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Abstract

Lung nodule progression assessment from medical imaging is a critical biomarker for assessing 

the course of the disease or the patient’s response to therapy. CT images are routinely used to 

identify the location and size and rack the progression of lung nodules. However, nodule 

segmentation is challenging and prone to error, due to the irregular nodule boundaries, therefore 

introducing error in the lung nodule quantification process. Here, we describe the development and 

evaluation of a feature-based affine image registration framework that enables us to register two 

time point thoracic CT images as a means to account for the back-ground lung tissue deformation, 

then use digital subtraction images to assess tumor progression/regression. We have demonstrated 

this method on twelve de-identified patient datasets and showed that the proposed method yielded 

a better than 1.5mm registration accuracy vis-à-vis the widely accepted non-rigid image 

registration techniques. To demonstrate the potential clinical value of our described technique, we 

conducted a study in which our collaborating clinician was asked to provide an assessment of 

nodule progression/regression using the digital subtraction images post-registration. This 

assessment was consistent, yet provided more confidence, than the traditional lung nodule tracking 

based on visual analysis of the CT images.
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1 Introduction

Thin-slice helical chest CT images can help identify single pulmonary nodules [3] and 

classify them as either part-solid (also known as sub-solid) or solid nodules [2]. When 
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smaller than 1cm in diameter, these nodules are typically classified as incidental, benign 

findings that require follow-up CT [1]. Part-solid nodules feature a “ground-glass 

appearance”, hence commonly referred to as ground-glass opacities (GGO) nodules or 

ground-glass nodules (GGNs) and are characterized by hazy, increased opacities of the lung 

tissue that don’t completely obscure pulmonary structures. Moreover, pure GGNs feature 

only ground-glass appearance, with no solid component.

Longitudinal analysis and tracking of nodule progression in current clinical practice resorts 

to visual comparison between the initial and follow-up scans, as well as the use of diameter 

measurements, despite their frequent inaccuracy, to quantify growth rate. As such, the 

radiologist relies on manual one- (1D) or two-dimensional (2D) annotations to quantify the 

solid portion and the whole nodule size from the axial slices that show the largest lesion 

diameter and the visual appearance of the margins [6]. Subsequently, the lesion volume and 

volumetric growth rate such as the doubling time, may be estimated according to the shape 

approximation of the lesion depicted in the initial and the follow-up scans displayed side-by-

side, with no prior registration of the initial and follow-up images.

Although three-dimensional (3D) assessment was suggested to provide more accurate and 

precise nodule measurements, especially for small nodules [6], volumetric analysis is rarely 

used in a typical clinical workflow, as it requires segmentation of the nodule. This process is 

time consuming and highly subjective to intra- and inter-observer variability, especially for 

GGNs with nodule margins that are often blurry and not easily distinctive. As such, 

volumetric assessment of nodule progression that relies on either manual or automated 

nodule segmentation is prone to ambiguity and may mislead diagnosis, hence rendering 2D 

slice-based analysis as the clinical standard of care for longitudinal lung nodule analysis.

Since GGNs are non-rigid structures that grow in an irregular fashion, their estimated 2D 

appearance and size may also be highly misleading. Not only is a single CT slice a poor 

predictor of the geometry, orientation, and volume of a 3D lesion, but the different 

appearance of the lesion between the initial and the follow-up scan may also be highly 

influenced by complex deformations of the surrounding tissues between the scans. Several 

factors may cause significant error in the nodule assessment: intrinsic factors, such as nodule 

orientation relative to the chest wall or other structures, irregular nodule margins, 

asymmetric nodule shape and attenuation; or extrinsic factors, including patient position, 

changes in the parenchyma surrounding the nodules, heart rate, and respiratory motion, 

which significantly changes lung volume and shape [6,13]. Zheng et al. [13] reported that 

estimates at end-inspiration vs. end-expiration may lead to nodule volume detection error on 

the order of 12% induced by local deformations alone. Similarly, an additional study [5] 

reported an overall ±18% mass (volume x HU) and volume measurement fluctuations of 

part-solid GGNs as a result of inter-scan variability, patient position, heart rhythm, and 

inspiration levels. These findings suggest that true, disease-induced nodule changes might be 

reliably detected only if a significant change in lesion size occurs [4], and must be separated 

from both the intrinsic and extrinsic nodule changes.

Current criteria for assessing lung ground glass nodule (GGN) growth rely on visual 

comparison and diameter measurements from axial slices of initial and follow-up CT images 
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that show the largest extent of the lesion, without any co-registration [6]. Volumetric analysis 

is rarely used clinically, as it requires segmentation of the nodule, which is highly inaccurate 

and could mislead diagnosis, since GGN boundaries are often blurry and not easily 

distinctive for segmentation. Moreover, the nodule appearance between the initial and 

follow-up scans is also influenced by complex deformations of the surrounding background 

lung tissue caused by changes in patient position, the parenchyma surrounding the nodules, 

heart rate, and respiratory motion, all of which significantly change lung volume and shape 

[13].

To objectively and accurately assess changes in GGN size and shape due to disease, the 

initial and follow-up CT images must first be co-registered, while accounting for any 

background lung tissue deformation that may influence the nodule size and geometry, not 

caused by the disease. To quantify the effect of extrinsic changes, such the background lung 

tissue deformation, on nodule geometry, and separate it from the disease-induced nodule 

changes, accurate registration of the initial and follow-up scans is a necessary precursor step 

[8,12]. Since the lung is a soft tissue organ, a rigid registration of the initial and follow-up 

scans will not capture the lung tissue deformation adequately.

Although deformable registration may be considered optimal, most deformable registration 

algorithms are highly dependent on the parameter initialization, are computationally 

inefficient, and pose a high risk of convergence to local rather than global minima, resulting 

in unrealistic deformations. As such, depending on the optimization trade-off between the 

similarity and regularization terms, if the registration is allowed to proceed extensively, the 

lesion depicted by the registered follow-up image will look similar to the lesion in the initial 

image, therefore compromising nodule progression assessment. As a result, the difficulty of 

assessing background lung tissue deformation and using it as a baseline when quantifying 

the disease-induced lesion changes still exists, and a reliable solution is still pending.

2 Methodology

To address this challenge, here we describe and validate a feature-based affine registration 

method to co-register the initial and follow-up lung CT images. This registration 

compensates for the back-ground lung deformation, such that the remaining differences in 

lesion size and shape attributable to the disease could be identified using a digitally 

subtracted image post-registration as suggested in [11].

2.1 Imaging Data

This study was conducted on ten pairs of chest CT datasets featuring an initial and follow-up 

scan. The CT image datasets were acquired on either a 16-slice Lightspeed or 64-slice VCT 

scanner (GE Medical Systems, Milwaukee, WI). All imaging data was retrieved following 

retrospective review of patient charts following informed consent granted by all patients, as 

approved by the Institutional Review Board. The ten datasets contained twelve lesions 

identified by two radiologists: one patient featured one lesion in each lung (Cases 5 and 6), 

while another patient featured two lesions in the same lung (Cases 11 and 12), with non-

overlapping lesion ROIs. The datasets contained solitary GGNs, multiple GGNs, and solid 

nodules.
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All scans were acquired in a single breath-hold with sub-millimeter resolution and featured 

lesions localized in different regions of the lung that showed different extent of progression 

as evaluated at different stages ranging from 0.5 months to almost 3 years. As an example, 

Case 9 featured a part-solid GGN with a large solid part attached to the chest wall, classified 

by both radiologists as a malignant juxtapleural nodule, justified by the large change 

detected at 32 month follow-up. Moreover, Case 2 featured a common transient part-solid 

nodule that showed almost complete regression in the follow-up scan. Lastly, Case 3 

featured a new nodule in the follow-up scan that was not visible in the initial scan.

An expert radiologist manually segmented the nodules and also selected approximately 40 

homologous fiducial landmarks on average, localized both within and in the vicinity of each 

lesion in both the initial and follow-up scans. Most landmarks were selected at vasculature 

branching points. According to the radiologists, these locations are least susceptible to non-

rigid lung deformation due to breathing. The landmarks were used to quantify the TRE 

following each step of the registration pipeline.

2.2 Feature-Based Segmentation Overview

Following automatic segmentation and separation of the lungs from both the initial and 

follow-up CT scans, the registration was initialized by a centroid alignment of the lung- or 

lesion-centered region of interest (ROI), followed by a feature-based rigid registration. We 

used an approach that minimizes the chisquared statistic between the histograms of the 

initial and follow-up images to identify the optimal initial rotational transform. The 

subsequent feature-based registration method (Fig. 1) followed a modified formulation and 

implementation of the iterative closest point (ICP) algorithm.

The features used for registration were edges extracted from both the initial and follow-up 

CT scans using monogenic filtering [9]. Unlike the ICP algorithm in which the objective 

function minimizes the distance between estimated corresponding points using the closed-

form solution of the Euclidean distance, we built a distance map [7] of the initial image by 

assigning each voxel a value equal to its distance from the closest edge.

We then multiplied the distance map of the initial edge image by the transformed follow-up 

edge image, then computed the sum of the distances from the transformed edges to the edges 

in the initial image, which served as the objective function to be minimized. Moreover, we 

separated the edges of the lung boundaries from the edges of the lung content and defined 

the Energy Dissimilarity (ED) function as the weighted sum of the distances between lung 

boundary edges and the lung content edges from the initial and follow-up scans. To identify 

the optimal weighting factor alpha, we evaluated the similarity metric (normalized cross-

correlation (NCC)) for several values of alpha and selected the parameter value that yielded 

the highest NCC. The registration was implemented on both a lung-centered and a lesion-

centered ROI.

2.3 Intensity-Based Deformable Registration

The result of the affine feature-based registration served as input for the last step of the 

registration pipeline—the deformable registration. Moreover, in the effort to quantify any 

potential shortcomings of the affine registration or improvements provided by an additional 
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deformable registration step, the intensity-based deformable registration also served as 

reference against which the affine feature-based registration was assessed. We used a high-

degree of freedom diffeomorphic transformation method proposed in [10], with several pre-

processing steps recommended by the authors, including the rescaling and truncation of the 

image intensities, followed by de-noising. This technique is referred to as the Greedy 

Symmetric Normalization (SyN) registration and is based on the LDDMM algorithm 

available via the ANTS (Advanced Normalization Tools) open source package integrated 

within ITK. This registration is initiated via a global affine registration on the lungs masks, 

rather than on the CT data. The mutual information (MI) similarity measure is used on four-

level image pyramid together with gradient descent successive optimization. The successive 

optimization objective is controlling the affine registration parameters successively.

3 Results

We tested the developed registration algorithm on twelve image datasets consisting of initial 

and follow images of patients at various stage of disease. To assess registration accuracy, we 

computed the target registration error (TRE) across a set of 30–50 homologous fiducial 

markers selected by a collaborating radiologist in both the initial and follow-up scans.

We compared the TRE achieved using the proposed registration to the TRE achieved using 

the ANTS Symmetric Normalization deformable registration method deemed optimal by the 

EMPIRE10 lung registration challenge [10]. In addition, we used the residual fiducial 

registration error (FRE) across the homologous fiducial landmark datasets selected from the 

initial and follow-up images as a registration accuracy baseline control, as it assesses the 

homology of the landmarks based on a rigid least squared fit registration.

Our accuracy study showed differences on the order of 0.5mm between the TRE achieved 

using feature-based affine vs. deformable registration (Tables 1, 2 and Fig. 2), however with 

significant computing performance improvements (Tables 3 and 4) using the feature-based 

affine registration.

To visualize the registration results, we generated subtraction images i.e., initial (fixed) 

image minus the registered follow-up (moving) image from the lesion mid-slices after each 

registration. As mentioned earlier, subtraction images were shown to be efficient when 

assessing nodule growth-rate and reducing variability according to [11]. As shown in Fig. 3, 

both the affine and deformable registrations yielded similar visual results, with no significant 

visual differences.

4 Discussion and Conclusion

We described and validated a feature-based affine registration method designed to co-

register initial and follow-up lung CT images to correct for the background lung tissue 

deformation to help objectively assess lung nodule changes induced by disease. Our study 

showed less than 1mm difference between the registration accuracy achieved using the 

feature-based affine registration, deformable registration, and baseline control registration, 

with significant performance improvement when using the affine registration. Moreover, the 

qualitative visual assessment conducted by two radiologists confirmed similar conclusions 
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about the nodule changes using the digital subtraction image post-registration as the current 

standard of care assessment method.
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Fig.1. 
Schematic of feature-based registration algorithm and computation of the similarity metric 

as a weighted sum between the distance map of the lung boundary and lung content.
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Fig.2. 
Target registration error (TRE) comparison across 12 patient datasets between the feature-

based affine registration, deformable registration, and baseline control (rigid least squared 

fit) registration for both the lung-centered ROI and lesion-centered ROI.
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Fig.3. 
Visual assessment of nodule changes: (a) initial image; (b) follow-up image; (c) digital 

subtraction image after centroid alignment; (d) digital subtraction image after feature-based 

affine registration. Four cases are showcased here: Case 5—no nodule change; Case 11—

moderate nodule change; Case 3—new nodule appearing in follow-up image; and Case 8—

severe nodule change.
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Table 1.

Target registration error (TRE in mm) across 12 patient datasets for affine, deformable, and baseline 

registration performed on the lung-centered ROI.

Registration method Mean ± Std. Dev. TRE (mm) Median TRE (mm)

Affine registration 1.8 ± 1.6 1.4

Deformable registration 1.2 ± 1.2 0.8

Least square fit FRE (Control) 1.6 ± 1.1 1.3
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Table 2.

Target registration error (TRE in mm) across 12 patient datasets for affine, deformable, and baseline 

registration performed on the lesion-centered ROI.

Registration method Mean ± Std. Dev. TRE (mm) Median TRE (mm)

Affine registration 1.5 ± 1.2 1.1

Deformable registration 1.2 ± 1.2 0.8

Least square fit FRE (Control) 1.5 ± 1.2 1.2
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Table 3.

Performance (Mean ± Std. Dev. in minutes) comparison of affine and deformable intensity vs. feature-based 

registration performed on lung-centered ROI (357 × 248 × 455).

Registration method Intensity-based registration (mins) Feature-based registration (mins)

Affine registration 119.0 ± 10.3 8.0 ± 10.0

Deformable registration 245.0 ± 40.1 N/A
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Table 4.

Performance (minutes) of rigid, affine, and deformable intensity- and feature-based registration performed on 

lesion-centered ROI.

Registration method Intensity-based registration (mins) Feature-based registration (mins)

Affine registration 1.3 ± 2.3 0.7 ± 1.5

Deformable registration 17.2 ± 10.2 N/A
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