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Abstract: In this paper, we review the history, current state-of-art, and
physical applications of the spectral theory of two classes of random func-
tions. One class consists of homogeneous and isotropic random fields de-
fined on a Euclidean space and taking values in a real finite-dimensional
linear space. In applications to continuum physics, such a field describes
the physical properties of a homogeneous and isotropic continuous medium
in the situation, when a microstructure is attached to all medium points.
The range of the field is the fixed point set of a symmetry class, where two
compact Lie groups act by orthogonal representations. The material sym-
metry group of a homogeneous medium is the same at each point and acts
trivially, while the group of physical symmetries may act nontrivially. In
an isotropic random medium, the rank 1 (resp., rank 2) correlation tensors
of the field transform under the action of the group of physical symmetries
according to the above representation (resp., its tensor square), making the
field isotropic.

Another class consists of isotropic random cross-sections of homogeneous
vector bundles over a coset space of a compact Lie group. In applications to
cosmology, the coset space models the sky sphere, while the random cross-
section models a cosmic background. The Cosmological Principle ensures
that the cross-section is isotropic.

For the convenience of the reader, a necessary material from multilin-
ear algebra, representation theory, and differential geometry is reviewed in
Appendix.
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1. Introduction

Random functions of several variables appeared for the first time as mathemat-
ical models for physical phenomena like turbulence, see [62, 119, 137, 146, 147,
148, 149, 150, 151]. Since then, the theory developed further and many of new ap-
plications appeared, see historical accounts in [73, 90, 91, 106, 143, 158, 162, 163].

In this survey paper, we describe two particular directions in the theory of
random functions of several variables.

1. The first one studies random fields defined on the space Rd and taking val-
ues in a real finite-dimensional space, say U . The case, when the elements
of U are tensors of a fixed rank over Rd, turns out to be very interesting
for applications in continuum physics.

2. The second direction studies random cross-sections of vector, tensor and
spinor bundles over manifolds. The case, when the base of the bundle is
the sphere S2, finds applications in cosmology.

It turns out that the two directions described above are linked to several parts
of mathematics. In Section 2, we give a physical motivation for introducing ran-
dom fields and random cross-sections of vector and tensor bundles. Following
a mathematical physics tradition, we place physical media into an affine space
without a fixed origin, and later vectorise the above space. We explain Curie’s
principle that gives a relation between medium and physical symmetry groups of
a physical medium. It is here where we give a rigourous mathematical definition
of a homogeneous and isotropic random field, the main object for investigations
in Sections 4 and 5. An explanation of the fact that the Cosmic Microwave Back-
ground can be modelled mathematically as an isotropic random cross-section of
a bundle over the sky sphere, is given.

In Section 3, we give a short historical account of the topic and describe
how the two directions mentioned above developed in time and how the links
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between the theory of random functions of several variables and several parts
of deterministic mathematics have been established.

Section 4 occupies a significant part of the paper. In applications to contin-
uum physics, a random field model is applied to different physical phenomena
like turbulence, strain field, piezoelectricity, linear elasticity, etc. How many
strain, piezoelectric, elasticity,. . . classes do there exist? In Subsection 4.1, to
answer this question, we attach a homogeneous and isotropic random field to
the orthogonal representation of the physical symmetry group that acts in the
fixed point set of a symmetry class of the medium symmetry group, and for-
mulate a general problem: how to calculate the general form of the one- and
two-point correlation tensors of the introduced field? How to find its spectral
expansion?

As usual, there are several ways to solve a given mathematical problem. In
Subsection 4.2 we explain our approach. In short: we divide our solution into
two parts; the first one is coordinate-free, the second one starts from choosing
the most convenient basis in the fixed point set U of a symmetry class and
finishes by writing the two-point correlation tensor and the spectral expansion
of the field in the chosen basis.

The material given in Subsection 4.3 is well-known and given there for the
sake of completeness. We describe a homogeneous random field T (x) defined
on the space domain Rd and taking values in a real finite-dimensional linear
space U , in terms of a measure F defined on the Borel σ-field B(R̂d) of the
wavevector domain R̂d and taking values in the cone of Hermitian nonnegative-
definite linear operators on the complexification cU of the space U . It remains
to find all such measures F that the corresponding random field is not only
homogeneous, but also isotropic.

A preliminary answer to this question is given in Subsection 4.4. We identify
the closed subgroup G̃ of the group O(d), the subspace Ũ of the real linear
space of Hermitian linear operators in cU , and the orthogonal representation
θŨ of the group G̃ such that: a U -valued homogeneous random field T (x) is
isotropic if and only if the corresponding measure F satisfies Equation (4.6)
below. This statement is immediately formulated in the form of Equation (4.8)
which describes more simple objects: an ordinary (not operator-valued) measure
μ, and a function f defined on the wavevector domain and taking values in a
finite-dimensional convex compact set. This link between the theory of homoge-
neous and isotropic random fields and the theory of finite-dimensional convex
compacta was established by the authors.

In Subsection 4.5, we sketch a proof for Equation (4.10), which gives the
two-point correlation tensor of a homogeneous and isotropic random field in
a coordinate-free form. We refer to the papers, when the above equation is
transformed to a coordinate form.

Instead of reproducing the above form with a lot of indices, we consider sev-
eral examples important for continuum physics. All examples follow the same
6-steps scheme, described in the beginning of Subsection 4.6. In different ex-
amples, the steps are described with different degree of details. We conclude in
Subsection 4.7.
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In Section 5, we describe two major applications of the theory developed in
Section 4, to continuum physics. One has to do with imposing restrictions on de-
pendent tensor fields such as displacement, velocity or stress. These restrictions
are dictated by the field equations of continuum theories such as mechanics,
conductivity, or electrostatics.

The second application relates to positive-definiteness property of tensor
fields of constitutive properties in continuum mechanics. First and foremost,
it appears in linear constitutive theories such as classical elasticity or electrical
permeability, which are defined in terms of free energy functionals. Secondly,
positive-definiteness is crucial in formulating models of irreversible material be-
haviour based on the dissipation functionals, such as exemplified by conductivity
and viscous fluids. Thus, if statistical continuum mechanics theories are built on
stochastic functionals of free energy and/or dissipation function, tensor-valued
random fields of rank 2 and 4 are essential.

Fluctuations of random fields of elasticity and viscosity provide statistical
information about the extremes. The minima correspond to the loss of positive-
definiteness, which is a well-known possibility in elasticity, e.g. [53]. On the other
hand, and in light of the non-equilibrium statistical mechanics [58], there is also
a possibility of violations of the Clausius–Duhem inequality when the continuum
point is set up on length and/or time scales comparable to characteristic features
(mean-free paths and/or collision times) of microstructure [109, 110]. When the
number of elements (atoms or grains) in this statistical volume element becomes
sufficiently large, and when the observation time windows grow, the probability
of spontaneous violations of the Second Law vanishes.

The exposition in Section 6 is motivated by the idea formulated in [6]. On the
one hand, in the current standard model of particle physics, both six quarks and
six leptons are divided into three generations: pairs of particles that demonstrate
a similar physical behaviour. For example, the first generation of leptons includes
electron and electron neutrino, the second muon and muon neutrino, the third
tau and tau neutrino.

On the other hand, modern quantum physics is based on the theory of com-
plex unitary representations of topological groups. The latter come in three
flavours: the representations of real, complex, and quaternionic type. It is sup-
posed that there exists a link between three generations of particles and three
types of complex representations.

Following this idea, we consider in a unified way homogeneous vector bundles
(E,B, π) whose fibers are (right) finite-dimensional linear spaces over three
(skew) fields: the field R of reals, the field C of complex numbers, and the skew
field H of quaternions. Theorem 6.1 is new and gives the spectral expansion of
an isotropic random section of a homogeneous vector bundle with the above
described fibres. The expansion is performed with respect to a special basis
in the Hilbert space of square-integrable cross-sections of the bundle (E,B, π).
Here, we explain how such a basis appears, using a simple homogeneous vector
bundle.

Let G = SO(3) be the group of orthogonal 3 × 3 matrices with unit de-
terminant, and let H = SO(2) be the subgroup of G that leave the point
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(0, 0, 1)� ∈ R3 fixed. It is well-known that the set G/H of left cosets is identi-
fied with the sphere B = S2. Put E = B × C1 and π(x, z) = x for all x ∈ S2

and z ∈ C1. The Hilbert space L2(S2) of square-integrable cross-sections of the
bundle (E,B, π) with respect to the Lebesgue measure dx consists of functions
on the sphere. The unitary representation (g · f)(x) = f(g−1x) for g ∈ G and
f ∈ L2(S2) is the direct sum of the irreducible unitary representations cU� of
the group G over nonnegative integers �. The space cU� of dimension 2� + 1 is
the famous space of harmonic polynomials of degree �.

Let s(x) be a centred second-order random cross-section of the line bundle
(E,B, π), and let { fn(x) : n ≥ 1 } be an arbitrary orthonormal basis of the
space L2(S2). The random variables

an =
∫
S2

s(x)fn(x) dx

are the Fourier coefficients of the random field s(x). In general, they are corre-
lated. However, if s(x) is isotropic and the basis can be divided into countably
many subsets such that the �th one constitute a basis of the space cU�, then
the random variables an are uncorrelated. Moreover, the variance of an depends
only on the subset to which fn(x) belongs. In particular, if one chooses the
spherical harmonics Y�,m(x) as the basis, we recover the result of [100]:

s(x) =
∞∑
�=0

�∑
m=−�

a�mY�,m(x).

The general algorithm for choosing such a basis is described in Subsection A.8.
We discuss it below.

Note that the random fields considered in Sections 4 and 5 are random sec-
tions of trivial tensor bundles over Euclidean spaces.

Section 7 is a collection of examples. We collect different spectral expansions
of the Stokes parameters of the CMB using different orthonormal bases in the
Hilbert spaces of square-integrable sections of various homogeneous vector bun-
dles, where the fibers are linear spaces over various (skew) fields. See also similar
calculations in [74].

Finally, Appendix A is intended for readers who do not specialise in the
areas of mathematics linked to the theory of random fields. The material here
is standard, but some results are new and some approaches require a short
explanation.

In the vast majority of mathematical and physical literature, three equivalent
approaches to the definition of a tensor are the most popular. An axiomatic ap-
proach using some universal property due to Bourbaki [11] is probably the most
elegant of them. A constructive approach through multidimensional arrays goes
back to [117, 118] and is well-known to all physicists. See also a comprehensive
historical account in [63] and a modern one in [67]. We choose an intermediate
approach through multi-linear maps, which goes back at least to the first edi-
tion of [138] in 1960. A discussion concerning the tensor product of quaternionic
spaces goes to [50].
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There exist a lot of excellent books concerning group representations. A few of
them consider real, complex, and quaternionic representations simultaneously,
[1, 15, 30] are among them. A closely connected area, Invariant Theory, is de-
scribed in [134].

The definition of a manifold as the level set of a continuously differentiable
function goes back to [115], while the definition in terms of patching Euclidean
pieces together was given in 1913 in the first edition of [154]. These definitions
are equivalent by the Whitney Embedding Theorem [156]. We choose to use
the latter; nevertheless, the dispute aimed to argue which definition is better
continues nowadays, see, e.g., [3].

Fiber bundles can also be defined in several ways. We give a short description
of two of them. The first one is gluing up a bundle from trivial patches U × F ,
where U is the domain of a chart on the base manifold B, and F is the fiber.
The second one is the principal bundle point of view. See a detailed comparison
of the two approaches in [122] as well as a very condensed explanation in [18].

We choose the latter approach. With the help of principal bundles, we give a
simple description of spin groups, see Example A.6 below, and of spin bundles in
Example A.9. Compare the latter explanation with [13, Section 2.1] which uses
the former approach. See also [122, 142] for equivalence of the two approaches.

The most important class of fiber bundles for applications to random fields are
the so called homogeneous vector bundles. In our approach, we start from a prin-
cipal fibre bundle (G,H,B, π̃), where G is a Lie group, H its closed subgroup,
B = G/H is the set of left cosets, and π̃(g) = gH. We restrict ourselves to the
case of compact group G. A homogeneous vector bundle is the bundle (E,B, π)
associated to (G,H,B, π̃) by a representation of H in a finite-dimensional linear
space L0 over a (skew) field K. The Hilbert space L2(E) of square-integrable
cross-sections of such a bundle carries the representation of the group G induced
by the representation of H described above. The space L2(E) can be uniquely
represented as the direct sum of finite-dimensional isotypic subspaces, where the
representations of G, multiple to the irreducible ones, act. The multiplicities of
the irreducible components are calculated with the help of the Frobenius reci-
procity explained in Subsection A.7. Note that the Frobenius reciprocity can be
formulated for the case when the Lie group G is not necessarily compact, see
[8].

As we have seen above, using the trivial homogeneous line bundle over the
sphere S2, it is important to construct orthonormal bases in the isotypic sub-
spaces of the space L2(E). To construct such a basis, we use the following fact.
Let L be an irreducible representation of the group G. Either one copy or multi-
ple copies of L act in the nonzero isotypic subspace of L2(E) corresponding to L
if and only if the dimension of the linear space HomKG(L,L2(E)) of intertwin-
ing operators between L and L2(E) is positive. By the Frobenius reciprocity,
the above space is isomorphic to the linear space HomKH(resGH L,L0) of inter-
twining operators between the representation resGH L of the group G given by
the restriction of the representation L from G to H, and the representation L0.
Moreover, the isomorphism is constructed explicitly.

In Subsection A.8, we start by construction of a basis in the linear space
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HomKH(resGH L,L0). The basis is constructed with the help of Schur’s Lemma.
Up to our knowledge, the last item in our formulation of Lemma A.1 about the
structure of the real linear space of intertwining operators between two copies
of an irreducible quaternionic representation is new. Proof is included.

The images of the elements of the above described basis under the explicit
Frobenius reciprocity isomorphism form an orthogonal basis in the isotypic sub-
space of L2(E) corresponding to a given irreducible representation L of the
group G. After eventual normalisation, the obtained basis is suitable for a spec-
tral expansion of an isotropic cross-section of the homogeneous vector bundle
(E,B, π). In particular, both ordinary and spin-weighted complex-valued spher-
ical harmonics can be considered as particular cases of our construction. In Sec-
tion 7, we construct their real-valued counterparts and use both complex- and
real-valued harmonics for spectral expansion of the Stokes parameters of the
Cosmic Microwave Background.

Finally, it is known that the current standard cosmological model predicts
the existence of three cosmic backgrounds. In addition to the Cosmic Microwave
Background, the gravitational and neutrino backgrounds should exist, see, e.g.,
[26]. The spectral expansions of the corresponding random fields may be con-
structed using the methods described in this paper. The spectral expansion of
the CMB’s linear polarisation starts from � = 2, because the CMB consists of
photons of spin 1. Likewise, the expansion of the linear polarisation for the case
of gravitational background should start from � = 4, because the hypotheti-
cal quants of the gravitational radiation, gravitons, have spin 2. For a model,
where neutrino is a Dirac particle, the above expansion for the case of neutrino
background should start from � = 1, because neutrinos have spin 1

2 .

2. Physical motivation

The reader may consult Appendix A for mathematical terms used below.

Example 2.1. Let D be a bounded domain in the affine Euclidean space Ed,
filled with a continuous medium. Following a physics tradition, we call the points
in D places. Let U be a real finite-dimensional linear space, and let T : D → U
be a function that describes a particular physical parameter of the medium. For
example:

• U = R1 and T (A) is the temperature at the place A ∈ D;
• d = 3, U = R3 and T (A) is the velocity of the fluid at A;
• U = S2(R3), the linear space of symmetric rank 2 tensors over R3, and

T (A) is the strain tensor of a deformable body at A;
• U = S2(R3) ⊗ R3 and T (A) is the piezoelectricity tensor at A;
• U = S2(S2(R3)) and T (A) is the elasticity tensor at A.

More examples can be found in [5, 102, 104].
If the medium is gaseous or liquid, its movement may become turbulent. In

a deformable body, a spatially random material microstructure may be present.
In all these cases, we speak of a random medium. More explanation can be found
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in [82, Section 1.1] and [106]. The function T becomes a random field. There
is a probability space (Ω,F,P) and a function T : D × Ω → V such that for
any fixed A ∈ D and a Borel set B ⊆ V , the set {ω ∈ Ω: T (A,ω) ∈ B } is
an event. As usual, the random field T (A,ω) is completely determined by its
finite-dimensional distributions (T (A1, ω), . . . , T (An, ω)), where n is a positive
integer, and A1, . . . , An are n distinct places in D.

Fix a place O ∈ D. There exists a unique structure of a linear space in Ed such
that the map Ed → Rd, A �→ A−O, is an isomorphism of linear spaces. In what
follows, we identify the spaces Ed and Rd with the help of the above map. To
simplify the exposition, we suppose that the random field {T (x) : x ∈ D ⊂ Rd }
is the restriction to D of another random field defined on all of Rd, and denote
the new field by the same symbol T (x).

Assume that the physical properties of the random medium do not depend on
the choice of the origin O, that is, the medium is homogeneous. Mathematically,
the random field T (x) is strictly homogeneous.

Definition 2.1. A random field T (x) is called strictly homogeneous if for any
positive integer n, for any n distinct points x1, . . . , xn in Rd, and for arbitrary
x ∈ Rd, the finite-dimensional distributions of (T (x1), . . . , T (xn)) and (T (x1 +
x), . . . , T (xn + x)) are identical.

Assume that the random field T (x) is second-order, that is, E[‖T (x)‖2] < ∞,
x ∈ Rd. If, in addition, such a field is strictly homogeneous, then it is wide-sense
homogeneous.

Definition 2.2. A second-order random field T (x) is called wide-sense homo-
geneous if and only if its one-point correlation tensor 〈T (x)〉 = E[T (x)] and the
two-point correlation tensor

〈T (x), T (y)〉 = E[(T (x) − 〈T (x)〉) ⊗ (T (y) − 〈T (y)〉)] (2.1)

are shift-invariant, that is, for any z ∈ Rd we have

〈T (x + z)〉 = 〈T (x)〉, 〈T (x + z), T (y + z)〉 = 〈T (x), T (y)〉. (2.2)

In what follows, we consider only wide-sense homogeneous random fields and
call them just homogeneous. We also assume, that a random field T (x) is mean-
square continuous, that is, for any x ∈ Rd we have

lim
y−x→0

E[‖T (x) − T (y)‖2] = 0. (2.3)

Note under some weak conditions a measurable second-order random field is
automatically mean-square continuous, see [86].

What happens with the random field T (x) under rotation and/or reflection?
A microstructure is attached to any material point x ∈ D. At the macroscopic
scale all the details of the microstructure are lost, all what remains is the ma-
terial symmetry group G. The above group is the same for all material points,
because the medium is homogeneous. The group G is a closed subgroup of the
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group O(d) of orthogonal d× d matrices. On the other hand, the physical prop-
erties of the media are encoded by the physical symmetry group, denote it by
H. Curie’s principle states that G ⊆ H, see [4, 168].

Under the action of a matrix g ∈ G, a point x ∈ Rd becomes the point gx.
The random element T (x) of the linear space U becomes the element θU (g)T (x).
The random fields T (gx) and θU (g)T (x) must be identical.

Definition 2.3. A random field T (x) is called strictly isotropic if for any pos-
itive integer n, for any n distinct points x1, . . . , xn in Rd, and for arbitrary
g ∈ G, the finite-dimensional distributions

(T (gx1), . . . , T (gxn)) and (θU (g)T (x1), . . . , θU (g)T (xn))

are identical.

In particular, we have

〈T (gx)〉 = 〈θU (g)T (x)〉, x ∈ R
d.

The continuous linear operator θU (g) commutes with the mathematical expec-
tation, and we obtain

〈T (gx)〉 = θU (g)〈T (x)〉. (2.4)

Similarly, the two-point correlation tensors of the two above random fields must
be equal:

〈T (gx), T (gy)〉 = 〈θU (g)T (x), θU (g)T (y)〉.

By definition of the two-point correlation tensor (2.1) and by continuity of the
tensor product, we have

〈θU (g)T (x), θU (g)T (y)〉 = (θU ⊗ θU )(g)〈T (x), T (y)〉

which gives
〈T (gx), T (gy)〉 = (θU ⊗ θU )(g)〈T (x), T (y)〉. (2.5)

Definition 2.4. A second-order random field T (x) is called wide-sense isotropic
if and only if its one-point correlation tensor satisfies Equation (2.4) and its two-
point correlation tensor satisfies Equation (2.5).

In what follows, we consider only wide-sense isotropic random fields and call
them just isotropic.

Example 2.2. The current standard model of cosmology assumes that the
universe is a 4-dimensional differentiable manifold, say M , called a spacetime.
For any two intersecting charts (Uα, ϕα) and (Uβ , ϕβ) of the manifold M , and
for any x ∈ Uα ∩ Uβ , denote by wαβ(x) the Jacobi matrix of the map ϕα ◦ ϕ−1

β

at the point x. Glue up a topological space from Cartesian products Uα×R4 by
identifying a point (x,yα) ∈ Uα × R4 with a point (x,yβ) ∈ Uβ × R4 whenever
yα = wαβyβ . The obtained topological space is denoted by TM . The projection
p : TM → M that maps a point (x,y) ∈ TM to the point x ∈ M , defines
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a tangent bundle (TM, p,M). It is assumed that a symmetric non-degenerate
bilinear form gx with signature (−,+,+,+) in TxM = p−1(x) is assigned in a
differentiable way at each x ∈ M .

About 380,000 years after the Big Bang, the electromagnetic waves decoupled
from the rest of the universe. Now, they are observable as the Cosmic Microwave
Background, or just the CMB. The waves of the CMB spread in the manifold
(M, g) according to the Maxwell equations. The geometric optic approximation,
see [89], says that the trajectories of the CMB waves are very close to the
so called null geodesics, that is, the geodesic lines with null tangent vectors.
A tangent vector X ∈ TxM is null if gx(X,X) = 0. The manifold (M, g) is
assumed to be time-oriented, that is, one can continuously choose a negative
component

N−(x) = {X ∈ TxM : gx(X,X) = 0, X0 < 0 }
in each null cone N(x) = {X ∈ TxM : gx(X,X) = 0 }. An observer at the point
x ∈ M observes the waves of the CMB at each point of the celestial sphere

S2 = {X ∈ N−(x) : (X1)2 + (X2)2 + (X3)2 = 1 }.

A CMB detector measures an electric field E perpendicular to the direction
of observation n ∈ S2. Mathematically, E(n) ∈ TnS

2, the tangent plane at
the point n. The intensity tensor P (n) is proportional to the tensor product
E(n)⊗E∗(n). It is a cross-section of the tensor bundle (TM ⊗T ∗M,p⊗p∗,M).

The Cosmological Principle states that at least on large scales, the Universe
is homogeneous and isotropic. Therefore, the standard model of cosmology as-
sumes that the CMB is an isotropic random cross-section of the above tensor
bundle. We develop the theory of isotropic random cross-sections in Section 6.

3. A short history of the topic

Recall that a continuous function f : Rd × Rd → R is called positive-definite if
for any positive integer n, for any n points x1, . . . , xn in Rd, and for arbitrary
real numbers c1, . . . , cn we have

n∑
i,j=1

cjcjf(xi,xj) ≥ 0.

In 1938, Isaac Jacob Schoenberg [121] proved the following result.

Theorem 3.1 (I.J. Schoenberg, [121]). Equation

f(x,y) = 2(d−2)/2Γ(d/2)
∫ ∞

0

J(d−2)/2(λ‖x − y‖)
‖x − y‖(d−2)/2 dΦ(λ) (3.1)

establishes a one-to-one correspondence between the class of continuous positive-
definite functions f(x,y) whose values depend only on the distance ‖x − y‖
between the points x and y, and the class of finite Borel measures Φ on the set
[0,∞).
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In Theorem 3.1, the symbol Γ denotes the gamma function, while the symbol
J(d−2)/2 denoted the Bessel function of the first kind of order (d − 2)/2. It
turns out that Theorem 3.1 is equivalent to the following result. Put G = O(d),
U = R1 and θU (g) = 1.

Theorem 3.2. Equation (3.1) establishes a one-to-one correspondence between
the class of two-point correlation tensors of homogeneous and isotropic random
fields and the class of finite Borel measures Φ on the set [0,∞).

See the proof of equivalence of the above Theorems in [35]. This result clearly
shows a link between the theory of homogeneous and isotropic random fields and
the theories of positive-definite kernels and of special functions.

Remark 3.1. The spectral representations of type (3.1) are not unique. Indeed,
one cam multiply the function under the integral by a positive constant and
divide the measure Φ by the same constant. In Equation (3.1), the integrand is
equal to 1 at the point 0 in the following sense:

lim
u↓0

2(d−2)/2Γ(d/2)
J(d−2)/2(u)
u(d−2)/2 = 1.

In 1938, Theodore von Kármán and Leslie Howarth [150] provided a physical
proof of the following result. Let G = O(3), U = R3 and θU (g) = g, see Exam-
ple 2.1, the case of a turbulent fluid. Denote by v(x) the velocity of the fluid. Let
x and y be two vectors in R3, denote r = y − x, and r = ‖r‖. Let vl(x) be the
projection of the vector v(x) in the direction r, and let vk(x) be the projection
of the same vector in a direction perpendicular to r. The two-point correlation
tensor of the R1-valued homogeneous and isotropic random field vl(x),

Bll(r) = E[vl(x)vl(x + r)]

is called the longitudinal correlation function of the random field v(x). Similarly,
the two-point correlation tensor of the random field vk(x),

Bkk(r) = E[vk(x)vk(x + r)]

is called the transversal correlation function. Introduce the matrix-valued func-
tions

L1
ij(r) = δij , L2

ij(r) = rjrj . (3.2)

The two-point correlation tensor of the random field v(x) has the form

〈vi(x), vj(x + r)〉 = [Bll(r) −Bkk(r)]
L2
ij(r)
r2 + Bkk(r)L1

ij(r). (3.3)

In 1940, Howard Percy Robertson [119] gave a mathematical proof of the
above result, using the invariant theory. Thus, a link between the theory of ho-
mogeneous and isotropic random fields and the invariant theory was established.

Equation (3.3) gives only necessary conditions for a function to be the two-
point correlation tensor of the velocity of a turbulent fluid. In 1948, Akiva
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Moiseevich Yaglom [159] found the necessary and sufficient conditions for the
case of d = 3. This result was proved independently in 1952 by José Enrique
Moyal in [93]. We formulate their result for arbitrary d as proved by Yaglom in
[160]. Equations

Bll(r) = 2(d−2)/2Γ(d/2)
[∫ ∞

0

(
Jd/2(λr)
(λr)d/2

−
J(d+2)/2(λr)
(λr)(d−2)/2

)
dΦ1(λ)

+ (d− 1)
∫ ∞

0

Jd/2(λr)
(λr)d/2

dΦ2(λ)
]
,

Bkk(r) = 2(d−2)/2Γ(d/2)
[∫ ∞

0

Jd/2(λr)
(λr)d/2

dΦ1(λ)

+
∫ ∞

0

(
J(d−2)/2(λr)
(λr)(d−2)/2 −

Jd/2(λr)
(λr)d/2

)
dΦ2(λ)

]
(3.4)

establish a one-to-one correspondence between the class of longitudinal and
transverse correlation functions of Rd-valued homogeneous and isotropic random
fields and the class of pairs (Φ1,Φ2) of finite Borel measures on [0,∞) satisfying
the condition

Φ1({0}) = Φ2({0}). (3.5)
In 1961, A.M. Yaglom [161] and independently Mykhăılo Ĭosypovych Ya-

drenko in his unpublished PhD thesis proved the following result.

Theorem 3.3 (Yadrenko–Yaglom). A centred R1-valued homogeneous and
isotropic random field has the form

T (r, θ1, . . . , θd−2, ϕ) =
(
2d−1Γ(d/2)πd/2

)1/2 ∞∑
�=0

h(�,d)∑
m=1

Y m
� (θ1, . . . , θd−2, ϕ)

×
∫ ∞

0

J�+(d−2)/2(λr)
(λr)(d−2)/2 dZm

� (λ).

(3.6)

In Theorem 3.3, the symbols (r, θ1, . . . , θd−2, ϕ) denote the spherical coordi-
nates in Rd, the functions Y m

� (θ1, . . . , θd−2, ϕ) are real-valued spherical harmon-
ics, the number

h(�, d) = (2� + d− 2)(� + d− 3)!
(d− 2)!�!

is the total number of spherical harmonics of degree � on the centred unit sphere
Sd−1, and Zm

� are Borel measures on [0,∞) taking values in the Hilbert space
L2

0(Ω) of centred real-valued random variables with finite variance on the prob-
ability space (Ω,F,P) with control measure Φ given in Equation (3.1), that
is,

E[Zm
� (A1)] = 0, E[Zm1

�1
(A1)Zm2

�2
(A2)] = δ�1�2δm1m2Φ(A1 ∩A2)

for arbitrary Borel subsets A1 and A2 of the set [0,∞). The real-valued spherical
harmonics Y m

� are not so known as their complex-valued cousins Y�,m, see [25],
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[72, Subsection A.4.3], or [82, Section 2.10]. Our notation follows [105], which is
nowadays a de facto standard.

In 1964, Victor Aleksandrovich Lomakin [68] provided a physical proof of the
following result. Let G = O(3), U = S2(R3) and θU (g) = S2(g), see Example 2.1,
the case of a strain tensor of a random deformable body. Denote by T (x) the
strain tensor of the body. To simplify notation, introduce the Ogden tensors
after [101]. For a nonnegative integer ν, the Ogden tensor I of rank 2ν + 2 is
defined inductively by

Iij = δij , Iijkl = 1
2(δikδjl + δilδjk),

Ii1···i2ν+2 = ν−1(Ii1pi3i4Ipi2i5···i2ν+2 + · · · + Ii1pi2ν+1i2ν+2Ipi2···i2ν ),

where there is a summation over p. The two-point correlation tensor of the
random field T (x) has the form

〈Tij(x), Tkl(y)〉 = P4(r)L1
ijkl(r) + P6(r)L2

ijkl(r) + [P5(r) − P6(r)]L3
ijkl(r)

+ [P3(r) − P4(r)]L4
ijkl(r)

′ + [P1(r) + P2(r) − 2P3(r) − 4P5(r)]L5
ijkl(r)

(3.7)
with P4(r) + 2P6(r) − P2(r) = 0, where

L1
ijkl(r) = I0

ijI
0
kl, L2

ijkl(r) = 2Iijkl,
L3
ijkl(r) = rjrkIil + rirlIjk + rirkIjl + rjrlIik, L4

ijkl(r) = rjrjIkl + rkrlIij ,

L5
ijkl(r) = rirjrkrl.

In 1965, V.A. Lomakin [69] found the general form of the two-point corre-
lation tensor of the random field Tijkl(x) that corresponds to the case of an
elasticity tensor of a deformable body, see Example 2.1. His formula includes
15 terms and will not be reproduced here.

In 2014–2022 the authors of the survey published a series of papers and books
[61, 75, 76, 77, 79, 80, 81, 83, 84, 111] in collaboration with colleagues, where
they extended the results described above. We describe the above extensions in
Sections 4 and 5.

The Cosmic Microwave Background was discovered serendipitously in
1964–1965 by Arno Allan Penzias and Robert Woodrow Wilson, see [113]. As
the authors wrote

This excess temperature is, within the limits of our observations, isotropic, un-
polarised, and free from seasonal variations (July, 1964–April, 1965).

Later on, with the help of more advanced instruments, it was found that the
CMB deviates from isotropy and is polarised. Two mathematical models of the
CMB in the form of a random field were constructed in 1997 independently by
two research groups, see [59] and [164]. More mathematical studies appeared in
[7], [34], and [72]. We describe these results in Sections 6 and 7.
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4. Random fields defined on an Euclidean space

4.1. The formulation of a problem

Let d be a positive integer. Let G be a closed subgroup of the orthogonal group
O(d) of d×d orthogonal matrices acting on a real finite-dimensional linear space
U with an inner product (·, ·) by an orthogonal representation with translation
θU (g). Let T (x) be a U -valued mean-square continuous random field on Rd

which is homogeneous according to Equation (2.2) and isotropic according to
Equation (2.5). We would like to find the general form of its one- and two-point
correlation tensors similar to Equation (3.1) and the representation of the field
itself similar to Equation (3.6).

Before we continue, the following question will be considered. Which fields of
the above described class are most interesting for continuum physics?

First, we give an answer to this question, using a particular example. In
Example 2.1 we have seen that the representation with translation θS2(S2(R3))

corresponds to linear elasticity. How many classes of elastic bodies are there?
The mathematically correct answer to this question was given by Sandra

Forte and Maurizio Vianello in 1996, see [28]. Fix a tensor T in the linear space
U = S2(S2(R3)). Let KT be group defined by

KT = { g ∈ O(3): g · T = T }.

Mathematicians call KT the stationary subgroup of the point T . Physicists call
it the material symmetry group of the microstructure attached to a physical
medium.

As g runs over O(3), the point g · T runs over the orbit OT of the point T :

OT = { g · T : g ∈ O(3) }.

It is easy to see that the material symmetry group of a point g · T ∈ OT

is conjugate to KT , that is, it is equal to gKT g
−1. Call two tensors T1 and

T2 equivalent if their material symmetry groups are conjugate. This relation
partitions the space U into equivalence classes called symmetry classes. Each
symmetry class is completely determined by the conjugacy class [K], that is,
the set of all closed subgroups of the group O(3) that are conjugate to the
material symmetry group K of a particular tensor in the symmetry class. Forte
and Vianello found 8 symmetry classes for elasticity, or elasticity classes.

For a group K that defines a symmetry class, define its fixed point set or the
linear slice as

UK = {T ∈ U : g · T = T for all g ∈ K }.

The linear slice UK is the linear space that meets all the orbits of tensors which
have at least the symmetry class [K]. It is also the isotypical subspace of U
where the copies of the trivial representation of the group K act. Moreover, in
many cases there exists a group G such that K is a proper subgroup of G but
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UK is still an invariant subspace for G. The maximal group with this property
is the normaliser of K:

N(K) = { g ∈ O(3): gKg−1 = K }.

The normaliser N(K) is the maximal physical symmetry group that corresponds
to the material symmetry group K.

The most interesting case for continuum physics is as follows: d = 2 (the
so called plane problems) or d = 3 (space problems), U is the linear slice of a
symmetry class [K], and G is a closed subgroup of the normaliser N(K) such
that K is a subgroup of G. A continuous medium occupies a compact subset
D of the linear space Rd. A microstructure is attached to any material point
x ∈ D. The group K is the group of symmetries of the above microstructure.
We assume that the medium is homogeneous and this group is the same for all
material points. At the macroscopic scale all the details of the microstructure
are lost, all what remains is the material symmetry group K.

On the other hand, the physical properties of the media are encoded by the
physical symmetry group, the group G. Such defined group satisfies the Curie
principle explained above.

Note that an algorithm for determining all symmetry classes for a given finite-
dimensional representation of the group O(3), is described in [102, 103, 104].

In all examples that follow below, G is a closed subgroup of the group O(d)
satisfying the condition K ⊆ G ⊆ N(K), where the group K defines a symmetry
class, and U is the fixed point set of the symmetry class [K], where an orthogonal
representation of the group G acts.

4.2. Principles for finding a solution

First of all, we can easily find the one-point correlation tensor 〈T (x)〉 of a ho-
mogeneous and isotropic random field. It follows from the first equation in (2.2)
that this quantity does not depend on x. Denote it just by T . It follows from
Equation (2.4) that θU (g)T = T for all g ∈ G, which is equivalent to the fol-
lowing: if the isotypical space of U that corresponds to the trivial irreducible
representation of G, has positive dimension, then T is an arbitrary element of
the above isotypical space, otherwise T = 0. In what follows, we always consider
the centred random field T (x) − T and denote it again by T (x).

The general form of the two-point correlation tensor of the field T (x) clearly
depends on the choice of the basis in the space U . Therefore, the above choice
should be included to the proof. We divide the proof into two parts. The first,
coordinate-free part, will be sketched in Subsections 4.3–4.5. Equations of this
part will be written in a simple, coordinate-free form. The price one has to pay
for such a simplification is that while deducing the result, we introduce a couple
of notions which are not always familiar to some readers.

It is possible to write down the second, coordinate part of the proof for
a general group and representation. This leads to a Bacchanalia of indices, see
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[79, Theorem 0], [82, Theorem 13]. Instead, we consider examples of introducing
coordinates for different representations of the group O(3) in Subsection 4.6.

Finally, the problem will be sold in such a way: first we describe all homoge-
neous fields and then find the conditions under which a particular homogeneous
field is isotropic.

4.3. The description of homogeneous fields

Let the group G act in U by an orthogonal representation. Consider the set C

of complex numbers as a two-dimensional real linear spaces and define cU as
the tensor product C⊗R U . There is a unique representation of the group G in
the space cU such that g · (z ⊗ u) = z ⊗ (g · u) for all g ∈ G, z ∈ C and u ∈ U .
Moreover, there exists a unique positive-definite Hermitian form H(v1, v2) on
cU such that

H(z1 ⊗ u1, z2 ⊗ u2) = z∗1z2(u1, u2),

and the above form is G-invariant. In other words, the constructed representa-
tion is a unitary one.

The set U can be treated as a subset of cU by identifying u ∈ U with
1 ⊗ u ∈ cU . Thus, a U -valued random field T (x) can be treated as a cU -valued
one. It is easy to see that a mean-square continuous U -valued random field is a
mean-square continuous cU -valued random field in the obvious sense.

Denote by id the identical map in cU . There exists a unique map jcU : cU →
cU with the following properties: jcU (zv) = z∗j(v) for all z ∈ C and all v ∈ cU ,
j2
cU = id, and jcU (z ⊗ u) = z∗ ⊗ u. This map is a real structure on cU , a

coordinate-free form of the complex conjugation.
Define the two-point correlation tensor of the cU -valued random field T (x)

by
〈T (x), T (y)〉 = E[jcUT (x) ⊗ T (y)].

If, in addition, the U -valued random field T (x) is homogeneous, then jT (y) =
T (y), and the second equation in (2.2) holds true for the cU -valued random field
T (x). That is, the cU -valued random field T (x) is homogeneous. The two-point
correlation tensor of such a field is described by the following result.

Theorem 4.1. Equation

〈T (x), T (y)〉 =
∫
R̂d

ei(k,y−x) dF (k) (4.1)

establishes a one-to-one correspondence between the class of cU -valued mean-
square continuous and homogeneous random fields on Rd and the class of mea-
sures on the wavevector domain R̂d taking values in the cone of Hermitian
nonnegative-definite linear operators on cU .

The measure F is called the spectral measure of the random field T (x).
Under what conditions does a cU -valued homogeneous random field T (x)

take values in U? Let HomC(cU, cU) be the set of C-linear maps from cU to
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itself. The complex linear space HomC(cU, cU) admits a real structure j given
by

jF = jcUFj−1
cU , F ∈ HomC(cU, cU). (4.2)

Lemma 4.1. A cU -valued homogeneous random field T (x) takes values in U if
and only if for any Borel set A in the wavevector domain R̂d we have

F (−A) = jF (A), (4.3)

where −A = {−k : k ∈ A }.
Proof. Indeed, let T (x) takes values in U . Then the random field jcUT (x) has
the same two-point correlation tensor as T (x) has:

〈jcUT (x), jcUT (y)〉 =
∫
R̂d

ei(k,r) dF (k).

On the one hand, by definition of the two-point correlation tensor, the left hand
side is

〈jcUT (x), jcUT (y)〉 = E[jcUjcUT (x) ⊗ jcUT (y)] = E[T (x) ⊗ jcUT (y)]

=
∫
R̂d

ei(k,−r) dF (k) =
∫
R̂d

ei(k,r) dF (−k).
(4.4)

On the other hand, the left hand side is

〈jcUT (x), jcUT (y)〉 = j〈jcUT (x), jcUT (y)〉

= j

∫
R̂d

ei(k,r) dF (k) =
∫
R̂d

ei(k,r) djF (k).
(4.5)

Conversely, let F (−A) = jF (A). Then the right hand sides of Equations (4.4)
and (4.5) are equal, and we obtain

〈jcUT (x), jcUT (y)〉 = j〈jcUT (x), jcUT (y)〉,

which means that the random field jcUT (x) takes values in U , so T (x) does.

4.4. A preliminary description of homogeneous and isotropic fields

The linear space HomC(cU, cU) carries a representation of the group G given by

g · F = θcU (g)F (θcU )−1(g), F ∈ HomC(cU, cU).

It is trivial to check that (g ·F )∗ = g ·F ∗, where the index ∗ denotes the conjuga-
tion of a linear operator. Split the space HomC(cU, cU) into the linear spaces of
Hermitian and skew-Hermitian linear operators. By [1, Section 3.3], the above
spaces carry the equivalent representations of G intertwined by the multiplica-
tion by i. Denote them by X. We have HomC(cU, cU) = cX. By [1, Section 3.9
(i)], one possibility for X is X = HomR(U,U), and by [1, Corollary 3.28 (i)],



Tensor- and spinor-valued random fields 19

this possibility is unique. Observe that HomR(U,U) and U ⊗ U are equivalent.
In what follows, we identify the equivalent orthogonal representations acting in
U ⊗ U and in the real linear space of Hermitian linear operators in cU .

Denote the d × d identity matrix by I. Define the closed subgroup G̃ of the
group O(d) by

G̃ = G ∪ { (−I)g : g ∈ G }.
Observe, that if −I ∈ G, then the sets in the left hand side are identical. In this
case, put Ũ = S2(U). Otherwise, if −I /∈ G, the above sets do not intersect. In
that case, put Ũ = U⊗U . Note that the linear space S2(U) of symmetric rank 2
tensors over U and the linear space Λ2(U) of skew-symmetric rank 2 tensors
over U are complementary invariant subspaces of the representation U ⊗ U of
the group G.

In the first case, Ũ is an invariant subspace of the representation U ⊗U and
defines the orthogonal representation of G̃. To define an orthogonal representa-
tion of G̃ in the second case, put

(−I)g · u =
{
g · u, if u ∈ S2(U),
−g · u, if u ∈ Λ2(U),

and extend this action to all of U ⊗ U by linearity.

Lemma 4.2. A random field T (x) is U -valued, homogeneous and isotropic if
and only if the spectral measure F in Equation (4.1) takes values in the inter-
section of the space Ũ with the cone of Hermitian nonnegative-definite linear
operators on cU , and

F (g̃A) = θŨ (g̃)F (A), g̃ ∈ G̃ (4.6)

for all Borel subsets A of the wavevector domain R̂d.

Sketch of a proof. Denote the group {I,−I} by Zc
2, this notation is taken from

[37]. The main idea is that Equation (4.3) in Lemma 4.1 is equivalent to the
following condition:

F (gA) = g · F (A), g ∈ Zc
2, (4.7)

where the element −I ∈ Zc
2 multiplies by ±1 the elements of the ±1 eigenspace

of the real structure j given by Equation (4.2).
On the other hand, it is easy to prove that Equation (2.5) in Definition (2.4)

is equivalent to the condition

F (gA) = (θU ⊗ θU )(g) · F (A), g ∈ G.

If −I ∈ G, then −I acts trivially in U ⊗U . This action coincides with that in
the right hand side of condition (4.7) only on the intersection of U ⊗U with the
+1 eigenspace of the real structure j. This intersection is equal to Ũ = S2(U),
and the above two conditions are equivalent to single condition (4.6).

Otherwise, if −I /∈ G, we constructed G̃ as the minimal extension of G by
−I, and the representation Ũ is constructed in such a way that the above two
conditions agree on all of Ũ = U ⊗ U .
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The details of proof can be found in [82, Section 3.3, Lemma 1] and in [84,
Lemma 4.1].

Consider a measure μ given by μ(A) = trF (A), where tr denotes the trace
of an operator. It is well-known that the spectral measure F is absolutely
continuous with respect to μ, that is, μ(A) = 0 implies F (A) = 0, and the
Radon–Nikodym derivative f(k) = dF/dμ(k) is a measurable function on the
wavevector domain R̂d that takes values in the convex compact set of Hermi-
tian nonnegative-definite operators in cU with unit trace. For a proof, see, for
instance, [9, Chapter 5, Theorem 1.1].

In new terms, condition (4.6) becomes

μ(g̃A) = μ(A), f(g̃k) = θŨ (g̃)f(k) (4.8)

for all g̃ ∈ G̃.

4.5. The general form of the two-point correlation tensor

We find all measures μ satisfying the first equation in (4.8). In general, the action
of a topological group G can be very sophisticated, see [14, 92, 116]. However,
in the case when a compact Lie group like G̃ acts in a real finite-dimensional
linear space by an orthogonal representation, its action can be easily described,
see [22].

Let R̂d/G̃ be the set of orbits for the action of the group G̃ on R̂d by matrix-
vector multiplication. For k ∈ R̂d, let G̃k be the stationary subgroup of k. We
say that the orbits G̃k1 and G̃k2 are of the same type, or G̃k1 ∼ G̃k2, if and
only if G̃k1 is conjugate to G̃k2 within G̃. There are only finitely many, say M ,
distinct types (R̂d/G̃)m, 0 ≤ m ≤ M−1, called the strata. Moreover, the closure
of each stratum is the union of that stratum and strata of smaller dimension.

We say that G̃k2 dominates G̃k1, or G̃k1 � G̃k2, if and only if G̃k1 is conju-
gate to a subgroup of G̃k2 within G̃. This relation defines a partial ordering in
the set of strata. There exists a unique maximal element in the above set. We
call this type the principal stratum and denote it by (R̂d/G̃)0.

Fix a choice of stationary subgroups { G̃m : 0 ≤ m ≤ M − 1 } of points
in different strata. For simplicity, assume that there exist a chart ϕm in the
manifold G̃/G̃m and a chart λm in the manifold (R̂d/G̃)m with dense domains.
There exists a unique probabilistic G̃-invariant measure on the orbit of each
point λm ∈ (R̂d/G̃)m, call it dϕm.

According to [12, Chapter VII, § 2, Proposition 4], for every finite measure
μ satisfying the first equation in (4.8), there is a unique measure defined on the
Borel subsets of the space (R̂d/G̃)m, call it dΦm(λm), such that the restriction
of the measure μ to the symmetry class (G̃/G̃m) × (R̂d/G̃)m has the form

dμm = dϕm dΦm(λm).

Conversely, a measure given by the above equation obviously satisfies the first
equation in (4.8).
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We find all functions f satisfying the second equation in (4.8). Obviously,
it is enough to find the restrictions of the function f to the sets (R̂d/G̃)m,
0 ≤ m ≤ M − 1. For such a restriction, we have

f(g̃λm) = θŨ (g̃)f(λm), g̃ ∈ G̃. (4.9)

If g̃ ∈ G̃m, then g̃λm = λm and

f(λm) = θŨ (g̃)f(λm), g̃ ∈ G̃m.

This condition means that f(λm) belongs to the isotypical subspace of the linear
space Ũ , in which the direct sum of several copies of the trivial representation
of the group G̃m acts. Call this space Ũm and observe that it is a linear slice for
the group G̃m. The intersection of the linear slice Ũm with the convex compact
set of Hermitian nonnegative-definite operators in cU with unit trace is again
a convex compact set, call it Cm. The restriction of the function f to the set
(R̂d/G̃)m is a measurable function taking values in Cm.

Conversely, let f(λm) : (R̂d/G̃)m → Cm be an arbitrary measurable function.
Extend it to the symmetry class (G̃/G̃m) × (R̂d/G̃)m with the help of Equa-
tion (4.9). The result obviously satisfies the second equation in (4.8).

Equation (4.1) takes the form

〈T (x), T (y)〉 =
M−1∑
m=0

∫
(R̂d/G̃)m

∫
G̃/G̃m

ei(k,r)θŨ (g̃)f(λm) dϕm dΦm(λm), (4.10)

where a point k ∈ (G̃/G̃m) × (R̂d/G̃)m ⊂ R̂d has coordinates (ϕm, λm), and
where g̃ is an arbitrary element of the group G̃m with g̃λm = k.

4.6. Examples

Put d = 3 and G = G̃ = O(3). The group G̃ acts in the wavevector domain R̂3

by matrix-vector multiplication. The set of orbits, R̂3/O(3), has M = 2 strata:

(R̂3/O(3))0 = (0,∞), (R̂3/O(3))1 = {0}.

Fix a choice of stationary subgroups: G̃0 = O(2), the stationary subgroup of the
point k = (0, 0, 1)� and G̃1 = O(3). The chart ϕ0 in the manifold O(3)/O(2) =
S2 is the angular spherical coordinates on the two-dimensional sphere S2 in the
wavevector domain. Call them (θ̂, ϕ̂), because we reserve the notation (θ, ϕ) for
the angular spherical coordinates in the space domain. The chart ϕ1 maps the
singleton {0} to itself. The measure dϕ0 is dϕ0 = 1

4π sin θ̂ dθ̂ dϕ̂, the measure dϕ1
is the Dirac measure on the singleton {0}. The chart λ0 is the radial distance
in the wavevector domain, denote it just by λ. In spherical coordinates, the
measure μ can be written in the form

dμ(λ, θ̂, ϕ̂) = 1
4π sin θ̂ dθ̂ dϕ̂ dΦ(λ).
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Examples of homogeneous fields that are isotropic with respect to orthogonal
representations of proper subgroups of O(3) with up to 8 strata can be found
in [82, 84]. Nevertheless, all examples follow the same 6-steps scheme.

1. Splitting the representation Ũ into irreducible components.
2. Introducing coordinates in the linear slices Ũ0, . . . , ŨM−1.
3. Describing the sets of extreme points of the convex compacta C0, . . . ,

CM−1.
4. Calculating the matrices f(λm), 0 ≤ m ≤ M in the introduced coordi-

nates.
5. Calculating the inner integrals in Equation (4.10).
6. Calculating the spectral expansion of the field.

Example 4.1. Let U = R1 and θU (g) = 1. The first four steps are trivial.
Indeed, we have Ũ = S2(U) = U . The linear slice Ũ0 for the group G̃0 = O(2)
is identical to Ũ , and so is Ũ1. The convex compact set of Hermitian linear
operators in cU = C1 with unit trace is the singleton {1}. Both convex compacta
C0 and C1 are equal to {1}. Equation (4.1) takes the form

〈T (x), T (y)〉 = 1
4π

∫ ∞

0

∫
S2

ei(k,r) sin θ̂ dθ̂ dϕ̂ dΦ(λ). (4.11)

In order to perform the fifth step and calculate the inner integral, use the
following general idea. Consider the restriction of the plane wave ei(k,r) to the
orbit of a point λ ∈ (R̂3/O(3))0. The Hilbert space of the square-integrable
functions on this orbit with respect to the measure dϕ0 has an orthonormal basis
whose elements are multiples of some matrix entries of the irreducible orthogonal
or unitary representations of the group G̃. For a continuous function, the Fourier
series with respect to the above basis converges uniformly. In the unitary case,
this proposition is known as the Peter–Weyl Theorem, in the orthogonal case as
the Fine Structure Theorem, see [52] and Subsection A.7.

Let (r, θ, ϕ) be the spherical coordinates of a point r in the space domain,
while (λ, θ̂, ϕ̂) be those of a point k in the wavevector domain. In the case of
the sphere S2, the Fourier expansion of the plane wave is known as the Rayleigh
expansion:

ei(k,r) = 4π
∞∑
�=0

�∑
m=−�

i�j�(λr)Y m
� (θ, ϕ)Y m

� (θ̂, ϕ̂),

where j�(u) =
√
π/(2u)J�+1/2(u) is the spherical Bessel function.

Insert the Rayleigh expansion into Equation (4.11). One may calculate the
inner integral term by term because of uniform convergence of the above expan-
sion. As a result, all terms with � �= 0 disappear, and we obtain

〈T (x), T (y)〉 =
∫ ∞

0

∫
S2

j0(λr)Y 0
0 (θ, ϕ)Y 0

0 (θ̂, ϕ̂) sin θ̂ dθ̂ dϕ̂dΦ(λ).

We have Y 0
0 (θ, ϕ) = (4π)−1/2 and the inner integral is equal to

√
4π. The two-
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point correlation function becomes

〈T (x), T (y)〉 =
∫ ∞

0
j0(λr) dΦ(λ) =

√
2/π
∫ ∞

0

J1/2(λr)√
λr

dΦ(λ),

which is the same as Equation (3.1) in the case of d = 3.
In the case of arbitrary positive integer d, the calculations are similar and can

be left to the reader. The uniformly convergent Rayleigh expansion for arbitrary
d has the form

ei(k,r) = (2π)d/2
∞∑
�=0

i�
J�+(d−2)/2(λr)

(λr)(d−2)/2

×
h(�,d)∑
m=1

Y m
� (θ1, . . . , θd−2, ϕ)Y m

� (θ̂1, . . . , θ̂d−2, ϕ̂),

(4.12)

see [145].
How to perform the last step and prove spectral expansions similar to (3.6)?

One uses a technical tool known as the Karhunen theorem, [60]. Let X be a
set, and let T (x) be a centred second order random field indexed by X taking
values in a complex finite-dimensional linear space V with norm ‖ · ‖ and real
structure j. Let Λ be another set, L be a σ-field of subsets of Λ, F be a spectral
measure defined on a measurable space (Λ,L) and taking values in the cone of
Hermitian nonnegative-definite linear operators on V , μ be its trace measure,
μ(A) = trF (A) for A ∈ L. Assume that the two-point correlation function of
the random field T (x) can be written in the following form

〈T (x), T (y)〉 =
∫

Λ
a(x, λ)∗a(y, λ) dF (λ), (4.13)

where the function a : X × Λ → C satisfies the condition∫
Λ
|a(x0, λ)|2 dμ(λ) < ∞, x0 ∈ X.

Moreover, assume that the set of finite linear combinations of the functions
from the family { f(x0, λ) : x0 ∈ X } is dense in the Hilbert space of μ-square-
integrable functions on Λ.

Theorem 4.2 (K. Karhunen). Under the above conditions, the random field
T (x) has the form

T (x) =
∫

Λ
a(x, λ) dZ(λ),

where Z is a measure on (Λ,L) taking values in the Hilbert space of centred
V -valued random vectors Y with E[‖Y ‖2] < ∞. Moreover, the spectral measure
F is the control measure of Z in the sense that for all A, B ∈ L we have

E[jZ(A) ⊗ Z(B)] = F (A ∩B).
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The measure Z is called the stochastic spectral measure.
Note that Equation (3.1) does not have the form of (4.13) and Theorem 4.2

cannot be applied. We use another general idea to overcome this difficulty. For
a general dimension d, Equation (4.11) takes the form

〈T (x), T (y)〉 = Γ(d/2)
2πd/2

∫ ∞

0

∫
Sd−1

ei(k,r) dS dΦ(λ),

where dS is the Lebesgue measure on the sphere Sd−1. Recall that r = y − x
and write down the integrand as ei(k,r) = e−i(k,x)ei(k,y). Replace each term with
its absolutely converging expansion (4.12) and calculate the inner integral. We
obtain

〈T (x), T (y)〉 = 2d−1Γ(d/2)πd/2
∫ ∞

0

∞∑
�=0

J�+(d−2)/2(λr)
(λr)(d−2)/2

J�+(d−2)/2(λr′)
(λr′)(d−2)/2

×
h(�,d)∑
m=1

Y m
� (θ1, . . . , θd−2, ϕ)Y m

� (θ′1, . . . , θ′d−2, ϕ
′) dΦ(λ),

where (r, θ1, . . . , θd−2, ϕ) (resp., (r′, θ′1, . . . , θ′d−2, ϕ
′)) are the spherical coordi-

nates of the point x (resp., y). The above equation has the form (4.13), where Λ
is the disjoint union of countably many copies of the interval [0,∞) enumerated
by the indices � and m, the restriction of the function a(x, λ) to the Cartesian
product of Rd and the (�,m)th copy of [0,∞) has the form

a(x, λ) =
(
2d−1Γ(d/2)πd/2

)1/2 J�+(d−2)/2(λr)
(λr)(d−2)/2 Y m

� (θ1, . . . , θd−2, ϕ),

the restriction of the spectral measure dF to the above copy is equal to Φ, and
V = cR1. Apply Theorem 4.2 and obtain Equation (3.6). In this equation, the
random field T (x) is real-valued if and only if all stochastic spectral measures
Zm
� are real-valued.

Before proceeding to the next example, we describe some elements of the
equivalence classes of irreducible orthogonal representations of the group O(3).
Let H�(R3) and H�∗(R3) be two copies of the real linear space of homogeneous
polynomials of degree � in three real variables that are harmonic (with null
Laplacian). Assume that the group O(3) acts in the space H�(R3) by

(g · p)(x) = p(g−1x), g ∈ O(3), x ∈ R
3,

and in the space H�∗(R3) by

(g · p)(x) = det(g)p(g−1x), g ∈ O(3), x ∈ R
3.

First, any irreducible orthogonal representation of the group O(3) is equiva-
lent to a unique representation in the above described class. Second, it is easy
to see that the element −I ∈ O(3) acts by multiplication by 1 in the spaces
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H0(R3), H2(R3), . . . , H1∗(R3), H3∗(R3), . . . , and acts by multiplication by −1
in the remaining spaces.

We denote by U�+ (resp., U�−) a real linear space of dimension 2�+ 1 where
an irreducible representation θU�+ (resp., θU�−) with θU�+(−I)x = x (resp.,
θU�−(−I)x = −x) acts. The Clebsch–Gordan rule states that the representations
U�1+ ⊗ U�2+ and U�1− ⊗ U�2− are equivalent to the direct sum of irreducible
components U|�1−�2|+, U(|�1−�2|+1)+, . . . , U(�1+�2)+. Similarly, the representa-
tions U�+ ⊗U�2− and U�1−⊗U�2+ are equivalent to the direct sum of irreducible
components U|�1−�2|−, U(|�1−�2|+1)−, . . . , U(�1+�2)−.

The result (3.3) is easy to prove. Indeed, Equation (2.5) states that the two-
point correlation tensor of the random field that describes a turbulent fluid, is
a form-invariant map for the pair (U1−⊗U1−, U1−). To find the general form of
the above tensor, we use the Wineman–Pipkin Theorem A.1. It is well-known
that the polynomial I1(x) = ‖x‖2 constitutes an integrity basis for polynomial
invariants of the representation U1−. To find an integrity basis for form-invariant
polynomials of the pair (U1−⊗U1−, U1−), we use the following result by Hermann
Weyl proved by him in 1939 in the first edition of [155].

Theorem 4.3 (Hermann Weyl). Any form-invariant polynomial of the group
O(d) is a linear combination of products of Kronecker’s deltas δij and second
degree homogeneous polynomials rirj.

In particular, the matrix-valued polynomials (3.2) form an integrity basis for
form-invariant polynomials of degree not more than 2. Equation (3.3) immedi-
ately follows from Theorem A.1.

Example 4.2. Let U = U1−, that is, U(g) = g, g ∈ O(3). The Clebsch–Gordan
rule gives U1− ⊗ U1− ∼ U0+ ⊕ U1+ ⊕ U2+, where the symbol ∼ means the
equivalence of representations. The representation Ũ = S2(U1−) is

S2(U1−) ∼ U0+ ⊕ U2+. (4.14)

The second step becomes nontrivial and requires a new concept. There is a
basis in the spaces U�± described in [38], denote its elements by { e�m : − � ≤
m ≤ � }. The Godunov–Gordienko coefficients g

m[m1,m2]
�[�1,�2] are defined by

e�m ∼
�1∑

m1=−�1

�2∑
m2=−�2

g
m[m1,m2]
�[�1,�2] e�1m1

⊗ e�2m2
, (4.15)

that is, under the equivalence of representations stated in the Clebsch–Gordan
rule, the basis vector e�m is mapping to the matrix in the right hand side. These
coefficients were calculated in [36]. They are not the same as classical Clebsch–
Gordan coefficients for unitary representations of the groups SU(2) and SO(3)
known from quantum mechanics.

In particular, the basis vector e0
0 in the space U0+ in the right hand side of

Equation (4.14) is mapping to the matrix g0
0[1,1] with matrix entries g

0[m1,m2]
0[1,1] .
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The algorithm for calculating the Godunov–Gordienko coefficients is described
in [123], see also the properties of matrices gm�[�1,�2] in [39]. The algorithm gives

g0
0[1,1] = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ .

Similarly, the basis vector e2
0 in the space U2+ is mapping to the matrix

g0
2[1,1] = 1√

6

⎛
⎝−1 0 0

0 2 0
0 0 −1

⎞
⎠ .

The linear slice Ũ0 is the linear space generated by the matrices g0
0[1,1] and

g0
2[1,1].

Similarly, the linear slice Ũ1 is the linear space generated by the matrix g0
0[1,1].

At the third step, an easy application of the Sylvester Theorem shows that
a matrix in Ũ0 is nonnegative-definite and has unit trace if and only if it has
the form 1√

3g
0
0[1,1] + ug0

2[1,1] with − 1√
6 ≤ u ≤

√
2√
3 . The convex compact set

C0 ⊂ S2(R3) is the interval with extreme points

A1 = 1
2

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠ , A2 =

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ .

A matrix in Ũ1 is nonnegative-definite and has unit trace if and only if it is
equal to 1√

3g
0
0[1,1]. The convex compact set C1 is a singleton { 1√

3g
0
0[1,1]}.

At the fourth step, we introduce the barycentric coordinates u1(λ) and u2(λ)
of the matrix f(λ, 0, 0) with respect to the simplex C0, that is,

f(λ, 0, 0) = u1(λ)A1 + u2(λ)A2, λ > 0.

In terms of the basis matrices g0
0[1,1] and g0

2[1,1] this equation becomes

f(λ, 0, 0) = 1√
3
(u1(λ) + u2(λ))g0

0[1,1] + 1√
6
(−u1(λ) + 2u2(λ))g0

2[1,1].

Observe that u1(λ) + u2(λ) = 1. When λ = 0, we have f(0, 0, 0) ∈ C1, that is,
f(0, 0, 0) = 1

3δij . The above equation holds true for λ = 0 if and only if

u1(0) = 2
3 , u2(0) = 1

3 . (4.16)

Let θŨij(g) be the matrix entries of the representation θŨ , g ∈ O(3). Equa-
tion (4.8) gives

fij(λ, θ̂, ϕ̂) = 1
3δijθ

U0+
00 (θ̂, ϕ̂) + 1√

6
(−u1(λ) + 2u2(λ))

2∑
m=−2

g
m[i,j]
2[1,1] θ

U2+
m0 (θ̂, ϕ̂).
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Equation (4.1) takes the form

〈Ti(x), Tj(y)〉 = 1
4π

∫ ∞

0

∫
S2

ei(k,r)
[
1
3δijθ

U0+
00 (θ̂, ϕ̂)

+ 1√
6
(−u1(λ) + 2u2(λ))

2∑
m=−2

g
m[i,j]
2[1,1] θ

U2+
m0 (θ̂, ϕ̂)

]
dS dΦ(λ).

(4.17)
At the fifth step, we use the following. It is well-known that θ

U�+
m0 (θ̂, ϕ̂) =

2
√
π√

2�+1S
m
� (θ̂, ϕ̂). Using the Rayleigh expansion, we calculate the inner integral

and obtain

Ti(x), Tj(y)〉 =
∫ ∞

0

[
1
3(u1(λ) + u2(λ))j0(λr)δij

+ 1√
6
(u1(λ) − 2u2(λ))j2(λr)

2∑
m=−2

g
m[i,j]
2[1,1] θ

U2+
m0 (θ, ϕ)

]
dΦ(λ).

Define the measures Φ1 and Φ2 by dΦk(λ) = uk(λ) dΦ(λ) and group the terms
with the same value of k together. The two-point correlation tensor takes the
form

Ti(x), Tj(y)〉 =
∫ ∞

0

[
1
3j0(λr)δij + 1√

6
j2(λr)

2∑
m=−2

gm2[1,1]θ
U2+
m0 (θ, ϕ)

]
dΦ1(λ)

+
∫ ∞

0

[
1
3j0(λr)δij −

√
2√
3
j2(λr)

2∑
m=−2

gm2[1,1]θ
U2+
m0 (θ, ϕ)

]
dΦ2(λ).

(4.18)
It follows from Equation (4.16) that Φ1({0}) = 2Φ2({0}). At a first glance,

this contradicts condition (3.5). However, it is not so, see Remark 3.1. This fact
was also mentioned in [160]:

. . . without loss of generality, we can always require that the jumps at zero of the
functions Φ1(λ) and Φ2(λ) be equal. . . ; moreover, we can also require that the
jump at zero of one of the functions Φ1(λ), Φ2(λ) be zero.

A more serious problem is that Equation (4.18) contradicts Equation (3.3).
To solve this issue, denote

M1
ij(r) = g0

0[1,1], M2
ij(r) = r2

2∑
m=−2

gm2[1,1]θ
U2+
m0 (θ, ϕ).

It is well-known that the matrix entries θ
U�+
m0 (θ, ϕ) are the restrictions to the

sphere S2 of homogeneous harmonic polynomials of degree � in three variables
given by r�θ

U�+
m0 (θ, ϕ). In particular, M1

ij(r) and M2
ij(r) are form-invariant poly-

nomials. By definition of the integrity basis, they must express through the
functions L1

ij(r) and L2
ij(r) given by Equation (3.2). Indeed, we have

M1
ij(r) = 1√

3
L1
ij(r), M2

ij(r) = − 1√
6
L1
ij(r) +

√
3√
2
L2
ij(r).
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The first equality is obvious. Proof of the second one can be found in [82, p. 149].
Insert these values to Equation (4.18). We obtain

Ti(x), Tj(y)〉 =
∫ ∞

0

[
1
6(2j0(λr) − j2(λr))δij + 1

2j2(λr)
rirj
r2

]
dΦ1(λ)

+
∫ ∞

0

[
1
3(j0(λr) + j2(λr))δij + j2(λr)

rirj
r2

]
dΦ2(λ).

By comparing these equation with (3.3) one can calculate the longitudinal and
transversal correlation functions and prove that they coincide with the func-
tions (3.4) up to a constant.

At the last step, to find the spectral expansion of the random field T (x), we
apply the idea of Example 4.1 to Equation (4.17). But this time we have to cal-
culate the integral over S2 of the product of three spherical harmonics. Observe
that Equation (4.15) defines the Godunov–Gordienko coefficients gm[m1,m2]

�[�1,�2] only
for nonnegative values of �1, �2, and �, satisfying the Clebsch–Gordan rule

|�1 − �2| ≤ � ≤ �1 + �2.

Put g
m[m1,m2]
�[�1,�2] = 0, if this rule is broken.

Lemma 4.3. We have∫
S2

Y m1
�1

(θ̂, ϕ̂)Y m2
�2

(θ̂, ϕ̂)Y m3
�3

(θ̂, ϕ̂)dS =
√

(2�1 + 1)(2�2 + 1)√
4π(2�3 + 1)

g
m3[m1,m2]
�3[�1,�2] g

0[0,0]
�3[�1,�2].

Proof. The complex counterpart of this Lemma is called the Gaunt integral after
[32]. The real version is proved in exactly the same way, see the proof of the
complex counterpart in [85].

After double insertion of the Rayleigh expansion to Equation (4.17) and using
Lemma 4.3, we obtain

〈Ti(x), Tj(y)〉 =
2∑

n=1

∞∑
�,�′=0

�∑
m=−�

�′∑
m′=−�′

Cmm′

n��′ijS
m
� (θ, ϕ)Sm′

�′ (θ′, ϕ′)

×
∫ ∞

0
j�(λr)j�′(λr′) dΦn(λ),

where
Cmm′

1��′ij = 4πi�
′−�
√

(2� + 1)(2�′ + 1)
(

1
3δijg

0[m,m′]
0[�,�′] g

0[0,0]
0[�,�′]

− 1
5
√

6
g
0[0,0]
2[�,�′]

2∑
k=−2

g
k[i,j]
2[1,1]g

k[m,m′]
2[�,�′]

)
,

Cmm′

2��′ij = 4πi�
′−�
√

(2� + 1)(2�′ + 1)
(

1
3δijg

0[m,m′]
0[�,�′] g

0[0,0]
0[�,�′]

+
√

2
5
√

3
g
0[0,0]
2[�,�′]

2∑
k=−2

g
k[i,j]
2[1,1]g

k[m,m′]
2[�,�′]

)
.
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The Karhunen Theorem gives

Ti(r, θ, ϕ) =
2∑

n=1

∞∑
�=0

�∑
m=−�

Sm
� (θ, ϕ)

∫ ∞

0
j�(λr) dZm

ni�(λ),

where
E[Zm

ni�(A)Zm′

n′j�′(B)] = δnn′Cmm′

n��′ijΦn(A ∩B).

Example 4.3. Let U = S2(U1−) = U0+ ⊕ U2+. The Clebsch–Gordan formula
gives S2(U) = 2U0+ ⊕ 2U2+ ⊕ U4+.

It turns out that the real linear space Ũ0 is 5-dimensional, while Ũ1 is 2-
dimensional. For details, we refer to [76] and [82, Section 3.6]

A new phenomenon appears at the third step. After a reordering of the basis
tensors, the matrix f(λ0) contains two pairs of identical 1 × 1 diagonal blocks
and one 2×2 block. Accordingly, the set of extreme points of the set C0 consists
of three connected components: two singletons D1 and D2 and an ellipse D.
The set C1 is an interval with two extreme points.

The matrix f(λ0) has the form

f(λ0) = u1(λ0)D1 + u2(λ0)D2 + (u3(λ0) + u4(λ0))D(λ0), λ0 > 0,

where D(λ0) is an arbitrary measurable function on (0,∞) that takes values in
the closed convex span of the ellipse D. This equation remains true for λ = 0 if
and only if

u2(0) = 3
2u1(0), 2

7 ≤ u3(0) + u4(0) ≤ 1. (4.19)

This result follows from the analysis of the position of the convex compact C1
inside C0, like in Example 4.2.

Calculating the inner integral, we obtain a long formula, see [82, Equa-
tion (3.80)], written in terms of five M -functions

M1
ijkl(r) = g

0[i,j]
0[1,1] ⊗ g

0[k,l]
0[1,1],

M2
ijkl(r) =

2∑
m1,m2=−2

g
0[m1,m2]
0[2,2] g

m1[i,j]
2[1,1] ⊗ g

m2[k,l]
2[1,1] ,

M3
ijkl(r) = r2

√
2

2∑
m=−2

(
g
0[i,j]
0[1,1] ⊗ g

m[k,l]
2[1,1] + g

m[k,l]
2[1,1] ⊗ (g0[i,j]

0[1,1]

)
θ
U2+
m0 (θ̂, ϕ̂),

M4
ijkl(r) = r2

2∑
m,m1,m2=−2

g
m[m1,m2]
2[2,2] g

m1[i,j]
2[1,1] ⊗ g

m2[k,l]
2[1,1] θ

U2+
m0 (θ̂, ϕ̂),

M5
ijkl(r) = r4

4∑
m=−4

2∑
m1,m2=−2

g
0[m1,m2]
4[2,2] g

m1[i,j]
2[1,1] ⊗ g

m2[k,l]
2[1,1] θ

U4+
m0 (θ̂, ϕ̂).

This result does not contradict Equation (3.7). Indeed, the functions Mn
ijkl(r)

are form-invariant polynomials and must express through the basis polynomials
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Ln
ijkl(r). They have the form

M1
ijkl(r) = 1

3L
1
ijkl(r),

M2
ijkl(r) = − 1

3
√

5
L1
ijkl(r) + 1

2
√

5
L2
ijkl(r),

M3
ijkl(r) = −1

3L
1
ijkl(r) + 1

2L
4
ijkl(r),

M4
ijkl(r) = 2

√
2

3
√

7
L1
ijkl(r) −

1√
14

L2
ijkl(r) + 3

2
√

14
L3
ijkl(r) −

√
2√
7
L4
ijkl(r),

M5
ijkl(r) = 1

2
√

70
L1
ijkl(r) + 1

2
√

70
L1
ijkl(r) −

√
5

2
√

14
L3
ijkl(r) −

√
5

2
√

14
L4
ijkl(r)

+
√

35
2
√

2
L5
ijkl(r),

see [76] or [82, Equation (3.81)]. The two-point correlation tensor of the random
field T (x) takes the form

〈Tij(x), Tkl(y) =
3∑

n=1

∫ ∞

0

5∑
q=1

Nnq(λ, r)Lq
ijkl(r) dΦn(λ), (4.20)

where the functions Nnq(λ, r) with q ∈ {1, 2} correspond to the singletons D1

and D2 and are linear combinations of spherical Bessel functions. The functions
Nnq(λ, r) include also the component D(λ), because they correspond to the
ellipse D, see [82, Table 3.1]. It follows from Equation (4.19) that an eventual
atom Φ3({0}) occupies at least 2

7 of the sum of all three atoms, while the rest
is divided between Φ1({0}) and Φ2({0}) in the proportion 1: 3

2 .
The spectral expansion of the random field T (x) can be established in the

same way as in Example 4.2, see [82, Section 3.6, Theorem 26].

Example 4.4. Let U = R3 ⊗ S2(R3). The Clebsch–Gordan rule gives

U = 2U1− ⊕ U2− ⊕ U3−,

S2(U) = 5U1+ ⊕ U1+ ⊕ 10U2+ ⊕ 5U3+ ⊕ 5U4+ ⊕ U5+ ⊕ U6+.

The dimensions of linear slices are dim Ũ0 = 21, dim Ũ1 = 5. The bases in
the above spaces are given in [82, Table 3.5].

The set of extreme points of the convex compact C0 consists of three connected
components. No of them are singletons. The convex compact C1 is a simplex with
5 vertices.

The nonzero elements of the 18× 18 matrix f(λ) in terms of 21 M -functions
are given in [82, Table 3.8]. We have 5 L-functions of degree 0 given by [82, Equa-
tion (2.40)], 11 L-functions of degree 2 given by [82, Table 2.3], 5 L-functions
of degree 4 given by [82, Equation (2.44)], and 1 L-function of degree 6, 22 L-
functions altogether, which is more that 21. This phenomenon is well-known
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in invariant theory. The elements of the basis of form-invariant polynomials
are not necessary independent. There may exist polynomial relations between
them called syzygies. In our case, one of the L-functions of degree 2 is a linear
combinations of the remaining L-functions, see [82, p. 105]. The M -functions
are expressed as linear combinations of the 21 linearly independent L-functions
according to [82, Table 3.6].

The two-point correlation tensor of the random field T (x) is given by an
equation similar to (4.20). This time, however, there are 63 functions Nnq(λ, r)
given by [82, Table 3.10].

The spectral expansion of the random field T (x) can be established in the
same way as in Example 4.2, see [82, Section 3.7, Theorem 34].

Example 4.5. Let U = S2(S2(R3)). The Clebsch–Gordan rule gives

U = 2U0+ ⊕ 2U2+ ⊕ U4+,

S2(U) = 7U0+ ⊕ U1+ ⊕ 10U2+ ⊕ 3U3+ ⊕ 8U4+ ⊕ 2U5+ ⊕ 3U6+ ⊕ U8+.

The dimensions of linear slices are dim Ũ0 = 29, dim Ũ1 = 7. The bases in
the above spaces are given in [82, Table 3.11].

The set of extreme points of the convex compact C0 consists of three connected
components. The first one is 14-dimensional, the second is 5-dimensional, the
third is 4-dimensional. For the convex compact C1, the set of its extreme points
contains 1 singleton and 2 ellipses.

The nonzero elements of the 21× 21 matrix f(λ) in terms of 29 M -functions
are given in [82, Table 3.14]. We have 8 L-functions of degree 0 given by [82,
Table 2.2], 13 L-functions of degree 2 given by [82, Table 2.4], 10 L-functions
of degree 4 given by [82, Table 2.5], 3 L-functions of degree 6 given by [82,
Table 2.6], and 1 L-function of degree 8, 35 L-functions altogether. Only 29
of them are linearly independent, and 14 independent L-functions are missing
in [69]. There are 35 − 29 = 6 syzygies. The M -functions are expressed as
linear combinations of the 29 linearly independent L-functions according to [82,
Table 3.12].

The two-point correlation tensor of the random field T (x) is given by an
equation similar to (4.20). This time, however, there are 87 functions Nnq(λ, r)
given by [78, Table 5].

The spectral expansion of the random field T (x) can be established in the
same way as in Example 4.2, see [82, Section 3.8, Theorem 36].

4.7. Concluding remarks

Observe the following connections between the theory of homogeneous and
isotropic random fields and other fields of mathematics.

• Special functions appear in the spectral theory of homogeneous and
isotropic random fields as orthonormal bases in functional spaces and as
the coefficients of Fourier expansions with respect to the above bases.
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• The two-point correlation tensor of a homogeneous and isotropic random
field is form-invariant, hence a connection with invariant theory.

• After a rearranging of basis vectors, the matrix-valued function f(λm)
has the block-diagonal structure. The number of distinct blocks is equal
to the number of connected components in the set of extreme points of
the convex compact Cm.

• The number of integrals in the spectral expansion of the two-point corre-
lation tensor is equal to the number of connected component in the set of
extreme points of the convex compact C0.

• If C0 is not a simplex, then the above expansion contains arbitrary mea-
surable functions.

• The structure of eventual atoms of the measures Φn is determined by the
position of C1 inside C0.

We formulate one more, hypothetical connection. At least, no counter-exam-
ples are known to the authors.

• The set C0 is a simplex if and only if the representation U is irreducible.

Is it possible to have a formula for the two-point correlation tensor of a homo-
geneous and isotropic random field that is similar to Equations (3.1) and (3.4),
that is, without arbitrary measurable functions? The answer is: yes, but you
have to pay for that. The idea is as follows: consider a simplex C satisfying
C1 ⊂ C ⊂ C0. Force the function f(k) to take values in C. We obtain a descrip-
tion of the two-point correlation tensor of a subclass of the class of homogeneous
and isotropic random fields. In other words, instead of necessary and sufficient
conditions, we obtain only sufficient conditions. The closer is the Lebesgue mea-
sure of the simplex C in comparison with that of C0, the closer are the obtained
sufficient conditions to the necessary ones. See details in [82].

5. Applications to continuum physics

5.1. Motivation from stochastic mechanics

Tensor-valued random fields (TRFs) are a natural setting for a stochastic gen-
eralization of continuum physics. By this, we understand continuum mechanics
of fluids and solids, as well as thermal conductivity and coupled-field models
such as thermoelasticity, thermodiffusion, and electromagnetic interactions in
deformable media (e.g., piezoelectricity). Our scope is classical physics.

Now, we focus on two types of TRFs appearing in continuum physics: (i)
fields of dependent quantities (displacement, velocity, deformation, rotation,
stress,. . . ) and (ii) fields of constitutive responses (conductivity, stiffness, per-
meability. . . ). Five such fields were listed in Example 2.1. All of these fields
are tensors of zeroth, first or higher rank and, generally, of random nature (i.e.,
displaying spatially inhomogeneous, random character), as opposed to determin-
istic continuum physics. In the latter case and as a starting point, we typically
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have an equation of the form
L (u) = f, (5.1)

defined on a subset D of the d-dimensional affine Euclidean space Ed, where L
is a differential operator, f is a source (or forcing function), and u is a solution
field. This needs to be accompanied by appropriate boundary and/or initial
conditions.

Remark 5.1. We use the symbolic (u) or, equivalently, the subscript (ui...)
notations for tensors, as the need arises; also an overdot will mean the derivative
with respect to time, d/dt.

A field theory becomes stochastic in two main situations. First, there appears
an apparent randomness of u due to an inherent nonlinearity of L as exemplified
by mathematical models (such as the Navier–Stokes equations) modelling the
turbulent fluid motions. This is the case of statistical fluid mechanics, with the
velocity field being the random dependent quantity, see [90, 91, 119, 159].

Alternatively, the field theory becomes stochastic if the coefficients of L, such
as the conductivity tensor, are a TRF, so (5.1) becomes

L (ω)u = f. (5.2)

This stochastic equation governs the response of a random medium

B = {B (ω) : ω ∈ Ω } (5.3)

on an appropriate spatial domain. In principle, each of the realisations B (ω)
follows the deterministic laws of classical mechanics. Probability is introduced to
deal with the set of all possible realisations. The governing relation is a stochas-
tic partial differential equation (SPDE) and this ensemble picture is termed
stochastic continuum physics. There also is a third possibility of SPDE: ran-
dom forcing and/or random boundary/initial conditions; this case will not be
pursued here.

In what follows, we discuss the TRFs of dependent fields and of constitutive
responses.

5.2. TRFs of dependent fields

5.2.1. Rank 1 TRFs (vector random field)

Restriction imposed by a divergence-free property Consider a TRF
v over Rd (d = 2 or 3) to be solenoidal, i.e. div v = 0. Then the correlation
function Rij := 〈vi (0) , vj (r)〉 satisfies

0 = Rij ,i (r) ≡ Rij (r)
∂ri

,

where the index , i denotes differentiation with respect to ri, and where we use
the Einstein convention: if an index variable appears twice in a single term,
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than that term is summed over all the values of the index. Now, writing the
representation (3.3) as Rij (r) = A (r) rirj + B (r) δij , we find

(n + 1)A + rA′ + 1
r
B′ = 0, (5.4)

where a prime denotes a derivative with respect to r. Next, introduce two new
correlation functions

longitudinal: f (r) = 〈vp (0) , vp (r)〉〈
v2
p

〉 ,

lateral: g (r) = 〈vn (0) , vn (r)〉
〈v2

n〉
,

(5.5)

whereby p (or n) denotes parallel (resp., normal) velocity components, while the
summation convention does not apply to the terms in the denominator. Such a
vector random field is encountered in many physical settings, e.g. in turbulent
incompressible flows [90, 91, 119]. Another example is the anti-plane elasticity
in the absence of body force fields.

By ergodicity in the mean, we have that the square (v2) of any velocity
component v equals v2 =

〈
v2
p

〉
=
〈
v2
n

〉
= 1

nvivi, so that

v2f (z) = 〈vp (0) , vp (r)〉 = A (r) r2 + B (r) ,
v2g (r) = 〈vn (0) , vn (r)〉 = B (r) .

It follows from (5.4) that f and g are related through

g = f + 1
n− 1rf

′. (5.6)

Note that f is typically accessible through experiments or computer simulations
so one can then determine g.

The above is the paradigm for treatments of other TRFs in more complex
situations, which can be summarized as:

• find the explicit form of the correlation function;
• impose a restriction dictated by the relevant physics;
• support the results by experiments and/or computational modelling.

Restriction imposed by a curl-free property Certain other situations in
continuum physics require a vector field to be irrotational. Thus, consider a
TRF v over R3 to satisfy curlv = 0. This implies

0 = 〈εijkvk,j (0) , vp (r)〉 = εijkRkp,j (r) ,

where εijk is the Levi-Civita permutation tensor in three dimensions, see Ex-
ample A.1. Given (3.3), we identify two distinct restrictions on

Rij := 〈vi(0), vj(r)〉 :
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Case 1 : (i, p) = (1, 1):

R31,2 (r) = A′ (r) 1
r
r1r2r3 = R21,3 (r) .

Case 2 : (i, p) = (1, 2):

R32,2 (r) = A′ (r) 1
r
r2
2r3 + B (r) r3,

R22,3 (r) = A′ (r) 1
z
r2
2r3 + B′ (r) 1

r
r3.

Case 1 is satisfied identically, while Case 2 implies the restriction

rA = B′ (r) .

In terms of the f and g functions (5.5), we find

f = g + rg′. (5.7)

Interestingly, this mirrors the relation between f and g in (5.6) for n = 2.
Also, (5.6) and (5.7) provide equations for a new correlation function from a

known one.

Velocity and stress field correlations in fluid mechanics Returning back
to the incompressible velocity field v, the Reynolds stress Rkl := −ρ 〈vk, vl〉
defines a symmetric rank 2 TRF. Next, consider the spatial average of the
turbulence energy defined from Rkl as ψ = 1

2Rkk = −1
2ρ 〈vk, vl〉. While this

defines a scalar RF, its correlation follows from (3.7)

〈ψ(0), ψ(r)〉 = 1
4 〈Rii(0), Rkk(r)〉 = 1

4

5∑
m=1

Sm(z)J (m)
iikk(r),

implying an explicit link between the correlation function of energy and the five
Sm(r) functions of the Reynolds stress:

〈ψ (0) , ψ (r)〉 = 9
4S1 (r) + 3

2S2 (r) + 3
2S3 (r) + S4 (r) + 1

4S5 (r) .

5.2.2. Rank 2 TRFs

Classical continuum mechanics Rank 2 TRFs play a very important rôle
in statistical continuum physics. In the case of small deformation gradients, the
state of the medium is described by three dependent TRFs of: Cauchy stress
σij , displacement ui, and strain tensor εij . The latter is defined from the former
by

εij = u(i,j) , (5.8)
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where u(i,j) = (ui,j + uj,i) is the symmetrised gradient, while the stress field is
subject to the balance of linear and angular momenta

σij ,j +ρfi = ρüi, (5.9a)
σij = σji. (5.9b)

In (5.9) fi is the body force field (resolved per unit volume) and ρ is the mass
density of the body.

Given that any 2nd-rank tensor field T can be decomposed into potential
(T1) and birotational (T2) parts [64]

T = T1 + T2, curlT1 = 0, divT2 = 0,

where T1 is described by the vector potential and T2 by the tensor potential,
one can conclude that σij is birotational, while εij is a potential tensor field,
with ui being its potential. It follows that (5.8) and (5.9) provide restrictions
on the admissible forms of the correlation structure of these three fields, prior
to assuming any constitutive behaviour. Proceeding in the same manner as in
Subsubsection 5.2.1, while assuming the absence of any body force fields, such
restrictions have been worked out in thermal conductivity, classical elasticity,
and micropolar elasticity [68, 111, 125]. Extending these results from the quasi-
static to dynamic settings is an open research topic.

Interpretations of specific correlations: Given that the rank 2 tensor T has
diagonal and off-diagonal components, there are five special cases of Bkl

ij which
shed light on the physical meaning of Kα’s:

1. 〈Tij(0), Tkl(r)〉|i=j=k=l; i.e. auto-correlations of diagonal terms:

〈T11(0), T11(r)〉 = K0 + 2K1 + 2r2
1K2 + 4r2

1K3 + r4
1K4

and then 〈T22(0), T22(r)〉 and 〈T33(0), T33(r)〉 by cyclic permutations 1 →
2 → 3.

2. 〈Tij(0), Tkl(r)〉|i=j 	=k=l; i.e. cross-correlations of diagonal terms:

〈T11(0), T22(r)〉 = K0 + (r2
2 + r2

1)K2 + r2
2r

2
1K4

and then 〈T22(0), T33(z)〉 and 〈T33(0), T11(r)〉 by cyclic permutations 1 →
2 → 3.

3. 〈Tij(0), Tkl(r)〉|i=k 	=j=l; i.e. auto-correlations of off-diagonal terms:

〈T12(0), T12(r)〉 = K1 + (r2
1 + r2

2)K3 + r2
1r

2
2K4

and then 〈T23(0), T23(r)〉 and 〈T31(0), T31(r)〉 by cyclic permutations 1 →
2 → 3.

4. 〈Tij(0), Tkl(r)〉|j 	=i=k 	=l 	=j ; that is cross-correlations of off-diagonal terms:

〈T12(0), T13(r)〉 = r2r3K3 + r2
1r2r3K4,

then 〈T13(0), T32(r)〉 and 〈T32(0), T12(r)〉 by cyclic permutations 1 → 2 →
3.
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5. 〈Tij(0), Tkl(r)〉|i=j=k 	=l 	=j ; i.e. cross-correlations of diagonal with off-dia-
gonal terms: such as

〈T11(0), T12(r)〉 = r1r2(K2 + 2K3) + r1r
3
2K4,

〈T12(0), T13(r)〉 = r2r3K2 + r2
1r2r3K4

and the other ones by cyclic permutations 1 → 2 → 3.
In principle, we can determine these five correlations for a specific physical

situation. For example, when T is the anti-plane elasticity tensor for a given
resolution (or mesoscale, which will be defined in (5.15)), we can use image-
based computational micromechanics or experiments, and then determine the
best fits of Kα (α = 1, . . . , 5) coefficients, one may determine Ckl

ij (r) through
experimental measurements or by computational mechanics/physics on diverse
material microstructures, in both cases following a strategy for 4th-rank TRF
in 2d or 3d, see [124].

Special case: the TRF is locally isotropic Tik (r) = T (r)δik with (neces-
sarily) T (r) > 0, so that we simply have a scalar random field. Then, the
auto-correlation B11

11 of T is a single scalar function C(r). With the variance
Var(T ) = 〈T (0), T (r)〉, the correlation coefficient ρ(r) := C(z)/Var(T ) is con-
strained by a standard condition of scalar RFs −1/n ≤ ρ(r) ≤ 1, if the model
is set in Rn. Basically, this is the correlation function of the conductivity (or
diffusion) in conventional SPDEs of elliptic type, conventionally set up on scalar
random fields.

In-plane case With the group-theoretical considerations determined in detail
in [82, Section 4.5], the interpretations of specific correlations rely on this form
of the correlation function for a rank 4 tensor T :

Rijkl(r) = H1δijδkl + H2 (δikδjl + δilδjk) + H4 (δijrkrl + δklrirj) + H5rirjrkrl.

Given that T has diagonal and off-diagonal components, there are four special
cases of Rijkl which shed light on the physical meaning of Hn’s:

1. auto-correlations of diagonal terms: R1111 = H1 + 2H2 + 2r2
1H4 + r4

1H5
and R2222 = H1 + 2H2 + 2r2

2H4 + r4
2H5.

2. cross-correlation of diagonal terms: R1122 = H1 +
(
r2
1 + r2

2
)
H4 + r2

1r
2
2H5.

3. auto-correlation of an off-diagonal term: R1212 = H2 + r2
1r

2
2H5.

4. cross-correlation of a diagonal with an off-diagonal term:

〈T11(0), T12(r)〉 = R1112 = r1r2H4 + r3
1r2H5.

Just as in the case of TRF of rank 1, we can determine these four correlations
for a specific physical situation. Without loss of generality (due to wide-sense
isotropy), when r ≡ (r1, r2) is chosen equal to (r, 0),

H1 = R2222 − 2R1212,

H2 = R1212,

H4 = r−2 (R1122 −R2222 − 2R1212) ,
H5 = r−4 (R1111 + R2222 − 2R1122) .

(5.10)
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For example, when T is the anti-plane elasticity tensor for a given resolution
(or mesoscale), one can use computational micromechanics or experiments, and
then determine the best fits of Hα (α = 1, 2, 4, 5) coefficients, providing the
positive-definiteness of T is imposed. However, when T represents a dependent
field quantity, then a restriction dictated by the field equation needs to be im-
posed. In the following, by analogy to what was reported in [75], we consider T
being either the in-plane stress or the in-plane strain.

TRF with a local isotropic property: Take Tij = Tδij , where the axial compo-
nent T is the scalar random field describing the randomness of such a medium.
Since T11 = T22 and T12 = 0 must hold everywhere, R1111 = R2222 = R1122 and
R1212 = 0. Hence, H2 = H4 = H5 = 0 and only H1 �= 0 is retained, and that
is the function modelling the correlations in T . One example is the constitutive
response (e.g., conductivity kij = kδij) in conventional models of SPDEs; see
[82, Subsection 4.8.1] for a model with anisotropy.

When Tij represents a dependent field quantity, then a restriction dictated
by an appropriate field equation needs to be imposed. One may then consider
T to be either the in-plane stress or the in-plane strain under the restriction
imposed on the correlation tensor when it is divergence-free or potential tensor
field.

Micropolar continuum mechanics The conservation equations of linear
and angular momenta in a micropolar continuum have been given in [82, Chap-
ter 1]. Henceforth, focusing on a static problem in the absence of body forces
and moments, (5.9a) remains unchanged (τij ,j +ρfi = ρüi), whereas (5.9b) is
replaced by

μki,k +εijkτjk + ρgi = ρJϕ̈i. (5.11)

Here μki is the couple-stress, τji is the Cauchy stress, gi is the body torque per
unit mass, J is the (micro)inertia tensor of a particle, and ϕi is the microrotation.
We write τjk for the Cauchy stress to point out that this tensor generally lacks
symmetry of σij in (5.9).

For a statistically homogeneous case, from (5.11) it follows that

〈εijkσjk (r1) , εprsσrs (r1 + r)〉 = 〈μji,j (r1) , μrp,r (r1 + r)〉 . (5.12)

The left hand side may be written as LHS = εijkεprsQ
rs
jk, where Qrs

jk (r) :=
〈σjk (r1) , σrs (r1 + r)〉 is the correlation function of the stress field. Since σjk

is generally asymmetric but, by assumption, statistically isotropic, we have
Qrs

jk (r) = Qjk
rs (r).

5.3. TRFs of constitutive responses

5.3.1. From a random microstructure to mesoscale response

Take a sheet of paper and hold it against the light. You will see a grayscale, i.e. a
spatially non-uniform opacity of paper. This inhomogeneity is due to formation



Tensor- and spinor-valued random fields 39

of paper which involves a random placement of fibers during manufacture, a
high-speed process involving, for example, 1010 fibers per second in a newsprint
made continuously at 20 m/s in 10 m width, see [20]. Due to the van der
Waals forces, cellulose fibers cluster in flocs comprising thousands of them. But,
even if one were able to remove flocculation, with random placement of fibers,
one would not be able to obtain a homogeneous medium. One could achieve a
homogeneous medium if the fibers had very well controlled lengths and were
placed in a perfectly periodic manner as if it were a textile. Thus, paper is a
random (quasi-)two-dimensional (2d) medium, which one may be tempted to
describe by a random field of mass density{

ρ (x, ω) ;x ∈ R
2, ω ∈ Ω

}
. (5.13)

Here x is the location in the plane of paper and ω indicates one realization of
the mass density field.

By analogy, assuming a linear elastic response, the mechanical properties are
described by a RF of the in-plane stiffness tensor{

C (x, ω) ;x ∈ R
2, ω ∈ Ω

}
. (5.14)

The next tempting assumption is to introduce a local isotropy, i.e. assume paper
to be described not by the 4th-rank tensor random field (TRF) but by a “vector”
RF of the Young modulus and Poisson ratio

{
E (x, ω) , ν (x, ω) ;x ∈ R2, ω ∈ Ω

}
or, even more simply, by a single scalar RF E (x, ω). Such models have been used
widely. However, as discussed in [106, 108], anisotropy cannot be disregarded.

Now, as we move the paper sheet away from our eyes, we note that it is
becoming more and more uniform, i.e. its spatial randomness diminishes and
tends to zero as the length scale of observation L becomes very large (. . . and
then infinite) relative to the floc size d. Clearly, introducing the concept of a
mesoscale

δ := L

d
, (5.15)

we recognize that the RFs above must be mesoscale dependent. Hence, in place
of (5.13)–(5.14) we can write more compactly{

ρ (x, ω, δ) , C (x, ω, δ) ;x ∈ R
2, ω ∈ Ω

}
. (5.16)

This set of all the deterministic realizations ρ (x, ω, δ) and C (x, ω, δ) defines a
random material Bδ parameterised by a mesoscale δ, and occupying a domain
Bδ ⊂ R2:

Bδ = {Bδ(ω);ω ∈ Ω} .
As we pull the sheet of paper away from our eyes, the mesoscale increases

and we observe that the randomness vanishes. Hence, we have the limits:

lim
δ→∞

ρ (x, ω, δ) = ρeff , lim
δ→∞

C (x, ω, δ) = Ceff ,

corresponding to a conventional, deterministic continuum. In the above, we have
introduced the effective material properties (such as stiffness, modulus, and Pois-
son ratio) which are typically employed in deterministic models of continuum
mechanics.
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Fig 1. (a) Lamb’s problem for a homogeneous half-plane with a concentrated tangential load
P (t) having a triangular-in-time history. (b) The same problem on a random field of mass
density, with: the coefficient of variation = 0.124, Cauchy correlation function [120], frac-
tal dimension D = 2.1, and Hurst coefficient H = 0.5. Solutions in both cases have been
obtained via a cellular automata method which (i) allows the assignment of heterogeneous
material properties from cell to cell and (ii) in the limit of infinitesimal cells, is analytically
equivalent to the continuum elastodynamics equations [98]. Reprinted from [61] by permission
of Elsevier.

• How can one proceed when an RVE cannot be identified?
• How can one determine the SVE (mesoscale) properties?
• How can one solve a macroscopic boundary value problem?

How can one proceed in the case of media with fractal structures and (also)
long range effects?

As an example, Fig. 1(a) shows the response of such an idealized linear elas-
tic half-plane to an impact-type normal force (i.e., a half-plane subjected to a
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vertical point force). On the other hand, as Fig. 1(b) shows, in terms of one
realization of the random field of mass density (5.13), this Lamb’s problem re-
sponds differently when the half-plane has a random mass density: the wavefront
gets progressively distorted and attenuated through scattering on all the hetero-
geneities. Depending on the kind of material under consideration, various types
of random fields can be considered and, as discussed in [61, Section 4], in order
to model a geophysical-type randomness found in nature, the particular ran-
dom field (RF) taken here has a fractal-and-Hurst character. Clearly, Fig. 1(b)
represents one realization from a space of solutions of SBVP on a random field;
here SVBP stands for a stochastic BVP. Some basic questions arising here are:

What random field models of material properties should drive such SBVPs?
What methods exist for solving these SBVPs?
What constraints on RFs of field quantities are dictated by the governing

equations?
The scale-dependent homogenization — discussed in detail in [106, 108], —

shows that the anisotropy accompanies randomness: anisotropy goes to zero as
the mesoscale increases. In other words, assuming isotropy of a smooth con-
tinuum on any mesoscale forces one to assume homogeneity, i.e. lack of spatial
randomness. [This, of course, does not contradict anisotropic piece-wise homoge-
neous medium models, such as polycrystals.] Thus, to truly allow for anisotropy
of the stiffness tensor field, the field equation written for the anti-plane displace-
ment u ≡ u3 is

(Cδiju,j ),i +ρf = ρü, (5.17)
should be replaced by

(Ciju,j ),i +ρf = ρü. (5.18)
Here C is a 2nd-rank TRF set up on a mesoscale δ corresponding to the res-
olution desired in a particular physical problem, Fig. 2(c); both equations are
defined for x ∈ R2 and ω ∈ Ω. This type of a model, instead of Cij(·, ω) =
C(·, ω)δij , is sorely needed in SPDE and stochastic finite element (SFE) meth-
ods.

Moving to the 2d (in-plane) or 3d elasticity, if one assumes local material
isotropy, a simple way to introduce material spatial randomness is to take the
pair of Lamé constants (λ, μ) as a “vector” random field, resulting in a general-
ization of the classical Navier equation for the displacement field u:

(λukkδij + 2μu(i,j) ),j +ρfi = ρüi. (5.19)

However, just like in (5.17), the local isotropy is a crude approximation in view
of the micromechanics upscaling arguments. Note that, due to spatial gradi-
ents, any realization of a RF in Fig. 5.2(c) involves some degree of anisotropy.
Thus, (5.19) should be replaced by

(Cijklu(k,l) ),j +ρfi = ρüi, (5.20)

where the stiffness C (= Cijklei ⊗ ej ⊗ ek ⊗ el) is a 4th rank TRF. At any scale
finitely larger than the microstructural scale, it is almost surely anisotropic,
typically triclinic.
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The same arguments as above apply in case one prefers to work with field
equations directly in the language of stresses. Then the Ignaczak equation of
elastodynamics [107] is applicable, see [55]:(

ρ−1σ(ik,k
)
,j) −Sijklσ̈kl = 0, (5.21)

where Sijkl are the components of the local compliance tensor S = C−1. Note
that this formulation avoids the gradients of compliance but introduces gradi-
ents of mass density, which is the reverse of what the displacement language
formulation (5.20) requires.

Summarizing, with the advent of “multiscale methods”, the contemporary
solid mechanics recognizes the hierarchical structure of materials, but hardly
accounts for their statistical nature. In effect, the multiscale methods remain
deterministic, while the SPDE and SFE are rather oblivious to micromechanics,
homogenization, and TRFs of properties.

With reference to [82, Example 2.1], three cases are relevant here: rank 2
TRF with U = S2 (R3), rank 3 TRF with U = S2 (R3) ⊗ R3, and rank 4 TRF
with U = S2 (S2 (R3)). The correlation function in the first case (such as the
3d conductivity) has already been given above in (3.7).

The correlation function in the case of rank 3 TRF(such as piezoelectricity)
has the general form [82]

Rijkprs(r) =
21∑

n=1
Ln
ijkprs(r)Kn (r) ,

The correlation function in the case of rank 4 TRF (such as elasticity) has the
general form [82]:

Rijk�prst(r) =
29∑

n=1
Ln
ijk�prst(r)Kn (r) .

See [78] and [79] for explicit forms of all Ln
ijk�prst.

Remark 5.2. The correlation function of a rank 1 (resp., 2, 3, 4) TRF is a
sum of 2 (resp., 5, 21, 29) addends, each being a product of a tensor function of
twice higher rank with a scalar function of the norm ‖r‖.

5.3.2. TRFs in damage phenomena

Many natural and man-made materials work in presence of fields of many little
cracks and defects. Progressive failure occurs through evolution and catastrophic
coalescence of these microscale events. Descriptions of damage phenomena fields
which enter predictive models of solid mechanics typically involve continuum
models. Consider a disordered field of cracks (Fig. 2(a)), each specified by an
orientation vector n (i.e., a unit vector normal to the crack). With reference



Tensor- and spinor-valued random fields 43

Fig 2. (a) Random crack field; (b) distribution of n on the unit sphere; (c) random ellipse
field with a single ellipse (with semi-axes b, a) showing the (m,n) pair for determination of
the fabric tensor. Reprinted from [82] by permission of Cambridge University Press.

to Fig. 2(b), for a system in 3d (respectively, 2d), one introduces a probability
density function of n on a unit sphere S2 (respectively, on a circle)

p (n) = D0 + Dijfij (n) + Dijklfijkl (n) + . . .

This is a generalised Fourier series with respect to the irreducible tensor bases

fij (n) = ninj −
1
3δij ,

fijkl (n) = ninjnknl −
1
7(δijnknl + δiknjnl + δilnjnk + δjkninl

+ δjlnink + δklninj) + 1
5 × 7 (δijnknl + δiknjnl + δilnjnk) ,

while

D0 = 1
4π

∫
S2

p (n) dΩ, (5.22a)

Dij = 1
4π

3 × 5
2

∫
S2

p (n) fij (n) dΩ, (5.22b)

Dijkl = 1
4π

3 × 5 × 7 × 9
2 × 3 × 4

∫
S2

p (n) fijkl (n) dΩ, . . . (5.22c)

are the scalar, second-order, fourth-order, damage tensors (respectively, fabric
tensors), describing the directional distribution of damage state (grain-grain
contacts). Thus, the overall directional distribution of damage state of a material
is described through the tensors D0, Dij , Dijkl, . . . . Depending on the specific
choice of the constitutive model, either just one (D0) or two, or more damage
tensors are included in the analysis.
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Classical (deterministic) continuum damage mechanics (CDM) makes use of
fabric tensors in a manner borrowed from the mechanics of granular media, see
[31, 70, 95]. Even if such models are introduced on scales much larger than a
single crack or defect, there is a need to grasp spatially random fluctuations and
anisotropy. In the following, we outline a TRF model of the rank 2 (symmetric)
tensor Dij in (5.22b). Its correlation function

Dkl
ij = E [Dij(r + r1)Dkl(r1)] ,

in the case of statistically isotropic damage, has the representation (3.7) To
determine all the Am’s, without loss of generality, we may take the unit vector
n = (n1 = 1, n2 = 0, n3 = 0) co-aligned with r, so that the following auto- and
cross-correlations (consecutively named Mi, i = 1, . . . , 7) result

M1 = 〈T11(0), T11(r)〉 = S1(r) + 2S2(r) + 2S3(r) + 4S4(r) + S5(r)
M2 = 〈T22(0), T22(r)〉 = S1(r) + 2S2(r)
M3 = 〈T11(0), T22(r)〉 = S1(r) + S3(r)
M4 = 〈T22(0), T33(r)〉 = S1(r)
M5 = 〈T12(0), T12(r)〉 = S2(r) + S4(r)
M6 = 〈T23(0), T23(r)〉 = S2(r)
M7 = 〈T11(0), T12(r)〉 = 0.

While the last result shows that the cross-correlation between the 11- and 12-
components is always zero, we note that M2 = M4 + 2M6 must hold, so that
only five Mi’s are independent, just as we have five functions Am, m = 1, . . . , 5,
see [82, Section 4.9]. In principle, we can determine these five correlations for
a specific physical system using image-based computational micromechanics or
simulations of random media. Thus, when Tij is the damage tensor for a given
resolution (on a given mesoscale) in a coordinate system defined by n, we can
use micromechanics or experiments to determine the best fits of Mi’s. Thus, we
have a following strategy for determination of the correlation structure Dkl

ij :

1. Measure Mi, i = 1, . . . , 6.
2. Determine A1 = M4 and A2 = M6.
3. Determine A3 = M3 −M4 and A4 = M5 −M6.
4. Determine A5 = M1 −M3 − 4M5 + 2M6.

5.3.3. TRFs as dyadics

With the components of the covariance tensor of a given TRF determined as
outlined above, the next task is the simulation of TRF. This will be accomplished
through a polyadic representation of tensors. Consider the rank 2 TRF C, over a
2d domain B, taking values in the space S2 (R2) which, in turn, provides input
into a stochastic partial differential equation (SPDE) of anti-plane elasticity
with local anisotropy (5.2).
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If we were to assume C (ω,x) = C (ω,x) I, the TRF C would become a
random scalar field, whereupon we would simply have a stochastic generalization
of the anti-plane Navier equation of elastodynamics with an RF shear coefficient
μ. As already argued in Subsection 5.1 above, micromechanics studies imply that
the local anisotropy must be present in spatially inhomogeneous random media
on the level of Fig. 2(c). To account for it, the rank 2 TRF is modelled as a
superposition of the isotropic mean with a dyadic product of two vector RFs
a = aiei and b = biei (i = 1, 2), written in tensor and matrix notations:

Cij =
〈
Cij

〉
+ sC ′

ij ,
〈
Cij

〉
= μδij , s = const,

C ′
ij = aibj ,

[
C ′

ij

]
=
(
a1b1 a1b2
a2b1 a2b2

)
.

(5.23)

Each ai and bi (i = 1, 2) is a Gaussian RF: N
(
μd, σ

2
d

)
= N (0, 1). Already the

special case with a and b fully correlated indicates that taking a random medium
with a stiffness TRF C with full anisotropy leads to stronger fluctuations in
responses to BVPs than a random medium with a scalar RF C, see [167]. This
is the stepping-stone to studies without any restriction on a and b in hyperbolic
as well as parabolic and elliptic SPDEs. In the planned project, we will adopt
the dyadic (5.23) for the rank 2 TRF without the restriction on a and b. One
needs codes to examine the spatial randomness effects of dyadic RFs with various
covariances adopted for the individual components ai and bi in this and other
BVPs.

Polyadic TRFs Random media occupy domains in Rd. With the summation
convention, x = xiei is the vector in Rd where the set { ei : 1 ≤ i ≤ d } provides
an orthonormal basis. The symbol (Rd)r, where r is a nonnegative integer,
denotes the linear space R1 if r = 0 and the Cartesian product of r copies of
the set Rd otherwise. A function f : (Rd)r → R is called the polyadic (monadic
if r = 1, dyadic if r = 2, triadic if r = 3, and so on), if either r = 0 and f is
linear or r ≥ 1 and f is r-linear, that is, for all integers i with 1 ≤ i ≤ d, for all
x1, x2, . . . , xi−1, x, y, xi+1, . . . , xr in Rd, and for all α, β ∈ R we have

f(x1,x2, . . . ,xi−1, αx + βy,xi+1, . . . ,xr)
= αf(x1,x2, . . . ,xi−1,x,xi+1, . . . ,xr)
+ βf(x1,x2, . . . ,xi−1,y,xi+1, . . . ,xr).

The number r is called the rank of a polyadic. Denote a polyadic with a
capital sans serif letter with a superscript preceding it to indicate its rank,
for example, 2T is a dyadic. The set of all polyadics is a real linear space of
dimension dr. Indeed, if r = 0, then (Rd)r = R1, dr = 1, and a linear functional
f : R1 → R has the form f(x1) = y1x1 with y1 ∈ R1. Otherwise, if r ≥ 1, we
define a special polyadic as follows.

A polyad (monad, dyad, triad, . . . ) is the polyadic x1x2 · · ·xr given by

x1x2 · · ·xr(y1,y2, . . . ,yr) = (x1 · y1)(x2 · y2) · · · (xr · yr)
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for all (y1,y2, . . . ,yr) ∈ (Rd)r, where x1, x2, . . . , xr are arbitrary vectors in
Rd.

The dr polyads ei1ei2 · · · eir with 1 ≤ ij ≤ d for all j with 1 ≤ j ≤ r, form
a basis in the linear space of all polyadics. With the r-dot product the above
basis becomes orthonormal. In particular, if r = 1, then the 1-dot product of
two monads x and y coincides with the scalar product x · y, the 2-dot product
of two dyads is x1x2 : y1y2 = (x1 · y1)(x2 · y2), and the 3-dot product of two

triads by x1x2x3
...y1y2y3 = (x1 · y1)(x2 · y2)(x3 · y3). A polyad x1x2 · · ·xr is

identified with the tensor product x1 ⊗ x2 ⊗ · · · ⊗ xr and the linear space of all
polyadics with the tensor product (Rd)⊗r of r copies of the space Rd. We can
prove that, for r ≥ 1, any r-adic can be represented as a sum of not more than
dr−1 r-ads.

If, under a shift map R3 → R3, x �→ x+y, the one-point correlation polyadic
〈rT(x)〉 and the two-point covariance polyadic

〈rT(x), rT(y)〉 = 〈(rT(x) − 〈rT(x)〉), (rT(y) − 〈rT(y)〉)〉

do not change, a second-order TRF is WSS. It is WSSI if its correlation polyadics
satisfy

〈rT(gx)〉 = g · 〈rT(x)〉, 〈rT(gx), rT(gy)〉 = (ρ⊗ ρ)(g)〈rT(gx), rT(gy)〉,

where g �→ S2(g) is an orthogonal representation of the group O(3). See more
detailed account in [83].

Some open issues are: while it is clear how to construct the polyadic TRFs
from scalar random fields, the resulting statistics and correlation structures are
open research topics.

5.4. Concluding remarks

This review would not be complete without giving the account of the research
initiated in [126], which represented a random rank 4 elasticity tensor through
a Kelvin formulation. Further advances were reported in [43, 44, 129, 130, 133].
Generally, this thrust focused on a methodology to solve the problem related to
the identification of random vector-valued coefficients of the high-dimensional
polynomial chaos expansions of non-Gaussian tensor-valued random fields us-
ing partial and limited experimental data. The task involves solving an inverse
stochastic problem for the identification of a random field. This subject has been
reviewed in [126] and, further amplified in [45, 46, 47, 48, 49, 135]. Other ref-
erences include [42, 99, 114, 127, 128, 131, 132]. Finally, we mention a different
approach due to [41], and a recent book [88].

6. Random cross-sections of homogeneous vector bundles

This section is motivated by the following observation: the Cosmic Microwave
Background can be described mathematically as a random cross-section of a
homogeneous vector bundle over the sky sphere, see [7, 34, 66, 72, 85, 136].
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A random cross-section of a homogeneous vector bundle (E,B, π) is a collec-
tion of random vectors { s(x, ω) : x ∈ B } such that s(x, ω) is a random vector in
π−1(x). In what follows, we use the terms “random cross-section” and “random
field” for s(x) interchangeably.

Definition 6.1. A random cross-section s(x) of a homogeneous vector bundle
(E,B, π) is called strictly isotropic if for any positive integer n, for any n dis-
tinct points x1, . . . , xn in B, and for arbitrary g ∈ G, the finite-dimensional
distributions (s(x1), . . . , s(xn)) and (g·s(g−1 ·x1), . . . , g·s(g−1 ·xn)) are identical.

To simplify the subsequent notation, introduce the following agreements. Let
tL = L and tl = l whenever K ∈ {R,H}. For a complex Hilbert space V
with inner product (·, ·), and for v ∈ V , let tv be the element of the space tV
satisfying (tv,v1) = (v1,v) for each v1 ∈ V .

Assume that the random cross-section s(x) of a homogeneous vector bundle
(E,B, π) with fibre L0 is second-order, that is, E[‖s(x)‖2

L0
] < ∞, x ∈ B. If, in

addition, such a field is strictly isotropic, then it is wide-sense isotropic.

Definition 6.2. A second-order random cross-section s(x) is called wide-sense
isotropic if and only if its one-point correlation tensor 〈s(x)〉 = E[s(x)] and the
two-point correlation tensor 〈s(x), s(y)〉 = E[t(s(x) − 〈s(x)〉) ⊗ (s(y) − 〈s(y)〉)]
are G-invariant, that is, for any g ∈ G we have

〈g · s(g−1 · x)〉 = 〈s(x)〉, 〈g · s(g−1 · x), g · s(g−1 · y)〉 = 〈s(x), s(y)〉. (6.1)

Note that the one-point correlation tensor of a random field s(x) is K-valued,
while the two-point one is K′-valued. See Section A for explanation of the above
symbols.

In what follows, we consider only wide-sense isotropic random fields in ho-
mogeneous vector bundles and call them just isotropic.

The next step is to define a mean-square continuous random field in a homo-
geneous vector bundle. The standard definition, Equation (2.3), does not work,
because if x, y ∈ B and x �= y, then the random vectors s(x) and s(y) belong
to different linear spaces and cannot be subtracted one from another. See a
discussion of this problem in [72, 73]. Here we propose an alternative definition.

Let L2(Ω, L0) be the Hilbert space of L0-valued random vectors X with
E[‖X‖2

L0
] < ∞ and inner product

(X,Y) = E[(X,Y)L0 ]. (6.2)

Let H be the closed linear span of the set of random vectors { s(x) : x ∈ B }
in L2(Ω, L0). For each g ∈ G, there is a unique bounded linear operator A(g)
in H with A(g)T (x) = s(g−1x). Moreover, the correspondence g �→ A(g) is a
representation of G in H.

Definition 6.3. A random cross-section s(x) is called mean-square continuous,
if the above representation is continuous.
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Moreover, it is not difficult to prove that a random field s(x) with constant
one-point correlation tensor is isotropic if and only if the inner product (6.2) is
G-invariant.

How to find a spectral expansion of an isotropic random cross-section? First,
exactly as in the case of ordinary random fields, we conclude that the one-point
correlation tensor 〈s(x)〉 is an arbitrary element of the isotypical subspace of
the space L0 that corresponds to the trivial representation of the group H.

Let Ln,pYijkLm(x) be the cross-sections of the orthonormal basis constructed
in Subsection A.8.2. In this notation, the index Ln runs over the set of all irre-
ducible representations of the group H, for which HomKH(Ln, L0) �= {0}, the
index p enumerates the copies of the representation Ln inside L0, the index L
runs over the set of all irreducible representations of the group G, for which
HomKH(resGH L,Ln) �= {0}, the index i enumerates the copies of the representa-
tion Ln inside the representation HomKH(resGH L,Ln), the index j enumerates
identical blocks inside a certain matrix, the index k runs from 1 to the dimen-
sion of a certain division algebra over K′, and the index m enumerates the basis
vectors in L.

Let dL be the multiplicity of the representation L in the induced represen-
tation L2(E), and let { Ln,paLm : L ∈ ĜK, 1 ≤ m ≤ dimL } be a sequence of
centred uncorrelated KdL -valued random vectors such that the covariance ma-
trix of the vector Ln,paLm does not depend on m and for fixed Ln and p we
have ∑

L∈ĜK

dimLE[‖Ln,paL1‖2] < ∞.

Theorem 6.1. A random field s(x) is isotropic if and only if it has the form

s(x) = s +
∑

Ln,pYijkLm(x)(Ln,paLm)ijk.

Proof. Let (E, π,B × B) be the homogeneous vector bundle where the repre-
sentation of the group G × G induced by the representation tL0 ⊗ L0 of the
subgroup H×H acts. Observe that the two-point correlation tensor 〈s(x), s(y)〉
of the random field s(x) is a continuous cross-section of the above bundle. The
cross-sections tLn,pYijkLm(x)⊗L′n,p′Yi′j′k′L′m′(y) form an orthonormal basis in
the Hilbert space L2(E).

We note that tLn,pYijkLm(x) = Ln,pYijk(tL)m(x), and, for a fixed L ∈ ĜK, the
functions Ln,pYijkLm(x) form an orthonormal basis in the isotypical subspace of
the space L2(E) that correspond to L, call it HL. Moreover, by the construction
of this basis, for fixed Ln, p, i, j, and k, we have

Ln,pYijkLm(x) =
dimL∑
q=1

θLmq(g)Ln,pYijkLq(x).

Let CLL′ be the matrix of the Fourier coefficients of the cross-section 〈s(x), s(y)〉
in the above basis. The second equation in condition (6.1) becomes

CLL′θL = θL
′
CLL′ ,
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that is, CLL′ ∈ HomKG(HL,HL′). Schur’s Lemma immediately shows that CLL′

is the zero matrix whenever tL �= L′. Otherwise, the matrix CtLL is symmetric
when K′ = R, Hermitian when K′ = C, consists of square sub-matrices with
dimV rows, and each sub-matrix is block-diagonal, with blocks described in
Subsection A.8.2. Because the blocks of sizes 2×2 and 4×4 are skew-symmetric,
they must be diagonal and multiple to the identity matrix. In the space HL,
the Fourier coefficients form a square matrix with d2

L blocks, where each block
is a multiple of the dimL× dimL identity matrix. The elements of each block
which are located at the intersection of the mth row and the mth column, form
the covariance matrix of the random vector Ln,paLm. The rest is obvious.

7. Applications to cosmology

We make a simplification in Example 2.2. Suppose that the spacetime M is
the Minkowski one, that is, the nonzero components of the bilinear form g(x)
are g00(x) = −c2, g11(x) = g22(x) = g33(x) = 1, where c is the speed of light.
Physically, this means that we neglect possible secondary effects of the CMB
(the effects that appear after the last scattering of the CMB photons).

Consider an observer at the event 0 ∈ M . Light rays through her eye corre-
spond to null straight lines through 0. Their past directions with t < 0 constitute
her field of vision. She can imagine herself at the centre of her sphere of vision,
a unit sphere S2, the celestial sphere, see Example 2.2. It can be regarded in
different ways.

Example 7.1 (The (Θ,Q ± iU ,V) model). Regard the celestial sphere as the
complex projective line CP 1. Let TζCP

1 be the tangent space at a point ζ ∈
CP 1. According to Example 2.2, the electric field of the CMB at the point ζ
belongs to the real linear space rTζCP

1. The space crTζCP
1 is the complexified

tangent space at ζ ∈ CP 1, see [94]. We have

crTζCP
1 = T 1,0

ζ CP 1 ⊕ T 0,1
ζ CP 1,

where the first (resp., the second) term is the holomorphic (resp., anti-holomor-
phic) tangent space at ζ ∈ CP 1. The projection π(crTζCP

1) = ζ determines a
vector bundle, which is the vector bundle (ΣCP 1,CP 1, π) with fibre V1 ⊕ tV1 of
Example A.9. That is, the electric field of the CMB is a spinor field.

Identify a point ζ ∈ CP 1 with the point x ∈ S2 ⊂ R3 with coordinates given
by [112, Equation (1.2.8)]:

x = ζ + ζ∗

ζζ∗ + 1 , y = ζ − ζ∗

i(ζζ∗ + 1) , z = ζζ∗ − 1
ζζ∗ + 1 ,

where the point at infinity ζ = ∞ is identified with the north pole of the
sphere. If we observe an electromagnetic wave of the CMB at a point x ∈ S2,
it propagates in the direction n = −x. Choose two vectors ε(1) and ε(2) in the
space crTζCP

1 in such a way that the vectors (ε(1), ε(2),n) form a right-handed
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orthonormal basis. The pair (ε(1), ε(2)) is called the linear polarisation basis. It
is customary to represent the electric field of the wave in the complex form

E(t) = E1(t)ε(1) + E2(t)ε(2), E1(t), E2(t) ∈ C.

According to [40, p. 305]:
. . . only the real part of the fields has a physical meaning. We make use of the
complex notation because many formulas are thereby simplified. . .

A CMB detector observes the time-averaged electric field E = E1ε
(1)+E2ε

(2).
Following [23], introduce the Hermitian 2 × 2 matrix P̃ =

(
|E1|2 E∗

1E2

E∗
2E1 |E2|2

)
. The

standard orthonormal basis in the real 4-dimensional linear space of Hermitian
2 × 2 matrices with inner product (P̃1, P̃2) = tr(P̃1P̃2) consists of the matrices
1√
2σ

(i), 0 ≤ i ≤ 3, where σ(i) are the Pauli matrices σ(0) = ( 1 0
0 1 ), σ(1) = ( 0 1

1 0 ),
σ(2) =

( 0 −i
i 0
)
, σ(3) =

( 1 0
0 −1

)
. The expansion coefficients are called the Stokes

parameters and defined as follows:

I(ζ) = tr(P̃(ζ)σ(0)), U(ζ) = tr(P̃(ζ)σ(1)),
V (ζ) = tr(P̃(ζ)σ(2)), Q(ζ) = tr(P̃(ζ)σ(3)).

(7.1)

The matrix P̃ takes the form

P̃(ζ) = 1
2(I(ζ)σ(0) + U(ζ)σ(1) + V (ζ)σ(2) + Q(ζ)σ(3)).

The matrix P̃ lies in the space

L0 = t(V1⊕ tV1)⊗ (V1⊕ tV1) = (tV1⊕V1)⊗ (V1⊕ tV1) = 2cU0⊕V2⊕ tV2, (7.2)

and the group H, the subgroup of diagonal matrices in SU(2), acts on P̃ by
h · P̃ = hP̃h−1.

The theory of irreducible unitary representations of the group SU(2) is devel-
oped in numerous sources, we mention [8, 30, 33, 71, 96] among others. The set
ĜC contains the unitary irreducible representations of real type { cU� : � ≥ 0 }
and of quaternionic type { c′W� : � = 1

2 ,
3
2 , . . . }. To determine the structure of

the restrictions resGH cU� and resGH c′W�, we use the characters.
By definition, the character of a complex finite-dimensional representation

V is a function G → C, given by χV (g) = tr θV (g). The character of a real
finite-dimensional representation U (resp., quaternionic finite-dimensional rep-
resentation W ) is the character of the complex representation cU (resp., c′W ).
We have χV1⊕V2(g) = χV1(g) + χV2(g), and similarly for real and quaternionic
representations.

According to [144], the restriction of the character of an irreducible represen-
tations with index � to the subgroup H is

χcU�

((
α 0
0 α∗

))
= χc′W�

((
α 0
0 α∗

))
= α2� + α−2�−2 + · · · + α−2�.

In other words, the restriction resGH cU� has the form

resGH cU� = tV2� ⊕ tV2�−2 ⊕ · · · ⊕ tV2 ⊕ cU0 ⊕ V2 ⊕ · · · ⊕ V2�, (7.3)
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while the restriction resGH c′W� has the form

resGH c′W� = tV2� ⊕ tV2�−2 ⊕ · · · ⊕ tV1 ⊕ V1 ⊕ · · · ⊕ V2�. (7.4)

The first copy of the irreducible representation cU0 of the group H acts in
the complex linear space L01 generated by the matrix 1√

2σ
(0). Schur’s Lemma

gives D = HomCH(cU0, cU0) = C, and we have dimC D = 1. By Equations (7.3)
and (7.4), dimC HomCH(resGH cU�, cU0)=1, while dimC HomCH(resGH c′W�, cU0)=
0. The space HomCH(resGH cU�, cU0) contains ncU�

=1 copy of the representation
cU0, while the space HomCH(resGH c′W�, cU0) contains no copies of the above rep-
resentation. The matrix f111 has 1 row and 2�+1 columns. We have f111

1 �+1 = 1,
the remaining entries are zeroes.

Choose a model for cU�, described in [144] and in many other sources. The
linear space cU� is the space of all polynomials in a real variable x of degree 2�.
The group G acts by

(
α β

−β∗ α∗

)
· p(x) = (βx + α∗)2�p

(
αx− β∗

βx + α∗

)
, p ∈ cU�.

The orthonormal basis in cU� is formed by the polynomials

pm(x) = x�−m√
(�−m)!(� + m)!

, −� ≤ m ≤ �.

The matrix
(
α 0
0 α∗

)
∈ H acts on pm(x) by multiplication by α−2m, that is, by one

of the representations in the right hand side of (7.3). The Frobenius reciprocity
isomorphism maps the matrix f111 to the function F 111 : cU� → C(G,L01).
This function maps an element g ∈ G to the zeroth component of the vector
g−1 · p ∈ cU� for p ∈ U�. In particular, F 111(pm) is the L01-valued function
on G given by D

∗(�)
m0 (g) 1√

2σ
(0), where D

(�)
m0(g) are the Wigner D-functions, the

matrix entries of the representations cU�. After normalisation, the cross-sections
L01YijkLm(gH) become

L01YijkLm(gH) =
√

2� + 1
4π D

∗(�)
m0 (gH) 1√

2
σ(0),

and we recognise the spherical harmonics Y�,m(ζ), see [23, Equation (A.4.43)].
Theorem 6.1 gives

I(ζ) =
∞∑
�=0

�∑
m=−�

a�mY�,m(ζ), (7.5)

where a�m are complex-valued uncorrelated random variables with E[a�m] = 0
for � ≥ 1, E[|a�m|2] = C�, and

∞∑
�=0

(2� + 1)C� < ∞.
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Note that we absorbed the constant cross-section s into the expected value
of a00. The expansion (7.5) was proved in [100] long before the discovery of the
relic radiation. The spherical harmonics Y�,m(ζ) have the form

Y�,m(ζ) = (−1)�−m

√
4π�!

√
(2� + 1)(� + m)!(�−m)!(1 + ζζ∗)

×
�∑

p=max{0,m}

(
�

p

)(
�

p−m

)
ζp(ζ∗)p−m.

It follows from this equation that Y�,−m(ζ) = (−1)mY ∗
�,m(ζ). We see that the

random field I(ζ) is real-valued if and only if a�−m = (−1)ma∗�m.
The Stokes parameters, as defined above, have units of intensity I. It is

conventional to express the CMB fluctuations in terms of the brightness tem-
perature, T . Denote the Stokes parameters after re-scaling by T , UT , VT , and
QT . Denote T0 = E[a00], the averaged temperature of the CMB. Finally, the
dimensionless Stokes parameters are

Θ = T − T0

T0
, U = UT

T0
, V = VT

T0
, Q = QT

T0
.

Note that our definition of U and Q differs from [23, Equation (5.8)] by a factor
of 1

4 .
The number � is called the multipole number (the monopole if � = 0, the dipole

if � = 1). The number m is called the azimuthal number, the number C� the
multipole moment. The multipole expansion of the dimensionless temperature
deviation Θ(ζ) generally starts at � = 2:

Θ(ζ) =
∞∑
�=2

�∑
m=−�

aΘ
�mY�,m(ζ).

This is because with our definition of Θ, the monopole term vanishes, while the
dipole term is affected by our own motion across space and dominates over the
intrinsic cosmological dipole term.

The analysis for V is similar and gives

V(ζ) =
∞∑
�=0

�∑
m=−�

aV�mY�,m(ζ).

Denote

P(ζ) = 1
2(U(ζ)σ(1) + Q(ζ)σ(3)) = 1

2

(
Q(ζ) U(ζ)
U(ζ) −Q(ζ)

)
.

Rotate the basis ε(1) and ε(2) of the space crTζCP
1 by an angle ψ around the

direction n. The new basis is

ε(1)′ = cosψε(1) + sinψε(2), ε(2)′ = − sinψε(1) + cosψε(2).
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In the rotated basis, the coefficients of the electric field become

E1 = E1 cosψ + E2 sinψ, E′
2 = −E1 sinψ + E2 cosψ.

Equation (7.1) gives

I = |E1|2 + |E2|2, Q = |E1|2 − |E2|2, U = 2 Re(E∗
1E2), V = 2 Im(E∗

1E2),

and we see that under the above rotation

I ′ = I, V ′ = V, Q′ = Q cos(2ψ) − U sin(2ψ), U ′ = U cos(2ψ) + Q sin(2ψ).

It follows that Q′± iU ′ = e±2iψ(Q+iU). In other words, O+iU ∈ V2, Q− iU ∈
tV2.

The irreducible representation V2 of the group H acts in the complex linear
space L2 generated by the matrix 1

2 (σ(3) + iσ(1)). Schur’s Lemma gives D =
HomCH(V2, V2) = C, and we have dimC D = 1. By Equations (7.3) and (7.4),
dimC HomCH(resGH cU�, V2) = 1 for � ≥ 2, while dimC HomCH(resGH c′W�, V2) =
0. The space HomCH(resGH cU�, V2) contains ncU�

= 1 copy of the representation
V2, while the space HomCH(resGH c′W�, cU0) contains no copies of the above
representation. The matrix f111 has 1 row and 2�+1 columns. We have f111

1 �+1 =
1, the remaining entries are zeroes.

This time, the Frobenius reciprocity isomorphism maps the matrix f111 to
the function F 111 : V2 → C(G,L2). This function maps an element g ∈ G to
the zeroth component of the vector g−1 · p ∈ V2 for p ∈ U�. In particular,
F 111(pm) is the L2-valued function on G given by D

∗(�)
m2 (g)1

2 (σ(3) + iσ(1)). After
normalisation, the cross-sections L2YijkLm(gH) become

L2YijkLm(gH) =
√

2� + 1
4π D

∗(�)
m2 (gH)1

2(σ(3) + iσ(1)).

with the help of [23, Equation (A.4.95)], we recognise the spin 2 spherical har-
monics 2Y�,m(ζ). Theorem 6.1 gives

(Q + iU)(ζ) =
∞∑
�=2

�∑
m=−�

a
(2)
�m 2Y�,m(ζ),

where a
(2)
�m are centred complex-valued uncorrelated random variables with

E[|a(2)
�m|2] = C+

� ,

∞∑
�=0

(2� + 1)C+
� < ∞.

We say that the random fields (Q± iU)(ζ) have spin ±2 in contrast to the fields
Θ(ζ) and V(ζ) which have spin 0.

Similar analysis for the representation tV2 gives

(Q± iU)(ζ) =
∞∑
�=2

�∑
m=−�

a
(±2)
�m ±2Y�,m(ζ).



54 A. Malyarenko and M. Ostoja-Starzewski

This expansion was proved in [164]. The spin s spherical harmonics have the
form

sY�,m(ζ) = (−1)�−m

√
4π(�− s)!(� + s)!

√
(2� + 1)(� + m)!(�−m)!(1 + ζζ∗)

×
min{�−s,�+s}∑
p=max{0,m−s}

(
�− s

p

)(
� + s

p + s−m

)
ζp(ζ∗)p+s−m.

It follows from this equation that −sY�,−m(ζ) = (−1)m+s
sY

∗
�,m(ζ). We see that

a
(−2)∗
�m = a

(2)
�−m. (7.6)

Combining everything together, we obtain

P̃(ζ) = 1
2

∞∑
�=2

�∑
m=−�

aΘ
�mσ(0)Y�,m(ζ) + 1

2

∞∑
�=0

�∑
m=−�

aV�mσ(2)Y�,m(ζ)

+ 1
2

∞∑
�=2

�∑
m=−�

σ(3) Re(a(2)
�m 2Y�,m(ζ)) + 1

2

∞∑
�=2

�∑
m=−�

σ(1) Im(a(2)
�m 2Y�,m(ζ)).

(7.7)

Example 7.2 (The (Θ,Q,U ,V) model). Introduce the circular polarisation
or helicity basis ε(±) = 1√

2 (ε(1) ± iε(2)) and the symmetric trace free tensor
spherical harmonics

Y E
�m(ζ) = − 1√

2
[−2Y�,m(ζ)ε(+) ⊗ ε(+) + 2Y�,m(ζ)ε(−) ⊗ ε(−)],

Y B
�,m(ζ) = i√

2
[−2Y�,m(ζ)ε(+) ⊗ ε(+) − 2Y�,m(ζ)ε(−) ⊗ ε(−)].

(7.8)

Then we obtain

P(ζ) = 1
2

∞∑
�=2

[e�mY E
�,m(ζ) + b�mY B

�,m(ζ)],

where

e�m = − 1√
2
(a(2)

�m + a
(−2)
�m ), b�m = i√

2
(a(2)

�m − a
(−2)
�m ).

This expansion was proved in [59], but we need to prove that their definition of
symmetric trace free tensor spherical harmonics is equivalent to our one.

To perform this, we use the results of [19]. In our notation, a part of their
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Equation (92) takes the form

Y E
�,m(ζ) = −

(
(� + 1)(� + 2)

2(2�− 1)(2� + 1)

) 1
2

T2 �−2,�m(ζ)

−
(

3(�− 1)(� + 2)
(2�− 1)(2� + 3)

) 1
2

T2 �,�m(ζ)

−
(

�(�− 1
2(2� + 1)(2� + 3)

) 1
2

T2 �+2,�m(ζ),

Y B
�,m(ζ) = i

(
� + 2
2� + 1

) 1
2

T2 �−1,�m(ζ) + i
(

�− 2
2� + 1

) 1
2

T2 �+1,�m(ζ),

where T2 �′,�m(ζ) are the pure-orbital tensor spherical harmonics, see [87, 139].
Compare these equations with [139, Equations (2.30d), (2.30f)]. We obtain

Y E
�,m(ζ) = −TE2,�m(ζ), Y B

�,m(ζ) = −TB2,�m(ζ),

where TE2,�m(ζ) and TE2,�m(ζ) are the pure-spin tensor spherical harmonics,
see [139, 165]. [139, Equations (2.38e), (2.38f)] become equivalent to our Equa-
tion (7.8).

The complete expansion takes the form

P̃(ζ) = 1
2

∞∑
�=2

�∑
m=−�

aΘ
�mσ(0)Y�,m(ζ) + 1

2

∞∑
�=0

�∑
m=−�

aV�mσ(2)Y�,m(ζ)

+ 1
2

∞∑
�=2

[e�mY E
�,m(ζ) + b�mY B

�,m(ζ)].

(7.9)

Example 7.3 (The (Θ, E ,B,V) model). Is is well-known that

ð
2(−2Y�,m(ζ)) = ð

2(2Y�,m(ζ)) =

√
(� + 2)!
(�− 2)!Y�,m(ζ).

If we assume that
∞∑
�=2

(2� + 1)E[|a(2)
�0 |2](� + 2)!

(�− 2)! < ∞,

then we may differentiate the random fields (Q± iU)(ζ) term by term:

ð
2((Q + iU)(ζ)) =

∞∑
�=2

�∑
m=−�

a
(2)
�m

√
(� + 2)!
(�− 2)!Y�,m(ζ),

ð
2((Q− iU)(ζ)) =

∞∑
�=2

�∑
m=−�

a
(−2)
�m

√
(� + 2)!
(�− 2)!Y�,m(ζ).
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Introduce the random fields

E(ζ) = 1
2[ð2((Q + iU)(ζ)) + ð

2((Q− iU)(ζ))],

B(ζ) = − i
2 [ð2((Q + iU)(ζ)) − ð

2((Q− iU)(ζ))].

Their spectral expansion takes the form

E(ζ) =
∞∑
�=2

�∑
m=−�

aE�m

√
(� + 2)!
(�− 2)!Y�,m(ζ),

B(ζ) =
∞∑
�=2

�∑
m=−�

aB�m

√
(� + 2)!
(�− 2)!Y�,m(ζ),

where
aE�m = 1

2(a(2)
�m + a

(−2)
�m ), aB�m = − i

2 (a(2)
�m − a

(−2)
�m ). (7.10)

All random fields Θ(ζ), E(ζ), B(ζ), and V(ζ) are spin 0 fields. The complete
expansion takes the form

(Θ, E ,B,V)�(ζ) =
∞∑
�=2

�∑
m=−�

aΘ
�mY�,m(ζ)eΘ +

∞∑
�=2

�∑
m=−�

aE�mY�,m(ζ)eE

+
∞∑
�=2

�∑
m=−�

aB�mY�,m(ζ)eB +
∞∑
�=0

�∑
m=−�

aV�mY�,m(ζ)eV ,

(7.11)

where eΘ = (1, 0, 0, 0)�, and so on.

Example 7.4. Regard the celestial sphere as the base space of the principal
bundle (SO(3),SO(2), S2, π̃) with π̃(g) = gH. Let the group SO(2) acts in the
space L0 given by Equation (7.2) by h · P̃ = hPh−1. Let (θ, ϕ) be the spherical
coordinates on S2. The polarisation tensor of the CMB can be described as
a random cross-section of a vector bundle associated to the principal bundle
(SO(3),SO(2), S2, π̃) by the above representation. The spectral expansions of
these random sections have the form of Equations (7.7), (7.9), and (7.11), where
ζ is replaced with the spherical coordinates (θ, ϕ) on the sphere S2.

However, in this model the electric field of the CMB is not a spinor field,
because SO(2) �= Spin(2). The group Spin(2) = U(2) covers the group SO(2)
by the “square” map (A.2). Nevertheless, the term “spin 0 field” is traditionally
used for Θ(θ, ϕ) and similar random fields, while the term “spin 2 field” is used
for Q(θ, ϕ) and similar random fields.

The transformation n �→ −n is called the parity transformation. Under parity,
the spherical harmonics Y�,m transform according to [23, Equation (A.4.39)]:
Y�,m(−n) = (−1)�Y�,m(n). The naming convention for parity types is called the
even-odd convention, see [166, Table II]. We say that the spherical harmonics
Y�,m have “electric-type” parity. It follows that the random fields Θ(θ, ϕ) and
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V(θ, ϕ) have electric type. Using Equations (7.6) and (7.10), we see that aE�m �→
(−1)�aE�−m (electric type), but aB�m �→ (−1)�+1aB�−m. This is called “magnetic-
type” parity.

In Equation (7.11), consider the matrix of cross-correlations Cij
� = E[a(i)∗

�m a
(j)
�m]

with i, j ∈ {Θ, E ,B,V}. The current standard cosmological model assumes that
the random field that generates the initial fluctuations, is invariant under parity.
In this case, the cross-correlations between the components with different parity
vanish. That is, CΘB

� = CEB
� = CBV

� = 0.
Again, according to the standard cosmological model, in the early universe,

photons and baryons are coupled by the physical process called Thomson scat-
tering. This process does introduce linear polarisation, but no circular one. Only
a small amount of circular polarisation may be introduced by other physical pro-
cesses, see [56]. By this reason, we may put aV�m = 0. The expansion takes the
form

(Θ, E ,B)�(θ, ϕ) =
∞∑
�=2

�∑
m=−�

aΘ
�mY�,m(θ, ϕ)eΘ +

∞∑
�=2

�∑
m=−�

aE�mY�,m(θ, ϕ)eE

+
∞∑
�=2

�∑
m=−�

aB�mY�,m(θ, ϕ)eB

with

E[(aΘ∗
�m, aE∗�m, aB∗

�m)�(aΘ
�′m′ , aE�′m′ , aB�′m′)] = δ��′δmm′

(
CΘΘ

� CΘE
� 0

CEΘ
� CEE

� 0
0 0 CBB

�

)
.

Finally, the standard cosmological model predicts arising primordial B-po-
larisation due to a background of gravitational waves created either just after
the Big Bang during a physical process called inflation or between the end of
inflation and Big Bang nucleosynthesis. Currently, this mode is not detected,
the best current upper estimates for its amplitude may be found in [17].

Example 7.5. Recall that the spinor representation V1 ⊕ tV1 of the group
H = U(1) has a real structure j(z1, z2) = (z∗2 , z∗1), see Example A.9. Consider
the corresponding real spinor representation rV1: eiθ �→

( cos θ − sin θ
sin θ cos θ

)
. Its tensor

square has the form rV1 ⊗ rV1 = 2U0 ⊕ rV2, which easily follows from the
corresponding relation for characters: 4 cos2 θ = 2 + 2 cos(2θ).

Introduce the matrices σ
(i)
R

by σ
(i)
R

= σ(i) for i = 0, 1, 3, and σ
(2)
R

= −iσ(2).
The first (resp., second) copy of U0 acts in the one-dimensional real space gen-
erated by σ

(i)
R

(resp., σ(2)
R

). The representation rV2 acts in the two-dimensional
space generated by σ

(1)
R

and σ
(3)
R

.
On the other hand, the real irreducible representations of the group G =

SU(2) are {U� : � = 0, 1, . . . } and { rc′W� : � = 1
2 ,

3
2 , . . . }. The character of U� is

equal to that of cU�, while the character of rVm, m > 0, is

χrVm

((
α 0
0 α∗

))
= χcrVm

((
α 0
0 α∗

))
= χVm⊕tVm

((
α 0
0 α∗

))
= α2m + α−2m,
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and χU0

((
α 0
0 α∗

))
= 1, where we used the relation cr = 1 + t ([1, Proposi-

tion 3.6]). It follows that

resGH U� = U0 ⊕ rV1 ⊕ · · · ⊕ rV�.

For the Hilbert space L2(E0) of square-integrable section of the line bundle,
where the real representation of SU(2) induced by the representation U0 of the
subgroup U(1) acts, the Frobenius reciprocity gives that L2(E0) contains

dimR HomRH(resGH U�, U0)
dimR HomRG(U�, U�)

= 1
1 = 1

copy of the representation U� for � ≥ 0. The Hilbert space L2(E2) contains

dimR HomRH(resGH U�, rV2)
dimR HomRG(U�, U�)

= 2
1 = 2

copies of the representation U� for � ≥ 2.
Similarly, the character of rc′W� is χrc′W�

= χcrc′W�
= 2χc′W�

, and we obtain

resGH rc′W� = 2rV1 ⊕ 2rV3 ⊕ · · · ⊕ 2rV2�.

Neither L2(E0) nor L2(E2) contain copies of the representations rc′W�.
Instead of constructing the bases of the above real Hilbert spaces from scratch,

we use the existing bases of the corresponding complex spaces. Indeed, the basis
in cL2(E0) is given by the complex-valued spherical harmonics Y�,m(ζ). The
complex conjugation is a real structure in cL2(E0). Therefore, the real-valued
spherical harmonics

Y m
� (ζ) =

⎧⎪⎨
⎪⎩

1√
2 [Y�,m(ζ) + (−1)mY�,−m(ζ)], if m > 0,

Y�,0(ζ), if m = 0,
1√
2i [Y�,m(ζ) − (−1)mY�,−m(ζ)], if m < 0

form the basis in L2(E0). Likewise, the basis in cL2(E2)⊕ cL2(E−2) is given by
the C2-valued spin 2 spherical harmonics

(
2Y�,m(ζ)

0

)
,
( 0

−2Y�,m(ζ)
)
, � = 2, 3, . . . , −� ≤ m ≤ �.

The real structure of Example A.9 maps
(

2Y�,m(ζ)
0

)
to
( 0

(−1)m−2Y�,−m(ζ)
)

and( 0
−2Y�,m(ζ)

)
to
( (−1)m2Y�,m(ζ)

0

)
. Therefore, the R2-valued spin-weighted spherical

harmonics take the form

2Ym
� (ζ) =

(
2Y�,m(ζ)+(−1)m−2Y�,−m(ζ)

−i 2Y�,m(ζ)+i(−1)m −2Y�,−m(ζ)

)
,

−2Ym
� (ζ) =

(
i 2Y�,m(ζ)−i(−1)m −2Y�,−m(ζ)
2Y�,m(ζ)+(−1)m−2Y�,−m(ζ)

)
.
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It is easy to check that the real-valued spherical harmonics have “electric-
type” parity. We obtain

Θ(ζ) =
∞∑
�=2

�∑
m=−�

aΘ
�mY m

� (ζ),

(Q
U
)
(ζ) =

∞∑
�=2

�∑
m=−�

(
2a

Q,U
�m 2Ym

� (ζ) + −2a
Q,U
�m −2Ym

� (ζ)
)
,

V(ζ) =
∞∑
�=2

�∑
m=−�

aV�mY m
� (ζ),

where the coefficients are centred random variables with cross-correlations given
by

E[(aΘ
�m, 2a

Q,U
�m ,−2a

Q,U
�m , aV�m)(aΘ

�′m′ , 2a
Q,U
�′m′ ,−2a

Q,U
�′m′ , a

V
�′m′)�] = δ��′δmm′C�,

and the symmetric positive-definite matrices C� satisfy
∞∑
�=2

(2� + 1) trC� < ∞.

Example 7.6. Observe that the spinor representation V1 ⊕ tV1 of the group
H = U(1) has a quaternionic structure j(z1, z2) = (−z∗2 , z

∗
1). The corresponding

quaternionic irreducible representation qV1 of the group U(1) acts in H1 by
eiθ �→ eiθ. By [1, Definition 3.31], its character is the character of c′qV1 =
V1 ⊕ tV1. Again by [1], the tensor square of c′qV1 is a real representation, and
its character is the same as that of the representation 2U0⊕rV2 of Example 7.5.
No new expansions appears here.

8. Conclusions

The theory of random sections of various fibre bundles is now a mature part of
Probability with various interesting links to Special functions, Invariant Theory,
Group Representations, Convex Analysis, etc. The case of trivial tensor bundles
over Euclidean spaces found interesting and important applications in Contin-
uum Physics, while that of nontrivial spinor bundles over the two-dimensional
sphere S2 in Cosmology.

This survey reflects the scientific interests of the authors and is concentrated
on spectral expansions of random functions in question and their applications
to Physics. On the one hand, many research questions are missing; for exam-
ple, tensor-valued random fields as solutions of boundary value problems for
stochastic partial differential equations similar to Equation (5.2), statistics of
random sections of spinor bundles, properties of sample paths of random sec-
tions, and many others. On the other hand, we formulated several unsolved
research questions above.
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The authors hope that this survey can be useful both for mathematicians
who are working in different physical applications and for applied specialists
who need to use advanced mathematical tools.

Appendix A: The mathematical language of the theory

We give a short description of mathematical terms used in the paper. For a
more detailed account, see [73, Appendix A], [82, Chapter 2], and the literature
cited there.

A.1. Tensors

The symbol R (resp., C, resp., H) denotes the field of real numbers (resp., the
field of complex numbers, resp., the skew field of quaternions). The symbol U
(resp., V , resp., W ) denotes a finite-dimensional linear space over R (resp., over
C, resp., a right finite-dimensional linear space over H). The round brackets
(·, ·) denote an inner product in either U , V , or W . It is K-linear in the second
argument, has the property 〈x1,x2〉 = 〈x2,x1〉∗ for all x1, x2 ∈ U (resp., in V ,
resp., in W ), and is positive-definite: 〈x,x〉 ≥ 0 with equality only if x = 0,
where a R-linear map K → K, x �→ x∗ is given by a∗ = a for a ∈ R, (a + bi)∗ =
a− bi for (a + bi) ∈ C, and

(a + bi + cj + dk) = a− bi − cj − dk

for (a + bi + cj + dk) ∈ H. By choosing a basis { ei : 1 ≤ i ≤ d } which is
orthonormal with respect to the introduced inner product, the linear space U
(resp., V , resp., W ) can be identified with the coordinate space Rd (resp., Cd,
resp., Hd).

The symbol U∗ denotes the set of all linear forms on U . A real rank r tensor
is an element of a tensor product of r ≥ 0 finite-dimensional real linear spaces.
By definition, the tensor product of an empty family of real linear spaces (r =
0) is the coordinate space R1. The tensor product of the family {U1, . . . , Ur}
with r ≥ 1 is the set of all r-linear forms defined on the Cartesian product
U∗

1 × · · · × U∗
r . The inner product on each space Ui, 1 ≤ i ≤ r, enables to

identify Ui with U∗
i with the help of the map Ui → U∗

i , x �→ (x, ·) and do not
distinguish between covariant and contravariant tensors. The tensor product of
the vectors x1 ∈ U1, . . . , xr ∈ Ur is the r-linear form

x1 ⊗ · · · ⊗ xr(y1, . . . ,yr) = (y1,x1) · · · (yr,xr).

Similarly, the inner product on each complex linear space Vi, 1 ≤ i ≤ r, en-
ables to identify Vi with V ∗

i . Moreover, let the space tV has the same underlying
set as V , but let z ∈ C acts on tV as z∗ used to act on V . We can identify V ∗

and tV with the help of the map tV → V ∗, x �→ (x, ·) and do not distinguish
between four types of complex tensors, described, e.g., in [152, Section 13.1].
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The inner product on each quaternionic linear space Wi, 1 ≤ i ≤ r, en-
ables to identify Wi with W ∗

i . However, assume that W1 and W2 are two right
quaternionic linear spaces, and q1, q2 are two quaternions. An H-bilinear form
μ : W1 × W2 → H1 must satisfy μ(x1q1,x2q2) = μ(x1,x2q2)q1 = μ(x1,x2)q1q2
and μ(x1q1,x2q2) = μ(x1q1,x2)q2 = μ(x1,x2)q2q1. In general, q1q2 �= q2q1, and
this does not work. On the other hand, a bilinear form is well-defined if W2 is a
left quaternionic space. The set of such forms is not a right quaternionic linear
space. Indeed, the form (x1,x2) �→ μ(x1,x2)q is not bilinear: μ(x1q1,x2)q must
be equal to μ(x1,x2)qq1, but it is equal to μ(x1,x2)q1q. By similar reasons, it
is not a left quaternionic linear space. However, the set W1 ⊗W2 is a real linear
space.

For these reasons, we put R′ = H′ = R and C′ = C. In this notation, the
tensor product of two K-linear spaces is a K′-linear space.

Example A.1 (The Levi–Civita permutation tensor in three dimensions). Let
U1, U2, and U3 be three copies of a real 3-dimensional linear space with inner
product. define the Levi–Civita permutation tensor in a coordinate-free form by

ε(x1,x2,x3) = (x1,x2 × x3),

that is, the scalar triple product of vectors in a right-handed coordinate system.
In coordinates, let {ei : 1 ≤ i ≤ 3} be the standard basis of the space R3.

Denote
εijk = ε(ei, ej , ek).

It is easy to check that the introduced symbol is totally antisymmetric. That is,
when any two indices are interchanged, the symbol is negated, if any two indices
are equal, the symbol is zero, and when all indices are unequal, the symbol εijk
is equal to the signature of the permutation (i, j, k).

A.2. Group representations

A left action of a group G with identity element e on a non-empty set L is such
a map G× L → L, (g, x) �→ g · x, that e · x = x and g · (h · x) = (gh) · x for all
g, h ∈ G and for all x ∈ L. Similarly, a right action of a group G with identity
element e on a non-empty set L is such a map L×G → L, (x, g) �→ x · g, that
x · e = x and (x · h) · g = x · (hg) for all g, h ∈ G and for all x ∈ L.

As an example of a left action, think about the matrix-vector multiplication.
A more interesting example is as follows. Consider a real finite-dimensional space
U as a group with respect to the addition. Assume that the group U acts on a
set E transitively, that is, for each pair A, B ∈ E there exists a x ∈ U such that
x · A = B, and faithfully, that is, for any x ∈ U \ {0} there is an A ∈ E with
x · A �= A. We change notation and denote the result of the action of a vector
x ∈ U on a point A ∈ E by A + x. Denote by B − A such a vector in U that
A+ (B −A) = B. The inner product on V enables to define the distance in E:

ρ(A,B) =
√

(A−B,A−B).
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An affine space with this distance is called a Euclidean space. If the dimension
of U is equal to d, then we denote the pair (E, ρ) by Ed. According to [2]:

Formerly, the universe was provided not with an affine, but with a linear structure
(the geocentric system of the universe).

We omit the dot in the notation g · x in the case when G is a topological
group, L is a Hilbert space over K ∈ {R,C,H}, g · x is a K-linear function of x
and a continuous function of g and x (in the strong operator topology, when X
is infinite-dimensional). Such an action is called a representation of G. Recall
that a topological group is a set G which is a group and a topological space such
that the map

G×G → G, (g, h) �→ g−1h (A.1)

is continuous.
The translation θL(g) : x → gx is a bounded linear operator in L. For two

Hilbert spaces L1 and L2 over the same (skew) field K, a bounded linear operator
f : X1 → X2 is called intertwining if f(gx) = g(fx), g ∈ G, x ∈ L1. Two rep-
resentations are equivalent if the K′-linear space HomG(L1, L2) of intertwining
operators contains an invertible operator with bounded inverse.

If G is a compact topological group, that we can and will give L an inner
product which is invariant under G. We then speak of an orthogonal (resp.,
unitary, resp., symplectic) representation in the case of K = R (resp., K = C,
resp., K = H). In what follows the symbol G always denotes a compact group.

A non-zero linear space L is reducible if some proper non-zero closed subspace
M of X is invariant: gy ∈ M for all y ∈ M , otherwise L is irreducible. For a
compact group, every representation L is a Hilbert direct sum of irreducible
components. Moreover, let Li runs over the inequivalent irreducible representa-
tions, as i runs over some set I. For a finite-dimensional space L, there exists
a unique set {mi : i ∈ I } of nonnegative integers such that all of them except
finitely many are zeroes and the space L is uniquely decomposed into the Hilbert
direct sum of isotypical subspaces in which the direct sum of mi > 0 copies of
Li acts.

Let U1 and U2 be two real finite-dimensional representations of a topological
group G with the translations θU1 and θU2 . A map f : U2 → U1 is called form-
invariant for the pair (U1, U2) if

f(θU2(g)x) = θU1(g)f(x), g ∈ G, x ∈ U2.

If U1 = R1 and θU1(g) = 1, then the function f : X2 → R1 is called just an
invariant of the representation U2, hence the name Invariant Theory.

We formulate an important result of Invariant Theory. Let U , U1, . . . , UN be
finitely many finite-dimensional orthogonal representations of a closed subgroup
G of the group O(3) of 3× 3 orthogonal matrices. It turns out that there exists
finitely many, say K, polynomials { Ik(x1, . . . , xN ) : 1 ≤ k ≤ K } with xn ∈ Un

for 1 ≤ n ≤ N that constitute an integrity basis for polynomial invariants of
the representation U1 ⊕ · · · ⊕ UN . That is, every polynomial invariant of the
above representation is a polynomial in I1, . . . , IK . Similarly, there exists an
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integrity basis {Tl : 1 ≤ l ≤ L } for form-invariant polynomials of the pair
(U,U1 ⊕ · · · ⊕ UN ). Following [157], call Tl the basis form-invariant tensors.

Theorem A.1 (Wineman–Pipkin, [157]). A function T : U1 ⊕ · · ·⊕UN → U is
a measurable form-invariant map of the pair (U,U1 ⊕ · · · ⊕UN ) if and only if it
has the form

T (x1, . . . , xN ) =
L∑

l=1

ϕl(I1, . . . , IK)Tl(x1, . . . , xN ),

where ϕl are real-valued measurable functions.

A.3. The Adams construction

In this subsection, we introduce a convenient notation system for irreducible
representations of compact topological groups due to Adams [1].

Let V be a finite-dimensional complex representation of a compact topological
group G. Let the representation tV has the same underlying set as V and the
same action of G, but let z ∈ C acts on tV as z∗ used to act on V . For example,
let G = U(1), the set of all complex numbers z with |z| = 1, and let an element
g = eiϕ ∈ U(1) acts on Vn = C1 by g · z = einϕz for n ≥ 1 and z ∈ C1. We
have tVn = C1 with the action g · z = e−inϕz, and tVn is not equivalent to Vn.
An irreducible complex representation with this property is called a complex
representation of complex type.

Let the representation rVn has the same underlying set as Vn and the same ac-
tion of G, but regard it as a R-linear space. The matrix of the representation rVn

is
(

cos(nϕ) − sin(nϕ)
sin(nϕ) cos(nϕ)

)
. An irreducible real representation of the form rV , where

V is a complex representation of complex type, is called a real representation of
complex type. The representation rtV is equivalent to rV by [1, Proposition 3.6].
In particular, when n = 1, we conclude, that the group U(1) is isomorphic to
the group SO(2) of orthogonal 2 × 2 matrices with unit determinant.

Define qVn = Vn ⊗C H and regard it as a right quaternionic linear space
with the vector-scalar multiplication (v ⊗C q′)q = v ⊗C q′q and a quaternionic
representation of G with the action g · (v⊗C q) = (g ·v)⊗C q. The quaternionic
representation qVn is irreducible and is called a quaternionic representation of
complex type.

Assume that an irreducible complex representation V is not of complex type.
This may happen by one of two mutually exclusive reasons.

1. There exists a conjugate-linear map j : V → V that commutes with the
representation and satisfies the condition j2 = id.

2. There exists a conjugate-linear map j : V → V that commutes with the
representation and satisfies the condition j2 = − id.

As an example, consider the trivial representation V0 = C1 of the group U(1)
with the action g · z = z. This representation clearly commutes with the map
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j(z) = z∗. For such a representation V , there always exists a real irreducible
representation U such that cU = V . Here cU = U ⊗R C with the vector-scalar
multiplication (u ⊗R z′)z = u ⊗R z′z and the action of G by g · (u ⊗R z) =
(g ·u)⊗Rz. In this case the representation V (resp., U) is called a complex (resp.,
real) representation of real type, while the irreducible representation W = qcU
is called a quaternionic representation of real type.

As an another example, consider the group G = SU(2) of unitary 2 × 2 ma-
trices with unit determinant and elements g =

(
α β

−β∗ α∗

)
. Put V1/2 = C2, where

the group G acts by matrix-vector multiplication, and j(z1, z2) = (z∗2 ,−z∗1).
Then we have

gj(z1, z2) =
(

α β
−β∗ α∗

)(
z∗2
−z∗1

)
=
(

αz∗2 − βz∗1
−β∗z∗2 − α∗z∗1

)
,

jg(z1, z2) = j

(
α β

−β∗ α∗

)(
z1
z2

)
= j

(
αz1 + βz2

−β∗z1 + α∗z2

)
=
(

−βz∗1 + αz∗2
−α∗z∗1 − β∗z∗2

)
,

see also [57, Proposition 3]. In this case, there exists an irreducible quaternionic
representation, call it W1/2, such that c′W1/2 = V1/2, where the representation
c′W1/2 has the same underlying set as W1/2 and the same action of G, but
regard it as a C-linear space. Any irreducible complex representation V with
the above property is called a complex representation of quaternionic type, the
corresponding representation W a quaternionic representation of quaternionic
type, and the real irreducible representation U = rV = rc′W a real representa-
tion of quaternionic type. It is easy to see that W1/2 = H1, where a matrix g
acts by g · q = (α + βj)q. The representation W1/2 establishes an isomorphism
between the group SU(2) and the group Sp(1) of all q ∈ H with qq∗ = 1. The
irreducible real representation U1/2 = rV1/2 = rc′W1/2 acts in R4 by

g · u =

⎛
⎜⎜⎝

Reα − Imα Reβ − Im β
Imα Reα Im β Reβ
−Reβ − Im β Reα Imα
Im β −Reβ − Imα Reα

⎞
⎟⎟⎠u, u ∈ R

4,

see [57, Example 15].
It turns out that for any compact topological group G and for any skew field

K, the partition of the set ĜK of equivalence classes of irreducible representations
of G over K into representations of real, complex, and quaternionic types is
exhaustive, see [1, Theorem 3.57] and [15, Section II.5].

A.4. Manifolds

A chart in a set M is a pair (U , ϕ), where U is a subset of M , and ϕ is a
one-to-one map from U to an open subset ϕ(U) of the coordinate space Rd or
Cd.

The overlap map is the map

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)
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provided that the intersection Uα ∩ Uβ of the domains of the charts (Uα, ϕα)
and (Uβ , ϕβ) is not empty.

A family A = {(Uα, ϕα) : α ∈ A} of charts on M is called an differentiable
(resp., real-analytic, resp., holomorphic) atlas if the sets Uα cover all of M , and
for any two charts (Uα, ϕα) and (Uβ , ϕβ) with Uα ∩ Uβ �= ∅, both the domain
and range of the corresponding overlap map are open subsets of Rd (resp., Rd,
resp., Cd), and the overlap map is infinitely differentiable (resp., real-analytic,
resp., holomorphic).

Two atlases are equivalent if their union is also an atlas. A differentiable
(resp., real-analytic, resp., holomorphic) structure on M is an equivalence class
of differentiable (resp., real-analytic, resp., holomorphic) atlases. A set M to-
gether with a differentiable (resp., real-analytic, resp., holomorphic) structure is
called a differentiable (resp., real-analytic, resp., holomorphic) manifold. A chart
is called admissible if it belongs to an atlas from the structure. The domains of
the admissible charts form a base for a topology on M . To avoid pathologies,
we assume that this topology is Hausdorff and second-countable.

Let M1 and M2 be two manifolds of the same type, and let Φ: M1 → M2 be
a continuous map. Let x ∈ M and let (V, ψ) be a chart for M2 with Φ(x) ∈ V.
It is possible to choose a chart (U , ϕ) for M1 with Φ(U) ⊂ V. The map

Φϕψ : ϕ(U) → ψ(V), x �→ ψ ◦ Φ ◦ ϕ−1(x)

is called the the local representative of Φ with respect to the charts (U , ϕ) and
(V, ψ). A map Φ is called differentiable (resp., real-analytic, resp., holomorphic)
if for every x ∈ M and every chart (V, ψ) for M2 with Φ(x) ∈ V there exists a
chart (U , ϕ) for M1 such that Φ(U) ⊂ V and the local representative Φ(U) ⊂ V
is differentiable (resp., real-analytic, resp., holomorphic). If Φ is invertible and
both Φ and Φ−1 are differentiable (resp., real-analytic, resp., holomorphic), then
Φ is called a diffeomorphism.

A group G is called a Lie group if it has a structure of either real-analytic
or holomorphic manifold, and the map G × G → G, (g1, g2) �→ g−1

1 g2 is either
real-analytic or holomorphic.

Example A.2. Let Sd ⊂ Rd+1 be the unit sphere. Define two chart domains
U± ⊂ Sd by U± = Sd \ {(0, . . . , 0,±1)�} and tho chart maps ϕ± : U± → Rd by

ϕ±(x1, . . . , xd+1) = 1
1 ∓ xd+1

(x1, . . . , xd)�.

It is easy to check that ϕ±(U±) = Rd \ {0} and

ϕ−1
+ (x) = 1

‖x‖2 + 1(2x1, . . . , 2xd, ‖x‖2 − 1)�.

The overlap map (ϕ− ◦ ϕ−1
+ )(x) = ‖x‖−2x for x ∈ Rd \ {0} is real-analytic and

makes Sd into a real-analytic manifold.
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In the case of d = 2, we will also use an admissible chart⎛
⎝cosϕ sin θ

sinϕ sin θ
cos θ

⎞
⎠ �→ (θ, ϕ) ∈ (0, π) × (0, 2π) ⊂ R

2,

the angular part of the spherical coordinates. The domain of this chart is dense
in S2.

In the case of d = 3, we will also use an admissible chart⎛
⎜⎜⎝

cos(θ/2) cos((ψ + ϕ)/2)
− cos(θ/2) sin((ψ + ϕ)/2)
− sin(θ/2) cos((ψ − ϕ)/2)
sin(θ/2) sin((ψ − ϕ)/2)

⎞
⎟⎟⎠ �→ (θ, ϕ, ψ) ∈ (0, π) × (0, 2π) × (0, 4π) ⊂ R

3

with dense domain.
When d = 2, replace the maps ϕ± with the map ϕ̃± : U± → C1 given by

ϕ̃+(x1, x2, x3) = x1 + ix2

1 − x3
, ϕ̃−(x1, x2, x3) = x1 − ix2

1 + x3
.

For this choice, we obtain (ϕ̃− ◦ ϕ̃−1
+ )(z) = z−1. By verifying the Cauchy–

Riemann equations, we see that this map is a holomorphic on C1 \ {0}. We
converted the real-analytic structure into the holomorphic one.

Example A.3. Let CP 1 be the complex projective line, the set of 1-dimensional
subspaces of C2. If (z0, z1) ∈ C2 \ {0}, denote by [z0 : z1] the line through this
point. For j ∈ {0, 1}, define the charts (Uj , ϕj) as follows:

Uj = { [z0 : z1] ∈ CP 1 : zj �= 0 }, ϕ0([z0 : z1]) = z1

z0
, ϕ1([z0 : z1]) = z0

z1
.

The holomorphic overlap map is (ϕ0◦ϕ−1
1 )(z) = z−1. The maps Φ± : U± → CP 1

given by

Φ+(x, y, z) = [ϕ̃+(x1, x2, x3) : 1], Φ−(x, y, z) = [1 : ϕ̃−(x1, x2, x3)]

coincide on the sphere without the poles. Together, they give a holomorphic
diffeomorphism between S2 and CP 1.

Example A.4. For the group U(1) = { z ∈ C : |z| = 1 }, the map Φ: S1 →
U(1), (x1, x2)� → x1+ix2 is one-to-one. For the group SO(2) of orthogonal 2×2
matrices with unit determinant, the map Ψ: SO(2) → S1,

(
a b
−b a

)
�→ (a, b)�, is

one-to-one. As (U , ψ) runs over the set of all admissible atlases for the real-
analytic structure on S1, the charts (Φ(U), ψ ◦Φ−1) constitute the structure of
a Lie group on U(1). We will use an admissible chart eiϕ �→ ϕ ∈ (0, 2π) ⊂ R1

with dense domain.
The charts (Ψ−1(U), ψ ◦Ψ) constitute the structure of a Lie group on SO(2).

We will use an admissible chart(
cosϕ − sinϕ
sinϕ cosϕ

)
�→ ϕ ∈ (0, 2π) ⊂ R

1
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with dense domain.
For the group SU(2) of unitary 2 × 2 matrices with unit determinant, the

map

Φ: SU(2) → S3,

(
a b

−b∗ a∗

)
�→ (Re a, Im a,−Re b, Im b)�,

is one-to-one. The charts (Φ(U), ψ ◦Φ−1) constitute the structure of a Lie group
on SU(2). We will use an admissible chart(

cos(β/2)e−i(γ+α)/2 sin(β/2)ei(γ−α)/2

− sin(β/2)e−i(γ−α)/2 cos(β/2)ei(γ+α)/2

)
�→ (α, β, γ) ∈ (0, 2π) × (0, π) × (0, 4π) ⊂ R

3

with dense domain and call it the Euler angles.

A.5. Bundles

Definition A.1. A quadruple λ = (P,H,B, π̃) is called a principal bundle if
and only if

• the total space P and the base space B are either real-analytic of holomor-
phic manifolds, the fibre H is a Lie group;

• H acts on P from the right, and the map P × H → P , (p, h) �→ p · h is
either real analytic or holomorphic;

• the bundle projection π̃ : P → B is either a real-analytic or holomorphic
map that satisfies to the following local triviality condition: for every b ∈ B,
there exists a neighbourhood U of b, and either a real-analytic or holomor-
phic one-to-one map f : U ×H → π̃−1(U) such that for all u ∈ U and for
all h, h′ ∈ H we have

π̃(f(u, h)) = u, f(u, hh′) = f(u, h) · h′.

Example A.5 (A cylinder and a Möbius bundle). Let n be an integer. Put

Pn = { (cos θ, sin θ, r cos(nθ/2), r sin(nθ/2))� ∈ R
4 : θ, r ∈ R }.

The bundle projection π̃(p1, p2, p3, p4) = (p1, p2) maps Pn onto the circle B =
S1 ⊂ R2. The group H is R1 acting by scalar-vector multiplication. The principal
bundle λn = (Pn, H,B, π̃) is a cylinder for n = 0 and a Möbius bundle if n = 1.

Example A.6 (Spin groups). Let n be a positive integer. There is a Lie group
called the spin group and denoted by Spin(n), and a map π̃n : Spin(n) → SO(n)
such that the quadruple λn = (Spin(n),O(1),SO(n), π̃n) is a principal bundle,
see [13, Subsection 1.2.1]. In particular, Spin(1) = O(1) with π̃1(t) = t2, and
Spin(2) = U(1) with

π̃2(eiθ) =
(

cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
. (A.2)
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Under the identification of SO(2) with U(1), the map π̃2 is again a “square”
map z �→ z2.

The map π̃3 : Spin(3) = SU(2) → SO(3) has the form

π̃3

(
a b

−b∗ a∗

)
=

⎛
⎝ Re(a2 − b2) Im(a2 + b2) −2 Re(ab)
− Im(a2 − b2) Re(a2 + b2) 2 Im(ab)

2 Re(ab∗) 2 Im(ab∗) |a|2 − |b|2

⎞
⎠ .

Example A.7 (The Hopf bundle). Let P = SU(2), H be the subgroup of
diagonal matrices in P , isomorphic to U(1), B = CP 1, and let π̃ : P → B acts
by

π̃

(
a b

−b∗ a∗

)
= [a : b].

The quadruple (SU(2),U(1),CP 1, π̃) is a principal bundle over CP 1 called the
Hopf bundle. The fibre π̃−1([α : β]) of this bundle over a point [a : b] ∈ CP 1 is a
copy of the torsor (the underlying set) of the group U(1), embedded into SU(2)
as the subset

(
eiθa eiθb

−e−iθb∗ e−iθa∗

)
with θ ∈ R.

Example A.8 (Principal bundles over a sphere). Let H be the group of or-
thogonal 3× 3 matrices h with deth = h33 = 1. In fact, H is isomorphic to the
group SO(2). The quadruple (SO(3),SO(2), S2, π̃), where π̃(g) = (0, 0, 1)g, is a
principal bundle over S2. The fibre of this bundle over a point

b = (2 Re(αβ∗), 2 Im(αβ∗), |α|2 − |β|2)� ∈ S2 ⊂ R
3 (A.3)

is a copy of SO(2) embedded into SO(3) as the subset
⎛
⎝ Re(e2iθ(α2 − β2)) Im(e2iθ(α2 + β2)) −2 Re(e2iθαβ)
− Im(e2iθ(α2 − β2)) Re(e2iθ(α2 + β2)) 2 Im(e2iθαβ)

2 Re(αβ∗) 2 Im(αβ∗) |α|2 − |β|2

⎞
⎠ (A.4)

with θ ∈ R.
The quadruple (O(3),O(2), S2, π̃) is another principal bundle over S2.

Let λ = (P,H,B, π̃) be a principal bundle. Assume that H acts on either a
real-analytic or a holomorphic manifold F from the left, and the map H ×F →
F , (h, f) �→ h ·f is either real-analytic or holomorphic. The group H acts on the
right on the Cartesian product P × F by (p, f) · h = (p · h, h−1 · f). Denote by
E the set of orbits for this action. Denote the orbit of a point (p, f) ∈ P ×F by
[p, f ]. Define the map π : E → B by π([p, f ]) = π̃(p). The map π is continuous
with respect to the quotient topology on E.

Definition A.2. The triple (E,B, π) is called the fibre bundle associated with
the principal bundle λ = (P,H,B, π̃) by the action (h, f) �→ h · f . The manifold
E is the total space of the bundle, the manifold B is its base space, the map π
is the bundle projection, while F is the fibre.
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The triple (E,B, π) satisfies the local triviality condition: for each b ∈ B
there is an open set U containing b and a homeomorphism Ψ: π−1(U) → U ×F
such that for all b ∈ U and f ∈ F we have π(Ψ−1(b, f)) = b. If H were not a
Lie group, then this statement would be wrong, see a counterexample in [27,
p. 219].

In what follows, we consider a particular case, when the fibre F = L0 is a
finite-dimensional linear space over a (skew) field K, and H is a Lie group that
acts on L0 by a representation θ. The fibre bundle (E,B, π) is called a vector
bundle (resp., a tensor bundle, resp., a line bundle) if the elements of L0 are
vectors (resp., tensors, resp., elements of K1).

Definition A.3. A cross-section of a fibre bundle (E,B, π) is a map f : B → E
satisfying π(f(b)) = b for all b ∈ B.

Conversely, consider a vector bundle (E,B, π), that is, for any b ∈ B, the
set π−1(b) is an n-dimensional linear space over a (skew) field F, and the local
triviality condition is satisfied. In addition, assume that the set π−1(b) carries
an inner product (·, ·) which is either a real-analytic or holomorphic function of
b. Let P be the set of points p = (p1, . . . , pn) ∈ En such that π(p1) = π(p2) =
· · · = π(pn) = b ∈ B, and the vectors p1, . . . , pn constitute an orthonormal
basis in π−1(b).

Definition A.4. The quadruple (P,H,B, π̃), where π̃(p) = π(p1) and H acts
on P by a representation (p1, . . . , pn)h = (p1 ·h, . . . , pn ·h), is called the principal
bundle of orthonormal frames on the vector bundle (E,B, π).

Example A.9. Consider the principal fibre bundle (SU(2),U(1),CP 1, π̃) of
Example A.7. For any integer or half-integer s, consider the representation z �→
z2s of the group U(1) in the linear space L0 = C1. The cross-sections of the
line bundle (E,CP 1, π2s) associated to the principal fibre bundle by the above
representation, are called functions of spin weight s, see [18, 51, 97].

The line bundle (E,CP 1, π2) is the tangent bundle TCP 1, see proof in [54,
p. 92]. Let (Spin(TCP 1),U(1),CP 1, π̃) be the principal bundle of orthonormal
frames corresponding to TCP 1. The fibres of this bundle are copies of U(1).

On the other hand, consider the principal fibre bundle (SO(3),SO(2), S2, π̃′)
of Example A.8. The representation(

cos θ − sin θ
sin θ cos θ

)
�→ e2iθ

determines a line bundle over S2. In fact, it is the tangent bundle TS2, in
which the tangent space at a point u ∈ S2 ⊂ R3 is first identified with the
two-dimensional real linear space TuS

2 = {v ∈ R3 : (v,u) = 0 }, and then
TuS

2 is converted into a complex line by defining zv = Re zv + Im z(u × v).
Denote by (SO(TS2),SO(2), S2, π′) the principal bundle of orthonormal frames
corresponding to TS2. The fibres of this bundle are copies of SO(2).

The map S2 → CP 1, u �→ [u1+u2i:1−u3] is a homeomorphism. Consider the
map Θ: Spin(TCP 1) → SO(TS2) given by Θ([u1 + u2i, 1− u3], z) = (u, z2). By
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construction, this map is fibre-preserving. Moreover, for all ([u1+u2i:1−u3], z) ∈
Spin(TCP 1) and for all w ∈ U(1) = Spin(2) we have

Θ(([u1 + u2i : 1 − u3], z)w) = Θ([u1 + u2i : 1 − u3], z)w2.

By [13, Definition 2.1], the map Θ defines a spin structure on the manifold S2.
Recall that the complex spin representation of the group Spin(2) = U(1) is

the complex representation

ρ2(eiθ) =
(

eiθ 0
0 e−iθ

)
.

Its irreducible components ρ+
2 (eiθ) = eiθ and ρ−2 (eiθ) = e−iθ are called complex

spin half-representations. The space of the representation ρ2 is equal to the
direct sum V1 ⊕ tV1 of linear spaces where the above components act. Note that
these representations do not descend to the group SO(2) since ρ2(−1) = − id
and ρ±2 (−1) = −1.

The complex vector bundle (ΣCP 1,CP 1, π) with fibre V1 ⊕ tV1 is the bundle
associated with the principal fibre bundle (SU(2),U(1),CP 1, π̃) by the com-
plex spin representation. We see that this bundle is the direct sum of the two
bundles (Σ+CP 1,CP 1, π1) and (Σ−CP 1,CP 1, π−1) with fibres V1 and tV1 that
correspond to the cases of s = ±1 above. The cross-sections of the bundle
(ΣCP 1,CP 1, π) are called spinor fields.

Note that the map j : V1 ⊕ tV1 → V1 ⊕ tV1, j(z1, z2) = (z∗2 , z∗1) is a real struc-
ture on the space V1⊕ tV1 that commutes with the complex spin representation.
The corresponding real spin representation

eiθ �→
(

cos θ − sin θ
sin θ cos θ

)

is rV1. Similarly, the map j : V1 ⊕ tV1 → V1 ⊕ tV1, j(z1, z2) = (z∗2 ,−z∗1) is a
quaternionic structure on the space V1 ⊕ tV1 that commutes with the complex
spin representation. The corresponding quaternionic spin representation eiθ �→
eiθ ∈ Sp(1) is qV1.

It turns out that not all manifolds may carry a spin structure, there exist
topological obstructions for that, see [13, Section 3.1] and [65, Section II.3].

Finally, note that the maps π̃1(t) = t2 and π̃2(z) = z2 of Example A.6 lead
to the idea of a “square root” between vectors and spinors, see [140].

Example A.10 (The edth operator). There exists a beautiful coordinate-
free description of the operator ð in [24], where it is associated with the ∂-
operator and the Dolbeault resolution of complex analysis, see also [112, Equa-
tion (4.12.15)]. We give a coordinate description instead. Note that ð is the
phonetic symbol for voiced “th”, see [112, Section 4.12].

Introduce a chart CP 1 \ {[1 : 0]} → C, [z1 : z2] �→ ζ = z1
z2

. This is a standard
stereographic correspondence between the Argand plane of ζ and the complex
projective line without the point at infinity. To include the above point, we
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regard ζ = ∞ as a “point” added to the Argand plane, and map it to the point
[1 : 0] ∈ CP 1. The union C ∪ {∞} is the Riemann sphere.

Let f be a smooth cross-section of the vector bundle (SU(2),CP 1, πs) of
Example A.9. We define

(ðf)(ζ) = (1 + ζζ∗)1−s ∂

∂ζ
((1 + ζζ∗)sf(ζ)),

(ðf)(ζ) = (1 + ζζ∗)1+s ∂

∂ζ∗
((1 + ζζ∗)−sf(ζ)),

where we adapted definition [112, Equation (4.15.117)] in order to be consistent
with cosmological literature. Then, the spin rising operator ð maps smooth
cross-sections of the bundle (SU(2),CP 1, πs) to smooth cross-sections of the
bundle (SU(2),CP 1, πs+1). Similarly, the spin lowering operator ð maps smooth
cross-sections of the bundle (SU(2),CP 1, πs) to smooth cross-sections of the
bundle (SU(2),CP 1, πs−1).

A.6. Induced representations

Let H be a closed subgroup of a compact Lie group G, and let B = G/H. Con-
sider the principal fibre bundle (G,H,B, π̃), where π̃(g) = gH. Let (E,B, π) be
the vector bundle associated to the above principal fibre bundle by a represen-
tation of H ia a finite-dimensional linear space L0 over a (skew) field K. Define
a left action of G on G × L0 by g0 · (g, l) = (g0g, l). The above action induces
an action of G on E. It is easy to check that with this action, the vector bundle
(E,B, π) becomes homogeneous.

Definition A.5 ([153]). A vector bundle (E,G/H, π) is called homogeneous if
G acts on E such that g · π−1(x) = π−1(g · x) and the action of G on π−1(x) is
linear for all x ∈ G/H and g ∈ G.

The construction given above describes all homogeneous vector bundles, see
[153].

Let C(G,L0) be the linear space of all continuous functions f : G → L0
satisfying the condition f(gh) = h−1 · f(g), h ∈ H, g ∈ G. Introduce the
notation

〈f1, f2〉 =
∫
G

(f1(g), f2(g)) dg, (A.5)

where f1, f2 ∈ C(G,L0), and dg is the probabilistic G-invariant measure on the
Borel σ-field of subsets of G. We observe that the map C(G,L0)×C(G,L0) → K,
(f1, f2) �→ 〈f1, f2〉, is an inner product. The map (θ̃(g0)f)(g) = f(g−1

0 g) extends
to a representation of G in the Hilbert space L2(G,L0), which is the completion
of the linear space C(G,L0) with respect to the norm induced by the inner
product (A.5). Moreover, the above inner product is G-invariant. This fact is
proved in [153, Subsection 5.3.3] for the case of K = C, and can be proved
literally in the same way for the remaining (skew) fields. In what follows, in
similar cases we refer to proofs of our statements for the complex case.
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Denote by ΓE the K-linear space of continuous cross-sections of the homoge-
neous vector bundle (E,B, π). Let G act on ΓE by (θ(g)s)(x) = g · s(g−1x) for
g ∈ G, s ∈ ΓE, and x ∈ B. The representation (ΓE, θ) extends to a representa-
tion of G in the Hilbert space L2(E) of the square-integrable cross-sections of
the vector bundle (E,B, π) with the G-invariant inner product

〈s1, s2〉 =
∫
B

(s1(x), s2(x))L0 dx,

where dx is the probabilistic G-invariant measure on B. The complex case is
proved in [153, Subsection 5.3.2]. We call θ the representation of G induced by
the representation L0 of the subgroup H.

Define the map ΓE → C(G,L0), s �→ s̃ by s̃(g) = g−1 · s(gH) for g ∈ G.
This map extends to an equivalence between the representations (L2(E), θ) and
(L2(G,L0), θ̃), see proof for the complex case in [153, Lemma 5.3.4]. Act by g to
both hand sides of this equality. We obtain, that the inverse map has the form

s(gH) = g · s̃(g). (A.6)

A.7. The structure of the induced representation

The Hilbert space L2(E) is uniquely decomposed into the Hilbert direct sum of
isotypical subspaces. Let L be an irreducible representation of G, and let resGH L
be the restriction of this representation to the group H. Let HomK(resGH L,L0)
be the K′-linear space of K-linear maps from L to L0. The group H acts on
this space by (h · f)l = h · (f(h−1 · l)) for h ∈ H, f ∈ HomK(resGH L,L0),
and l ∈ L. Let HomKH(resGH L,L0) be the isotypical subspace of the space
HomK(resGH L,L0) that corresponds to the trivial representation of H. In other
words, HomKH(resGH L,L0) is the subspace of elements in HomK(resGH L,L0)
which are invariant under H, or the linear space of intertwining operators be-
tween resGH L and L0.

Similarly, construct the K′-linear space HomKG(L,L2(E)) of intertwining op-
erators between L and L2(E). The celebrated Frobenius reciprocity states that
the two above constructed spaces are isomorphic, see [10, Proposition 2.1] and
[15, Chapter III, Proposition 6.2]. In particular, dimK′ HomKH(resGH L,L0) =
dimK′ HomKG(L,L2(E)) and the representation (L2(E), θ) contains

n = dimK′ HomKH(resGH L,L0)
dimK′ HomKG(L,L)

copies of the irreducible representation L.
The particular case of the above statement, when K = R and H contains

only the identity element, is called the Fine Structure Theorem, see [52]. We
used this result in Example 4.1.

The next step is to construct an orthonormal basis in the Hilbert space L2(E)
in such a way that different kinds of “spherical harmonics” become particular
cases of our general construction. See also alternative approaches to construction
of various spherical harmonics in [21, 139].
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A.8. The construction of a basis in the space of an induced
representation

A.8.1. Schur’s Lemma

This result describes the structure of the space HomKG(L1, L2) for L1, L2 ∈ ĜK.

Lemma A.1. Let L, L1, L2 ∈ ĜK.

• Any element of the space HomKG(L1, L2) is either zero or an isomorphism.
Moreover, HomKG(L1, L2) = {0} if and only if L1 is not equivalent to L2.

• As a linear space (resp., as a division algebra), the set HomRG(U,U) is
isomorphic to R1 (resp., to R) if and only if U is of real type; to R2 (resp.,
to C) if and only if U is of complex type; to R4 (resp., to H) if and only
if U is of quaternionic type.

• As a linear space (resp., as a division algebra), the set HomCG(V, V ) is
isomorphic to C1 (resp., to C).

• As a linear space (resp., as a division algebra), the set HomHG(W,W ) is
isomorphic to R4 (resp., to H) if and only if W is of real type; to R2 (resp.,
to C) if and only if W is of complex type; to R1 (resp., to R) if and only
if W is of quaternionic type.

Proof. All items except the last one are proved in [1, Lemma 3.22, Corol-
lary 3.23] and [15, Section II.6].

To prove the last item, note that cHomHG(W,W ) = HomCG(c′W, c′W ) by
[1, Section 3.9 (iii)]. If W is of real type, then, by [15, Proposition II.6.6 (iv)],
there exists an irreducible complex representation V of real type such that
c′W = V ⊕ V . By [1, Proposition 3.11], Hom is bilinear over the direct sum ⊕,
therefore

HomCG(c′W, c′W ) = HomCG(V ⊕ V, V ⊕ V ) = C
4.

If W is of complex type, then, by [15, Proposition II.6.6 (v)], there exists an
irreducible complex representation V of complex type such that c′W = V ⊕ tV .
Therefore

HomCG(c′W, c′W ) = HomCG(V ⊕ tV, V ⊕ tV ) = C
2.

If W is of quaternionic type, then, by [15, Proposition II.6.6 (vi)], there exists an
irreducible complex representation V of quaternionic type such that c′W = V .
Therefore

HomCG(c′W, c′W ) = HomCG(V, V ) = C
1.

The statement about the isomorphism of linear spaces follows. The Frobenius
classification of finite-dimensional real division algebras [29] states that every
such an algebra is isomorphic either to R or to C or to H and implies the
statement about the isomorphism of division algebras.
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A.8.2. The construction of a basis

Consider the K′-linear space HomKH(resGH L,L0) and assume that L0 is irre-
ducible. Denote by D the division algebra HomKH(L0, L0). The above space
contains

nL = dimK′ HomKH(resGH L,L0)
dimK′ D

copies of the representation L0. Choose and fix the K-linear subspaces L1
0, . . . ,

LnL
0 of the linear space resGH L where the above copies act. This choice is not

unique. However, we have

HomKH(resGH L,L0) = HomKH(L1
0, L0) ⊕ · · · ⊕ HomKH(LnL

0 , L0).

The isomorphism of division algebras between D and HomKH(Li
0, L0), 1 ≤

i ≤ nL, described in Schur’s Lemma, determines a representation of D in
HomKH(Li

0, L0).
It is well-known that any finite-dimensional complex representation of the

algebra C is a direct sum of finitely many copies of the unique irreducible
representation C → HomC(C1,C1). We choose it in the form z �→ z. A real
representation of the algebra R (resp., C, resp., H) is a direct sum of finitely
many copies of the unique irreducible representation R → HomR(R1,R1) (resp.,
C → HomR(R2,R2), resp., H → HomR(R4,R4)). We choose it in the form a �→ a
(resp.,

z = a + bi �→
(
a −b
b a

)
∈ HomR(R2,R2), (A.7)

resp.,

q = a + bi + cj + dk �→

⎛
⎜⎜⎝

a −b c −d
b a d c
−c −d a b
d −c −b a

⎞
⎟⎟⎠ ∈ HomR(R4,R4)). (A.8)

For proofs, see [16] and [141].
We proved the existence of a basis, in which the elements of the linear

space HomKH(resGH L,L0) are matrices over K′ with dimK′ L0 rows and dimK′ L
columns, in which only nL components are potentially non-zero. Each compo-
nent is a square block-diagonal matrix and contains dim

K′ L0
dim

K′ D
identical blocks.

Each block is a square matrix with dimK′ D rows. If K′ = R and D = C, then
each block has the form of the matrix in Equation (A.7), if K′ = R and D = H,
then each block has the form of the matrix in Equation (A.8).

Define the matrices { f ijk : 1 ≤ i ≤ nL, 1 ≤ j ≤ dim
K′ L0

dim
K′ D

, 1 ≤ k ≤ dimK′ D }
as follows. All the components of the matrix f ijk but the ith one are zero
matrices. If dimK′ D = 1, then each block contains the number 1√

dim
K′ L0

. If
dimK′ D = 2, then each block of the matrix f ij1 has the form 1√

dim
K′ L0

( 1 0
0 1 ),

and each block of the matrix f ij2 the form 1√
dim

K′ L0

( 0 −1
1 0

)
. If dimK′ D = 4,
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then each block of the matrix f ij1 has the form 1√
dim

K′ L0

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, each block

of the matrix f ij2 the form 1√
dim

K′ L0

( 0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

)
, each block of the matrix

f ij3 the form 1√
dim

K′ L0

( 0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)
, and each block of the matrix f ij4 the form

1√
dim

K′ L0

( 0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

)
. An orthonormal basis of the space HomKH(resGH L,L0)

is constructed.
Apply the Frobenius reciprocity isomorphism to the matrices f ijk. Accord-

ing to the explicit construction of this isomorphism given in [15, Chapter III,
Proposition 6.2], the matrix f ijk becomes the map F ijk : L → C(G,L0) that
acts by F ijk(l)(g) = f ijk(g−1 · l) for l ∈ L and g ∈ G. The composition of
the map (A.6) and F ijk acts from L to L2(E) and maps a vector l ∈ L to the
cross-section sijkl (gH) = g · f ijk(g−1 · l) of the vector bundle (E,G/H, π). In
particular, for the vectors e1, . . . , edimL of an orthonormal basis in L, their
images

L0YijkLm(gH) = g · f ijk(g−1 · em)

form an orthogonal basis in the isotypical subspace of the irreducible repre-
sentation L of the space L2(E). It is not necessarily orthonormal. By abuse of
notation, we denote an orthonormal basis by the same symbol. The union of the
above images over all representations L ∈ ĜK for which HomKG(L,L2(E)) �=
{0}, constitutes an orthonormal basis in the space L2(E).

If L0 is reducible, then we decompose it into irreducible components and use
[153, Lemma 5.2.5], according to which the space L2(E) is the Hilbert direct sum
of subspaces that correspond to each component, and construct an orthonormal
basis in each subspace as above.

An alternative construction of the basis for the case of K = C, G = SU(2),
and H = U(1) using the Euler angles, is given in [21].
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[158] Yadrenko, M. Ĭ. (1983). Spectral theory of random fields. Translation
Series in Mathematics and Engineering. Optimization Software, Inc., Pub-
lications Division, New York Translated from the Russian. MR697386

[159] Yaglom, A. M. (1948). Homogeneous and isotropic turbulence in a vis-
cous compressible fluid. Izvestiya Akad. Nauk SSSR. Ser. Geograf. Geofiz.
12 501–522. MR0033702

[160] Yaglom, A. M. (1957). Certain types of random fields in n-dimensional
space similar to stationary stochastic processes. Teor. Veroyatnost. i
Primenen 2 292–338. MR0094844

[161] Yaglom, A. M. (1961). Second-order homogeneous random fields. In
Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II. Contribu-
tions to Probability Theory (J. Neyman, ed.) 593–622. Univ. California
Press, Berkeley, Calif. MR0146880

[162] Yaglom, A. M. (1987). Correlation theory of stationary and related ran-
dom functions. Vol. I. Basic results. Springer Series in Statistics. Springer-
Verlag, New York. MR893393

[163] Yaglom, A. M. (1987). Correlation theory of stationary and related ran-
dom functions. Vol. II. Supplementary notes and references. Springer Se-
ries in Statistics. Springer-Verlag, New York. MR915557

[164] Zaldarriaga, M. and Seljak, U. (1997). An all sky analysis of polar-
ization in the microwave background. Phys. Rev. D 55 1830–1840.

[165] Zerilli, F. J. (1970). Tensor harmonics in canonical form for grav-
itational radiation and other applications. J. Mathematical Phys. 11
2203–2208. MR270692

[166] Zerilli, F. J. (1970). Gravitational field of a particle falling in a
Schwarzschild geometry analyzed in tensor harmonics. Phys. Rev. D (3)
2 2141–2160. MR321491

[167] Zhang, X., Malyarenko, A., Porcu, E. and Ostoja-Starzew-

ski, M. (2022). Elastodynamic problem on tensor random fields with
fractal and Hurst effects. Meccanica 57 957–970. MR4397960

[168] Zheng, Q. S. and Boehler, J.-P. (1994). The description, classification,
and reality of material and physical symmetries. Acta Mech. 102 73–89.
MR1251809

https://www.ams.org/mathscinet-getitem?mr=171421
https://www.ams.org/mathscinet-getitem?mr=697386
https://www.ams.org/mathscinet-getitem?mr=0033702
https://www.ams.org/mathscinet-getitem?mr=0094844
https://www.ams.org/mathscinet-getitem?mr=0146880
https://www.ams.org/mathscinet-getitem?mr=893393
https://www.ams.org/mathscinet-getitem?mr=915557
https://www.ams.org/mathscinet-getitem?mr=270692
https://www.ams.org/mathscinet-getitem?mr=321491
https://www.ams.org/mathscinet-getitem?mr=4397960
https://www.ams.org/mathscinet-getitem?mr=1251809

	List of Figures
	Introduction
	Physical motivation
	A short history of the topic
	Random fields defined on an Euclidean space
	The formulation of a problem
	Principles for finding a solution
	The description of homogeneous fields
	A preliminary description of homogeneous and isotropic fields
	The general form of the two-point correlation tensor
	Examples
	Concluding remarks

	Applications to continuum physics
	Motivation from stochastic mechanics
	TRFs of dependent fields
	Rank 1 TRFs (vector random field)
	Rank 2 TRFs

	TRFs of constitutive responses
	From a random microstructure to mesoscale response
	TRFs in damage phenomena
	TRFs as dyadics

	Concluding remarks

	Random cross-sections of homogeneous vector bundles
	Applications to cosmology
	Conclusions
	The mathematical language of the theory
	Tensors
	Group representations
	The Adams construction
	Manifolds
	Bundles
	Induced representations
	The structure of the induced representation
	The construction of a basis in the space of an induced representation
	Schur's Lemma
	The construction of a basis


	Acknowledgments
	References

