acts on T without edge inversions. A free uniform lattice F 6 G is a finitely generated
free subgroup that acts freely and cocompactly on T . In the language of covering spaces, such a
lattice corresponds to a finite graph X and a covering map T → X, where F is the group of deck
transformations given by π1(X).

Leighton’s Graph Covering Theorem [Lei82] states that any two free uniform lattices F, F ′ 6 G,
are weakly commensurable in G. That is, there exists some g ∈ G such that F g ∩ F ′ is a finite-
index subgroup of both F g and F ′ in G, where F g = gFg−1 (see Definition 2.3). In the language of
covering spaces, this condition is equivalent to saying that any pair of finite graphs X and X ′ with
isomorphic universal covers have isomorphic finite-sheeted covers. Subsequent to Leighton’s original
proof, Bass–Kulkarni [BK90] revisited the problem, setting it in the context of Bass-Serre theory and
addressing the issue of lattice existence. Recently, the second author [Woo] gave a new proof, using
Haar measure to solve certain gluing equations, that generalizes Leighton’s theorem to graphs with
fins and has applications to a quasi-isometric rigidity result for free groups with line patterns.

Walter Neumann posed a generalization of Leighton’s theorem as an open problem. The motiva-
tion for this generalization was potential applications to quasi-isometric rigidity questions, such as
generalizing Behrstock-Neumann’s results for non-geometric 3-manifolds [BN12]. Shepherd and, inde-
pendently (but in the appendix of the same paper), Gardam and the second author [SGW], recently
solved Neumann’s problem as follows, christening the generalization symmetry restricted Leighton’s
theorem.

Fix some R > 0. Given a vertex v ∈ V T , let BR(v) denote the closed R-neighborhood of v. For an
element g ∈ G and a vertex v ∈ V T , let gv : BR(v)→ BR(gv) denote the restriction of g to BR(v).

Definition 1.13. The R-symmetry restricted closure of H 6 G is the closed subgroup

SR(H) := {g ∈ G | ∀v ∈ V T,∃h ∈ H s.t. gv = hv : BR(v)→ BR(gv)}

A subgroup H ≤ G is R-symmetry restricted if H = SR(H).

Remark 1.14. Determining if a closed subgroup H 6 Aut(T ) is a symmetry restricted group can be
a subtle question. As discussed in [SGW, Remark A.3], the group SL2(Qp) acts on its Bruhat-Tits
building, which is a locally finite tree T , but it is not a symmetry restricted subgroup of Aut(T ) for
any R.

Theorem 1.15. [SGW] Let F, F ′ be free uniform lattices in G, contained in an R-symmetry restricted
subgroup H 6 G. Then F and F ′ are weakly commensurable in H. That is to say, there exists h ∈ H
such that Fh ∩ F ′ is a finite-index subgroup of Fh and F ′.

Section 6 of the present paper is devoted to the challenge of arranging covers of the spaces χ = G\X
and χ′ = G′\X so that we are in a situation where Theorem 1.15 can be applied. A key point is that
Theorem 1.15 applies only to locally finite trees and to groups that act freely and cocompactly on
such a tree. While the groups G and G′ naturally act on the Bass–Serre tree associated to the space
X, this tree is not locally finite, and the actions are not free. In Section 6, we produce a series of
covering space arguments to find a common (infinite-sheeted) cover χ̆ of the spaces χ and χ′ so that
the underlying tree is locally finite and so that π1(χ) and π1(χ′) virtually act freely on the underlying
tree by deck transformations.



8 EMILY STARK AND DANIEL J. WOODHOUSE

Acknowledgments. The authors are thankful for helpful discussions with Tullia Dymarz. We thank
Kevin Schreve for explaining Remark 1.3. The first author was supported by the Azrieli Foundation,
was supported in part at the Technion by a Zuckerman Fellowship, and was partially supported by
the NSF RTG grant #1840190. The second author was supported by the Israel Science Foundation
(grant 1026/15).

2. Preliminaries

We will use the following notation throughout the paper.

Notation 2.1. If A ⊂ X, let NR(A) denote the open R-neighborhood of A in X. Let BR(x) denote
the closed ball of radius R around a point x. If H ≤ G and g ∈ G, let Hg := gHg−1.

The next elementary lemma can be deduced easily from standard techniques; see [Bow06, BH99].

Lemma 2.2. Let X be a proper metric space, and let G be a group which acts properly on X. If
H 6 G acts cocompactly on X, then G acts on X cocompactly, and H is a finite-index subgroup of G.

There exist within the literature various notions of commensurability for subgroups and groups.
Terminology can vary, so we make clear here what we mean.

Definition 2.3. (1) A pair of subgroups Γ1,Γ2 6 G are commensurable in G if their intersection
Γ1 ∩ Γ2 is finite index in both Γ1 and Γ2.

(2) A pair of subgroups Γ1,Γ2 6 G are weakly commensurable if there exists g ∈ G such that the
conjugate Γg1 is commensurable in G with Γ2. In which case we say g commensurates Γ1 to
Γ2.

(3) A pair of groups Γ1 and Γ2 are abstractly commensurable if they have isomorphic finite-index
subgroups.

(4) A pair of groups Γ1 and Γ2 are virtually isomorphic if there are finite-index subgroups Hi 6 Γi
and finite normal subgroups Fi E Hi such that the quotientsH1/F1 andH2/F2 are isomorphic.

2.1. The boundary of a hyperbolic space and the weak convex hull. We refer the reader
to [BH99] for background on Gromov hyperbolic spaces and their Gromov boundary. Let X be a
proper geodesic metric space, and suppose it satisfies Gromov’s δ-thin triangle condition. Associated
to X is its boundary ∂X, a compact topological, metrizable space. As a set, ∂X consists of geodesic
rays γ : [0,∞) → X up to an equivalence, where γ ∼ γ′ if their respective images in X have finite
Hausdorff distance between them. A set in the basis for the topology on ∂X is defined by fixing a
ray γ and taking all rays based at γ(0) that fellow travel with γ for some prescribed duration; the
associated set of equivalence classes is an open set containing [γ]. The group of isometries Isom(X)

has an induced action on ∂X by homeomorphisms.

Definition 2.4. Let X be a proper geodesic hyperbolic metric space. The weak convex hull of a set
A ⊂ ∂X, denoted WCHX(A), is the union of the geodesic lines in X which have both endpoints in
the subset A. Given a subset S ⊆ X, let ΛS = S ∩ ∂X denote the limit set of S, where S denotes
the closure of S in X ∪ ∂X. If H ≤ Isom(X), then the limit set of the subgroup H is ΛH := Λ(H · x)

where x ∈ X. The limit set ΛH does not depend on the choice of x.

Theorem 2.5. [Swe01, Main Theorem] Let G act properly and cocompactly by isometries on X. If
H is a quasi-convex subgroup of G, then H acts properly and cocompactly on WCHX(ΛH) ⊆ X.
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2.2. The Stallings–Dunwoody decomposition. This paper concerns fundamental groups of finite
graphs of groups. For background, see [SW79], [Ser80]. We use the following notation.

Definition 2.6. A graph of groups G is a graph Γ = (V Γ, EΓ) with a vertex group Gv for each
v ∈ V Γ, an edge group Ge for each e ∈ EΓ, and edge maps, which are injective homomorphisms
Θ±e : Ge → G±e for each e = (−e,+e) ∈ EΓ. A graph of spaces associated to a graph of groups G
is a space Z constructed from a pointed vertex space (Zv, zv) for each v ∈ V Γ with π1(Zv, zv) = Gv,
a pointed edge space (Ze, ze) for each e = (−e,+e) ∈ EΓ such that π1(Ze, ze) = Ge, and maps
θ±e : (Ze, ze)→ (Z±e, z±e) such that (θ±e )∗ = Θ±e . The space Z is( ⊔

v∈V Γ

Zv
⊔
e∈EΓ

(Ze × [−1, 1])

) / {
(z,±1) ∼ θ±e (z) | (z,±1) ∈ Ze × [−1, 1]

}
.

The fundamental group of the graph of groups G is π1(Z). The underlying graph of the graph of groups
G is the graph Γ. A group G splits as graph of groups if G is the fundamental group of a non-trivial
graph of groups.

Example 2.7. Free products of closed hyperbolic manifold groups have natural graph of groups
decompositions. If G = π1(M1) ∗ · · · ∗ π1(Mk) ∗ Fn, then we make some choice of graph of groups
decomposition with underlying graph Γ and so that each vertex group Gv is either the trivial group
or π1(Mi). All the edge groups are trivial. A graph of spaces Z can then be obtained by letting the
vertex spaces Zv be either a point or Mi, and the edge space Ze also a point. Indeed, in this paper
we will allow all compact Mi such that the universal cover M̃i is a rank-1 symmetric space HnF .

Definition 2.8. We refer to the graph of spaces Z constructed in Example 2.7 as an ideal graph
of spaces associated to a free product. The universal cover Z̃ of an ideal graph of spaces is an ideal
tree of spaces. If a model geometry X is isometric to such a Z̃ then X is said to be an ideal model
geometry. Note that the model geometry given by Proposition 4.5 is an ideal model geometry.

The graph of groups decomposition given in the next theorem is called a Stallings–Dunwoody
decomposition of G.

Theorem 2.9 ([Dun85, Sta68]). If G is a finitely presented group, then G splits as a finite graph of
groups with finite edge groups and vertex groups that have at most one end.

The ends of a group is a quasi-isometry invariant, and any finitely presented group with more than
one end has a non-trivial Stallings-Dunwoody decomposition. For a hyperbolic group G, the ends
correspond to the components of ∂G. The Stallings–Dunwoody decomposition allows us to generalize
from free products in Theorem 1.1 to the quasi-isometry class of groups containing such free products
(see Theorem 6.1). In particular, the following theorem of Papasoglu-Whyte implies that the free
product of closed hyperbolic manifold groups is quasi-isometric to a group with Stallings-Dunwoody
decomposition whose one-ended vertex groups are quasi-isometric to HnF (for possibly many different
n > 1 and F ∈ {R,C,H,Ca}).

Theorem 2.10. [PW02] Let G and G′ be finitely presented groups with infinitely many ends. The
Stallings–Dunwoody decompositions of G and G′ have the same set of quasi-isometry types of one
ended vertex groups (not counting multiplicity) if and only if G and G′ are quasi-isometric.

Theorem 2.10 combined with the following lemma proves that any residually finite group quasi-
isometric to a free product given in the statement of Theorem 1.1, is virtually such a free product.
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Lemma 2.11. Let G be an infinite-ended hyperbolic group such that the one-ended vertex groups in
a Stallings–Dunwoody decomposition are residually finite. Then G is residually finite and virtually
torsion-free.

Proof. Since G has residually finite vertex groups and finite edge groups, the group G is itself residually
finite. Indeed, residual finiteness is preserved under HNN extensions and amalgamated free products
over finite subgroups [Bau63, Tre73, BT78]. As G is a hyperbolic group, it contains only finitely
many conjugacy classes of finite elements. Thus, after passing to a finite-index normal subgroup that
excludes a finite list of representatives from each conjugacy class, one obtains a torsion-free finite-index
subgroup. �

Corollary 2.12. Let G = π1(M1) ∗ . . . ∗ π1(Mk) ∗ Fn, where each Mi is a closed hyperbolic manifold.
Suppose that G′ is residually finite and quasi-isometric to G. Then, G′ is virtually a free product of
the form π1(M ′1) ∗ . . . ∗ π1(M ′`) ∗ Fm, where M̃ ′i is a rank-1 symmetric space.

Proof. As the number of ends is a quasi-isometry invariant, G′ has a non-trivial Stallings–Dunwoody
decomposition. By Theorem 2.10 the one-ended vertex groups in this decomposition are each quasi-
isometric to a rank-1 symmetric space HdF for some d ≥ 2. By rigidity results of Gabai [Gab92],
Tukia [Tuk86], Chow [Cho96], and Pansu [Pan89], these vertex groups act geometrically on rank-
1 symmetric spaces. By Lemma 2.11, the group G′ has a torsion-free subgroup of finite index, in
which the vertex groups will embed in the isometry group of the symmetric space, and so the induced
splitting will give the desired free product decomposition. �

2.3. Abstract commensurability classes. We explain in this section that within the class of
free products we are considering, each quasi-isometry class contains infinitely many abstract com-
mensurability classes. When all the one-ended factors are cocompact Fuchsian groups this result
follows from work of Whyte [Why99, Theorem 1.6]. For uniform lattices in the isometry groups
of higher-dimensional rank-1 symmetric spaces, one can form incommensurable free products by
forming free products of incommensurable lattices using the various means available (see, for ex-
ample [MR03, GPS88, NR92]). For our purposes, there is a far simpler means of constructing incom-
mensurable free products using a variation of Whyte’s trick via the co-volume of lattices.

Lemma 2.13. Each quasi-isometry class of free products of uniform lattices in the isometry groups
of rank-1 symmetric spaces contains infinitely many abstract commensurability classes.

Proof. The quasi-isometry class of a free product is determined by the set of quasi-isometry classes of
its one-ended factors by Theorem 2.10. First, suppose that we are considering a quasi-isometry class
determined by a set of n > 1 distinct quasi-isometry classes of one-ended factors, each corresponding to
a unique rank-1 symmetric space HdiFi

for 1 ≤ i ≤ n. Let G = H1∗· · ·∗Hn and G′ = H ′1∗ . . .∗H ′n where
Hi and H ′i are uniform lattices in Isom(HdiFi

). Suppose that G and G′ contain isomorphic finite-index
subgroups Ĝ 6 G and Ĝ′ 6 G′. Then, Ĝ ∼= Ĝ′ = Ĥ1 ∗ . . . ∗ Ĥm ∗ Fk, and for each subgroup Ĥj there
exists an index i so that Ĥj is conjugate in G to a finite-index subgroup of Hi and Ĥj is conjugate
in G′ to a finite-index subgroup of H ′i. Let the covolumes of the lattices be vi = Vol(Hi\HdiFi

) and
v′i = Vol(H ′i\H

di
Fi

). We now assert we can express the index of the subgroups in the following terms:
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Claim 2.14. For each i ∈ {1, . . . , n}

[G : Ĝ] =

∑
Ĥj∼Hi

Vol(Ĥj\HdiFi
)

vi
and [G′ : Ĝ′] =

∑
Ĥj∼H′

i
Vol(Ĥj\HdiFi

)

v′i
,

where Ĥj ∼ Hi indicates that after conjugating in G, the subgroup Ĥj is a finite-index subgroup of
Hi, and Ĥj ∼ H ′i is similarly defined.

Proof of Claim 1. We prove the expression for G, and G′ follows similarly. Let X be a graph of spaces
for G corresponding to the given free splitting with underlying graph Υ, a star with root vertex u0

with Xu0 a point, each edge space a point, and each vertex space Xvi a presentation complex for
Hi. Let p : X̂ → X be the finite cover corresponding to the subgroup Ĝ 6 G. Then p−1(Xvi)

is a disjoint collection of vertex spaces in the inducted decomposition {X̂û1
, . . . , X̂ûk

} that are in
correspondence with the Ĥj ∼ Hi in the free factorization of Ĝ. Then the degree of p, which is equal
to [G : Ĝ] can be read off by summing the degrees of each covering X̂ûj

→ Xi which is equal to
Vol(Ĥj\HdiFi

)/Vol(Hi\HdiFi
) since covolume of a lattice is multiplicative by the degree of a finite-index

subgroup. Thus the equality given in the statement follows by taking the sum. �

The summation of volumes in the numerators of the left and right hand-side are equal for each i.
So, we deduce that for all i,

vi
v′i

=
[G′ : Ĝ′]

[G : Ĝ]
.

Therefore, choosing suitable Hi and H ′i to give distinct ratios for each i produces infinitely many
incommensurable G and G′.

In the case n = 1, and there is a single quasi-isometry class of one-ended factors, let G = H1∗H2 and
G′ = H ′1∗H ′2. Suppose again you can find isomorphic finite-index subgroups Ĝ ∼= Ĝ′ ∼= Ĥ1∗. . .∗Ĥm∗Fk.
Each factor Ĥj is conjugate in G [resp. G′] into a factor H1 or H2 [resp. H ′1 and H ′2]. We can then
sum covolumes over these respective partitions of the factors to verify that

[G : Ĝ] =

∑
Ĥg

j≤Hi
Vol(Ĥj\HdF)

vi
and [G′ : Ĝ′] =

∑
Ĥg

j≤H′
i
Vol(Ĥj\HdF)

v′i

Thus we again obtain that vi/v′i = [G′ : Ĝ′]/[G : Ĝ] and we can obtain incommensurable G and G′

by choosing factors with different covolume ratios. �

3. A common simplicial model geometry

This section is devoted to proving Theorem 1.12. We will let G denote an infinite-ended hyperbolic
group that is not virtually free. Let G be a Stallings–Dunwoody decomposition of G. Let {Gi}ki=1

denote the one-ended vertex groups in G. Let T be the Bass-Serre tree for the graph of groups
decomposition G. Suppose that G acts geometrically on a proper geodesic metric space X, and let
H = Isom(X).
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3.1. A simplicial model geometry from intersecting weak convex hulls. As detailed by
Martin–Światkowski [MS15, Section 2], the boundary ∂G decomposes as

∂G ∼=
⊔
∂Ggi t ∂T.

The atomic components of the boundary ∂G are the singletons corresponding to the ends of the
tree T , and the non-atomic components of the boundaries are the components ∂Ggi , homeomorphic
to the boundaries of the one-ended vertex groups. The homeomorphism φG : ∂G → ∂X induced by
the geometric action of G on X yields well-defined atomic components and non-atomic components of
∂X.

Let {Sα |α ∈ I} be the set of non-atomic components of ∂X, indexed in some fashion by I. We
note that I is non-empty as G is not virtually free. Let Xα = WCH(Sα) be the weak convex hull
of Sα in X. By Theorem 2.5, the weak convex hull Xα is quasi-isometric to Gi, a one-ended vertex
group in G. For α, β ∈ I and r ∈ R, let

Uβα (r) := Nr(Xα) ∩Nr(Xβ).

Note that Uβα (r) = Uαβ (r). For a specified value of r we will let Uβα := Uβα (r).

Lemma 3.1. There exists r ∈ R sufficiently large so that

(i) X ⊂
⋃
α∈I Nr(Xα);

(ii) Xα ⊂
⋃
β∈I−{α}Nr(Xβ);

(iii) X ⊆
⋃
α,β∈I U

β
α (r).

Moreover, for a given value of r > 0,

(iv) there exists a constant B = B(r) > 0 such that diam(Uβα (r)) < B, and
(v) there is an upper bound N = N(r) on the number of subsets Uδγ (r) that can intersect a given

subset Uβα (r).

Proof of Lemma 3.1. If (i), (ii), and (iii) hold for some r > 0 then they also hold for any r′ > r. If (i)
and (ii) hold for r, then (iii) holds for 2r. Indeed,

X ⊆
⋃
α∈I

Nr(Xα)

⊆
⋃
α∈I

⋃
β∈I−{α}

N2r(Xα) ∩N2r(Xβ)

=
⋃
α∈I

⋃
β∈I−{α}

Uβα (2r)

where the first line follows from (i), the second from (ii), and the third by definition. Since the action
of G preserves the sets {Xα}α∈I , and since the G action on X is cobounded, there exists r such that
(i) holds. To obtain r for (ii), and check (iv) and (v), we need to compare the geometry of X to G.

The group G is the fundamental group of a compact graph of spaces Z with associated Bass-Serre
tree T . By abusing notation somewhat, we let Z̃ denote the 1-skeleton of the universal cover of Z
equipped with the path metric, which is a model geometry for G. By an appropriate application of
the Milnor-Schwartz lemma, there exists a G-equivariant quasi-isometry f : Z̃ → X. After identifying
∂Z̃ with ∂X, there exists D′ > 0 such that for all α ∈ I, the weak convex hull Z̃α of Sα is within
Hausdorff distance D′ from a vertex space Z̃v in Z̃. There are corresponding subsets V βα in Z̃ defined
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in a similar fashion to Uβα for some sufficiently large constant R. We will show the claims hold for the
subsets V βα in Z̃ and then deduce they hold in X as well.

To obtain (ii) for {V βα }, observe that each vertex space Zv is contained in a finite neighborhood of
its incident edge spaces, so we can choose R to be sufficiently large such that

Z̃v ⊆
⋃

(u,v)∈ET

NR(Z̃u).

Therefore, using the existence of the constant D′, we can ensure that R is large enough that

Z̃α ⊆
⋃

β∈I−{α}

NR(Z̃β).

For (iv), to obtain the upper bound on the diameter of V βα , we let Z̃v be the vertex space Hausdorff
distance D′ from Z̃α, and Z̃u be the vertex space Hausdorff distance D′ from Z̃β . Let e1 be the edge
in T incident to v that is closest to u, and let e2 be the edge in T incident to u that is closest to v.
Then

V βα = NR(Z̃α) ∩NR(Z̃β)

⊆ NR+D′(Z̃v) ∩NR+D′(Z̃u)

⊆ NR+D′(Z̃e1) ∪NR+D′(Z̃e2).

To see the final inequality, observe that if x lies in NR+D′(Z̃v) ∩ NR+D′(Z̃u) then there are paths
γ1 and γ2 of length at most R + D′ that respectively connect Z̃v to x and Z̃u to x. By considering
the tree of spaces decomposition we conclude that either γ1 must pass through Z̃e1 or γ2 must pass
through Z̃e2 , so x lies in the R + D′ neighborhood of one of these edge spaces. Since edge spaces in
Z̃ have finite diameter, (iv) follows.

For (v) suppose that for all m > 0 there is some V βα such that V δiγi ∩ V
β
α 6= ∅ for distinct sets V δiγi

with 1 ≤ i ≤ m and γi distinct from α or β. Then since all these subsets have diameter bounded
above by a constant B′, we deduce that the subsets {V δiγi } are pairwise within distance B′ of each
other. This implies that the subspaces {Z̃γi} are pairwise distance at most B′ + 2R apart. If Z̃vi is
the vertex space Hausdorff distance D′ from Z̃γi , then we conclude that {Z̃vi} are pairwise distance
at most B′+ 2R+ 2D′ apart. As m was arbitrary, this violates the bounded packing of the one-ended
vertex groups {Gγi}; see [HW09] for definition and details of bounded packing.

We now deduce (ii), (iv), and (v) for X, using standard quasi-isometry and δ-hyperbolicity argu-
ments, which we include for the benefit of the reader. The sufficient size of the constant r ≥ 0 is
determined by R, the quasi-isometry constants (λ, ε) for the map f : Z̃ → X, and δ ≥ 0 large enough so
that both X and Z̃ are δ-hyperbolic. First, there exists a constant D = D(λ, ε, δ) so that for all α ∈ I,
the Hausdorff distance between f(Z̃α) and Xα is at most D. Indeed, by the Morse Lemma [BH99,
Theorem III.H.1.7], there exists a D1 = D1(λ, ε, δ) sufficiently large such that a bi-infinite (λ, ε)-
quasi-geodesic lies at distance at most D1 from an actual geodesic. Thus, f(Z̃α) ⊆ ND1

(Xα). For
the converse inclusion we consider a quasi-inverse f̄ of f , which has quasi-isometry constants (λ̄, ε̄)

determined by (λ, ε). Thus, by the Morse Lemma, there exists D2 = D2(λ, ε, δ) > 0, such that
f̄(Xα) ⊆ ND2(Z̃α). Then, by the definition of quasi-inverse, there exists a constant k = k(λ, ε) so
that

Xα ⊆ Nk
(
f ◦ f̄(Xα)

)
⊆ Nk

(
f(ND2

(Z̃α))
)
.

so Xα ⊆ ND(f(Z̃α)) if D > λD2 + ε+ k. Thus we take D > max{D1, λD2 + ε+ k}.
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Since (ii) holds for Z̃, we can deduce that

Xα ⊆ ND(f(Z̃α))

⊆ ND

( ⋃
β∈I−{α}

f(NR(Z̃β))

)

⊆ ND

( ⋃
β∈I−{α}

NλR+D+ε(Xβ)

)
,

so (ii) holds for X with r > λR+ 2D + ε.

To see (iv) and (v) for X observe that

f̄(Uβα (r)) = f̄(Nr(Xα) ∩Nr(Xβ))

⊆ f̄(Nr(Xα)) ∩ f̄(Nr(Xβ))

⊆ Nλ̄r+ε̄(f̄(Xα)) ∩Nλ̄r+ε̄(f̄(Xβ))

⊆ NR(Z̃α) ∩NR(Z̃β) = V βα (R)

where R > λ̄r + ε̄ + D2. If diam(Uβα (r)) were unbounded over α, β ∈ I, then diam(V βα (R)) would
be unbounded too. If Uβα (r) intersects arbitrarily large collections of distinct sets Uδγ (r), then V βα (R)

would intersect the corresponding arbitrarily large collection of distinct sets of the form V δγ (R). �

Define a (1-dimensional) simplicial complex Y as follows. Let r ∈ R be sufficiently large, as to
satisfy the conclusions of Lemma 3.1. Let Y be the 1-skeleton of the nerve of the cover of X by the
sets {Uβα |Uβα 6= ∅}. That is, the vertices of Yα are in one-to-one correspondence with elements of the
set {Uβα |Uβα 6= ∅}, and there is an edge {Uβα , Uδγ} if and only if Uβα ∩ U δγ 6= ∅. We view Y as a metric
space by equipping each edge with the Euclidean metric, such that each edge has length one. As H
acts by isometries on X and permutes the non-atomic components of ∂X, we deduce that H preserves
the open cover {Uβα |Uβα 6= ∅} so there is an induced H-action on Y.

Lemma 3.2. The graph Y is connected and locally finite. The group G acts geometrically on Y. The
H-action on X is quasi-conjugate to the H-action on Y. That is, there is a quasi-isometry φ : X → Y
and a constant L > 0 such that for all x ∈ X

dY(h · φ(x), φ(h · x)) < L.

The existence of the quasi-conjugacy will be due to the following, more general lemma:

Lemma 3.3. Let H be a group acting on proper geodesic metric spaces X and Y . Let G 6 H be a
subgroup such that the restrictions of the action of H to G on X and Y are geometric. Then, there is
an H-equivariant quasi-isometry f : X → Y .

Proof. The Švarc-Milnor Lemma gives G-equivariant quasi-isometries:

fX : Cay(G,S)→ X and fY : Cay(G,S)→ Y.

So, there is a G-equivariant quasi-isometry fY ◦f̄X : X → Y , where f̄X is a G-equivariant quasi-inverse
for fX . However, this map is not necessarily H equivariant.

Let x0 = fX(e). There exists r > 0 such that the r-neighbourhood of G · x0 covers X, and there
exists R > 0 so that fY ◦ f̄X(Nr(x0)) ⊆ NR(fY (e)). For each H-orbit in X, choose a representative
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x ∈ Nr(x0). Define f(hx) := h
(
fY ◦ f̄X(x)

)
. Then f is H-equivariant, and it is coarsely equivalent to

fY ◦ f̄X since if x ∈ X, then there is g ∈ G such that gx ∈ Nr(x0), so

d(f(x), fY ◦ f̄X(x)) = d(f(gx), fY ◦ f̄X(gx)) ≤ 2R.

�

Proof of Lemma 3.2. The space Y is connected by (iii) of Lemma 3.1, and locally finite by (v) of
Lemma 3.1. To see that G acts properly on Y observe that StabG(Uβα (r)) stabilizes a finite diameter
set in X, by (iv) of Lemma 3.1, so the properness of G on X implies that StabG(Uβα (r)) is finite, and
thus the action on Y is proper. Cocompactness follows by observing that cocompactness of G on X
implies that there exists some compact set K ⊆ X such that GK = X. Thus every G-orbit of Uβα has
at least one representative intersecting K. By (v) of Lemma 3.1, only finitely many Uβα (r) intersect K,
which allows us to conclude that there are only finitely many vertex orbits in Y, so cocompactness of the
G action follows from local finiteness of Y. Finally the actions are quasi-conjugate by Lemma 3.3. �

Lemma 3.4. (1) The graph Y is connected and locally finite.
(2) The H-action on X is quasi-conjugate to the H-action on Y. That is, there is a quasi-isometry

φ : X → Y and a constant B > 0 such that for all x ∈ X

dY(h · φ(x), φ(h · x)) < B.

Consequently, G acts geometrically on Y.

Proof. The space Y is connected by (iii) of Lemma 3.1, and locally finite by (v) of Lemma 3.1.

We construct a quasi-isometry φ as follows: for x ∈ X let φ(x) be the vertex corresponding to some
choice of Uβα containing x. (This is possible by (iii) in Lemma 3.1.) To verify that φ is a quasi-isometry
we first observe that

dX(x, x′) ≤ 2rdY(φ(x), φ(x′)) + 2r

for x, x′ ∈ X. Indeed, let n = dY(φ(x), φ(x′)) and φ(x) = v0, . . . , vn = φ(x′) are the vertices in
a geodesic, where vi corresponds to Uβi

αi
. Then, since Uβi

αi
∩ Uβi+1

αi+1 6= ∅ and by the upper bound
diam(Uβα ) < B, we can construct a path of length at most 2rn+ 2r from x ∈ Uβ1

α1
to x′ ∈ Uβn

αn
.

To obtain an upper bound on dY(φ(x), φ(x′)) in terms of dX(x, x′), observe that the action of G
on X is cocompact, and {Uβα} is an open cover of X, so we can apply Lesbesgue’s number lemma to
obtain ` > 0 such that each subset of diameter less than ` is contained in some Uβα . We can then
subdivide a geodesic joining x to x′ into m := dX(x, x′)/` intervals. Let Uβi

αi
contain the i-th interval

and observe that the vertex given by φ(x) must be adjacent to Uβ1
α1

and the vertex given by φ(x′)

must be adjacent to Uβm
αm

. Thus, we conclude that

dY(φ(x), φ(x′)) ≤ 1

`
dX(x, x′) + 2

Finally, we deduce that φ is quasi-surjective, since given a vertex corresponding to the subset Uβα , if
x ∈ Uβα , then φ(x) is adjacent to Uβα . Thus Z̃ is contained in the 1-neighborhood of φ(X).

To see that φ quasi-conjugates the respective H-actions, let x ∈ X and let φ(x) = Uβα and let
φ(h · x) = Uδγ . Then since h · x ∈ hUβα ∩Uδγ we conclude that h · φ(x) and φ(h · x) are adjacent, so we
can let B = 2. Since G acts geometrically on X, the group G acts geometrically on Y. �
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We extend Y to a simply connected 2-complex Ŷ as follows. The Milnor-Schwartz lemma combined
with Lemma 3.2 proves that the space Y is quasi-isometric to G and is therefore a Gromov hyperbolic
space. Let PD(Y) denote the Rips complex of Y: the simplicial complex with vertex set Y(0), the
vertex set of the graph Y, and n-simplices given by all subsets of vertices of Y of diameter at most
D. As Y is δ-hyperbolic, for all D > 4δ + 3 the complex PD(Y) is a locally finite, contractible
complex [BH99, III.Γ Prop 3.23]. Let Ŷ be the 2-skeleton of PD(Y) for some D > 4δ + 3. The
H-action on Y extends to PD(Y) and Ŷ, and the embedding of Y into Ŷ is a quasi-isometry that will
quasi-conjugate the respective actions. We let φ̂ : X → Ŷ denote the resulting quasi-conjugacy of the
H-actions.

3.2. Tracks and a new tree of spaces model geometry. We employ the notion of tracks, as first
defined by Dunwoody [Dun85].

Definition 3.5. Let K be a simplicial 2-complex. A track τ is a connected subset of K (or rather its
topological realization) such that

(1) for each 2-simplex σ of K, the intersection of τ with σ is the union of finitely many disjoint
straight lines joining distinct edges of σ.

(2) If e is a 1-simplex in K not contained in a 2-simplex, then either τ does not intersect e, or τ
is a single point in the interior of e.

We will employ the following theorem of Dunwoody [Dun85] in the form stated by Mosher–Sageev–
Whyte [MSW03]. Alternatively, consult [DK18, Chapter 20].

Theorem 3.6. [Dun85] [MSW03, Theorem 15] Let K be a locally finite, simply connected, simplicial
2-complex with cobounded isometry group. There exists a disjoint union of finite tracks τ =

⊔
τi in K

invariant under the action of Isom(K) such that the closure of each component of K − τ has at most
one end.

Proof of Theorem 1.12. As Ŷ is a locally finite, simply connected, simplicial 2-complex with cobounded
isometry group, Theorem 3.6 yields an H-equivariant set of finite tracks τ =

⊔
i∈J τi such that the

closure of each component Ŷ − τ has at most one end. Let T be the dual tree to this set of tracks.
Each vertex v in T corresponds to a component Ŷv of Ŷ − τ . Reindex the set of tracks so that each
edge e in T corresponds to a track τe in τ .

Construct an H-equivariant map q : Ŷ → T as follows. For each track τe there exists a product
neighborhood of τe in Ŷ homeomorphic to τe× [0, 1]. These product neighborhoods can be chosen H-
equivariantly and disjoint from the set of 0-simplices and from each other to obtain an H-equivariant
set τ × [0, 1] =

⊔
e∈ET τe × [0, 1]. Each component of Ŷ − (τ × [0, 1]) is a subspace Ŷ ′v ⊆ Ŷv. Note

that Ŷ ′v has the same number of ends as Ŷv, as each 0-simplex in Ŷv is a 0-simplex in Ŷ ′v as well.
Define the H-equivariant map q so that q(Ŷ ′v) = v and τe × [0, 1] is mapped to e by projection onto
the second factor. Then, the map q decomposes the space Ŷ as a tree of spaces.

Let Y be obtained from Y by collapsing the vertex spaces Ŷ ′v with zero ends to vertices and
collapsing each subspace τe × [0, 1] to an edge. Then, the map q can be factored Ŷ → Y → T , where
the first map q̂ : Ŷ → Y is given by collapsing as above. See Figure 3.1. The 1-ended vertex spaces Ŷ ′v
have their (finite) intersections Ŷ ′v ∩ τe × [0, 1] crushed to points to obtain new 1-ended vertex spaces
Yv. Indeed, the 0-simplices in Ŷ ′v embed in Yv.
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τ × [0, 1]

Ŷ ′v Yv

q̂

Figure 3.1. An illustration of the map q. The dashed lines on the left denote tracks
and their shaded neighborhoods are collapsed to edges on the right. The blue region
around the central vertex is the space Ŷ ′v and is collapsed to the vertex Yv on the
right.

The quotient map q̂ : Ŷ → Y is H-equivariant and obtained by collapsing sets of universally
bounded diameter, so q̂ is a quasi-conjugacy. By composing the H-quasi-conjugacies q̂ ◦ φ̂ : X → Ŷ →
Y we obtain the quasi-conjugation from the statement of the theorem. �

4. A common hyperbolic model geometry

To obtain an ideal common model geometry that is built out of copies of rank-1 symmetric spaces,
we will apply the next theorem.

Theorem 4.1. Let H act cocompactly on a proper geodesic metric space X which is quasi-isometric
to a rank-1 symmetric space HnF . Then, H acts cocompactly on HnF and there is a quasi-isometry
f : X → HnF and a constant D ≥ 0 such that d(h · f(x), f(h · x)) < D for all x ∈ X and h ∈ H.

The natural language for proving Theorem 4.1 is that of quasi-actions. For background on quasi-
isometries and quasi-actions we refer the reader to Drutu–Kapovich [DK18, Section 8.5].

Definition 4.2. Let G be a group and X a metric space. An (L,A)-quasi-action of G on X is a map
φ : G→Map(X,X) such that

(1) φ(g) is an (L,A)-quasi-isometry of X for all g ∈ G;
(2) d(φ(id), IdX) ≤ A;
(3) d(φ(g1g2), φ(g1)φ(g2)) ≤ A for all g1, g2 ∈ G.

A quasi-action is cobounded if there exists x ∈ X and a constant R such that for all x′ ∈ X there
exists g ∈ G so that d(x′, φ(g)(x)) ≤ R.

Given an action of a group G on a geodesic metric space X and a quasi-isometry q : X → Y to
another geodesic metric space, one obtains a conjugate quasi-action φ : G → Map(Y, Y ) given by
φ(g) = q ◦ g ◦ q̄ where q̄ denotes a quasi-inverse of q. The conjugate quasi-action yields the following
lemma, a version of the quasi-action principal.

Lemma 4.3. If G is a group that acts by isometries on a metric space X, and X is quasi-isometric
to a metric space Y , then there is a quasi-action of G on Y . Moreover, if the action of G on X is
cocompact, then the quasi-action of G on Y is cobounded.
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Lemma 4.3 applied to a group H acting cocompactly by isometries on a geodesic metric space
quasi-isometric to HnF yields a cobounded quasi-action of H on HnF .

Theorem 4.1 is thus the consequence of the following statement, a special case of Theorem 1.4
in [KL09] (see also [KL01]), that is the consequence of a wide body of work [Pan89, Tuk86, Cho96,
Hin85, Hin90, Mar06, Gab92, CJ94]. We refer the reader to [DK18] for recent exposition on the real
hyperbolic case.

Theorem 4.4. A cobounded quasi-action φ of a group G on the rank-1 symmetric space HnF is quasi-
isometrically conjugate to an isometric action.

We can now apply Theorem 4.1 to build a new common ideal model geometry as in Definition 2.8.

Proposition 4.5. Let G be an infinite-ended group with a Stallings-Dunwoody decomposition in which
every one-ended vertex group Gv ≤ G is quasi-isometric to a rank-1 symmetric space Hn(v)

F for some
n(v) ≥ 2, and such that there is at least one such vertex group. If X is a model geometry for G, and
H = Isom(X), then the H-action on X is quasi-conjugate to an H-action on an ideal model geometry.

Proof. Apply Theorem 1.12 to quasi-conjugate the H-action on X to a simplicial H-action on a
simplicial 2-complex Y that decomposes as a tree of spaces with underlying graph T and with vertex
spaces isomorphic to either points or one-ended simplicial 2-complexes, and each edge space a point.
The group H acts on the tree T .

Let Yv be a one-ended vertex space of Y . The space Yv is quasi-isometric to HnF for some n ≥ 2

since it is stabilized by a one-ended subgroup in the Stallings-Dunwoody decomposition of G. Let
Hv = StabH(Yv). The group Hv acts on Yv cocompactly since it acts on Yv simplicially and contains
a subgroup Gv that acts on Yv cocompactly. Apply Theorem 4.1 to obtain a cocompact Hv-action on
HnF and a quasi-isometry fv : Yv → HnF that quasi-conjugates the action of Hv on Yv to the action of
Hv on HnF .

To obtain the ideal model geometry we will equivariantly remove the H-orbit of Yv and replace it
with a copy of HnF . The H-orbit of Yv is the disjoint union of vertex spaces, each of the form Yhv for
some h ∈ H. Enumerate the vertices H · v = {v = v0, v1, v2, . . .}. For each i ∈ N, choose hi ∈ H such
that h0 = id and hi · v = vi; then {hi}N is a set of coset representatives for H/Hv. Realize H · Yv as
the direct product Yv × (H/Hv) with induced H-action given by

h · (y, [hi]) = (h−1
j hhi · y, [hj ] = [hhi]).

Note that [hj ] = [hhi] implies that h−1
j hhi ∈ Hv. This action on the product is the same as the

natural action of H on H · Yv, after identifying the element hiYv with the element (Yv, [hi]) via the
isomorphism that maps hi · y 7→ (y, [hi]), where y ∈ Yv.

Now, define an action of H on HnF × (H/Hv) by

h · (x, [hi]) = (h−1
j hhi · x, [hj ] = [hhi]).

Take the closure of Y −H · Yv and the disjoint union

Y −H · Yv t (HnF ×H/Hv)

to recover a tree of spaces by equivariantly reattaching the ends of the edge spaces that intersected
H · Yv and to (HnF ×H/Hv) as follows. Let e be an edge of the tree T incident to the vertex v. Let
Ye denote the corresponding edge space in Y and He = StabH(Ye). Each edge of Hv · e corresponds
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to a coset in Hv/He. Let ye = Yv ∩ Ye. The He-orbit of fv(ye) ∈ HnF is a bounded set, since fv quasi-
conjugates the action of Hv on Yv to the action of Hv on HnF . Thus, the convex hull of He ·fv(ye) has a
center ŷe invariant under He; see [BH99, Proposition II.2.7]. The H-orbit of (ŷe, [id]) in HnF × (H/Hv)

defines the points to which the the edge spaces H · Ye are reattached. More precisely, attach the
endpoint h · ye of the edge h · e ∈ Y −H · Yv to the point h · (ŷe, [id]) ∈ HnF ×H/Hv. Doing this for
all Hv-orbits of edges incident to v, we obtain a new tree of spaces as a quotient space(

(Y −H · Yv) ∪ (HnF ×H/Hv)
)
/ ∼

which has a natural H-action and such that G and G′ act geometrically. Repeating for all H-orbits
of one-ended vertex spaces yields the desired ideal model geometry. �

4.1. Commensurability of certain manifold groups.

Lemma 4.6. If P ⊂ HnF is a discrete subset stabilized by a uniform lattice Γ, then Γ is a finite-index
subgroup of Stab(P) 6 Isom(HnF).

Proof. Equip the subspace P with the metric induced by the inclusion P ↪→ HnF . Since P is a proper
metric space, it suffices to prove that Γ′ = Stab(P) ≤ Isom(HnF) acts properly on P by Lemma 2.2.
Let y ∈ P and pick ε > 0 so that Bε(y) contains no other points of P. Then, if γ ∈ Γ′ so that
d(y, γ · y) < ε, then γ · y = y. Thus, it is enough to prove that StabΓ′(y) is finite. Choose R > 0 so
that BR(y) contains at least m+ 1 points in P that are not contained in a codimension-1 hyperplane,
where m is the (real) dimension of HmF . There is a homomorphism StabΓ′(y) → Sym(M), the group
of permutations of M > m elements. Any element of the kernel fixes m+ 1 distinct points in HmF not
contained in a codimension-1 hyperplane, so the kernel consists of only the trivial isometry. Indeed,
the stabilizer of a single point will act by isometries on the unit tangent space which is an (m − 1)-
sphere. The remaining fixed points will correspond to fixed points in the unit tangent space. Since the
remaining fixed points in HmF don’t stabilize a codimension-1 subspace, the corresponding fixed points
in the unit tangent sphere will give a basis for the tangent space, and therefore the entire tangent
sphere will be fixed and the isometry will be trivial. Thus, StabΓ′(y) is finite, as desired. �

The next proposition follows from the previous lemma and arguments tacit in the proof of Propo-
sition 4.5.

Proposition 4.7. If G and G′ are closed hyperbolic manifold groups that act geometrically on the
same simplicial complex, then G and G′ are virtually isomorphic. Moreover, if G and G′ are residually
finite then G and G′ are abstractly commensurable.

Proof. Suppose G and G′ are closed hyperbolic manifold groups that act geometrically on the same
simplicial complex X, which is quasi-isometric to HnF . Let H = Isom(X). The group H acts on X

cocompactly since X is a simplicial complex and the subgroups G,G′ ≤ H act on X cocompactly.
There exists a quasi-isometry f : X → HnF that quasi-conjugates the H action on X to a cocompact
H-action on HnF by Theorem 4.1.

We define a discrete subset P ⊂ HnF stabilized by H to which we may apply Lemma 4.6. Let
v ∈ X(0) be a vertex, and let Hv = StabH(v). The Hv-orbit of f(v) in HnF is a bounded set since the
map f quasi-conjugates the H-action on X to the H-action on HnF . As in Proposition 4.5, the convex
hull of Hv · f(v) has a center v′ that is invariant under the action of Hv. We claim that H · v′ is a
discrete subset of HnF . Since StabH(v) ⊂ StabH(v′), if h · v′ 6= v′, then h · v 6= v. If dHn

F
(v′, h · v′) < ε,
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then there exists C = C(ε) depending on the quasi-conjugacy constants so that dX(v, h · v) < C.
The simplicial complex X is locally finite, so the set {h | d(v, h · v) < C} is finite. Thus, the set
{h | d(v′, h · v′) < ε} is finite.

The H-action on HnF is given by a homomorphism Φ : H → Isom(HnF). Let Ḡ = Φ(G), Ḡ′ = Φ(G′),
and H̄ = Φ(H). As G and G′ act geometrically on HnF we deduce that Ḡ = G/F and Ḡ′ = G′/F ′,
where F and F ′ are the finite kernels of the respective actions on HnF . Since H̄ stabilizes P, Lemma 4.6
implies that H̄ is a uniform lattice so Ḡ and Ḡ′ are finite-index subgroups of H̄, so are commensurable
in H̄. Let Ĝ = Φ−1(Ḡ ∩ Ḡ′) ∩ G and Ĝ′ = Φ−1(Ḡ ∩ Ḡ′) ∩ G′. Then Ĝ/F ∼= Ḡ ∩ Ḡ′ ∼= Ĝ′/F ′, and
we conclude that G and G′ are virtually isomorphic. If G and G′ are residually finite, then we can
assume that F and F ′ are trivial by first passing to finite-index subgroups that do not contain the
non-trivial elements of F and F ′ respectively. In which case the argument implies that G and G′ are
abstractly commensurable. �

5. Pairwise Amalgamations

We prove Theorem 1.4 and Theorem 1.7 in this section. We use the following notation throughout.

Notation 5.1. Let G ∼= Σ1 ∗ Σ2 and G′ ∼= Σ′1 ∗ Σ′2, where Σi ∼= π1(Mi) and Σ′i
∼= π1(M ′i) are

fundamental groups of closed orientable hyperbolic manifolds. Suppose G and G′ have a common
model geometry. By Proposition 4.5, the groups G and G′ act geometrically on an ideal model
geometry Y . Let HnF ≡ Yv ⊂ Y be a one-ended vertex space. Let Iv be the set of edges incident to v
in T , and let ye = Ye ∩ Yv be the point of intersection between the respective edge and vertex space.
Then Pv = {ye | e ∈ Iv} is a discrete subset of points in Yv that coarsely covers Yv. Let H = Isom(Y ).
Then, StabH(Yv) ≤ H, the subgroup of isometries of Y that stabilize Yv, stabilizes the set Pv.

Lemma 5.2. The group StabH(Yv)/FixH(Yv) acts on Yv geometrically.

Proof. Since the group Σi acts cocompactly on Yv, the lemma follows from Lemma 4.6. �

Without loss of generality, suppose in the following lemmas that the subgroups Σ1 ≤ G and Σ′1 ≤ G′

stabilize the vertex space Yv. We briefly introduce some terminology: We will say that a G action on a
tree is reduced if the action is minimal and for each valence two vertex v in G\T , if the corresponding
edges are distinct, then at least one of the associated edge groups properly embeds in the vertex group
associated to v. A reduced G-tree can be obtained from a G tree by taking a G-minimal subtree
and then removing bad valence two vertices, so the pair of incident edges become a single edge. We
note that our notion of reduced is distinct from the notion in [BF91], and is tailored to our particular
needs.

Lemma 5.3. The groups Σ1 and Σ′1 act transitively on the set Pv.

Proof. The lemma follows from the uniqueness of the reduced Stallings-Dunwoody decomposition of
G and G′ in this case. The quotient G\T contains two vertices u, v, corresponding to the cosets of Σ1

and Σ2, and a single edge. Indeed, if any other vertex existed in G\T , then its associated vertex group
is trivial. If G\T contains more than one edge then either: the graph is not simply connected, the
graph contains spurs that are not u, v, or the graph is a subdivided edge connecting u and v. In the
first case, if G\T is not simply connected, there would exist a non-trivial homomorphism from G to
Z such that Σ1 and Σ2 were in the kernel, contradicting the fact that G = Σ1 ∗Σ2. If G\T has spurs
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that are not either u or v, then the action of G on T is not minimal. Finally, if G\T is a subdivided
edge joining u to v, then since the vertices and edges inside the subdivided edge have trivial groups
associated to them, the action of G on T would not be reduced. Thus, the points in Pv correspond
to edges in the same G-orbit, and indeed in the same Gv-orbit. �

Lemma 5.4. There exists d ∈ N so that Σ1 and Σ′1 are index-d subgroups of StabH(Yv)/FixH(Yv).
Moreover, if Yv ∼= H2 then Σ1

∼= Σ′1. More generally, if Yv ∼= HnF , then M1 and M ′1 have the same
volume.

Proof. By Lemma 5.2, the action of StabH(Yv)/FixH(Yv) on Yv is geometric with quotient Ov, a
compact hyperbolic orbifold. Since Σ1 and Σ′1 act freely on Yv they embed in StabH(Yv)/FixH(Yv),
so we obtain finite-sheeted orbifold covering maps f : M1 → Ov and f ′ : M ′1 → Ov. It suffices to show
that f and f ′ both have the same degree. By Lemma 5.3 the groups Σ1, Σ2, and StabH(Yv)/FixH(Yv)

act transitively on Pv, so there exists points m ∈ M1, m′ ∈ M ′1, and o ∈ Ov corresponding to the
quotient of that orbit. The degrees of f and f ′ are determined by the local degrees of the covering at
m and m′, which can be read off from the orbifold data at o, specifically the order of the finite group
associated to a chart corresponding to o.

Thus, the Euler characteristic χ(M1) = χ(M ′1) = dχ(Ov). So if M1 and M2 are surfaces, then they
are homeomorphic, hence Σ1

∼= Σ′1. Otherwise we can deduce that volume of M1 and M ′1 is simply d
times the volume of Ov. �

Proof of Theorem 1.4. As above, we can assume that Σ1 and Σ′1 stabilize a vertex space Yv and
conclude as in Lemma 5.4 that Σ1

∼= Σ′1. Then we can also deduce that Σ2 and Σ′2 stabilize a vertex
space Yu and similarly conclude that Σ2

∼= Σ′2 �

Proof of Theorem 1.7. As above, we can assume that Σ1 and Σ′1 stabilize a vertex space Yv and
conclude as in Lemma 5.4 that M1 and M ′1 have the same volume. Then we can also deduce that
Σ2 and Σ′2 stabilize a vertex space Yu and similarly conclude that M2 and M ′2 also have the same
volume. �

6. Action Rigidity and Leighton’s Theorem

The goal of this section is to prove the following theorem.

Theorem 6.1. Let G be a finitely generated, infinite-ended group. Suppose that the Stallings-
Dunwoody decomposition of G contains at least one one-ended vertex group, and that all one-ended
vertex groups are quasi-isometric to a rank-1 symmetric space. If G and G′ share a common model
geometry X, then there exists a quasi-isometry f : X → Y to an ideal model geometry Y that quasi-
conjugates the Isom(X)-action on X to an isometric action of Isom(X) on Y . Let F : Isom(X) →
Isom(Y ) denote the induced homomorphism. If G and G′ are both residually finite, then F (G) and
F (G′) are weakly commensurable in Isom(Y ).

Abstract commensurability ofG andG′ follows from their residual finiteness, and the weak commen-
surability of F (G) and F (G′). So Theorem 1.1 follows immediately from the statement of Theorem 6.1.
All that remains to be proven of Theorem 6.1 is given by the following statement:
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Theorem 6.2. Let X be an ideal model geometry. Let Γ and Γ′ be uniform lattices of Isom(X). If Γ

and Γ′ are residually finite, then they are weakly commensurable in Isom(X).

Proof of Theorem 6.1. Proposition 4.5 yields the quasi-conjugacy f . The statement follows immedi-
ately by an application of Theorem 6.2, since the groups F (G) and F (G′) will be quotients of G and
G′ by finite, normal subgroups, and will therefore also be residually finite. �

We take a moment to motivate the proof of Theorem 6.2. See Figure 6.1 for an illustration. Let
X be an ideal model geometry for Γ,Γ′ 6 Isom(X). By residual finiteness, we can assume that Γ

and Γ′ are torsion free by passing to finite-index subgroups. The spaces χ = Γ\X and χ′ = Γ′\X
decompose as finite graphs of spaces with vertex spaces that are closed hyperbolic manifolds or points
and edge spaces that are isometric to [0, 1]. We think of these spaces as being a hybrid between
graphs and hyperbolic manifolds. The ultimate goal is to construct homeomorphic finite covers of
χ and χ′, which would imply their fundamental groups are abstractly commensurable. To construct
these covers, we set up the framework to apply symmetry-restricted Leighton’s theorem (Theorem 1.15
in Section 1.2). Importantly, this theorem applies only to locally finite trees and to groups that act
freely and cocompactly on such a tree. So, we find a common (infinite-sheeted) cover χ̆ of χ and χ′

so that the underlying tree is locally finite and so that π1(χ) and π1(χ′) virtually act freely on this
tree by deck transformations.

In the first stage of our argument, we pass to finite covers χ̂ → χ and χ̂′ → χ′ that are locally
isomorphic in the sense that if χ̂v and χ̂′v are vertex spaces of χ̂ and χ̂′ that have lifts to X in the same
Isom(X) orbit, then χ̂v and χ̂′v are isometric. In Section 6.1 we construct common covers of the vertex
spaces by taking a certain kind of normal core of the vertex groups. In Section 6.2 we obtain χ̂ and
χ̂′ by constructing quotient homomorphisms from π1(χ) and π1(χ′) to virtually free groups obtained
by quotienting the vertex groups by the normal cores obtained in the previous section. By passing
to torsion-free finite-index subgroups of the virtually free groups, we obtain finite-index subgroups
corresponding to χ̂ and χ̂′. In Section 6.3, we prove that χ̂ and χ̂′ have isometric regular covers
χ̆ ∼= χ̆′ which decompose as locally finite trees of spaces. Finally, in Section 6.4, we prove that if T̆
is the underlying tree of the space X̆, then Isom(X̆) ≤ Isom(T̆ ) is symmetry restricted. The images
of π1(χ̂) and π1(χ̂′) in Isom(χ̆) are free uniform lattices, so the main theorem will follow from an
application of Theorem 1.15.

6.1. Finite covers of the vertex spaces. Let H = Isom(X). Let v ∈ V T , let X+
v = N1(Xv), let

Hv = StabH(X+
v ), and let

Kv = Hv/FixH(X+
v ) 6 Isom(X+

v ).

Let qv : Hv → Kv denote the quotient map. The space X+
v is either isomorphic to a vertex with

a finite number of edges attached in a star, or it is isomorphic to HnF with edges isometric to [0, 1]

attached at a discrete subset of distinct points. We consider the latter case where Xv is isometric to
HnF . We will refer to such v ∈ V T as one-ended vertices and denote their subset by V1T ⊆ V T .

The groupKv acts geometrically onX+
v . Indeed, since the edges attached toXv inX+

v are preserved
by Kv, we deduce, as before (see the proof of Lemma 5.2), that Kv acts properly on Xv. Both Γv and
Γ′v are embedded in Kv by the map qv (again, see the proof of Lemma 5.2). So, Kv acts cocompactly
on Xv and Γv and Γ′v are embedded as finite-index subgroups of Kv by Lemma 2.2. Thus, the group
Kv acts geometrically on X+

v . Moreover, for all h ∈ H such hu = v the subgroups Γhu and (Γ′u)h are
also embedded as finite-index subgroups of Kv via the map qv. Since there are only finitely many
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χ χ′

χ̂ χ̂′

χ̆

Figure 6.1. An illustration of the proof up to the point of Proposition 6.3. The
space X̆ is a common cover of χ and χ′ with locally finite underlying tree. Note that
the underlying tree of χ̆ in this example is the simplicial line, but in general it could
be any locally finite tree.

Γ and Γ′ orbits of vertices, there is a global upper bound on the index of qv(Γhu), qv((Γ
′
u)h) 6 Kv.

Therefore, the following group is a finite-index normal subgroup of Kv

K̂v :=
⋂

{h∈H |hu=v}

qv(Γ
h
u) ∩ qv

(
(Γ′u)h

)
E Kv.

Indeed, to verify normality, let k ∈ Kv. The element k is represented by some h′ ∈ Hv. Then,

K̂k
v =

 ⋂
{h∈H |hu=v}

(
qv(Γ

h
u) ∩ qv

(
(Γ′u)h

) )k
=

 ⋂
{h′h∈H |h′hu=v}

qv(Γ
h′h
u ) ∩ qv

(
(Γ′u)h

′h
)

= K̂v

Moreover, since this same computation holds for all k ∈ qv(Γv) and k ∈ qv(Γ′v) we deduce that K̂v is
also a normal subgroup of qv(Γv) and qv(Γ′v).

If v ∈ V1T , then K̂v is a finite-index subgroup of both Γv and Γ′v. Let φv : χ̂v → χv and
φ′v : χ̂′v → χ′v be the associated finite-sheeted regular covers.

6.2. Locally-isomorphic finite covers χ̂ → χ and χ̂′ → χ′. Suppose the spaces χ = Γ\X and
χ′ = Γ′\X have underlying graphs Υ and Υ′, respectively. Recall, the cone of a topological space Z
is defined to be the quotient space Cone(Z) = (Z × [0, 1]) / (Z × {1}). Define quotient spaces

Y =

(
χ
⊔

u∈V1Υ

Cone(χ̂u)

)/
∼ and Y ′ =

(
χ′

⊔
u∈V1Υ′

Cone(χ̂′u)

)/
∼
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where the equivalence relations ∼ are given by φu(x) ∼ (x, 0) and φ′u(x′) ∼ (x′, 0) for each u ∈ V1Υ,
where φu and φ′u are the covering maps defined above. There are natural embeddings θ : χ→ Y and
θ′ : χ′ → Y ′.

On a group theoretic level,

π1(χ) = π1(χv1) ∗ · · · ∗ π1(χvm) ∗ F`,

where v1, . . . , vm are the one ended vertices in Υ. Then, take the quotient

π1(Y ) = π1(χv1)/π1(χ̂v1) ∗ · · · ∗ π1(χvm)/π1(χ̂vm) ∗ F`.

An analogous construction is applied to π1(χ′) to obtain π1(Y ′). The groups π1(χvi)/π1(χ̂vi) and
π1(χ′vi)/π1(χ̂′vi) are finite groups. Hence, the groups π1(Y ) and π1(Y ′) are virtually free. Thus, there
exist finite-sheeted covers Ŷ → Y and Ŷ ′ → Y ′ with free fundamental groups. Let χ̂→ χ be the finite-
sheeted cover corresponding to θ−1

∗ (π1(Ŷ )), and χ̂′ → χ′ be the finite-sheeted cover corresponding to
(θ′)−1
∗ (π1(Ŷ ′)). The vertex spaces in χ̂ covering χu are isomorphic to χ̂u and the covering maps are

precisely φu. An analogous statement holds for the vertex spaces in χ̂′.

6.3. A common regular cover with locally finite underlying graph. There is a normal sub-
group of π1(χ̂) generated by the vertex groups and all their conjugates in π1(χ̂). The corresponding
regular cover χ̆ → χ̂ decomposes as a tree of spaces. The induced covering map χ̆v → χ̂u, given by
restricting to a vertex space, is an isometry. Alternatively, if Υ̂ is the underlying graph for χ̂, then χ̆
is the covering space determined by the universal cover of Υ̂. Similarly, we obtain the corresponding
regular covering χ̆′ → χ̂′.

Proposition 6.3. There is an isometry ϕ : χ̆→ χ̆′.

Proof. Let T̆ := π1(χ̆)\T and T̆ ′ := π1(χ̆′)\T denote the underlying trees of χ̆ and χ̆′ respectively.
The induced covering maps P : X → χ̆ and P ′ : X → χ̆′ respect the tree of spaces decomposition.
So, there are quotient maps p : T → T̆ and p′ : T → T̆ ′ so that P induces a cover Xv → χ̆p(v) for each
v ∈ V T , and similarly for P ′. Choose an exhaustive enumeration u0, u1, u2, . . . of the vertices of T̆
such that {u0, . . . , un} span a subtree of T̆ for all n ∈ N. Let χ̆+

v and χ̆′+v denote the 1-neighborhood
of the respective vertex spaces as before. We will inductively define ϕ∗ : T̆ → T̆ ′ and the map ϕ along
with it.

Choose v0 ∈ V1T such that p(v0) = u0. The covering map X+
v0 → χ̆+

u0
is induced by quotienting

by K̂v0 . Let u′0 = p′(v0) and observe that X+
v0 → χ̆′

+

u′
0
is also obtained by quotienting by K̂v0 . If

v0 ∈ V1T then χ̆+
u0

= K̂v0\X+
v0 = χ̆′+u′

0
so there is an isometry ϕ0 : χ̆+

u0
→ χ̆′+u′

0
such that the following

diagram commutes:

X+
v0

~~   
χ̆+
u0

ϕ0 // χ̆′+u′
0

Now, we may proceed inductively, assuming that isometries ϕ0, . . . , ϕn−1 have been defined, and
the map ϕ∗ is defined on all vertices u0, . . . , un−1 and their incident edges. For all i < n there exists
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vi ∈ V T and a map ϕi has been defined such that the following commutes:

X+
vi

~~   
χ̆+
ui

ϕi // χ̆′+u′
i

The vertex un is incident to some uj for j < n via an edge en. Then there exists a vertex vn ∈ V T
incident to vj via an edge ẽn such that p(vn) = un and p(ẽn) = en. Let u′n = p′(vn) and e′n = p′(ẽn).
Note that e′n connects u′j to u′n. If vn ∈ V1T then as in the initial case χ̆+

un
= K̂vn\X+

vn = χ̆′+u′
n
so

there is an isometry ϕn : χ̆+
un
→ χ̆′+u′

n
such that the following diagram commutes:

X+
vn

}} !!
χ̆+
un

ϕn // χ̆′+u′
n

Otherwise, if vn /∈ V1T then the covering maps X+
vn → χ̆+

un
and X+

vn → χ̆′+u′
n
are isometries and ϕn

is given by the composition χ̆u′
n
→ X+

vn → χ̆′+u′
n
so the diagram commutes. Again, as in the initial

case, if e is an edge incident to un, then ϕn(χ̆e) = χ̆e′ , where e and e′ both correspond to the same
K̂vn -orbit of edge incident to vn in T . The edge space Xẽn covers χ̆en and χ′e′n respectively by an
isometry, so ϕn will map χ̆en to χ̆e′n so we deduce that ϕn is consistent with ϕj on the edge space
χ̆en = χ̆+

uj
∩ χ̆+

un
.

The induction is complete and taking all the ϕn gives a well defined function ϕ such that ϕ∗ is a
local isometry between two trees, and hence an isomorphism. �

Identifying χ̆ with χ̆′, we can say that χ̆ is a common regular cover of both χ̂ and χ̂′.

6.4. The group Isom(χ̆) ≤ Isom(T̆ ) is symmetry restricted. Recall the notion of a symmetry
restricted subgroup given in Definition 1.13. There are maps P : π1(χ̂)→ Isom(χ̆) and P ′ : π1(χ̂′)→
Isom(χ̆). Let Φ : Isom(χ̆)→ Isom(T̆ ) be the natural map induced by the tree of spaces decomposition
X̆ → T̆ . Let F := Φ ◦ P (π1(χ̂)) and F ′ := Φ ◦ P ′(π1(χ̂′)).

Lemma 6.4. The groups F and F ′ are free uniform lattices in Aut(T̆ ).

Proof. The fundamental groups π1(χ̂) and π1(χ̂′) act cocompactly on χ̆ by construction. To show
that F and F ′ are free, we claim that F and F ′ act freely on the locally finite tree T̆ . Indeed, if a
vertex v ∈ T̆ is stabilized by an element Φ ◦ P (g), then g must stabilize χ̆v, and so fixes χ̆v, since by
construction the covering map χ̆v → χ̂v is an isometry. �

Lemma 6.5. The group H̆ := Φ
(
Aut(χ̆)

)
is a 1-symmetry restricted subgroup of Aut(T̆ ); that is,

H̆ = S1(H̆) 6 Aut(T̆ ).

Proof. Suppose that g ∈ S1(H̆). We wish to find h ∈ Aut(χ̆) such that Φ(h) = g. By the definition
of S1(H̆), for each v ∈ V T̆ the restriction gv : N1(v) → N1(gv) is equal to the restriction of some
hv ∈ Aut(X̆) to N1(χ̆v) = χ̆+

v . If u and v are adjacent vertices then the isometries hu and hv agree
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v

u

g

gv

gu

hv

h

hu

T̆
χ̆

χ̆v

χ̆u

Figure 6.2. An illustration of the gluing in Lemma 6.5.

on the edge space χ̆e = χ̆+
u ∩ χ̆+

v , where e is the edge connecting u to v. See Figure 6.2. Thus, we can
define an isometry h of χ̆ to be hv on χ̆+

v . �

Proof of Theorem 6.2. By applying Theorem 1.15 we obtain h̆ ∈ H̆ such that F̄ = h̆F h̆−1 ∩ F ′ is
a finite-index subgroup of both h̆F h̆−1, and F ′. Thus h̆−1F̄ h̆ is a finite-index subgroup of F with
associated finite cover χ̄ → χ̂, that is isometric to the finite cover χ̄′ → χ̂′ associated to F̄ , a finite-
index subgroup of F ′. Thus we have an element h ∈ H such that (π1χ̄)h is equal to π1χ̄

′, and thus h
commensurates Γ to Γ′ in H. �

7. Free products of finite extensions

Let G be a uniform lattice in Isom(HnF), and suppose that there exists a finite extension

1→ F → E → G→ 1

such that E is not residually finite. Since G is residually finite, by taking the preimage in E of
a torsion-free, finite-index subgroup of G, we can assume that G is torsion free. The non-residual
finiteness of E implies that there exists some element of E that lives in every finite-index subgroup
of E. Since G is residually finite, this element must lie in F . Let f ∈ F denote such an element. As
F is finite, let r be the order of f .

Consider the hyperbolic triangle group

∆ = ∆(r, 5, 5) = 〈a, b, c | a2 = b2 = c2 = (ab)r = (bc)5 = (ac)5 = 1〉.

Consider the following amalgamated free product:

H := E ∗〈f〉=〈ab〉 ∆

We will show the following:

Proposition 7.1. Under the assumption that E is not residually finite, the group H is not action
rigid. Moreover, there exists H ′ that shares a common model geometry with H, but is not even virtually
isomorphic to H.

Proof. First we construct a model geometry for H. Let T be the Bass-Serre tree for H. Let v be the
vertex stabilized by E 6 H and u be the adjacent vertex stabilized by ∆ 6 H. Let e = {v, u}. Let
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Xv := HnF . We have a geometric action of E on Xv given by the surjection onto G. Fix a basepoint
xv ∈ Xv. Note that xv is fixed by F , while G itself acts freely on Xv. Let Xu := H2 with the
associated ∆-action. Fix the basepoint xu ∈ Xu to be the unique fixed point of the torsion element
ab ∈ ∆.

Let 1, h1, h2, . . . be coset representatives of H/Hv and let [h]v denote the coset containing h. The
vertices v, h1v, h2v, . . . are the H-orbit of v. Similarly, let 1, h′1, h

′
2, . . . be coset representatives of

H/Hu and [h]u denote the corresponding coset. The vertices u, h1u, h2u, . . . are the H-orbit of u.
Define an action of H on Xv ×H/Hv by letting

h · (x, [hi]v) = (h−1
j hhi · x, [hj ]v = [hhi]v),

which is well defined since [hj ]v = [hhi]v implies that h−1
j hhi ∈ Hv. Similarly, define an action of H

on Xu ×H/Hu by letting

h · (x, [h′i]u) = (h′
−1
j hh′i · x, [h′j ]u = [hh′i]u).

For ĥ ∈ H, let [ĥ]e denote the coset ĥHe in H/He. Define the H-action on [0, 1]×H/He by

h · (α, [ĥ]e) = (α, [hĥ]e)

for ĥ ∈ H. We define the model geometry to be the quotient space

X := (Xv ×H/Hv)× (Xu ×H/Hu)× ([0, 1]×H/He)/ ∼

by letting
(0, [ĥ]e) ∼ (h−1

i ĥxv, [ĥ]v = [hi]v)

and
(1, [ĥ]e) ∼ (h′i

−1
ĥxu, [ĥ]u = [h′i]u).

Note that this does not depend on the choice of representative ĥ since He fixes xu and xv. We can
verify that the H action on the disjoint union passes to the quotient space by observing that

h · (0, [ĥ]e) = (0, [hĥ]e)

∼ (h−1
j hĥxv, [hĥ]v = [hj ]v)

=
(
(h−1
j hhi)(h

−1
i ĥxv), [hhi]v = [hj ]v

)
= h · (h−1

i ĥxv, [h]v = [hi]v).

Since (0, [ĥ]e) ∼ (h−1
i ĥxv, [h]v = [hi]v), we conclude that the action respects the relation ∼, so H acts

on X.

The space X decomposes as an H-equivariant tree of spaces via the map

p : X → T

given by mapping (x, [hi]v) 7→ hiv and (x, [h′i]u) 7→ h′iu and linearly mapping [0, 1]× [ĥ]e to the edge
ĥe so that (0, [ĥ]e) 7→ ĥv and (1, [ĥ]e) 7→ ĥu.

The vertices of the underlying tree T are bicoloured according to whether the vertex space is
isometric to HnF or H2. Within each vertex space isometric to HnF there are |F |/r edge spaces attached
to each G-orbit point of xv, and in each vertex space isometric to H2 there is a single edge space
attached to each ∆-orbit point of xu. Any other space that decomposes in the fashion described will
be isometric to X, since a suitably chosen isometry between vertex spaces can be extended to the
incident edge space, then the neighbouring vertex spaces, and so on through the entire tree of spaces.
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We now construct H ′. Let p = |F |/r. Let ∆′ 6 ∆ be a torsion-free, finite-index subgroup. Note
that r divides [∆ : ∆′] so let q = [∆ : ∆′]/r. Let

H ′ = (∗qi=1G) ∗ (∗pi=1∆′) ∗ Fpq−p−q+1

Realize H ′ as the fundamental group of a graph of spaces obtained by taking q copies of G\Xv and
p copies of ∆′\Xu. The underlying graph will be the bipartite graph Γ with q vertices of valence
p with vertex space G\Xv and p-vertices of valence q with vertex space ∆′\Xu. The edge spaces
will be intervals with endpoints attached to either the basepoint x̄v ∈ G\Xv covered by xv, or the q
distinct points in ∆′\Xu covered by the orbits of ∆xu ⊆ Xu. The resulting graph of spaces Y will
have universal cover isometric to X.

To see that H and H ′ are not virtually isomorphic, suppose J is a finite normal subgroup of Υ,
where Υ is a finite-index subgroup of H or H ′. Then, J will fix a vertex of T (since J is finite), and
therefore the entire Υ-orbit of that vertex (since J is normal), and thus J will fix the entire tree T .
The only elements of H or H ′ that fix the entire tree are the identity, so J must be trivial. Thus if H
and H ′ are virtually isomorphic, then they must be abstractly commensurable, which is impossible
since H ′ is residually finite, H is not, and residual finiteness is a commensurability invariant. �
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