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Abstract. Dropping a water-filled cup with a ping-pong ball inside to the ground expels the ball much higher
than its initial height. During free fall, the absence of gravity in the reference frame of the cup makes capillary
forces dominant, causing the ball to be sucked into water. At impact, the high velocity ejection is due to the
strong Archimedes’ force caused by vertical acceleration. In this paper, we study the dynamics of the capillary
sinking of the ball during free fall and the ejection speed at impact, using tracking and high-speed imaging.
In particular, we show that at short-time, the sinking is governed by capillary and added mass forces.

Keywords: Capillary Suction / Surface Tension / Free Fall / Buoyancy.

1 Introduction

When a ping pong ball is dropped in a cup of water, it
bounces back much higher than its initial height. This
striking phenomenon is illustrated in Figure 1 (details of
the experiment are given below). It looks similar at first
glance to the classic cumulative canon problem, in which a
light and a heavy balls are dropped together, resulting in
the ejection of the light ball powered by the momentum
transferred from the heavy ball. However, the efficient
momentum transfer of the cumulative cannon problem
seems highly unrealistic in the strongly dissipative ball-in-
a-water-cup problem. Here, the physic is governed by the
surface tension: the ball is first sucked into the water by
capillary forces during the free fall of the water cup, and is
then expelled from water by the huge vertical acceleration
caused by the impact of the cup on the rigid floor [1].

This experiment is based on a viral video [2] and can
expel the ball at speeds an order of three times larger than
its velocity before impact. Understanding this counter-
intuitive behaviour is what motivated our work and that
of others [1]. The specificity of our approach is to focus on
the short-time dynamics of the capillary suction, which is
shown to be governed by the added mass effect (i.e. by
the inertia of the displaced water), whereas Andreotti et
al. [1] consider the long-time dynamics in which the ball
reaches its free fall equilibrium.

The physics of the phenomenon is as follows. During
the free fall of the cup, the gravity-dependent forces act-
ing on the ball (weight and Archimedes’ force) are zero
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in the reference frame of the cup, so the ball is subjected
only to the capillary force and the inertia of the displaced
water around the ball (added mass force [3]). Capillary
forces cause the ball to sink deeper in the liquid as the
system falls. When the cup hits the ground, it loses its
downward velocity in a very short amount of time, result-
ing in a large acceleration, and hence a large apparent
gravity in the frame of the cup. During the short duration
of this impact, the ball experiences a strong Archimedes’
force from the volume of water displaced by the capillary
sinking, resulting in an upward velocity which can exceed
by far the velocity before the collision.

By taking into account capillary and added mass forces,
we present here a model for the dynamics of the capillary
suction of the ball. Our model is in good agreement with
our high-speed video tracking experiments, at least for
short times, when the dynamics of the capillary suction is
governed by the added mass effect. We however observe for
longer times a strong decrease of sinking speed which may
be coming from a return of gravity-dependent forces, as
the cup’s acceleration in laboratory frame is progressively
reduced due to drag forces.

2 Methods

2.1 Experiments

Our experimental setup, sketched in Figure 2, consists in a
beaker (a) filled with 200 mL of tap water in which a ping
pong ball is placed, initially held at height H. The fall
and collision with the ground is recorded by a high-speed
camera (b) operating at 1080 fps with 1/3240 s exposure
time. A heavy metal plate (c) is placed on the ground to
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Fig. 1. Snapshots from a high-speed video of dynamics of a ping-
pong ball placed in a water-filled beaker falling to the ground.
During the free fall, the ball is sucked into the water by capillary
forces. Upon collision, the ball is ejected at large velocity by the
strongly enhanced Archimedes’ force.

Fig. 2. Left: Schematic of the experimental setup. Right: close-
up picture of the water-filled beaker with the ping-pong ball. (a)
transparent beaker, (b) high-speed camera, (c) metal plate, (d)
electromagnets, (e) metal wire.

ensure a stiff impact. The setup is lighted by a 1000 W
spotlight, and a black background was used to improve
the image quality for automated tracking of the ball and
beaker.

The beaker is held up using two identical electromag-
nets, 20 N each (d). The magnets maintain the beaker
upright in the vertical plane, allowing for a negligible
pitch angle. They are switched off simultaneously, to let
the beaker fall with a nearly zero tilt angle. Thanks to
this system, the angle between the beaker and the ground
upon impact was less than 5o; the residual angle was due
to imperfect synchronization of the electromagnets caus-
ing a slight initial angular deviation, and still represents a
limiting factor of our setup. A small loop of metal wire (e)
was used to maintain the ball at the center of the beaker.

Three different ping pong balls with distinct wetting
properties were used. The wetting property was varied
by sanding regular balls with sandpaper of two different
grains. Smaller grains lead to better wetting. The wetting
property of a ball is quantified by the contact angle θ,
given by the Young-Dupré law

cos θ =
γSG − γSL

γLG
, (1)

where γSG, γSL and γLG are the surface tension of solid-
gas surface, solid-liquid surface and liquid-gas surface,
respectively. Contact angles were measured by placing a
small water drop on the different balls (see Fig. 3). We
obtain θ = 48.1o (most hydrophobic), 65.5o (intermediate)

Fig. 3. Measurement of the contact angle using a water drop
on ping-pong balls with different wetting properties. From left
to right, θ = 79.5◦, 65.5◦ and 48.1◦.

and 79.5o (most hydrophylic). These values are the aver-
age of 6 measurements made at different location on the
ball, because imperfections in sanding could cause spatial
fluctuations.

The beaker’s dropping height is varied between 21 to 66
cm; below 21 cm, the ball hardly jumps from the water,
and beyond 66 cm the plastic beaker is likely to break.
Seven dropping heights and 3 ping-pong balls with differ-
ent contact angles were considered. For each case, 5 videos
were acquired, amounting to a total of about 100 videos.

2.2 Model

We consider in the following two phases in the problem,
illustrated in the video snapshots in Figure 1. In the “Free
fall phase”, from the release of the cup to right before it
hits the ground, the apparent gravity is zero because of
the downwards acceleration. In the “Impact phase”, the
cup is in contact with the ground and looses its velocity,
resulting in a very large acceleration and a rapid ejection
of the ball.

We mainly focus on the dynamics of the capillary suc-
tion during the free fall phase. The capillary force is of
order of γR, with γ the surface tension and R the ball
radius. This force is of order of 1 mN, which in normal
conditions is negligible compared to the ball weight and
Archimede’s force, which are of order of 0.1 N. But during
the free fall phase, inertia forces counter the weight and
the Archimedes’ force in the reference frame of the cup.
The capillary force is therefore the only force at play: the
meniscus formed at the circular contact line pulls the ball
deeper into the water, at a depth of order of R. This sink-
ing process lasts in principle until the surface of the fluid
becomes perfectly horizontal, but it is usually interrupted
by the impact of the cup on the ground. The depth of the
ball at the impact is therefore governed by the dynamics
of the sinking.

We propose here a simple model for the dynamics of
the capillary sinking in the free-fall phase, based on a
Newtonian description of the system, retaining only dom-
inant forces. We consider the ball in the reference frame
of the beaker, in which inertia acts as a correction to the
gravitational acceleration g.

We note g∗ = g − a the apparent gravity, with a the
acceleration of the reference frame of the beaker. During
the free fall phase, since the inertia force counters the
weight and the Archimedes’ force, we have g∗ ' 0, whereas
in the impact phase we have g∗ � g. In the reference
frame of the cup, the weight of the ball corrected by the
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Fig. 4. Forces acting on the ball in the reference frame of the
cup. θ is the contact angle, and the red arrows show the capillary
force Fγ , the apparent weight modified by the Archimedes’ P
(with g∗ the apparent gravity), the added mass force Fa and the
drag force FD. ∆z represents the difference between the position
of the ball at equilibrium (dotted circle) and during the free fall
of the cup (black circle).

Archimedes’ force is P ' R3(ρb − ρl)g*, where ρb is the
density of the ball and ρl the density of water.

As the ball gradually sinks, it moves the water around
it. The ball therefore experiences a resistance, which
originates from the inertia of the displaced water. This
resistance, known as the added mass force, depends on
the ball acceleration, and should not be confused with the
drag force which depends on the ball velocity [3]. It is usu-
ally relevant when a light object moves through a fluid of
larger density, as in the classical problem of air bubbles
rising in sparkling water [4].

We note z the height of the ball in the reference frame
of the cup (see Fig. 4). Applying Newton’s second law for
the ball in this reference frame yields

mbz̈ = Fa + Fγ + FD + P, (2)

where mb is the mass of the ball, Fa is the added mass
force, Fγ the capillary force, and FD the drag force.

The added mass force takes the form Fa ∼ ρlR
3z̈.

The ball is much lighter than water: the ratio between
the acceleration of the ball and the added mass force is
mbz̈/Fa ∼ ρb/ρl ∼ 0.08� 1. Therefore we can neglect the
inertia of the ball in the following.

The drag force is essentially due to inertia in our
problem. The Reynolds number Re, which compares the
inertial forces to viscous forces, is large, Re = Rż/η ∼
1000, with η dynamic viscosity of water, so the drag force
writes FD ∼ ρlR2ż2.

Equation (2) becomes

ρlR
3z̈ ≈ ρlR2ż2 + γR cos θ, (3)

yielding

z̈ ≈ ż2

R
+
γ cos θ

ρlR2
(4)

Fig. 5. Velocity ratio as a function of ball velocity before impact.
We find highest speed transmission for the ball with highest
wetting property.

3 Results

For a typical dropping height H ' 0.5 m, the duration of
the free fall, T =

√
2H/g, is of order of 0.3 s, and its veloc-

ity before impact, VBI =
√

2Hg, is of order of 3 m.s−1.
The duration of the impact phase could be estimated from
inspection of high-speed video of the impact performed at
40 000 fps. We find that τimpact ' 1 ms, yielding a typical
acceleration VBI/τimpact ' 3000 m.s−2, i.e. 300 times the
gravitational acceleration.

We measured the speed of the system right before
impact (VBI) and the speed of the ball right after impact
(VAI). We systematically observed the ball being pro-
jected out of the beaker with higher speed than it had
before impact, implying a transfer of kinetic energy to the
ball during the collision phase. To quantify this energy
transfer, we plot in Figure 5 the velocity ratio VAI/VBI as
a function of the pre-impact velocity VBI , for each ping
pong ball. This ratio does not show significant dependence
with VBI , but a clear dependency with the contact angle.
The velocity ratio averaged over VBI is plotted in Figure 6
as a function of the contact angle θ. We observe a clear
decrease with θ, implying that a better wetting enhances
the energy transmission. This clearly demonstrates that
surface tension is the linchpin of the ball’s behaviour in
the free-fall phase.

As shown in Figure 1, we observe that by the end of
the free fall phase, the ball has sunk into the water. We
measured this sinking (relative to the ball’s initial equilib-
rium position) right before impact for different dropping
heights and contact angles. The results are summarized in
Figure 7, with each data point corresponding to 35 exper-
iments. It is clear that a better wetting causes the ball to
sink deeper in the same amount of time.

In order to better understand the mechanics behind
it, we tracked the real-time sinking of a ball (contact
angle θ ≈ 63o) for a dropping height H = 66 cm with
the tracking software "Tracker" [5]. A parallax correction
was applied to the data. Figure 8 presents the results com-
pared to a fit with a quadratic law. It shows a very good
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Fig. 6. Speed ratio as a function the contact angle θ. Trans-
mission of kinetic energy decreases for more hydrophobic
balls.

agreement with the fitted law at short time, having a cor-
relation coefficient of ρ ' 0.98 for data taken for t < 0.3s.
Beyond t = 0.3 s, the sinking appears to saturate.

4 Discussion

We focus on the short-time dynamics of the sinking pro-
cess. For small times (t � τ ∼

√
ρlR3/γ cos θ), the drag

contribution can be neglected, so equation (4) reduces to

z̈ ≈ γ cos θ

ρlR2
, (5)

which predicts that the sinking depth of the ball (relative
to its initial equilibrium position) is

∆z ≈ γ cos θ

ρlR2
t2. (6)

This quadratic law is expected to hold only for short time,
before the ball reaches its new equilibrium position with
a flat surface. Assuming that the free fall phase duration
T =

√
2H/g is shorter than this equilibrium time, the

sinking depth just before impact is

∆z ≈ 2Hγ

ρlgR2
cos θ. (7)

We can compare those results with that of our sinking
measurements, summarized in Figure 7. The good collapse
of the sinking depth when normalized by the dropping
height H, and the linear variation of ∆z/H with cos θ,
are in excellent agreement with our prediction (7). This
confirms that more hydrophilic balls sink deeper during
the free fall phase.

In addition, Figure 8 reveals that the short-time sinking
of the ball does follow a quadratic law in time. This is also
in good accordance with our model, with a correlation
coefficient ρ ' 0.98 close to 1. This demonstrates that no
forces other that capillarity and inertia play a role. As we
have seen that ball inertia is negligible compared to that

Fig. 7. Relative sinking of the ball as a function of the contact
angle for a given initial drop height, H = 66 cm.

Fig. 8. Relative sinking ∆z as a function of time for a beaker
dropped from the height of 66 cm. The contact angle is θ = 63o.

of water, we can conclude that the sinking dynamics are
only governed by added mass and capillary forces. Other
experiments with different dropping heights show similar
results.

The transition time at t ' 0.3 s (which corresponds
to a fall of 0.45 m) could suggest that at large time the
ball has approached its new equilibrium position, which
corresponds here to ∆z ' 1 cm. However, this interpre-
tation is in contradiction with the non-flat water surface
profile observed in Figure 1 even right before the impact,
which shows that the pure capillary equilibrium is not
reached in our experiments. A possible interpretation for
this non-flat surface at large time is that the gravitational
force in the reference frame of the beaker is not strictly
zero. Indeed, friction with air is expected to progressively
reduce the acceleration of the beaker, resulting in a resid-
ual non-zero apparent gravity in the reference frame of the
beaker at large time. From the drag coefficient of a cylin-
drical beaker [6], we can estimate that after a fall of 0.3 s,
friction results in a residual acceleration of g∗ ∼ 0.1g in
the beaker. As this residual acceleration grow, a turning
point should be reached by the ball, at which the modified
gravity balances capillary forces.
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5 Dead ends

The beaker was initially held manually using a simple
twine attached to the cup. However, it was difficult to
ensure reproducible conditions with this system: small
angular variations in the drop conditions led to significant
deviations during the free fall and uncontrolled ejection of
the ball. To study this phenomenon, it is crucial to have
a setup allowing reproducible drop conditions as well as
minimizing angular fluctuations. Otherwise, the statistical
dispersion of the data is too large to deal with.

Additionally, meniscus attraction causes the ball to
rapidly drift radially and stick to the side of the beaker
(an effect sometimes called Cheerios effect [7]). Because
only a portion of the meniscus then remains, and the ball
is subjected to friction forces against the beaker side. This
induces additional variability as well as overall lower pro-
jection speed. We advise attempts at reproducing this
phenomenon include some way of maintaining the ball
in the center. We used a small loop made of metal wire
to prevent the ball from straying without affecting its
behaviour too much.

6 Conclusion

In this paper, we studied the origin of the ball ejection
in this hydrodynamic version of the cumulative cannon
problem. Our experiments confirm the key role played
by the surface tension in this problem: The ball sinks in
the water during the free fall phase because of capillary
forces, when the weight and the Archimedes’ force are
nearly balanced by the inertia of the free fall. The ball
ejection is due to the sudden vertical acceleration of the
beaker during the collision, of the order of hundreds of
G. The water displaced by capillary sinking exerts on the
ball a very large Archimedes’ force which expels it out of
the beaker. The key parameter that controls the energy
ratio transferred to the ball is the wetting property of the
ball: a more hydrophilic ball is pulled faster (and therefore
deeper) into the water, resulting in a stronger Archimedes’
force.

Our analysis shows that the dynamics of the sinking
of the ball in this problem is governed by the capillary
force and the added mass force, i.e. by the inertia of the
displaced water around the ball. These forces lead to a
sinking following a quadratic law in time, in excellent
agreement with our high-speed camera tracking experi-
ments at short time. For larger time, the sinking of the
ball saturates, which we attribute to a slowing down of
the free fall due to friction of the beaker with air.

We note that this problem shares a number of interest-
ing similarities with the formation of a jet in the falling
water-filled tube problem [8]. In this problem, the con-
tact angle with a hydrophilic tube produces a pronounced
cavity during the free fall, which reverses and produces a
concentrated jet at the impact. Similarly, in our experi-
ment, a “water cavity” is created as the ball sinks into the
water. Drawing a parallel with this work could be interest-
ing to have a better understanding of pressure distribution
building up under the ball, at the origin of the jet form-
ing under it at impact. Though our experiment is of a
more complicated nature than the free jet in Ref. [8], it
might provide a stronger model to understand momentum
transfer from water to the ball at impact.
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