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ABSTRACT 

 
 
 
Different gravitational force models are used for determining the satellites’ orbits. The satellite 
gravity gradiometry (SGG) data contain this gravitational information and the satellite 
accelerations can be determined from them. In this study, we present that amongst the elements 
of the gravitational tensor in the local north-oriented frame, all of the elements are suitable for 
this purpose except Txy. Three integral formulae with the same kernel function are presented for 
recovering the accelerations from the SGG data. The kernel of these integrals is well-behaving 
which means that the contribution of the far-zone data is not very significant to their integration 
results; but this contribution is also dependent on the type of the data being integrated. Our 
numerical studies show that the standard deviations of the differences between the accelerations 
recovered from Tzz, Txz and Tyz  and those computed by an existing Earth´s gravity model reduce 
by increasing the cap size of integration. However, their root mean squared errors increase for 
recovering Ty from Tyz.  Larger cap sizes than 5

on

is recommended for recovering Tx and Tz  but 
smaller ones for Ty.  
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1. INTRODUCTION 

In satellite orbit integration a series of force models are integrated twice with respect to time 
for delivering the satellite’s velocity and position vectors. Generally, the equations of motion 
of a satellite are expressed by a second-order vector differential equation containing these force 
models. The accuracies of these models play an important role in a successful orbit integration 
process. Today, satellites are launched for different purposes, including the Earth’s gravity field 
determination and in order to obtain a high resolution gravity model different techniques are 
used. Satellite gravity gradiometry (SGG) is the technique which was used in the recent 
European Space Agency (ESA) satellite mission, the gravity field and steady-state ocean 
circulation explorer (GOCE) (ESA 1999). Since the SGG data are more sensitive to the local 
futures of the Earth’s gravity field, we expect to derive high-resolution gravity models from 
their analyses. 

Satellite orbit analysis is a well-known technique for the gravitational field recovery cf. e.g., 
Kaula (1966), Visser (1992) and Sneeuw (1992). It is important to consider that, although the 
SGG technique (Rummel et al. 1993, Keller and Sharifi 2005, Sharifi 2006) is used, the 
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satellite’s orbit should be determined as precise as possible so that the extracted perturbations 
can be analysed without worrying about the possible biases in the gravity field solution. Precise 
orbit determination of satellites (Parrot 1989, Santos 1994, Su 2000 and Wolf 2000) can be 
done in different ways, such as kinematic, dynamic and reduced dynamic, etc.; see e.g. Rim 
and Schutz (2001).  Numerical integration of an orbit has some benefits with respect to the 
analytical one (Kaula 1966), as it is not restricted to the mathematical models of the perturbing 
forces.  For details of the algorithms; see, e.g. Su (2000), Wolf (2000), Eshagh (2003, 2005, 
2009a), Eshagh and Najafi-Alamdari (2006 and 2007) and Somodi and Földvary (2011). 
Eshagh et al. (2009) simplified the mathematical formulae of equations of motion of satellites 
and applied them for a study on the orbit integration of GOCE, the gravity field recovery and 
climate experiment (GRACE) (Tapley et al. 2005) and the Challenging Minisatellite Payload 
(CHAMP) (Reigber et al. 1999 and 2004) missions. In all methods for orbit determination, the 
acceleration of the satellite should be computed before the integration process using the force 
models. In fact, the satellite acceleration is the results of interactions of all gravitational and 
non-gravitational accelerations, but since some of the forces of the second category are 
practically removed from the satellite observations, therefore, we can assume that the satellite 
undergoes the gravitational accelerations; e.g. in the case of GOCE satellite the non-
gravitational accelerations were compensated by a drag free and attitude control system (ESA 
1999). The SGG data can be converted to these gravitational accelerations and in this case, we 
do not have to use corresponding force models. However, the important issue is to check the 
quality of these data prior to any application. 

 
So far, different efforts have been done to validate the SGG data. The simplest method is 

the direct comparison of the observed SGG data with the corresponding generated ones using 
an existing Earth’s gravity model (EGM); (see Eshagh and Abdollahzadeh 2010 and 2011). 
Also, Haagmans et al. (2002) and Kern and Haagmans (2004), Mueller et al. (2004) and Wolf 
(2007) used the extended Stokes and Hotine formulae for using the terrestrial gravimetric data 
for this purpose. Bouman et al. (2003) has set up a calibration model based on the instrument 
(gradiometer) characteristics to validate the SGG data. Least-squares collocation can be used 
for the same purpose; see e.g. Tscherning et al. (2006). Zielinski and Petrovskaya (2003) 
proposed a balloon-borne gradiometer to fly at 20-40 km altitude simultaneously with satellite 
mission and proposed downward continuation of satellite data and comparing them with 
balloon-borne data. Bouman and Koop (2003) presented an along-track interpolation method 
to detect the outliers. Their idea is to compare the along-track interpolated gradients with the 
measured ones. Pail (2003) proposed a combined adjustment method supporting high quality 
gravity field information within the well-surveyed test area for the continuation of the local 
gravity field upward and validating the SGG data. Bouman et al. (2004) stated that a high-
degree EGM should be taken into account and to remove the greater part of the systematic 
errors. Kern and Haagmans (2004) and Kern et al. (2005) presented an algorithm for detecting 
the outliers in the SGG data in the time domain. Visser (2009) tried to estimate the biases and 
scale factors of the accelerometers used in the GOCE spacecraft by using its precise orbit. The 
stochastic modification was used by Eshagh (2010a) to modify the second-order radial 
derivative of the extended Stokes formula. Eshagh (2011a) also modified the second-order 
radial derivative of the Abel-Poisson formula in a least-squares sense to generate the second-
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order radial gradient at satellite level using an EGM and geoid model. The least-squares 
modification of the vertical-horizontal and horizontal-horizontal derivatives of the extended 
Stokes formula was done by Eshagh and Romeshkani (2011) and Romeshkani (2011) based on 
the theoretical study by Eshagh (2010b).  Bouman et al. (2011) presented the gravity gradients 
of GOCE along its orbit in the local north-oriented frame (LNOF) which are suitable for 
different applications.    
 

All of these methods are based on the fact that the EGM and terrestrial gravity data are reliable 
enough to validate the SGG data at satellite level especially those of GOCE. The successful 
performance GOCE showed that its SGG data have good quality for the gravity field recovery 
goals. Therefore, they can be considered as reliable sources of gravimetric information and used 
for other purposes. Eshagh and Romeshkani (2013) tried to use these data for quality description 
of those terrestrial data lacking any information about their quality. Here, the idea is to use the 
SGG data instead of the force models for generation of the satellite accelerations as they have 
inherently included most of the gravitational information required for orbit integration. The 
non-gravitational effects are, today, technically removed from the observations. Therefore, we 
expect to obtain better and realistic gravitational information than those the models contain. 
The main issue is how to use the SGG data for this goal. The idea of this paper comes from a 
study which was done by Bobojc and Drozyner (2003) for using the SGG data for orbit 
determination in a stochastic way. However, our main goal is to find deterministic and integral 
relations to recover the satellite accelerations from these reliable SGG data.  

 

2. EQUATIONS OF MOTION OF A SATELLITE 

The Earth’s gravitational potential is expressed by the following spherical harmonic series (cf. 
Heiskanen and Moritz 1967, p. 107): 
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� �    where   R < r                   (1a) 

 
and GM stands for the geocentric gravitational constant, R the semi-major axis of the reference 
ellipsoid, r the geocentric distance of any point outside the Earth’s surface, � �,nmY � � the fully-

normalised spherical harmonics of degree n and order m, with arguments of co-latitude �  and 
longitude �  and vnm is the spherical harmonic coefficients of the gravity field. The ratio R / r  
is always smaller than 1 and by getting a power of n + 1 it becomes smaller and smaller for 
higher degrees.  
 
The equations of motion of a satellite form a second-order vector differential equation and by 
integrating it twice, the velocity and position of the satellite are derived. This differential 
equation is solved by integrating some available force models acting on the satellite. The most 
significant force is the gravitational attraction of the Earth and if the satellite is assumed as a 
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point mass, its accelerations in the LNOF, which is defined as a frame whose z-axis is pointing 
radially upward, the x-axis points towards the north and the frame is right handed, can be 
computed by (Hwang and Lin 1998, Eshagh 2008):     
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These three accelerations are the elements of the vector of gravitation v: 
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where (.)T stands for the transpose operator.  
 
The orbit integration should be performed in an inertial frame, which its z-axis is towards the 
Earth’s pole, the x-axis towards the Vernal equinox on the equator and the frame is right handed. 
However, the satellite accelerations are presented in the LNOF, therefore, they should be 
transferred to the inertial frame by (Hwang and Lin 1998, Eshagh et al. 2009): 
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where xx  , yy  and zz  are the satellite accelerations in the inertial frame and GAST� �� � � .  
GAST stands for Greenwich Apparent Sidereal Time which can be computed using 
astronomical data of Doodson or Delauney arguments (IERS conventions 2010).   
 
3. TENSOR AND VECTOR OF GRAVITATION  
By taking the derivatives of the vector of gravitation towards x, y and z axes in the LNOF, the 
tensor of gravitation becomes: 

 

xx xy xz

xy yy yz

xz yz zz

V V V
V V V
V V V


 �
� 


� � 

� 

� �

T  .                                        (2a) 

66



 
The elements of this tensor have the following relations to the Earth’s gravitational potential 
(Reed 1973, Petrovskaya and Vershkov 2006): 
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By looking at these relations we can simply find out that there are similarities between Vzz and 
Vxz and Vyz and the elements of the vector of gravitation Vz, Vx and Vy, respectively. Therefore, 
here and after, we continue our discussion with Vzz , Vxz and Vyz which have the following 
spherical harmonic expressions (Petrovskaya and Vershkov 2006): 
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Eshagh (2008, 2009b) presented alternative formulae for them which are simpler to use than 
the original ones.  

 
3.1.  DETERMINATION OF GRAVITATION VECTOR FROM GRAVITY 
GRADIENT TENSOR 
As already explained, derivation of the tensor of gravitation is done by taking the derivatives 
of the vector of gravitation, therefore, this vector should be derived by integrating the tensor of 
gravitation. However, suitable relations for the integration should be found, which we try to 
present them in the following subsections.    

 
3.2.HARMONIC RELATIONS 

In order to find the harmonic relations between Vzz , Vxz and Vyz  and Vz, Vx and Vy, let us, first, 
write Eqs. (1b) and (2h) in the following forms: 
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The common harmonic in these relations is nV . If we derive nV  from Eq. (3b) and insert it back 
into Eq. (3a) and simplify the result, we have: 
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Similarly, from Eq. (1c) and (2i) we can write:  
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By solving Eq. (3d) for ,nV�  and substitute it into Eq. (3e) and after simplifications we obtain: 
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In a very similar manner, we can derive the following relation from Eq. (1d) and Eq. (2j): 
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As observed, the harmonics of ,xz nV , ,yz nV  have the same coefficients for their conversions to 

,nV
r
�  and ,

sin
nV

r
�

�
, respectively. This coefficient is the same for conversion of ,zz nV and ,z nV  but 

with a negative sign.  
 
On the other hand, it should be stated that since the Earth gravitational potential is harmonic 
outside the Earth, therefore, one can write: 
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This means that xxV  and yyV  can be also used for recovering zV  using Eq. (2h). Therefore, all 

elements of the gravitational tensor are useful for our purpose except xyV  .  

 
3.3. INTEGRAL RELATIONS 
From the harmonic relations derived in the previous section, similar integral formulae can be 
obtained for recovering Vz, Vx and Vy from Vzz, Vxz and Vyz, respectively. Here, the following 
formula for any function U on the unit sphere�  is introduced. The Laplace harmonic nU  of the 
function U over this sphere is (Heiskanen and Moritz 1967, p. 34):  
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where � �cosnP �  is the Legendre polynomial of degree n, � stands for the geocentric spherical 

angle between the computation and integration points, d� the surface integration element and 
the prime over U stands for integration points.   
 
According to Eqs. (3c), (3f) and (3g) the Laplace harmonic of the vector of gravitation is:  
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By taking the summation over n from 0 to �  from both sides of (4b) we obtain: 
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Eq. (4c) is an integral formula for deriving the vector of gravitation from zzV  , xzV   and yzV  . 

The kernel of this integral formula is in spectral form which requires the time-consuming 
generation of the Legendre polynomials, but finding a closed-form formula for this function is 
possible. To do so, let us write the kernel in the following form: 
 

� � � � � �
0 0

cos
2 cos 3

2
n

n
n n

P
K P

n
�

� �
� �

� �

� 	
�� �                                                             (4d) 

 
As we already know (Martinec 2003):  
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Finally, the closed-form formula of the kernel function becomes:  
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The kernel function � �K �  is singular at 0� � . Lots of studies have been done about geodetic 

integrals which are singular at the computation point. Schwartz et al. (1990) used the planar 
approximation of the kernel function as he believed that for a relatively dense data this 
approximation is good enough for integration. The classical spherical method was presented by 
Martinec (1998) which removes the data at the computation point, so that the result of 
integration at that point becomes zero and after that restore it by assuming that the data is 
constant in a small integration domain around the computation point. Novak et al. (2001) used 
this idea for precise geoid computation. Hirt et al. (2011) presented the idea of using mean 
kernel instead of the point kernel at the computation point. In fact, they have developed the idea 
of de Min (1994) for numerical integration of Stokes’s function and generalised it to all geodetic 
integrals; for more references about the singularity problems the reader is referred to these 
papers and the references therein. Here, we use a similar idea and divide the integration domain 
into two parts. The first part is the whole unit sphere except a small cap around the computation 
point. The size of the cap depends on the resolution of the available data, the denser data the 
smaller cap. This means that the integration performs for all data points except the computation 
point. It is assumed that the data, here, the elements of the tensor of gravitation, is constant over 

0�  and we can take them outside the integrals:   
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The second integral in the r.h.s of Eq. (4h) is simplified to (cf. Heiskanen and Moritz 1967, P. 
262): 
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where 0cos� �� .                                                                                                                                
 
The integral formula (4h) means that the singular point is removed from the first integral term 
in the r.h.s of (4h). One can simply consider a value of 0 for this term at the singular point. The 
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effect of the removed singular point is restored to the result afterwards by the second term in 
the r.h.s. of (4h). 
 
4. GRAVITY GRADIENTS IN ORBITAL FRAME 
The real SGG data are measured in the gradiometric frame and not the LNOF. Here, we 
reformulate the integral formulae in terms of the gravity gradients in the orbital frame, which 
is one step closer to the gradiometer frame. This frame is defined as: its w-axis is towards the 
Earth centre and perpendicular to the orbit, u-axis is towards the motion of the satellite and v-
axis is considered in such a way that the frame becomes left handed.  If we assume that the orbit 
of the satellite is circular the satellite track azimuth can be computed by (Vermeer 1990, 
Petrovskaya and Vershkov 2006): 
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where I stands for the orbital inclination. The transformation of  xzV   and yzV   in the LNOF to 

their equivalents in the orbital frame uwV  and vwV  is (Petrovskaya and Vershkov 2006): 
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By assuming that xzV   and yzV   are unknown and   uwV    and vwV  are given, Eqs. (6b) and (6c) 

are considered as a system of equations with the following solution: 
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Eshagh (2011b) showed that the following relation holds for Vzz: 
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By substituting Eqs. (6d), (6e) and (6f) into Eq. (4c) we find the following integral relation 
between the gravity gradients in the orbital frame and the vector of gravitation: 
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In order to derive integral formulae of the equations of motion of a satellite in terms of the 
gravity gradients in the orbital frame it is enough to insert Eq. (6g) into Eq. (1f). Concerning 
the singularity problem one can simply use the technique presented for Eq. (4h). We do not 
present this procedure here to shorten the paper.  

 
5. NUMERICAL STUDIES 

Our numerical study is divided into two parts. In the first part the behaviour of the kernel 
function (4g) is presented and discussed and in the second part, the gravity gradients are 
generated over Fennoscandia and used in the integral formula (4h) for testing the feasibility of 
the idea in practice. 

Figure 1 shows the behaviour of the kernel function (4g) to a geocentric angle of 5 . The kernel 
is rather well-behaving (Eshagh 2011b) as it has its maximum value around the computation 
point and decreases fast to zero. As the plot illustrates, the contribution of the far-zone data 
should not be significant, but some practical tests are required as the contribution of the far-
zone data depends on the type of data being integrated as well.  

 

Figure 1. Behaviour of � �K �  

 

Here, Fennoscandia, limited between latitudes of 50 N to 75 N and longitudes of 0 N to 35  
N, is considered as the test area. We use the nonsingular expressions of the gravity gradients 
presented by Eshagh (2009b) as well as the vectorised models presented for their programming 
by Eshagh and Abdollahzadeh (2010, 2011). We considered a larger area by 9 than 
Fennoscandia as required for integration. EGM08 (Pavlis et al. 2008) to degree and order 360 
is used as the reference gravity model. It should be stated that in this numerical study, the 
second-order derivatives of the disturbing potential (T) are considered as the gravity gradients 
and the first-order ones as the accelerations. This means that the normal gravity field, in this 
study GRS80 (Moritz 1980, 2000), has been already subtracted from EGM08. This reduction 
is useful for better visualisation of the gradients and accelerations but in practice the gravity 
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gradients of the true gravity field are measured. Nevertheless, the removed normal gravity field 
can always be restored to the derived accelerations after the integration process.  
 

Figure 2 shows the maps of the gravity gradients and the accelerations at a constant elevation 
of 250 km over Fennoscandia, generated directly in the nodes of a 0.5 0.5�0 5  grid by their 
spherical harmonic expansions and EGM08 to degree and order 360. Figure 2a is the map of 
Txz and Figure 2b is that of Tx, and similarly Figures 2c and 2d are those of Tyz and Ty and 
Figures 2e and 2f of Tzz and –Tz. The maps of the accelerations are very similar to those of the 
gradients, but they are smoother as expected. The statistics of the gradients and accelerations 
are presented in Table 1. The maximum and minimum values of Tzz are 0.6 E and -0.4 E, 
respectively, while they are 0.5 E and -0.3 for Txz and 0.3 E and -0.5 E for Tyz. Tzz has the largest 
STD of 0.2 E while STD is 0.1 for the rest of them. The maximum and minimum values are 
16.0 mGal and -6.6 mGal, respectively, for Tx while they are 0.6 and -24.3 and 1.2 and -33.3 
for Ty and Tz. The mean values of Ty and Tz are -13.7 mGal and -15.2 mGal which are both 
negative and large. This means that the number of positive and negative accelerations over the 
area is not in balance, or in other words, the number of negative values are larger than that of 
positive one. This causes that the mean values become negative. However, this is not the case 
for Tx as its mean value is 2.7 mGal. The largest STD is related to Tz which is equal to 8.8 mGal 
while they are 5.4 and 4.7 in unit of mGal for Ty and Tx. 

Table 1. Statistics of gradients [E] and accelerations [mGal] 

 Max  Mean  Min  STD  Max  Mean  Min STD 
Txz 0.5 0.0 -0.3 0.1 Tx 16.0 2.7 -6.6 4.7 
Tyz 0.3 -0.1 -0.5 0.1 Ty 0.6 -13.7 -24.3 5.4 
Tzz 0.6 0.1 -0.4 0.2 Tz 1.2 -15.2 -33.3 8.8 

Table 2. Statistics of differences between accelerations generated from EGM08 and those from 
gravity gradients using integral formulae (4h), Columns 3-7 contain the results in the case of 
the removing of the zero- and first-degrees from the kernel function of integral formulae (4h). 
Unit: 1 mGal 

Cap 
size 

 Max Mean  Min STD RMS Max Mean Min STD RMS 

 

1  

Tx 3.6 -1.1 -12.6 3.4 3.6 3.3 -1.4 -12.8 3.4 3.7 
Ty 8.0 -2.0 -5.0 2.3 3.1 9.3 -0.7 -3.7 2.4 2.5 
Tz 16.9 9.1 1.2 3.4 9.7 17.2 9.5 1.5 3.4 10.1 

 

3  

Tx 5.1 -0.4 -11.4 3.7 3.8 4.8 -0.7 -11.7 3.7 3.8 
Ty 4.5 -4.4 -7.4 2.3 5.0 6.1 -2.8 -5.7 2.3 3.6 
Tz 13.7 6.1 -0.4 2.9 6.7 14.5 6.8 0.3 2.9 7.4 

 

5  

Tx 5.2 -0.5 -10.9 3.7 3.7 4.9 -0.8 -11.2 3.7 3.8 
Ty 1.9 -6.3 -9.4 2.3 6.7 3.8 -4.4 -7.5 2.2 5.0 
Tz 9.5 3.2 -2.1 2.4 3.4 10.7 4.4 -0.9 2.4 5.0 

 

7  

Tx 6.5 0.0 -10.2 3.9 3.9 6.0 -0.4 -10.6 3.9 3.9 
Ty 0.1 -7.7 -10.9 2.3 8.0 2.2 -5.6 -8.8 2.3 6.0 
Tz 6.4 0.9 -3.6 2.0 2.2 8.0 2.5 -2.0 2.0 3.2 
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Fig. 2. Maps of gravity gradients and accelerations a) Txz , c) Tyz and e) Tzz  [E], b) Tx , d) Ty 

and f) -Tz [mGal] 
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Table 2 presents the statistics of the differences between the accelerations generated from 
EGM08 and those from the gravity gradients derived by the integral formula (4h). It shows that 
the STD of the differences is reduced by increasing the cap size of integration for Tz which 
means that by integrating more data the undulations of Tz over the area is presented better, whilst 
the STD does not change for Ty. The mean value of differences reduces with increasing the 
integration cap size for Tz and Tx, whilst it increases for Ty. The possible reason could be due to 
the fact that the global mean value of Tz is zero, because of exclusion of zero-degree harmonic, 
and it is difficult to recover that mean value using the locally-distributed data. The reduction of 
the mean value with the increase of cap size means that by considering larger cap size more 
data are integrated and the local mean value goes to the global one. A similar issue is seen for 
Tx but the opposite for Ty which shows that the increase of the cap size just adds systematic 
effects on the results and shifts them from the true values.  The mean values are -2.0 mGal and 
-7.7 mGal when the cap size is 1  and 7 , respectively, meaning that when cap size is smaller 
the integration is more successful than the case it is larger. In order to investigate the integration 
issue we remove the zero- and first-degrees from the kernel function so that it becomes blind to 
them and not to try to recover the corresponding frequencies from the gradients. In the case of 
using a cap size of 1  we observe insignificant changes in the STD of the differences comparing 
to the case that the kernel includes these degrees. However, a significant reduction in the mean 
value of the differences is seen for Ty. The table shows that the exclusion of these degrees does 
not significantly influence Txz and the RMS of the differences remains, more or less, the same 
by increasing the cap size. Again, we observe that the increase of the mean values by increasing 
the cap size for Ty , but removing these degrees from the kernel has had significant influence in 
the magnitude of the mean value. The table shows a reduction of 2 mGal in the mean values in 
a cap size of 7 .  However, the mean values for Tz  is reduced by the increase of the cap size at 
a slower rate than the case the kernel includes the zero- and first-degree terms.  

Here, we selected Fennoscandia for presenting our results, but we already tested the situation 
over other areas and we observed similar issues there as well.  Generally, the recovery of Tz 
from Tzz is successful when the cap size of integration is large and when the kernel of the integral 
includes the zero- and first-degree terms. The opposite is the generation of Ty from Tyz, and it is 
successful when the cap size of integration is small and the kernel excludes these terms. 
Deriving Tx from Txz is successful whether or not the kernel have these terms and large cap sizes 
lead to successful integrations.  

In this study, we considered all of the gravity gradients at the same level whilst in a real satellite 
gradiometry mission they are measured on the orbit. One can continue them downward/upward 
(Toth et al. 2004, 2005) to the mean orbital sphere over the study area and perform the 
integration afterwards. When the accelerations derived from them, they can be continued 
upward/downward to the original position in the orbit. Today, by the advances in technology 
these continuation processes are not time consuming, especially using interpolators and 
available computational software. Another important issue regarding the use of integral 
formulae is the cap size of integration, which means that a larger area than the desired one is 
required. In such a case, the orbit improvement over the areas which are close to the satellite 
polar gaps is not successful due to the lack of gravity gradients over them.  
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6. CONCLUSIONS  
This study showed that amongst the elements tensor of gravitation in the local north-oriented 
frame, only Txy is not suitable for recovering accelerations of Tz, Tx and Ty. Three integral 
formulae with the same kernel function were derived for deriving these accelerations from 
them. The derived closed-form formula of the kernel shows that it is a well-behaving kernel 
and the contribution of the far-zone data should not be significant, but our numerical studies 
showed that the type of data being integrated is also important to judge about the influence of 
the far-zone data. Having a well-behaving kernel is necessary, but not sufficient condition for 
judging about the significance of the far-zone data. This means that the integration within a 
certain cap size can be optimal for one gradient but not for another. We found out that the 
increase of cap size of integration leads to a more successful result for recovering Tz from Tzz 
and Tx from Txz. The standard deviation of the differences between Tz generated directly from a 
gravity model and the one recovered from Tzz decreases by increasing the cap size so as the 
mean value of them. A similar situation is observed for the computation of Tx from Txz. 
However, the situation is different for recovering Ty from Tyz as the mean value of differences 
increases by increasing the cap size of integration. Removing the zero- and first-degree terms 
of the kernel and integrating the gradients leads to no significant change in Tx but destroys the 
quality of recovering Tz and considerably improves Ty. Consequently, we recommend using the 
integral formulae with a larger integration domain than 5 for Tx and Tz but small one, around 1

, for Ty.  

 

REFERENCES 

Bobojć A. and Drożyner A. (2003) Satellite orbit determination using satellite gravity 
gradiometry observations in GOCE mission perspective, Advances in Geosciences, 1, 109-
112.  

Bouman J. and Koop R. (2003) Error assessment of GOCE SGG data using along track 
interpolation, Advances in Geosciences, 1, 27-32.  

Bouman J., Koop R., Haagmans R., Mueller J., Sneeuw N. Tscherning C.C., and Visser P. 
(2003) Calibration and validation of GOCE gravity gradients, Paper presented at IUGG 
meeting, pp. 1-6.  

Bouman J., Koop R., Tscherning C. C. and Visser P. (2004) Calibration of GOCE SGG data 
using high-low STT, terrestrial gravity data and global gravity field models, Journal of 
Geodesy, 78, 124-137.   

Bouman J., Fiorot S., Fuchs M., Gruber T., Schrama E., Tscherning C., Veicherts M., Visser P. 
(2011) GOCE gravitational gradients along the orbit, Journal of Geodesy, 85, 791-805. 

de Min E. (1994) On the numerical evaluation of Stokes’s integral, International Geoid Service 
Bulletin, 3, 41-46. 

ESA (1999) Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1), 
Report for mission selection of the four candidate earth explorer missions. ESA 
Publications Division, pp. 217, July 1999. 

Eshagh M. (2003) Precise orbit determination of a low Earth orbiting satellite, MSc thesis, K. 
N. Toosi University of Technology, Tehran, Iran. 

76



Eshagh M. (2005) Step-variable numerical orbit integration of a low Earth orbiting satellite, 
Journal of the Earth & Space Physics, 31, 1, 1-12.  

Eshagh M. (2008) Non-singular expression for the vector and gradient tensor of gravitation in 
a geocentric spherical frame, Computers & Geosciences, 34, 1762-1768. 

Eshagh M. (2009a) Orbit integration in non-inertial frames, Journal of the Earth & Space 
Physics, 35, 1, 1-8. 

Eshagh M. (2009b) Alternative expressions for gravity gradients in local-north oriented frame 
and tensor spherical harmonics, Acta Geophysica, 58, 215-243.  

Eshagh M. (2010a) Least-squares modification of extended Stokes’ formula and its second-
order radial derivative for validation of satellite gravity gradiometry data, Journal of 
Geodynamics, 49, 92-104.  

Eshagh M. (2010b) Towards validation of satellite gradiometric data using modified version of 
2nd order partial derivatives of extended Stokes’ formula, Artificial Satellites, 44, 4, 103-
129.  

Eshagh M. (2011a) Semi-stochastic modification of second-order radial derivative of Abel-
Poisson's formula for validating satellite gravity gradiometry data, Advances in Space 
Research, 47, 2, 757-767. 

Eshagh M. (2011b) The effect of spatial truncation error on integral inversion of satellite gravity 
gradiometry data, Advances in Space Research, 47, 1238-1247.  

Eshagh M. and Abdollahzadeh M. (2010) Semi-vectorization: an efficient technique for 
synthesis and analysis of gravity gradiometry data, Earth Science Informatics, 3,149-158.  

Eshagh M. and Abdollahzadeh M. (2011) Software for generating gravity gradients using a 
geopotential model based on irregular semi-vectorization algorithm, Computers & 
Geosciences, 32, 152-160.  

Eshagh M. and Najafi-Alamdari M. (2006) Comparison of different numerical integration 
methods of orbit integration, Journal of the Earth & Space Physics, 33, 1, 41-57. (in 
Persian) 

Eshagh M. and Najafi-Alamdari M. (2007) Perturbations in orbital elements of a low Earth 
orbiting satellite, Journal of the Earth & Space Physics, 33, 1, 1-12. 

Eshagh M. and Romeshkani M., (2011). Generation of vertical-horizontal and horizontal-
horizontal gravity gradients using stochastically modified integral estimators, Advances in 
Space Research, 48, 1341−1358. 

Eshagh M. and Romeshkani M., (2013). Quality assessment for terrestrial gravity anomalies by 
variance component estimation using GOCE gradiometric data and Earth’s gravity models. 
Studia Geophysica et Geodaetica, 57, 67−83. 

Eshagh M., Abdollahzadeh M., and Alamdari-Najafi M. (2009) Simplification of geopotential 
perturbing force acting on a satellite, Artificial Satellites, 43, 2, 45-64. 

Haagmans R. Prijatna K. and Omang O. (2002) An alternative concept for validation of GOCE 
gradiometry results based on regional gravity, In Proc. Gravity and Geoid 2002, GG2002, 
August 26-30, Thessaloniki, Greece. 

Heiskanen W. and Moritz H. (1967) Physical Geodesy. W.H Freeman and company, San 
Francisco and London.  

Hirt C., Featherstone W.E. and  Claessens S. J. (2011) On the accurate numerical evaluation of 
gedetic convolution integrals, Journal of Geodesy, 85, 519-538. 

77



Hwang C. and Lin J.M. (1998) Fast integration of low orbiter’s trajectory perturbed by the 
earth’s non-sphericity, Journal of Geodesy, 72, 578-585. 

IERS Conventions (2010). Gérard Petit and Brian Luzum (eds.). (IERS Technical Note ; 36) 
Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010. 179 
pp., ISBN 3-89888-989-6. 

Kaula W. (1966) Theory of satellite geodesy, Blaisdell, Waltheim 
Keller W. and Sharifi M. A. (2005) Satellite gradiometry using a satellite pair, Journal of 

Geodesy, , 78, 544–557. 
Kern M. and Haagmans R. (2004) Determination of gravity gradients from terrestrial gravity 

data for calibration and validation of gradiometric GOCE data, In Proc. Gravity, Geoid 
and Space missions, GGSM 2004, IAG International symposium, Portugal, August 30- 
September 3, pp. 95-100. 

Kern M., Preimesberger T., Allesch M., Pail. R., Bouman J. and Koop R. (2005) Outlier 
detection algorithms and their performance in GOCE gravity field processing, Journal of 
Geodesy, 78, 509-519.    

Martinec Z. (1998) Boundary-Value Problems for Gravimetric Determination of a Precise 
Geoid, Springer Verlag, 240 p.  

Martinec Z. (2003) Green’s function solution to spherical gradiometric boundary-value 
problems, Journal of Geodesy, 77, 41-49. 

Moritz H. (1980) Geodetic Reference System 1980, Bulletin Géodésique, 54:3. 
Moritz, H. (2000) Geodetic Reference System 1980, Journal of Geodesy, 74, 1, 128–162. 
Mueller J., Denker H., Jarecki F. and Wolf K.I. (2004) Computation of calibration gradients 

and methods for in-orbit validation of gradiometric GOCE data, In Proc. Second 
international GOCE user workshop “Goce, The Geoid and Oceanography”, ESA-ESRIN, 
Frascati, Italy, 8-10 March 2004. 

Novak P., Vanicek P., Veronneau M., Holmes SA. Featherstone WE. (2001) On the accuracy 
of modified Stokes’s integration in high-frequency gravimetric geoid determination, 
Journal of Geodesy, 74, 9, 644-654. 

Parrot D. (1989) Short arc orbit improvement for GPS satellites, MSc thesis, Department of 
Surveying Engineering, University of New Brunswick, Canada. 

Pail R. (2003) Local gravity field continuation for the purpose of in-orbit calibration of GOCE 
SGG observations, Advances in Geosciences, 1, 11–18 

Pavlis N., Holmes SA., Kenyon SC. and Factor JK. (2008) An Earth Gravitational model to 
degree 2160: EGM08. Presented at the 2008 General Assembly of the European 
Geosciences Union, Vienna, Austria, April 13-18, 2008. 

Petrovskaya P. and Vershkov A.N. (2006) Non-singular expressions for the gravity gradients 
in the local north-oriented and orbital frames. Journal of Geodesy, 80, 117–127. 

Reed GB. (1973) Application of kinematical geodesy for determining the short wave length 
components of the gravity field by satellite gradiometer, The Ohio State University, Dept. 
of Geod. Sciences, Rep. No. 201, Columbus, Ohio. 

Reigber C., Schwintzer P. and Lühr H. (1999) The CHAMP geopotential mission, Boll. Geof. 
Teor. Appl. 40, 285-289. 

Reigber Ch., Jochmann H., Wünsch J., Petrovic S., Schwintzer P., Barthelmes F., Neumayer 
K.-H., König R., Förste Ch., Balmino G., Biancale R., Lemoine J.-M., Loyer S. and 
Perosanz F. (2004) Earth Gravity Field and Seasonal Variability from CHAMP. In: 

78



Reigber, Ch., Lühr, H., Schwintzer, P., Wickert, J. (eds.), Earth Observation with CHAMP 
        - Results from Three Years in Orbit, Springer, Berlin, 25-30. 
Rim H. J. and Schutz B. E. (2001) Precision orbit determination (POD), Geoscience laser and 

altimeter satellite system, University of Texas, United States of America. 
Romeshkani M., (2011). Validation of GOCE Gravity Gradiometry Data Using Terrestrial 

Gravity Data. M.Sc. Thesis, K.N.Toosi University of Technology, Tehran, Iran. 
Rummel R., Sanso F., Gelderen M., Koop R., Schrama E., Brovelli M., Migiliaccio F., and 

Sacerdote F. (1993) Spherical harmonic analysis of satellite gradiometry. Publications in 
Geodesy, New Series, No. 39 Netherlands Geodetic Commission, Delft 

Santos M. C. (1994) On real time orbit improvement for GPS satellites, Ph.D thesis, Department 
of Geodesy and Geomatics Engineering, University of New Brunswick, Canada. 

Schwartz K-P., Sideris M.G. and Forsberg R. (1990) The use of FFT techniques in Physical 
Geodesy, Geophysical Journal International, 100, 3, 485-514. 

Sharifi M.A. (2006) Satellite to satellite tracking in the space-wise approach, PhD dissertation, 
Geodätisches Institut der Universität Stuttgart. 

Sneeuw N. (1992) Representation coefficients and their use in satellite geodesy, Manuscripta 
Geodaetica, 17, 117-123. 

Somodi B. and Földvary L. (2011) Application of numerical integration techniques for orbit 
determination of state-of-the-art LEO satellites, Per. Pol. Civil Eng., 55, 2, 99-106, 2011. 

Su H. (2000) Orbit determination of IGSO, GEO and MEO satellites, Ph.D thesis, Department 
of Geodesy, University of Bundeswehr, Munchen, Germany 

Tapley B., Ries J. Bettadpur S., Chambers D., Cheng M., Condi F., Gunter B., Kang Z., Nagel 
P., Pastor R., Pekker T., Poole S. and Wang F. (2005)  GGM02-An improved Earth gravity 
field model from GRACE. Journal of Geodesy, 79, 467-478. 

Toth G., Földvary L., Tziavos I. and Adam J. (2004) Upward/downward continuation of gravity 
gradients for precise geoid determination, Proc. Second International GOCE user 
workshop “GOCE, The Geoid and Oceanography”, ESA-ESRIN, Frascati, Italy, 8-10 
March 2004.    

Toth G. and Földvary L. (2005) Effect of geopotential model errors in the projection of GOCE 
gradiometer observables, In: Gavity, Geoid and Space missions, IAG symposia, 129. (Eds. 
Jekeli C., Bastos  J. and Fernandes  L.), Spriner verlag, Berlin Heidelberg, p. 72-76.  

Tscherning C. C., Veicherts M. and Arabelos D. (2006) Calibration of GOCE gravity gradient 
data using smooth ground gravity, In Proc. GOCINA workshop, Cahiers de center 
European de Geodynamique et de seismilogie, 25, 63-67, Luxenburg. 

Vermeer M. (1990) Observable quantities in satellite gradiometry, Bulletin Geodaesique, 64, 
347–361 

Visser P. (1992) The use of satellites in gravity field determination and adjustment, PhD 
dissertation, University of Delft 

Visser P. (2009) GOCE gradiometer: estimation of biases and scale factors of all six individual 
accelerometers by precise orbit determination, Journal of Geodesy, 83, 1, 69-85. 

Wolf R. (2000) Satellite orbit and ephemeris determination using inter satellite links, Ph.D 
thesis, Department of Geodesy, University of Bundeswehr, Munchen, Germany. 

79



Wolf K. I. (2007) Kombination globaler potentialmodelle mit terresrischen schweredaten fur 
die berechnung der zweiten ableitungen des gravitationspotentials in satellitenbahnhohe, 
PhD thesis, University of Hannover, Germany. 

Zielinski J.B. and Petrovskaya M.S. (2003) The possibility of the calibration/validation of the 
GOCE data with the balloon-borne gradiometer, Advances in Geosciences, 1, 149-153. 

 

Received: 2014-02-28,
Reviewed: 2014-03-18, by A. Bobojć,
Accepted: 2014-03-21.

80


