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Integrative genomics analyses unveil downstream biological
effectors of disease-specific polymorphisms buried in intergenic
regions
Haiquan Li1,2,3,4,5,17,18, Ikbel Achour1,2,3,17,18, Lisa Bastarache6,18, Joanne Berghout1,2,3, Vincent Gardeux1,2,3,17, Jianrong Li1,2,3,4,5,17,
Younghee Lee4,5,17, Lorenzo Pesce7, Xinan Yang4,5,8,17, Kenneth S Ramos2, Ian Foster7,9,10, Joshua C Denny6, Jason H Moore11,12

and Yves A Lussier1,2,3,4,5,7,13,14,15,16,17

Functionally altered biological mechanisms arising from disease-associated polymorphisms, remain difficult to characterise when
those variants are intergenic, or, fall between genes. We sought to identify shared downstream mechanisms by which inter- and
intragenic single-nucleotide polymorphisms (SNPs) contribute to a specific physiopathology. Using computational modelling of
2 million pairs of disease-associated SNPs drawn from genome-wide association studies (GWAS), integrated with expression
Quantitative Trait Loci (eQTL) and Gene Ontology functional annotations, we predicted 3,870 inter–intra and inter–intra SNP pairs
with convergent biological mechanisms (FDRo0.05). These prioritised SNP pairs with overlapping messenger RNA targets or
similar functional annotations were more likely to be associated with the same disease than unrelated pathologies (OR412). We
additionally confirmed synergistic and antagonistic genetic interactions for a subset of prioritised SNP pairs in independent studies
of Alzheimer’s disease (entropy P= 0.046), bladder cancer (entropy P= 0.039), and rheumatoid arthritis (PheWAS case–control
Po10− 4). Using ENCODE data sets, we further statistically validated that the biological mechanisms shared within prioritised SNP
pairs are frequently governed by matching transcription factor binding sites and long-range chromatin interactions. These results
provide a ‘roadmap’ of disease mechanisms emerging from GWAS and further identify candidate therapeutic targets among
downstream effectors of intergenic SNPs.
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INTRODUCTION
The abundance of newly discovered disease-associated poly-
morphisms now enables inquiries about their summative and
interactive effects.1 Since 2005, genome-wide association studies
(GWAS) have reported 415,000 single-nucleotide polymorphisms
(SNPs) associated with over 1,200 complex diseases and traits.2

From these studies, we have learned that half of the disease-
associated SNPs reside within poorly characterised intergenic
regions. Although downstream effects of missense and nonsense
coding SNPs can be investigated straightforwardly in cellular
and animal models, effects arising from intergenic SNPs remain
largely uncharacterised and are often challenging to validate
experimentally using in vitro and in vivo assays.
Computational biology can potentially bridge the mechanistic

gap between detecting disease-associated SNPs and providing
biological interpretations of how different risk loci contribute to

disease incidence and prevalence. We and others have shown that
systematically integrating studies of protein–protein interaction
with experimentally verified disease-associated coding SNPs
enables discovery of new disease-gene candidates and testable
associations between biological pathways and disease.3–7 Other
disease-mechanism-based methods have prioritised GWAS signals
by leveraging prior biological knowledge inferred from the
physical proximity of SNPs to gene loci8–11 or from expression
quantitative loci (eQTL) associations.12–17 Recent high-throughput
genomics projects such as The Encyclopedia of DNA Elements
(ENCODE) have extended quantitative measures of biological
activity into intergenic regions.18,19 These projects led to
integrative genomic analyses and systemic mapping of disease-
associated SNPs to regulatory elements, including enhancers,
transcription factor (TF) binding sites or chromatin accessibility
marks.20–25 Nonetheless, analysis of how downstream disease
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mechanisms emerge from intergenic SNPs located in biologically
active regulatory genomic regions remains elusive.
We hypothesised that the mechanisms by which polymorph-

isms contribute to disease risk can be unveiled by systematically
analysing their downstream transcriptomic effects. The functional
convergence of intergenic SNPs with intragenic ones may
influence the course of disease via the same mechanisms.
Building on eQTL and ENCODE data, we approached this
hypothesis by identifying shared molecular and biological
mechanisms by which two SNPs (irrespective of their genomic
location but not in linkage disequilibrium) are associated with the
same disease. We developed a computational method focused on
ascertaining and quantifying disease mechanisms of SNPs with
known disease relationships from the National Human Genome
Research Institute (NHGRI) GWAS catalogue (e.g., Lead SNPs),
which are also associated with altered messenger RNA (mRNA)
expression levels via eQTL studies. We first devised a systematic
method to identify overlap and similarity of biological activities
shared between every two SNPs (e.g., mRNA expression, inferred
molecular function and biological processes). Second, in support
of the predicted shared mechanisms between SNPs associated
with the same disease, we provided additional independent
evidence by: (i) exploring non-additive synergetic and antagonis-
tic SNP–SNP interactions in GWAS of bladder cancer, Alzheimer’s
disease and rheumatoid arthritis (RA), and (ii) utilising ENCODE-
derived data to identify Lead SNP pairs located in similar
regulatory regions that might explain their shared downstream
biological mechanisms. We focused our investigation on Lead SNP
pairs comprised of at least one intergenic SNP.

RESULTS
Approach overview
To determine intergenic SNPs’ contribution to disease risk,
we computationally imputed biological mechanisms that are
common to more than one intergenic Lead SNP associated with
the same disease. We analysed Lead SNPs associated with any of
the 467 diseases in the NHGRI GWAS catalogue2 that had at least
one eQTL association in the SCAN database,26 derived from
lymphoblastoid cell lines. This yielded 2,358 Lead SNPs
(Supplementary Data S1; 1,092 intergenic) and each was paired

across all possible combinations. Any pairs of SNPs that were in
linkage disequilibrium with each other at r2⩾ 0.8 using HapMap
data for the CEU population were removed from our analysis
(see details in Materials and Methods section). Lead SNP pairs
were categorised into three groups based on assertions by dbSNP
(Build 138):27 intergenic–intergenic (inter–inter) pairs when both
SNPs are at least 2,000 bp 5ʹ and 500 bp 3ʹ of protein-coding gene
coordinates, intergenic–intragenic (inter–intra) pairs when one
SNP is intergenic and the other is within gene coordinates, and
intragenic–intragenic (intra-intra) pairs in cases where both SNPs
were found within or near gene coordinates. This study focused
on pairs of Lead SNPs comprised of at least one intergenic SNP
(inter–inter or inter–intra), which left two million pairwise
combinations (Figure 1a and Supplementary Figure S1a,b). For
each Lead SNP, we determined the mRNA transcripts that were
associated by eQTL (median 2 transcripts per SNP) and retrieved
their biological processes (GO–BP) and molecular function
(GO–MF) annotations from the Gene Ontology (GO 5/19/200928).
These annotations allowed us to prioritise SNP pairs (inter–inter
and inter–intra) on the basis of having the same or similar
functional biological mechanisms, even when the exact mRNA
target is distinct (e.g., receptor-ligand, signalling pathway and
protein complexes). These data were then overlapped between
each SNP comprising an inter–inter or inter–intra Lead SNP
pair.28,29

To evaluate the significance of imputed biological mechanisms,
we developed stringent prioritisation methods by mRNA overlap,
GO–MF similarity and GO–BP similarity controlled empirically with
scale-free networks3,30 and applied these systematically to the two
million surveyed Lead SNP pairs. Pairs exhibiting sufficient overlap
and/or similarity at FDRo0.05 were termed ‘prioritised Lead SNP
pairs’ (Figure 1b and Supplementary Figure S1c). Computationally
intensive empirical calculations were required owing to random
distributions being anticonservative. We then performed enrich-
ment analyses to assess whether shared biological mechanisms
are more likely to be found among Lead SNP pairs related to the
same disease rather than across distinct diseases. Leveraging
ENCODE data, we evaluated shared regulatory properties and
molecular mechanisms at play that relate prioritised Lead SNP
pairs to the same disease. Finally, using genome-wide associations
in independent data sets, we determined that prioritised Lead
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Figure 1. Schematic of Lead SNP pair prioritisation methods. (a) Lead SNP pairs analysed in this study contain at least one intergenic SNP and
are associated with one or more of 467 diseases in the NHGRI GWAS catalogue and with gene expression levels (6,301 mRNAs) derived from a
lymphoblastoid cell line eQTL study. Although computed, pairs consisting of two intragenic SNPs were not the main focus of this study (blank
in matrix). (b) Lead SNP pairs were prioritised and controlled with empirical scale-free networks to yield significant Lead SNP pairs sharing at
least one of the three imputed biological mechanisms (blue highlighted squares). Biological knowledge bases refer to eQTL associations and
gene ontology annotations of molecular functions and biological process. (c) Prioritised inter–inter and inter–intra Lead SNP pairs were further
validated for genetic interaction using three independent association studies (GWAS and PheWAS), and for shared TFs and interacting
regulatory elements using ENCODE-derived data sets.
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SNP pairs in rheumatoid arthritis, bladder cancer and Alzheimer's
disease show non-additive synergetic genetic interactions, and
that long-range interactions may explain converged biological
effects of inter–inter and inter–intra Lead SNPs (Figure 1c and
Supplementary Figure S1d).

Substantial associations unveiled between Lead SNP pairs and
biological mechanisms
We first applied the three prioritisation methods (statistical mRNA
overlap, molecular function similarity and biological process
similarity) separately to the two million surveyed Lead SNP pairs
(2,358 SNPs) at False Discovery Rate (FDR)o0.05. This prioritised
5,011 total Lead SNP pairs, with 3,870 pairs containing at least one
intergenic SNP (inter–inter and inter–intra pairs; Supplementary
Table S1). In these 5,011 SNP pairs we observe 406 (37% of input)

intergenic Lead SNPs and 472 (37%) intragenic Lead SNPs, with
4,493 (71%) associated mRNAs and corresponding to 312 (67%)
diseases (Figure 2a). Details of the data distribution and
composition can be found in Supplementary Data S1 and
Supplementary Figure S2. One hundred eighteen SNPs appeared
in a pair that was prioritised according to all three imputed
mechanisms, with 303 Lead SNPs prioritised according to at least
two imputed mechanisms and the remainder of 322 (mRNA
overlap), 137 (molecular function similarity) and 116 (biological
process similarity) Lead SNPs were reported in pairs exhibiting a
single prioritisation mechanism (Figure 2b). To visualise shared
mechanisms within a given disease, we selected prioritised SNP
pairs (FDRo5%) where both SNPs had been identified by
association to the same disease and illustrated common mRNA
targets and overlapping GO annotations (Figure 2c). These results
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Figure 2. Surveyed Lead SNPs associated with mRNA expression and diseases found in prioritised Lead SNP pairs. Lead SNP pairs were
prioritised by mRNAs overlap, molecular function similarity or biological process similarity (a) Input shown on the left, percentage of Lead
SNPs in the prioritised SNP pairs and their associated mRNAs and diseases found among total surveyed Lead SNPs. Different P value and FDR
cutoffs were applied to stratify SNP pair prioritisation and percent-derived Lead SNPs (bars). Results at FDRo0.05 (406 intergentic lead SNPs,
472 intragenic lead SNPs, 4,493 mRNA and 312 diseases; blue highlight) were selected for subsequent analyses. (b) Venn diagram of Lead SNPs
in the 5,011 prioritised pairs according to mRNA overlap, molecular function similarity, and biological process similarity. (c) The network
illustrates the subset of Lead SNP pairs where both SNPs had been associated with the same disease prioritised only by the overlap of mRNA,
molecular function (GO–MF) or biological processes (GO–BP) at FDRo0.05, excluding GO terms found by similarity. Under this criterion,
72 (out of 105) prioritised Lead SNP pairs associated with the same disease. Five additional ones found by similarity of GO terms are not shown
for visualisation clarity. 467 diseases were used as input (Materials and Methods).
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included 43 diseases, but for visual clarity five GWAS phenotypes
(Crohn’s disease, immunoglobulin A levels, anorexia nervosa,
prostate cancer and metabolic levels) which had highly similar but
non-identical GO terms are not illustrated, although these are
included in later analyses (Supplementary Data S3 and S4). These
findings suggest that the three prioritisation methods were
complementary and illustrate how genetic risk of disease arises,
at least in part, from systems biology properties of shared
mechanisms.

Lead SNPs sharing biological mechanisms are enriched specifically
within the same disease
To assess whether within-disease Lead SNPs were more likely to
share biological mechanisms than SNPs associated with distinct
diseases, we performed a set of enrichment analyses. Focusing on
the 3,870 prioritised inter–inter and inter–intra Lead SNP pairs, we
identified 80 pairs that relate to the same disease at FDRo0.05.
Thirty-one SNPs were prioritised in two or more pairwise
relationships for a total of 86 unique SNPs. Seven of these SNPs
had exclusively cis-eQTL relationships, 44 had exclusively trans-
eQTL relationships and 35 SNPs had both cis and trans-eQTLs.
Twenty percent of the pairs (16/80) were comprised of SNPs

mapping to two different chromosomes, whereas 64 pairs of SNPs
were mapped to the same chromosome, although not within the
same linkage disequilibrium (LD) block (Supplementary Figures S3
and S4). Involvement of HLA in prioritised diseases was prominent,
with 11% (9/80) of SNP pairs including one marker that mapped
within the HLA locus (Chr6: 29–34 Mb) with the other mapping to
a different chromosome, 23% (18/80) of pairs were both outside of
HLA and 67% (53/80) of pairs had both SNPs within HLA. The odds
ratio (OR) in favour of Lead SNPs within the same disease sharing
biological mechanisms is striking when compared SNP pairs
where GWAS mapping was to two distinct diseases (one-sided
Fisher’s Exact test; FET P= 8.4 × 10− 17; Figure 3). Specifically, when
using the stringent P value cutoff of eQTL association (⩽3 × 10− 6)
and multiple mRNAs associated with each Lead SNP (threshold
⩾ 3), we observed substantial disease-specific enrichment with
respect to mRNA overlap (OR= 12, one-sided FET P= 6.1 × 10− 9;
Figure 3a), GO–MF similarity (OR= 11, one-sided FET
P= 3.9 × 10− 8; Figure 3b), and GO–BP similarity (OR = 5.2,
one-sided FET P= 2.3 × 10− 4; Figure 3c). These results were also
reproduced in a subset of inter–intra Lead SNP pairs
(Supplementary Figure S5), or exclusively two intragenic SNPs
(Supplementary Figure S6). Even in the absence of mRNA overlap
from eQTL, Lead SNP pairs with similar biological functions
between their respective mRNAs remain significantly enriched
with disease-specific predictions (OR= 3.9, one-sided FET
P= 6.8 × 10− 7). As an example of functional convergence in
prioritised SNP pairs that come from the same disease, we have
illustrated the mRNA transcript overlap, molecular function
similarity and biological process similarity observed for all SNP
pairs associated with RA (Supplementary Figure S7). Among eight
Lead SNPs associated with RA, rs7404928, rs615672 and rs6457620
were prioritised by eQTL to the same mRNA transcripts (as well as
nonoverlapping mRNAs), and all prioritised SNPs converged
towards immune response (GO:0006955) and/or antigen
processing and presentation via MHC class I (GO:0002474) or
class II (GO:0002586) through at least one path—including SNPs
that mapped outside of the MHC region. This is consistent with
what is known about the biology of RA, and the importance of
antigen responses in pathology.31

We further confirmed the robustness of the disease-specific
enrichment found among prioritised Lead SNP pairs by increasing
our analytical and statistical stringency. First, we decreased our LD
allowance between Lead SNP pairs from r2o0.8 down to r2o0.01
(Supplementary Figure S8), which yielded very similar enrichment
results. This demonstrated that the observed enrichment of

shared biological mechanisms within the same disease was
unlikely to be merely the result of LD. Second, we reproduced
our analysis using an alternate eQTL dataset derived from liver,32

which, despite being 12-fold smaller and calculated with a more
stringent P value, demonstrated that the enrichment of shared
biological process mechanisms was not confounded by tissue
source (Supplementary Figure S9). Interestingly, in the liver eQTL
data we were able to prioritise within-disease SNP pairs for
hepatitis-B vaccine response and primary biliary cirrhosis, which
both involve liver as a target organ. These suggest tissue-specific
patterns of expression may be having important roles in addition
to common patterns. Third, within-disease SNP pairs have more
similarities and mRNA overlap than SNP pairs that span across
distinct diseases even beyond the most rigorously prioritised
results. Using all inter–inter and inter–intra Lead SNP pairs and
relaxing P values by one or two orders of magnitude, we continue
to see the data asymmetry with the majority of significant P values
in the same-disease results (left skew in Q–Q plots, LD r2o0.01;
Supplementary Figure S10 and Supplementary Methods). Fourth,
we performed the enrichment analysis again using an alternate
reference human genome annotation, which includes coordinates
for microRNA and lncRNA (GENCODE33 version 19; best OR= 25.4,
P= 6.4 × 10− 6 ) to establish that our results were not the result
of miscategorising SNPs within this region as intergenic
(Supplementary Figure S11). Fifth, similar enrichment results
were observed by applying a Po0.05 cutoff (OR = 13, one-sided
FET P= 3.1 × 10− 5). Overall, these controls demonstrated
the approaches chosen for the pairwise comparisons and
prioritisations were reproducible under multiple conditions.
We additionally confirmed that the enrichment results were not
driven by diseases that had few GWAS SNPs. On the contrary,
more SNPs and more studies per disease increased the chance of
yielding more SNP pairs with shared biological mechanisms
(Supplementary Figure S12).

GWAS-based evidence of non-additive synergistic genetic risk
interactions among prioritised lead SNP pairs associated with
bladder cancer and Alzheimer’s disease
On the basis of substantial evidence for shared mechanisms
among prioritised Lead SNP pairs associated with the same
disease, we hypothesised that a subset of SNPs could exhibit
genetic interactions. Using independent data set of disease–SNP
associations,34,35 we applied a multifactor dimensionality reduc-
tion method to detect and characterise non-additive genetic
interactions36,37 among the Lead SNPs found a priori in the
prioritised SNP pairs associated with bladder cancer (two pairs)
and Alzheimer’s disease (six pairs). The multifactor dimensionality
reduction analysis revealed significant synergistic interactions for
two Alzheimer’s disease pairs and one of the bladder cancer pairs
(Table 1). These results were significant after keeping the main
effects constant and adjusting for multiple comparisons using
permutation testing. In addition, SNP combinations showed
evidence of synergistic effects using entropy-based measures of
interaction information. This result showed that SNPs engage in
cooperative or epistatic effects indicative of functionally similar
mechanisms.

Genetic interactions of Lead SNP pairs prioritised by shared
biological mechanisms in a phenome-wide association study of RA
We next tested prioritised Lead SNP pairs associated with RA,
using a PheWAS derived validation method for genetic
interactions. SNPs were characterised in patients participating in
the BioVU DNA biorepository38 project linked to an anonymous
version of the Vanderbilt University Electronic Health Record
(EHR), from which RA subjects were identified based on PheWAS
(Figure 4a). We first confirmed that, as expected, each Lead SNP in
these pairs was actually associated with RA in this independent
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data set (Po0.01). Using logistic regression incorporating the ratio
of ORs for genetic interaction (RORi), we further identified both
SNP–SNP synergy and antagonism among the RA-associated
prioritised Lead SNP pairs (Figure 4b,c). For example, the Lead SNP
pair comprised of rs6457617 and rs9268853 exhibited synergistic
genetic interaction (RORi = 1.16; P= 0.021; Figure 4b). For these
SNPs, we observed increased risk of RA (OR= 3.4, P= 6.6 × 10− 14)
when we compared the diametric extreme ORs of their alleles

(Figure 4b). In contrast, the genetic interaction of Lead
SNPs rs6457617 and rs9272219 displayed an antagonistic effect
(RORi = 0.74; P= 2.6 × 10− 5; Figure 4c). Because of the antagonism,
the homozygous major alleles for rs9272219 alternatively increase
or decrease the risk of RA when, respectively, combined with
either the minor or major alleles for rs6457617 (OR of diametric
extremes = 3.2, P= 2.2 × 10− 16; Figure 4c). The homozygous major
alleles for rs9272219 are associated with increased RA risk in the
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presence of the minor alleles for rs6457617 (OR= 2.16 versus
OR≈1; Figure 4c), but they are associated with the lowest risk of RA
in the presence of the major alleles for rs6457617 (OR= 0.55,
P= 7.2 × 10− 9; Figure 4c).

Interacting TFs and regulatory elements from ENCODE corroborate
converged mechanisms prioritised between Lead SNPs
We further hypothesised that intergenic disease-SNPs located in
genomic regions surveyed for DNA–protein interactions and

cis-element activities would enable us to identify and characterise
the molecular regulation of prioritised biological mechanisms. We
incorporated ENCODE-derived biochemical assays18 into our study
to explore three regulatory properties that Lead SNPs within each
pair may share: (i) distinct SNP regions harbouring the same TFs
(ChIP-seq; Figure 5a), (ii) SNP regions with distinct interacting TFs
(ChIP-seq and protein–protein interaction; Figure 5b) or (iii) SNP
regions that physically interact via specific proteins (ChIA–PET;
Figure 5c). Using RegulomeDB,39 we also extended the study of

Table 1. Non-additive genetic interaction of prioritised inter–inter and inter–intra Lead SNP pairs validated in independent GWAS studies

Disease Prioritised SNP pairs SNPs with synergistic effects Entropy P-value

Alzheimer’s rs4509693–rs753129
(chr10, inter) (chr4, inter)
rs7081208*–rs9331888*
(chr10, FRMD4A) (chr8, CLU, MIR6843)

rs4509693–rs753129–rs7081208* 0.046

Bladder cancer rs8102137–rs1014971
(chr19, inter) (chr22, inter)

rs8102137–rs1014971 0.039

Abbreviations: eQTL, expression quantitative trait loci; SNP, single-nucleotide polymorphism.
Entropy-based P values correspond to the observed statistical pattern of epistasis. SNP rs4509693 was associated with both cis and trans-eQTLs, but all other
eQTL relationships were trans. Asterisks are used to indicate intragenic SNPs with host gene listed below.
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Figure 4. PheWAS illustrates genetic interactions in prioritised inter–inter Lead SNP pairs associated with rheumatoid arthritis. Non-additive
genetic interaction of prioritised inter–inter Lead SNP pairs was confirmed in an independent population of 1,115 RA cases and 24,169
controls. (a) Overview of the PheWAS and genetic interaction validation process. (b) A synergistic effect was observed between unlinked
(r2= 0) SNP(1) rs6457617 and SNP(2) rs9268853. (c) An antagonistic effect was observed between almost unlinked (r2= 0.017) SNP(1) rs6457617
and SNP(2) rs9272219. The upper parts of b, c provide insight into the effect size parameters of the logistic regression model. For example,
genetic interaction is measured between two SNPs when the Ratio of OR of the interaction (RORi) differs significantly from the value 1.
Synergy corresponds to an increased RORi, whereas antagony relates to its decrease. The combination of effect size parameters of each SNP
taken alone (odds ratio; OR) with those of the interaction (RORi) is required to estimate the OR associated with a specific set of minor and
major alleles of both polymorphisms. The lower tables of b, c provide a systematic view of the specific OR and populations associated with
each allelic combination of these interacting polymorphisms.
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Lead SNPs by including ENCODE-derived annotations of SNPs in
strong LD (LD SNPs; r2⩾ 0.8) with each SNP within a Lead SNP pair.
These Lead or LD SNPs may have a causative effect and/or
contribute similarly to disease pathogenesis. By combining
annotations, we showed Lead SNP pairs with shared biological

mechanisms are more likely enriched in regions with common
regulatory properties than non-prioritised SNP pairs (Figure 5,
Panel (I)). Among 3,870 inter–inter and inter–intra lead SNP pairs,
we recovered 473 pairs that share genomic regions with same TFs
(441 pairs), interacting TFs (223 pairs) or (31 pairs) long-range
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Figure 5. Prioritised inter–inter and inter–intra Lead SNP pairs are enriched in genomic regions sharing common ENCODE-derived
transcription factors (TFs) and regulatory elements. ENCODE data were used to assess the propensity of prioritised inter–inter and inter–intra
Lead SNP pairs to localise in regulatory regions with the same (a) TF(s) via ChIP-seq, (b) two distinct interacting TFs (ChIP-seq and
protein–protein interactions, PPI) and (c) long-range chromatin interaction properties (ChIA–PET). Enrichment of inter–inter and inter–intra
Lead SNP pairs (odds ratios with 95% confidence, y axis) in regions sharing common regulatory properties were evaluated between
(i) prioritised and non-prioritised Lead SNP pairs (Panel (I)), (ii) prioritised Lead SNP pairs in the same disease and across-diseases (Panel (II)).
Greater ORs are observed in disease-specific SNP pairs (Panel (II) compared with Panel (I)); ORs range from 2.6 to 1998.9
(3.4 × 10− 136⩽ P⩽ 5.3 × 10− 8) in Panel (I) and 9.1 to 2249.9 (3.5 × 10− 22⩽ P⩽ 2.1 × 10− 2) in Panel (II). Candidate inter–inter and inter–intra
SNPs considered for the enrichments were associated with mRNAs by eQTL with P⩽ 10− 4 (mRNA overlap; grey bars). Stringent prioritisations
using empirical computations were performed on mRNA overlap (mauve bars), biological process similarity (green bars), molecular function
similarity (orange bars) and in combination (merged methods; yellow bars). Enrichments of SNP pairs were performed using Fisher’s exact test
among all pairwise combinations of NHGRI disease-associated SNPs. Potential causal SNPs represented by the Lead SNPs in the pairs were
included in this regulatory function study and were taken from RegulomeDB (Materials and Methods).

Shared biology from intergenic GWAS disease SNPs
H Li et al

7

© 2016 Center of Excellence in Genomic Medicine Research/Macmillan Publishers Limited npj Genomic Medicine (2016) 16006



interactions. Moreover, we demonstrated that the surveyed
regulatory properties were enriched among 26 prioritised inter–
inter and inter–intra SNP pairs associated with the same disease,
but not across distinct diseases (Figure 5, Panel (II)).
We observed substantial enrichment of prioritised inter–inter

and inter–intra Lead SNP pairs in regulatory and interacting
genomic regions across the three imputed biological mechanisms
predicted by our methods when compared with conventional
approaches, with one exception out of 12 comparisons (95%
interval whiskers, Figure 5, Panel (I)). Conventional eQTL-related
methods involved identifying (i) any pair of Lead SNPs with at
least one associated mRNA (P⩽ 10− 4) or (ii) straightforward
(non-statistical) overlap of mRNA(s) associated with each Lead
SNP of a pair. Notably, the enrichment was generally more
pronounced for prioritised SNP pairs associated with the same
disease, as indicated when comparing the whiskers of each
prioritisation method in Panel (I) to its counterpart in Panel (II)
(nonoverlapping whiskers, Figure 5). We observed at least a
threefold increase in the OR for prioritised Lead SNP pairs
associated with the same disease using the ENCODE ChIP-seq of
transcription factors (Figure 5a,b). In addition, ChIA–PET-based
analysis revealed further enrichment (OR42,500) of SNPs co-
localising with genomic regions undergoing long-range interac-
tions mediated by chromatin-modelling DNA binding proteins
of CTCF or catalysers of DNA transcription, such as RNA
polymerase II.40,41 This remarkable increased enrichment is related
to the nature of the ChIA-PET assays, which capture the regulatory
network of transcriptional and chromatin structural activities that
mirror many putative regulatory associations computed from SNPs
with expressed quantitative traits (Figure 5c). The ORs improved
across every prioritisation method and each of the ENCODE
validation data sets when computed at an eQTL cutoff of P⩽ 10− 6

(OR49,000, one-sided FET P= 1.2 × 10− 11), rather than using a
fixed eQTL cutoff of P⩽ 10− 4 as performed in our initial
enrichment analysis illustrated in Figure 5. In addition, ORs remain
significant but slightly less when prioritising the Lead SNP pairs at
the anticonservative nominal Po0.05 (OR = 896.7, one-sided FET
P= 3.5 × 10− 11). An even more stringent LD cutoff of r2o0.01
(Supplementary Figure S13) yielded comparable ORs to those
from LD r2o0.8, suggesting that the convergent regulatory
mechanisms between prioritised SNPs were unlikely to be the
result of linkage disequilibrium. These results support the notion
that SNPs related to the same disease that affect same gene
expression and similar biological mechanisms are often correlated
with similar functional cis- and/or trans-regulatory elements that
often engage in long-range chromatin interactions such as
enhancer–promoter and enhancer–enhancer interactions.

DISCUSSION
Here we developed a computational method that combines
different levels of genomic information (GWAS, eQTL and
ENCODE) and knowledge base of gene annotations (GO) to
impute biological effectors of SNPs derived from their shared
biological downstream mechanisms. We showed that intergenic
and intragenic SNPs predisposing an individual to the same
disease most likely affect expression of the same mRNAs, mRNAs
involved in similar biological pathways or governed by similar
regulatory mechanisms. Among the 2 million surveyed SNPs, and
at stringent cutoff of FDRo0.05, our prioritisation methods
unveiled (i) 3,870 prioritised inter–inter and inter–intra Lead SNP
pairs among 312 diseases that share at least one of the imputed
biological mechanisms, (ii) about one third of the SNP pairs were
selectively identified by at least two prioritisation methods,
(iii) 80 disease-specific inter–inter and inter–intra Lead SNP pairs
with shared mechanisms among 32 diseases and (iv) 473
prioritised inter–inter and inter–intra SNP pairs in regions with
common regulatory properties, among which 26 inter–inter and

inter–intra pairs are of the same disease. We further validated a
subset of these predictions with non-additive genetic risk
interactions in an independent association data set for three
human diseases as well as with ENCODE-informed validations of
regulatory elements. According to ENCODE regulatory data,
prioritised Lead SNP pairs were also enriched for similar regulatory
elements (enhancer, promoter and TFs binding sites) and were
involved in the same chromatin long-range interactions. These
results showed that intergenic and intragenic SNPs share disease
effects through shared functionality at different level of scale of
biology.
Using mRNA overlap, previous study of Fehrmann et al.

recovered seven disease-specific unique SNP pairs (trans-eQTLs)
at FDRo0.05 among four diseases that shared mRNAs with
converged biological pathways.42 We showed that our prioritisa-
tion methods were able to recover substantially more predictions
by GO–BP and GO–MF similarity to identify shared mechanisms
for SNP pairs without mRNA overlap. This suggests that we have
successfully enriched for those intergenic SNPs that reveal a
functional impact on disease pathology, although identifying
which GWAS SNPs are truly causal rather than associated or
perhaps even spurious is a task beyond the scope of this study.
If all GWAS SNP inputs could be refined to the causative variant,
then we expect to see a significant increase in functional overlap
across each disease. Another limitation of our approach is that it
relies heavily on biased GO knowledge annotations that are not
designed to uncover non-canonical and poorly characterised
biological mechanisms. We also observed a high number of
prioritised Lead SNP pairs related to immune related loci
(e.g., MHC/HLA) and their downstream activities, which is
consistent with the well-described role for HLA and inflammatory
processes in many complex diseases, including those studied by
GWAS. It is also possible that these are over-represented here
due to the nature of the lymphoblastoid cell lines used for
eQTL studies and their context-specific stimulations linked to
particular diseases.14,42 Although many studies have reiterated
such observations, neither consensus nor guidelines regarding the
optimal cell lineage from which to derive eQTL associations that
are most qualified for imputing disease-specific pathogenesis has
been established. However, numerous eQTL and genomic
annotation-based studies showed that analysing multiple cell
types25,43–45 could uncover novel mechanisms and biomodules
that explain organs or tissue system implications in overall disease
pathology. Future directions for identifying biomodules from SNPs
could involve the use of unbiased gene sets such as those
obtained by co-expression networks46,47 or computational gene
similarity measures.48 These prioritisation statistics can also be
applied in a targeted manner to a given disease rather than the
GWAS catalogue as a whole, where a specific disease-relevant
eQTL dataset may be obtained and less stringent nominal P values
can be used for biomodule discovery without as much need for
multiple testing correction. Further investigation in this direction is
supported by our independent prioritisation of SNP pairs
associated with liver diseases (Primary biliary cirrhosis and
Hepatitis B vaccine response) when using the liver eQTL data
set. Finally, this current study was computationally intensive as the
empirical resampling was conducted homogeneously across pairs.
The algorithms can be optimised by conditioning the resampling
according to SNP pairs and dynamically ending the resampling
when P values observed are non-significant. These improvements
should allow to investigate further the effect of eQTL derived from
cell types more relevant to specific diseases, such as those
available in Genotype-Tissue Expression data sets GTEx.49

Previous computational studies preferentially used ENCODE
data sets as a seed to map SNPs to DNA regulatory elements with
putative function and used the results to associate these SNPs
qualitatively (literature curation) and quantitatively (gene set
enrichment in knowledge bases or network models) to predict
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downstream biomolecular mechanisms.23–25,50–52 In contrast,
our approach leverages ENCODE data to determine whether
prior SNP-associated disease mechanism predictions share
regulatory elements that might explain their convergent effects.
New genome-wide regulatory annotations and quantitative
trait loci analyses are now increasingly available such as those
derived from chromatin accessibility and DNA methylation
patterns of non-coding regions. Approaches relying on similarity
of biological mechanisms could be systematically applied to
these growing genomic data sets and further inform how
common polymorphisms are involved in transcriptional or
post-transcriptional mechanisms underlying the regulatory and
cellular networks of disease progression.
This study highlights the significance of mechanistic similarities

for uncovering additional interacting downstream effectors of
intergenic SNPs predisposing individuals to the same disease.
Identifying and understanding mechanisms of disease can not
only inform biology but also provide insight in identifying
candidate therapeutic targets. These results can be pursued for
generating a comprehensive ‘roadmap’ of disease mechanisms
revealed by downstream effectors of intergenic SNPs.

MATERIALS AND METHODS
Data sets/database are described below and in detail in Supplementary
Figure S1 and Supplementary Table S2.

eQTL association
Two eQTL association data sets were acquired from SCAN-DB. The bulk of
this analysis was done using an eQTL data set of the lymphoblastoid cell
lines,26 which consisted of 4,189,682 associations between 833,004 distinct
SNPs and 11,860 mRNAs at P⩽ 10− 4. Each SNP included for further study
was matched to at least one eQTL transcript with a median of 2 transcripts
per SNP (Supplementary Figure S3). The liver tissue eQTL dataset used for
validation (Supplementary Methods; Supplementary Figure S9) was
comprised of 314,545 associations between 139,814 SNPs and 19,641
mRNAs at P⩽ 10− 5.53 Trans effect was defined as 4 M bp from SNP to
target mRNA based on the original definition54 and dbSNP build 13827 and
refSeq55 hg19 coordinates.

National human genome research institute GWAS catalogue
The dataset comprises 7,236 associations between 574 diseases/traits with
6,432 unique Lead SNPs.2

dbSNP
SNPs associated with human disease (National human genome research
institute (NHGRI) GWAS catalogue) and mRNA expression (eQTL) were
characterised as inter- or intragenic SNPs according to dbSNP (Build 138)
definitions, which are based on RefSeq gene coordinates. Intragenic SNPs
are located in regions whose boundaries extend 2 kb upstream of the
transcription start site and 0.5 kb downstream of the terminator according
to RefSeq.55 Intergenic SNPs are located between two intragenic regions.27

GO annotations
GO annotations for human genes were retrieved from NCBI28,56 and used
to associate mRNA (eQTL) with molecular function (GO–MF) and biological
process (GO–BP) terms. The database consisted of GO–MF and GO–BP
annotations for 11,774 and 9,717 distinct genes (mRNAs), respectively.

STRING and protein–protein interactions
The STRING v9.1 database was used to determine PPIs among TFs.57 Only
interactions between distinct TFs that scored ⩾ 0.9 were included in the
enrichment analyses (Figure 5).

ENCODE data set
This data set provides DNA element annotations of the human genome
based on various biochemical assays such as ChIP-seq, DNase-seq and
RNA-seq.18 We leveraged two types of ENCODE data for the enrichment

analyses: (i) combined data set of TF binding sites (TFBS-Clustered)
comprising ChIP-seq of 148 TFs across 95 cell lines and (ii) three ChIA-PET
data sets (Pol2, CTCF and ESR1) with data collected from cell lines, K562,
HeLa, MCF-7, HCT-116 and NB4.

Prioritisation of SNP pairs
We included 2,358 SNPs (Supplementary Data S1; 1,092 intergenic SNPs)
associated with both disease risk and gene expression for a pairwise
analysis. We used the HapMap CEU LD data set to determine Lead SNP
pairs with LD of r2o0.8 or r2o0.01.58 SNP pairs in strong LD (LD, r2⩾ 0.8)
were excluded from the study. Among the remaining pairs, we focused on
inter–inter and inter–intra Lead SNP pairs (2,039,944) with at least one
intergenic SNP. We then employed three methods based on a high-
throughput computing system to prioritise biological mechanisms shared
among SNP pairs: (i) mRNA overlap, (ii) molecular function similarity and
(iii) biological process similarity. These prioritisations were controlled by
permutation resampling of scale-free networks.3,30

Computed shared mechanisms: mRNA overlap and semantic
biological similarity of SNP pairs
Prioritisation by mRNA overlap measured the number of shared mRNAs
between two SNPs; typically, the number of shared mRNAs was directly
related to mRNA overlap. We reported both non-statistical (any overlap)
and statistical (prioritised by permutation resampling) types of mRNA
overlap. Prioritisation by biological similarity was based on GO annotations
of mRNA molecular functions or biological processes associated with the
SNPs within each pair. Briefly, as every SNP within a pair could be
associated with multiple mRNAs, and every mRNA could be associated
with multiple GO terms, we performed three steps to impute biological
similarly between two SNPs. First, we calculated the information theoretic
semantic similarity (biological similarity) among GO terms59 as described in
our previous work.29 We then computed the biological similarity of each
pair of mRNAs within an SNP pair based on the average biological
similarity of GO term pairs associated with the two mRNAs.7,60 Finally, we
developed an algorithm to impute the biological similarity of an SNP pair
based on the average biological similarity of mRNAs associated with the
two SNPs as the following ‘Equation (1)’.

SNP ITSðs1; s2Þ ¼
P

gi AGðs1Þmaxgj AGðs2ÞðGENEITSðgi ; gjÞÞ þ
P

gj AGðs2Þmaxgi AGðs1ÞðGENEITSðgi ; gjÞÞ
Gðs1Þj j þ Gðs2Þj j

ð1Þ

where SNP s1 was associated with a set of mRNAs G(s1), and |G(s1)| is the
cardinality of the set G(s1), similarly for s2. The GENEITS is the biological
similarity of two mRNAs7,60 (details in Supplementary Methods). The
SNP_ITS provides a score that ranges from 0 to 1; a value of 1 indicated
two SNPs with common GO–MFs or GO–BPs, and a value of 0
corresponded to two SNPs with unrelated GO–BPs or GO–MFs.

Permutation resampling for prioritisation of computed shared
mechanisms
The three prioritisation methods were subjected to stringent statistical
measurements to filter the relationship between two SNPs that could be
observed by chance (Supplementary Methods). In contrast to straight-
forward resampling methods, we performed permutation resampling
with node-degree conservation on the entire eQTL association network
(SNP–mRNA). Thus, we could control for the distinct probability of each
SNP and mRNA, given original eQTL association network’s topology. For
each empirical permutation, the number of mRNAs associated with each
SNP (SNP node degree) and the number of SNPs associated with each
mRNA (mRNA node degree) conserved the same cardinality of connections
as in the original eQTL data set. For each SNP pair, a P value was calculated
as the proportion of empirical permutations (frequency among 100,000
times) with equal or greater strength of overlap or biological similarity
than those observed. We then adjusted for multiplicity using the
Benjamini–Hochberg FDR procedure independently for each of the three
prioritisation methods using the p.adjust function in R software (http://
www.r-project.org/). Prioritised SNP pairs were those yielding sufficient
statistical significance using any of the prioritisation methods.
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Computations
Approximately 20,000,000 core hours of high-throughput computations
were conducted on the Beagle GLOBUS61,62 computing infrastructure
housed in a Cray XE6 Supercomputer of the Computation Institute at the
Argonne National Laboratory with peak performance of 151 teraflops
generated by 17,424 compute cores (http://beagle.ci.uchicago.edu/).

Enrichment analysis of disease mechanisms among prioritised SNP
pairs
We performed an enrichment analysis to assess whether shared
mechanisms (mRNA overlap, GO–MF/GO–BP similarity) were more likely
found among SNP pairs related to the same disease than those across
distinct diseases. Therefore, we dichotomised all SNP pairs into those
associated with the same disease and those associated with distinct
diseases based on the NHGRI GWAS catalogue. We then performed SNP
pair enrichment by calculating ORs and P values according to the following
contingency table: (same disease versus across-disease SNP pairs) ×
(prioritised versus non-prioritised SNP pairs) using Fisher’s exact test in R.
We also performed enrichment tests at different P value cutoffs of eQTL
associations (⩽10− 4 to ⩽ 10− 6) from which the number of mRNAs
associated with each SNP served as a threshold for calculations (⩾1, ⩾ 3
and ⩾ 5 mRNAs per SNP).

Enrichment analysis of common regulatory properties among
prioritised SNP pairs
Pairs were prioritised according to computed shared mechanisms as
described above. For each mechanism, we determined whether prioritised
SNP pairs were enriched in genomic regions with common regulatory
properties: (i) same TF binding sites, (ii) interacting TFs and (iii) long-range
chromatin interactions. Specifically, we leveraged ENCODE data sets to
attribute DNA element annotation(s) to each SNP of the prioritised pairs,
such as TF binding sites (ChIP-seq data) and/or anchored regions with
long-range interactions (ChIA-PET) data. We extended the regulatory
annotation of the Lead SNPs to SNPs in strong LD (r2⩾ 0.8) with each Lead
SNP of a pair. RegulomeDB39 was used to determine Lead SNPs in strong
LD (LD SNPs; r2⩾ 0.8) for which ENCODE-derived functional annotations
were available. The first enrichment analysis assessed whether prioritised
SNP pairs are more likely than non-prioritised pairs to be enriched in
regions sharing common regulatory properties using the following
contingency table: (same regulatory properties versus different regulatory
property of Lead SNP pairs) × (prioritised versus non-prioritised Lead SNP
pairs). We performed the second enrichment analysis to determine
whether prioritised SNP pairs related to the same disease are more likely
to share common regulatory properties than those associated with distinct
diseases using the contingency table: (same disease and regulatory
properties versus distinct diseases and/or different regulatory property
Lead SNP pairs) × (prioritised versus non-prioritised Lead SNP pairs). We
included a control in which SNP pairs were calculated from every possible
combination of SNPs with an eQTL association. All Lead SNP pairs derived
from the NHGRI GWAS catalogue were used as the background, and
enrichment analyses were performed on SNP pairs derived from eQTL
associations with P⩽ 10− 4. Bar graphs were generated using Prism v.6
(GraphPad Software Inc, La Jolla, CA, USA).

GWAS-based detection of epistatic effects among mechanism-
anchored prioritised Lead SNP pairs
Per our a priori hypotheses, prioritised intergenic Lead SNP pairs associated
with bladder cancer (BC) or Alzheimer's disease (AD) were considered
for genetic interactions in GWAS (BC: rs9642880–rs1495741 and
rs8102137–rs1014971; AD: rs7081208–rs9331888, rs17511627–rs9331888,
rs3818361–rs4509693, rs381836–rs7081208, rs4509693–rs753129 and
rs4509693–rs6656401). We first applied the multifactor dimensionality
reduction machine-learning method36 for modelling the joint effects of the
Lead SNP pairs. The multifactor dimensionality reduction approach was
implemented using 10-fold cross-validation for estimating generalisability,
followed by a 1,000-fold permutation test to determine statistical
significance and to address multiple testing issues. In addition, we applied
the explicit test of epistasis, which uses permutation testing to determine
statistical significance of interaction effects while holding the main effects
constant.63 An entropy-based information gain approach64,65 was used as
an additional method for interpreting the statistical pattern of epistasis.
The BC GWAS included 3,532 cases and 5,119 controls from the Cancer

Genetic Markers of Susceptibility for Bladder Cancer study,34 which is
available from dbGaP (accession: phs000346.v1.p1). The AD GWAS
included 529 cases with mild cognitive impairment or AD and 204
controls from Phase I of the Alzheimer’s Disease Neuroimaging Initiative,35

also available from dbGaP (accession phs000219.v1.p1).

PheWAS identification of genetic interactions among
mechanism-anchored prioritised Lead SNP pairs
Each RA-associated prioritised inter–inter and inter–intra Lead SNP pair
was considered for SNP–SNP interactions using a data set selected from
the Vanderbilt University EMR-linked DNA biobank (BioVU).38 To identify
RA case–controls cohort from the EHR, we utilised previously developed
PheWAS case–control definitions for RA that can reproduce known genetic
associations.66,67 From a population of approximately 36,000 individuals
with extant Illumina Human Exome chip genotype data in the deidentified
Vanderbilt University clinical data warehouse linked to BioVU,38 we
identified 1,115 RA cases and 24,169 controls (Supplementary Table S3).
Cases had at least two ICD-9-CM billing codes (http://www.cms.gov/
Medicare/Coding/ICD9ProviderDiagnosticCodes/codes.html) specific to RA
(714.0, 714.1, 714.2 or 714.81) on different days. Controls were selected
among patients with no RA or related diagnoses (e.g., juvenile idiopathic
arthritis, psoriatic arthritis) reported in their billing history according to the
PheWAS approach. Individuals with RA noted on a single day were
excluded, as these cases often have poorer positive predictive value.
For each patient, we had previously extracted DNA and genotype data

for 233,605 SNPs with o5% missing data using the Illumina Human
Exome 12v.1 array. Genotypes were quality controlled for call rate (495%),
minor-allele frequency (41%) and identity by descent to remove related
individuals. Among these genotyped SNPs, three prioritised Lead SNP pairs
(involving SNPs ‘alleles’ rs6457617-‘T/C’, rs9272219-‘T/G’ and rs9268853-‘C/T’)
associated with RA were available for calculations. Only individuals
identified from European ancestry by Structure68 were used in the
analysis, resulting in 29,731 individuals before case and control selection.
All association analyses were completed with PLINK v1.0769 using logistic
regression adjusted for age and sex and assuming an additive genetic
model. Interaction analyses were also performed on the second SNP of
each pair and included an SNP–SNP interaction term (RORi). Interactions
between specific alleles of Lead SNP pairs were analysed by Fisher’s exact
test. ORs of allelic combination effects associated with RA and their 95%
confidence intervals were reported using PLINK v1.07. Submission to
dbGaP of RA genotypes and phenotypes of the present PheWAS study is in
process.70

Network of predicted mechanisms shared by disease-associated
prioritised Lead SNP pairs
On the basis of the disease-specific results of this study, a global network
of functional annotations was constructed that comprises biological
molecules and their relationships across the three prioritisation methods
(SNP–mRNA eQTL, prioritised SNP–SNP association and computed
SNP–GO–SNP association). Disease-specific networks curated to highlight
overlap and similarity of mechanisms found among prioritised Lead
prioritised SNP pairs associated with RA. Networks were visualised using
Cytoscape.71 Technical details regarding network construction are found in
Supplementary Methods.

Original software
Source code used in this manuscript has been made freely available at
http://www.lussierlab.org/publications
Supplementary Table S4 presents key concepts and abbreviations.
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