Visual detection of spatial contrast patterns:

Evaluation of five simple models.

Andrew B. Watson
NASA Ames Research Center, Moffett Field, CA 94035 USA

abwatson(@mail.arc.nasa.gov

Abstract: The ModelFest Phase One dataset is a collection of luminance
contrast thresholds for 43 two-dimensional monochromatic spatial patterns
confined to an area of approximately two by two degrees. These data were
collected by a collaboration among twelve laboratories, and were designed to
provide a common database for calibration and testing of spatial vision
models. Here I report fits of the ModelFest data with five models: Peak
Contrast, Contrast Energy, Generalized Energy, a Gabor Channels model,
and a Discrete Cosine Transform model. The Gabor Channels model
provides the best fit, though the other, simpler models, with the exception
of Peak Contrast, provide remarkably good fits as well. Though there are
clear individual differences, regularities in the data suggest the possibility of
constructing a standard observer for spatial vision.
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1. Introduction

ModelFest is the name of a series of workshops held at the annual meeting of the Optical
Society of America whose purpose was to showcase and evaluate computational models of
early human vision. More recently, ModelFest participants have collected a set of data
designed to both calibrate and test vision models[1,2]. It was envisioned that the data set
would be large and varied enough to adequately serve both purposes, and that the complete
data set would be collected by a number of different labs, to enhance both generality and
accuracy. The initial ModelFest data set consists of detection thresholds for static, achromatic
patterns superimposed upon a uniform background and confined to a square area of about 2 by
2 degrees centered upon fixation. The selected stimuli consist of 43 patterns, including
Gabors, Gaussians, lines, edges, multipoles, and various complex stimuli. Data were
collected using standardized methods and display conditions. The complete dataset, as well as
additional information, are available at several web sites[3,4]. In this report we describe fits of
some simple models to the data of eight ModelFest observers. These fits provide a benchmark
against which subsequent model fits may be compared.

Stimuli

Stimuli consisted of 43 monochrome images, each 256 x 256 pixels in size. The stimuli were
selected by consensus of ModelFest participants. A complete list of ModelFest Phase 1
stimuli is given in Table 1. Each stimulus is identified by an index number between 1 and
43. One additional condition, similar to stimulus #35, but consisting of a new noise sample
on each trial, is not considered here. Each stimulus was constructed as a set of real contrast
pixels, and then scaled so that the mean (pixel contrast=0) mapped to 128 and the largest
magnitude contrast mapped to 1 or 255.

Table 1. Stimulus details. Parameters sx and sy are horizontal and vertical Gaussian standard deviations; bx and by
are half amplitude full bandwidths in horizontal and vertical dimensions.

Index Type Parameters

1 Gabor fixed size 1.12 c/d, sx=sy=0.5 deg
2 Gabor fixed size 2 c/d, sx=sy=0.5 deg

3 Gabor fixed size 2.83 c/d, sx=sy=0.5 deg
4 Gabor fixed size 4 c¢/d, sx=sy=0.5 deg

5 Gabor fixed size 5.66 c/d, sx=sy=0.5 deg
6 Gabor fixed size 8 c/d, sx=sy=0.5 deg

7 Gabor fixed size 11.3 c/d, sx=sy=0.5 deg
8 Gabor fixed size 16 c/d, sx=sy=0.5 deg
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9 Gabor fixed size 22.6 c/d, sx=sy=0.5 deg

10 Gabor fixed size 30 c/d, sx=sy=0.5 deg

11 Gabor fixed cycles 2 c¢/d, bx=by=1 octave

12 Gabor fixed cycles 4 c¢/d, bx=by=1 octave

13 Gabor fixed cycles 8 c/d, bx=by=1 octave

14 Gabor fixed cycles 16 c/d, bx=by=1 octave

15 Elongated Gabor 4 c/d, sx=0.5 deg, by=0.5 octave
16 Elongated Gabor 8 ¢/d, sx=0.5 deg, by=0.5 octave
17 Elongated Gabor 16 ¢/d, sx=0.5 deg, by=0.5 octave
18 Elongated Gabor 4 ¢/d, bx=2 octave, by=1 octave
19 Elongated Gabor 4 c/d, sx =0.5 deg, by=1 octave
20 Elongated Gabor 4 c/d, bx=1 octave, by=2 octave
21 Elongated Gabor 4 c/d, bx=1 octave, sy=0.5 deg

22 Compound Gabor 2 & 2*sqrt2 c/d, sx=sy=0.5 deg
23 Compound Gabor 2 & 4 ¢/d, sx=sy=0.5 deg

24 Compound Gabor 4 & 4*sqrt2 c/d, sx=sy=0.5 deg
25 Compound Gabor 4 & 8 c/d, sx=sy=0.5 deg

26 Gaussian sx=sy=30 min

27 Gaussian sx=sy=8.43 min

28 Gaussian sx=sy=2.106 min

29 Gaussian sx=sy=1.05 min

30 Edge sx=sy=0.5 deg

31 Line 0.5 min wide line, sx=sy=0.5 deg
32 Dipole 3 pixels wide, sx=sy=0.5 deg

33 5 Collinear Gabors 8 c¢/d, in phase, bx=by=1 octave, separation = 5 sx
34 5 Collinear Gabors 8 c/d, out of phase, bx=by=1 octave, separation = 5 sx
35 Binary noise 1 min pixels, sx=sy=0.5 deg

36 Oriented Gabor 4 c/d, 45 deg, bx=by=1 octave

37 Oriented Gabor 4 c/d, 0 deg, bx=by=1 octave

38 Gabor Plaid 4 c/d, 0 + 90 deg, bx=by=1 octave
39 Gabor Plaid 4 c/d, 45 + 90 deg, bx=by=1 octave
40 Disk 1/4 deg diameter

41 Bessel x Gaussian 4 c¢/d, sx=sy=0.5 deg

42 Checkerboard 4 ¢/d fundamental, sx=sy=0.5 deg
43 Natural image San Francisco, sx=sy=0.5 deg

Original stimuli were represented as grayscale images with gray-levels between 1 and 255.
When presented at contrast ¢ on a background of luminance Ly, each gray-level g is mapped to
luminance L according to the function

lig)=lm(1+I§;

The contrast varied as a Gaussian function of time, with a standard deviation of
0.125 seconds. The precise means by which the image of a given contrast was rendered was
left to the discretion of the individual labs [3,4]. Figure 1 shows the complete set of spatial
stimuli. Figure 2 shows one stimulus as a QuickTime movie.

(9—128D (1
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Figure 1. ModelFest stimuli.

Figure 2. Movie of ModelFest stimulus #41 (240Kbytes).
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Methods

Thresholds were measured using a two-interval forced choice procedure. Feedback was
provided. Each threshold was based on at least 32 trials, and each threshold was measured
four times. Fixation guides, which were continuously present, consisted of four "L" shaped
corner marks at the four corners of the 256x256 pixel stimulus field. The area of the screen
outside the stimulus was kept at the mean luminance level. Additional details are provided in
Table 2, and at the ModelFest website[3,4].

Table 2. Details of ModelFest display.

Mean luminance 30 +- 5 cd/m”2

Frame rate >= 60 Hz

Display pixel size 1/120 degree

Image size 256 pixels square (2.13 degree)
Grayscale resolution < 0.25 threshold

Viewing Binocular with natural pupils

Results
Descriptive Statistics

Here we define some simple descriptive statistics that will be used to describe the data and
fits. Each threshold (in dB) may be written x;;s, where the indices refer to observer
(k=1,...,K), stimulus (j=1,...,J), and replication (i=1,...,/). The model predictions may be
written p; .» where m indexes the model. We then define three measures of error:

- 2
Eixm= (pj,k,m - )_(j,k) (3

Skm = %i(xi,j,k - pj,k,m)2 =Ejm*Vk (4
1=1

The first quantity is the Maximum Likelihood estimate of the variance of each
threshold estimate. The second is the squared error between the model prediction and the
mean threshold. The last quantity is the average squared error between the individual
thresholds and the corresponding model predictions. This is the maximum likelihood
estimate of the variance of each threshold for model m.

We also define similar quantities that are averages over the stimulus subscript; :

1 J
\ =32Vj,k (5
]=1
1 J
Ecm= 32 Ej,k,m (6

J
ES,k,m=Ek,m+Vk (7

We note that Ey,, is the square of the RMS error between a model and the average
thresholds, while V; and S; ,, are the estimates of variance for unconstrained and constrained
models, respectively, assuming homogeneity of variance. The unconstrained model is that in
which the "prediction" for each stimulus is given by the empirical mean threshold for that
stimulus.
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Mean Observer Thresholds in dB

Since the goal of this report is to describe overall fits of several models to the entire
dataset, we do not separate the stimuli into various subsets according to type but rather
present all thresholds together, ordered by index number. In Figure 3 we plot the mean
thresholds in decibels (dB = 20 Logicc) for each stimulus and observer. Error bars indicate
plus and minus one standard deviation. A small version of each stimulus, slightly elongated
in the vertical direction, is pictured at the top of the figure.
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Figure 3. Threshold versus stimulus number for each observer.
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Figure 4. Mean thresholds versus stimulus index.
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The mean threshold for the eight observers, is shown in Figure 4. The mean thresholds range
between -44 and -10 dB. The first ten stimuli, which correspond to Gabor functions of fixed
size with frequencies varying in steps of approximately half an octave, yield thresholds that
depict a conventional contrast sensitivity function, and resemble comparable data in the

literature[5]. Figure 5 shows the mean within-observer (%Z ) /Vj,k ) and overall standard

2
deviations ( J& E 2 (Xi, ik~ )_(J- ) ) as a function of stimulus index.
I

(e}

Standard Deviation (dB)
N
-®

10 20 30 40
Stimulus Number

Figure 5. Threshold variability versus stimulus number. Red points indicate mean within-observer
standard deviation; black points are standard deviation across observers.

Contrast Energy and Barlow Units

Elsewhere[6] we have defined and advocated the use of a unit of stimulus strength which takes
into account the spatial and temporal extent of the stimulus, not merely its peak intensity.
This unit, the Barlow, is defined as the contrast energy of a stimulus times 10°°. Contrast
energy is defined as the integral over space and time of the square of the contrast waveform of
a stimulus. The contrast waveform is the luminance waveform, minus a defined mean
luminance, and divided by that mean luminance. The factor of 10° is introduced so that the
stimulus seen best by human observers (with least contrast energy) has an intensity of about 1
Barlow[7]. One virtue of the Barlow unit is that it is proportional to detection efficiency, in
an ideal observer sense. We have also introduced a logarithmic version of the Barlow, called
the deciBarlow, abbreviated dBB, which is defined as dBB = 20 Log,¢(Barlow).

In Figure 6 we show the mean observer thresholds expressed as dBB, and in Figure
7 we show the mean over observers. It can be seen that the mean thresholds for some stimuli
approach the value of 0 dBB. These most efficiently detected stimuli are typically small
targets such as Gabor functions consisting of a few cycles of about 4 cycles/degree.
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Figure 6. Mean and standard deviation of observer thresholds in dBB.
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Figure 7. Mean and standard deviation of threshold for each stimulus in dBB.
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Models: General Structure

In this report we consider five models: Peak Contrast (PC), Contrast Energy (CE),
Generalized Energy (GE), Gabor Channels (GC), and Discrete Cosine Transform (DCT). In
the case of the DCT model, we consider three variants with block sizes of 8, 16, and 32
pixels.

All models considered consist of four general stages: conversion from luminance to contrast,
spatial filtering by a contrast sensitivity function (CSF), a linear (channel) transform, and
pooling of transform coefficients to yield a single number that is assumed to be constant at
detection threshold. We first consider those stages common to all models.

Conversion to contrast

The convention of Equation 1) shows how to convert the gray-level of each pixel to
luminance, given a mean luminance and a contrast. We define the contrast of a pixel to be its
luminance, less the mean luminance, divided by that mean. Thus for each pixel, conversion to
contrast is achieved by subtracting the nominal mean of 128 , and dividing by 127.

Spatial Contrast Sensitivity Function Filter

In each of the models, the spatial filter serves to control sensitivity to various spatial
frequencies, and is thus analogous to a contrast sensitivity function (CSF). The same type of
spatial filter was used in each of the three models, though its parameters were allowed to
differ from model to model. Because we are at this point indifferent to the particular form of
the filter, we have a used a form which adheres closely to the data itself. This is a filter
constructed in one dimension by linear interpolation between sample values in a linear-
frequency, log-gain space. The frequency coordinates of the sample values were the spatial
frequencies of the fixed-size Gabor functions (stimuli #1-10), plus frequencies of 0 and 120:
0, 1.12, 2, 2.83, 4, 5.66, 8, 11.3, 16, 22.6, 30, 120 cycles/degree. The gain values were set
initially to the inverse of the corresponding thresholds for an observer. During the
optimization, the values were allowed to vary freely from that starting point. In two
dimensions, the filter is obtained as a surface of revolution of the one-dimensional filter. We
call this type of filter the interpolation filter.

1 2 5 1020

10

: A

J bri

-20

1 2 5 1020

-60
cycles/deg 60

Figure 8. Interpolation filter example. A) One-dimensional filter. B) Two dimensional filter.
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Linear Channel Transform

For the Peak Contrast, Contrast Energy and Generalized Energy models, the channel
transform was an identity transform, that is, no transform was performed and the transform
coefficients are the filtered contrast pixels. For the DCT models, the channel transform was
the blocked Discrete Cosine Transform, with a block size of 8, 16, or 32 pixels. For the
Gabor Channel model, the channel transform consisted of a bank of linear channel filters
varying in frequency and orientation. Both DCT and GC linear transforms are described in
greater detail below.

Pooling

The final step in each model is the pooling of all transform coefficients using a Minkowski

metric,
VB
R= [E In|” ] (8

where r; are the individual coefficients and S is the pooling exponent. To compute contrast
thresholds for individual stimuli, we compute R for a unit contrast stimulus, and then
compute threshold contrast as the contrast that would yield a value of R=1, namely 1/R. The
value of R=1 is arbitrary, because model responses are in arbitrary units.

For the Peak Contrast model, the pooling operation consists of selecting the single
pixel with the largest absolute value. This is equivalent to a Minkowski metric with 8 = .
For the Energy model, § = 2. For the other models, fwas a parameter estimated by
optimizing the fit to the data. In general, the Minkowski exponent controls the efficiency of
summation over transform coefficients. For example, complete (linear) summation is achieved
with =1, while 5=c corresponds to no summation at all.

Models: Details
Peak Contrast

The Peak Contrast model consists of conversion to contrast, spatial filtering, and selection of
the single pixel with the largest absolute value. We include this model primarily to
demonstrate how poorly it performs, though it is has occasionally been entertained as a model
of visual sensitivity. For this model, the free parameters are the eleven gain values of the
interpolation filter.

Contrast Energy

The Contrast Energy model consists of conversion to contrast, spatial filtering, and pooling
by squaring (f=2)and summation over image pixels. The contrast energy model is
motivated in part by its status as an ideal observer in the event that detection is limited by
internal noise. In addition, energy models have been widely employed in human vision[7-10].
For this model, the free parameters are the eleven gain values of the interpolation filter.

Generalized Energy

The Generalized Energy model consists of conversion to contrast, spatial filtering, and
Minkowski pooling with an arbitrary exponent f. It is identical to the Contrast Energy
model, except that the pooling exponent is free to vary instead of being fixed at 2. In vision
theory, Minkowski pooling has often been interpreted as a consequence of probability
summation[11]. The generalized energy model may also be interpreted as an ideal observer
acting upon coefficients after a point non-linearity. For this model, the free parameters are the
eleven gain values of the interpolation filter, and the exponent f.
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Discrete Cosine Transform

This model employs the Discrete Cosine Transform (DCT) at the linear transform stage. The
DCT is a Fourier-like transform that is widely used in image and video compression. It has
also been used as a model of spatial transformations in early human vision[12-15]. In such
models, it is typically adopted because in addition to transforming images into a hybrid
space-frequency representation, it is also a very simple transform, for which fast algorithms
are known, and which has in addition the properties of orthogonality, invertibility, and energy
preservation. In the DCT model, the linear transform is followed by Minkowski pooling with
exponent [ estimated from the data. For this model, the free parameters are the eleven gain
values of the interpolation filter and the exponent . The block size may be considered a
thirteenth parameter, although we consider only three values (8, 16, 32).

Gabor Channels

For the Gabor Channels model, the linear transform was an array of Gabor filters[16]. The
details of the filters are given in Table 3. Pyramid sampling means that each output image
from each channel was down-sampled in both dimensions to a resolution of twice the channel
frequency. For a given value of 3, the channel gains were adjusted so that the ensemble had an
approximately flat contrast sensitivity function, so that all variation in sensitivity with spatial
frequency is done by the interpolation filter. Among other advantages, this allows the
parameters of the interpolation filter to be initialized to the inverse thresholds for the first ten
Gabor stimuli (#1-10), and allows the recovered Interpolation filter to be regarded as the CSF
of the systems as a whole.

Table 3. Gabor Channels model parameters.

Number of frequencies 11

Number of orientations 4

Number of phases 2 (odd and even)
Bandwidth 1.4 octaves

Highest frequency 30 cycles/degree
Lowest frequency 0.9375 cycles/degree
Frequency spacing 1/2 octave
Orientation spacing 45 degrees

Pyramid sampling yes

In the Gabor Channels model, the linear transform is followed by Minkowski pooling with
exponent f3 estimated from the data. For this model, the free parameters are the eleven gain
values of the interpolation filter, and the exponent f.

Model Fits

Each of the models was fit separately to the data for each observer. Parameters were optimized
so0 as to minimize Ey,, (or equivalently, S..). For each fit, we indicate in Table 4 and Figure
9 the residual RMS error in dB,

| J

RMS . = \%Z(Xj,k - pj,k,m)z = m (9
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Table 4. RMS error for each model and observer.

abw amn bam brb cce cvr cwt hab tc All
PC 522 391 534 556 514 551 473 471 438 4.97
CE 222 238 215 239 211 243 216 2.69 245 2.34
GE 1.85 1.08 1.85 224 183 213 146 191 1.50 1.79
GC 146 144 143 198 211 1.70 146 1.57 1.35 1.63

DCT8 1.86 1.05 1.77 224 185 211 138 1.84 1.50 1.77
DCT16 1.77 140 1.60 206 195 2.00 122 1.77 1.52 1.72
DCT32 190 226 1.71 200 2.09 203 178 234 2.16 2.04

RMS Error (dB)

DCT16

7abw amn bam brb ccc cvr cwt hab tc All
Observer

Figure 9. RMS error for four models and nine observers, and the group.

We show our best individual fit in Figure 10.
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Figure 10. Fit of the DCT8 model to the data of observer amn. The red points and error bars show
means and standard deviations from four replications. The model prediction is shown by the black
line. The filled trace at the bottom shows the prediction error. The RMS error is 1.06 dB. This is the
best fit among all models and observers.

Contrast Sensitivity Parameters

All of the models made use of the same Interpolation filter, and the parameters of this filter
were estimated in the fitting procedure. Figure 11 shows the estimated parameters from the
eight observers for the Contrast Energy model. Each parameter is a gain at a particular spatial
frequency, and is plotted at the that frequency (except for the frequency 0 cycles/degree, which
is plotted at 0.5 cycles/degree). The other models yielded results similar in form.). The point
for observer ccc at the lowest spatial frequency is clearly anomalous. This observer was very
sensitive to the large Gaussian stimuli (see Figure 3 and Figure 6), for unknown reasons.

We are interested in analytic formulae for this filter. The heavy black line shows the
best fitting version of a parabola in the log-sensitivity, log frequency space. This function,
which has been used previously in applied contexts[lZ] appears to be a reasonable ﬁt to the
filter parameters. A convenient form for the parabola is 0.275 - 1.536 (x - 0.472)° which
shows that it peaks at 2.97 cycles/degree (0.472 log cycles/degree
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Figure 11. Interpolation filter parameters for the Contrast Energy model.

Pooling Exponents

In GE, GC, and DCT models the exponent  is free to vary. In Figure 12 we show the
estimates of 3 for each observer and the mean. The mean estimates lie between 2.5 and 4,
within the range expected from probability summation. They are also consistent with values
assumed in non-linear transducer models[16,17], as well as with the power-law behavior of
certain visual neurons[18].

5
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o_|
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abw amn bam brb ccc cvr cwt hab tc Mean
Observer

Figure 12. Estimated pooling exponent 3 for five models. Eight observers and the mean are shown.

Discussion
Peak Contrast Model

Not surprisingly, the Peak Contrast model provides a very poor fit to the data. Even though
the Interpolation filter parameters are optimized for this model, the RMS error is over 5 dB.
The mean residual error for each stimulus is shown in Figure 13. Because the Peak Contrast
model takes no account of the area of the stimulus, the actual thresholds for the smallest
stimuli (#14 and #29) are much larger than predicted.
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Figure 13. Mean error and standard deviation for each stimulus for the Peak Contrast model.

Contrast Energy Model

The Contrast Energy Model provides a remarkably good fit to the data. We must distinguish
between models that serve a practical purpose, and which seek to predict mean performance
with reasonable accuracy, and those models whose primary purpose is to test detailed
theoretical assertions about visual structure and function, perhaps in a single individual.
Certainly from the practical point of view, the Energy model is attractive since it is very
simple to compute, it has a plausible basis in signal detection theory, and its errors of
prediction are dwarfed by the differences among observers.

Figure 14 shows the mean error of the Contrast Energy model for each stimulus,
averaged over observers. The mean errors are bounded by -4 and +7 dB. Some systematic
departures from the model are evident. For stimuli #11-14 (Gabors with fixed numbers of
cycles) the actual thresholds are progressively lower than the predictions as the frequency
increases. A plausible explanation for this effect is that as frequency increases, stimulus area
decreases. Since actual visual sensitivity decreases with eccentricity, while the model is
spatially homogeneous, predicted thresholds for smaller targets should be too high. The same
explanation can be offered for the Gaussians with decreasing standard deviations (stimuli #27-
29), and possibly the line and dipole (#31 and #32) though these are small in only one of the
two dimensions. Relatively reduced sensitivity for large targets could also be produced by
inefficient summation over space, as occurs in the Generalized Energy model, discussed
below.
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Figure 14. Mean error for each stimulus for the Contrast Energy Model.

The largest prediction errors in the positive direction (actual threshold > predicted)
are for the noise sample (#35) and the last three stimuli, Bessel x Gaussian (#41),
Checkerboard (#42) and the Natural Image (#43). All four are large stimuli, using the large
standard Gaussian aperture, and could thus suffer from the size effects mentioned above. But
this would make them no less visible than stimuli #1-10 (fixed size Gabors) which have the
same size. One other property that they share is that they are broad-band, that is, they contain
spatial frequencies distributed broadly over the two-dimensional frequency domain. Channel
models, which partition this domain into bands and summate inefficiently between them,
could therefore be expected to account better for these four stimuli.

Generalized Energy Model

In Figure 15 we plot the mean error versus stimulus for the Generalized Energy model. The fit
of this model is remarkably good. Although it lacks channels or complicated processing of
any kind, only two of the stimuli depart from the model predictions by more than 2 dB. In
comparison to the Contrast Energy model, many of the larger negative excursions are greatly
reduced, especially those for the smaller Gabors and Gaussians (#12-14, #27-29). This
confirms the point made earlier that for centrally located targets, inefficient summation can
mimic spatial inhomogeneity. The positive excursions for broad-band targets, especially at
#35, remain, although they are attenuated. This makes sense, since the Generalized Energy
model sums inefficiently over space, but cannot sum inefficiently over frequency since it lacks
channels. The generalized energy model is similar to models proposed by Ahumada and
colleagues[19-21], who have also pointed out that their performance may rival that of channel
models at greatly reduced computational cost.
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Figure 15. Mean error for each stimulus for the Generalized Energy model.
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Figure 16. Mean error versus stimulus for the Gabor Channels model.
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In Figure 16 we plot the mean RMS error versus stimulus for the Gabor Channels model. On
average, the Gabor Channels model provides the best fit to the data, though it is only slightly
better than the Generalized Energy or DCT models. The maximum RMS error is about 2 dB.
As expected, the large prediction errors for broad-band stimuli are eliminated, presumably due
to inefficient summation over separate bands of frequency. The curious progression of errors
for the set of fixed size (#1-10) and fixed cycles (#11-14) Gabors, may be explained in the
following way. The smallest Gabors (which have higher spatial frequencies) may be difficult
to fixate, leading to higher than predicted thresholds. The estimated Interpolation filter
coefficients at higher spatial frequencies are thereby reduced, yielding predicted thresholds for
the large fixed size Gabors that are greater than observed.

One troublesome feature of the Gabor Channels model is that it has no low-pass
channel centered at 0 cycles/degree. Instead, the stimuli that may be dominated by their 0
cycles/degree component (Gaussians and disc) must be detected by the lowest frequency
channels which peak at about 0.94 cycles/degree. This is a common failing among "channel"
models, and in the future we will test whether addition of a low-pass channel improves the fit
of the model.

DCT Models
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Figure 17. Mean error versus stimulus number for the DCT model with a block size of 16 pixels

The set of three DCT models, which vary only in block size, were considered to see
whether a simple unitary transform could substitute for the more complex Gabor filter array
of the Channel model. In general, the DCT models do not show much improvement over the
Generalized Energy model. Indeed, with a block size of 8 pixels (1/15 degree), the GE and
DCT predictions are nearly identical. This is no doubt because the lowest frequency
"channel" in the 8x8 pixel DCT is at 7.5 cycles/degree; thus all the partition into separate
bands of frequency occurs at relatively high frequencies, where there is little sensitivity and
little stimulus energy. This is why we considered block sizes of 16 and 32 pixels. These
reduce the lowest frequency "channel" to 3.75 and 1.875 cycles/degree respectively, but also
enlarge the "receptive field' of each channel, narrow its bandwidth, and reduce its sampling
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density. The three block sizes yield RMS errors of 1.756, 1.713, 1.996. The mean error of the
best of these (DCT16) is shown in Figure 17.

Alternate Measures of Model Fit
Maximum Absolute Average Error

Although RMS error is a simple intuitive measure of the goodness of fit of the models, it
depends upon the selection of stimuli used in the experiment. For example, we have found
that many models do well for narrow-band stimuli (e.g. Gabors), but not for broad-band
stimuli (e.g. noise). Thus the RMS error would be quite different, and the relative
performance of the models might be quite different, if we had used many broadband stimuli
and few narrow-band stimuli. This problem cannot be entirely avoided, since our set of
stimuli is a miniscule sample from a very large set. But one partial solution is to quantify
model performance by the maximum in the average over observers of the RMS error for each
stimulus. For example, examination of Figure 17 shows that RMS error for the DCT16
model, averaged over observers, has a maximum absolute value of about 4 (which occurs for
the noise stimulus). Using this metric, the relative performance of the models is shown in
Figure 18. This metric separates the performance of GE, DCT, and GC models, compared to
simple RMS error. This is because the Gabor Channel model deals well with the noise
stimulus, which is a challenge for all the other models.
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Figure 18. Maximum absolute average error for seven models.

Chi-Square Statistics

Examination of Figure 5 suggests that thresholds for the 43 stimuli have approximately equal
variance. Under this homogeneity assumption, it is possible to construct a Chi-Square
statistic for the fit of each model for each observer, and for the fit for the complete group of
observers. For an individual observer, this statistic is

Xem = IJln(l+%). (10

k

The degrees of freedom is equal to the difference in the number of parameters in the
unconstrained model (the 43 means plus one variance) and in the constrained model (11 for
PC and CE, 12 for GE, DCT, GC).

For a single model, combining the results for all observers, the statistic is
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Below we provide a table of these statistics. In the case of the combined statistic, the Chi-
Square with large degrees of freedom can be approximated by a Standard Normal, which is
provided in the last column of the table. In all cases, the models are rejected at the 0.05 level.
This is not atypical in tests of this sort, which assess whether the deviations from the model
can be attributed to chance alone. Clearly the remaining deviations, even for the best model,
while small, are not due to chance. At this stage we have made no effort to minimize the
number of model parameters (we use 11 parameters for the csf filter) which makes the test
particularly challenging.

Table 5. Chi-Square statistics for each model and observer, and for each model.

abw amn bam brb ccc cvr cwt hab tc df All df N(0,1)

PC 458 348 388 414 427 445 456 387 443 33 3770 297 625
CE 211 212 150 181 180 210 227 228 269 33 1871 297 36.8
GE 169 70 122 167 150 180 140 151 152 32 1301 288 27.0
GC 123 110 82 142 180 134 140 114 131 32 1158 288 242
DCT8 171 67 115 167 152 177 129 143 152 32 1274 288  26.5
DCT16 160 105 99 149 163 166 108 135 155 32 1242 288 259
DCT32 175 200 108 143 178 169 181 195 236 32 1586 288 323

General Discussion

The ModelFest dataset, because it has been collected from a substantial number of observers,
by a number of experimenters, and using a rather large and diverse set of stimuli, is a
particularly useful test bed for models of spatial vision. One may use the dataset with at least
lessened concern for vicissitudes of subject, lab, experimenter, or stimulus. Such concerns are
not eliminated, of course. It is clear that the number of stimuli is still small, and a different
selection might favor one model or another.

Within these constraints, this fitting exercise has provided a number of important
insights. The first is that a/l of the models considered, with the exception of Peak Contrast,
provided a reasonable fit to the data. In the context of the broad range of stimuli and the
considerable size of individual differences, the residual errors were impressively small. As
noted above, we may distinguish between practical and theoretical models, and in that sense
any of the models considered (except Peak Contrast) here could serve the practical role.

A second important observation is that all of the models with 2 <f < 4 performed
substantially better than the simple Contrast Energy model in which 8 = 2. This modest
increase in the inefficiency of summation, which may have many possible causes, appears a
quite robust feature of the best fitting models. The models which share this feature (GE, GC,
and DCT) differ little in the quality of their fits.

This leads to a further intriguing result. Much of the theoretical and experimental
work in spatial vision in the last thirty years has focussed upon spatial channels; on their
existence and on their detailed shape and number. However in this exercise, while the Gabor
Channel model does provide the best fit, it is not much better than a model with rather crude
channels (DCT16), or with no channels at all (GE). Thus while channels may be strongly
implied by other psychophysical results, their effects here are modest, and evinced mainly by
broadband stimuli (e.g. #35, noise).

Another insight gained is that certain stimuli proved dramatically harder to fit, or
dramatically more effective at distinguishing among models. In particular, examination of
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Figure 19 shows that stimuli #35 (noise), #43 (natural image), and #31 (line) were
troublesome for all models, while #35 and #14 (smallest Gabor) were the best at
distinguishing among models.

Error (dB)

Stimulus Number

Figure 19. Mean error versus stimulus number for four models.

Standard Observers

A standard observer is a set of tabular data or a simple model designed to simulate the
psychophysical performance of a specified population of observers. In color vision, standard
observers have proven useful in both theoretical and practical applications[22]. No comparable
standard observer exists for spatial vision. The relatively good fit of simple models to the
ModelFest dataset, and the relatively consistent behavior of the model parameters (for
example Figure 11), encourage us to consider the use of one of these models as the basis of a
standard observer for spatial vision[23]. To be more useful, however, this standard observer
should be augmented with a treatment of spatial contrast masking, which is largely absent
from the present data, but which may be the focus of a future ModelFest experiment.

Future Models

Our purpose here has been to provide an initial survey of the performance of a small number
of simple models on the ModelFest dataset. Here we offer a few comments on what might be
profitable directions for future modeling of these data.

Perhaps the most significant attribute of threshold spatial vision that is absent from
the present set of models is spatial inhomogeneity. All of the present models assume
homogeneous sensitivity over the 2 degree square field, while in fact sensitivity, especially at
the highest spatial frequencies, is known to vary markedly over this retinal extent. For
example, sensitivity to 12 cycles/degree may decline by more than 6 dB over 1 degree of
eccentricity[24].

The channel model considered here was designed somewhat arbitrarily to provide an
initial estimate of the fit of such models. Channel models have many variants, and we may
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expect some other version to fit better than the one considered here. As noted above, the
Gabor Channel model does not deal systematically with sensitivity to 0 cycles/degree. One
solution to this defect might be to add a 0 cycle/degree channel to the Gabor Channel model,
but because it is an ad hoc addition, rules governing its bandwidth and gain normalization are
not obvious. Another approach would be a Wavelet model, in which both low-pass and band-
pass filters are generated in a systematic way. Another similar approach would be to use
“shiftable” filters[25].

In Figure 11 we showed that the estimated shape of the interpolation filter was
similar for all observers, and could be approximated by a log parabola. A model with this
form of simplified csf filter (with only 3 or 4 parameters instead of the 11 used by the
interpolation filter) is another promising direction for further study, and a possible first step
on the road towards a spatial standard observer[23].

Conclusions

We have fit the ModelFest Phase One dataset with five simple models. All models
except for Peak Contrast provided reasonable fits, relative to the variability among observers.
Of the remaining four models, the worst was the Contrast Energy model and the best was the
Gabor Channel model. Generalized Energy and DCT models performed almost as well as the
Gabor Channel model.
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