Adversarial Robustness of Deep Code Comment Generation

YU ZHOU, XIAOQING ZHANG, and JUANJUAN SHEN, Nanjing University of Aeronautics and
Astronautics, China

TINGTING HAN and TAOLUE CHEN", Birkbeck, University of London, UK
HARALD GALL, University of Zurich, Switzerland

Deep neural networks (DNNs) have shown remarkable performance in a variety of domains such as computer vision, speech
recognition, and natural language processing. Recently they also have been applied to various software engineering tasks,
typically involving processing source code. DNNs are well-known to be vulnerable to adversarial examples, i.e., fabricated
inputs that could lead to various misbehaviors of the DNN model while being perceived as benign by humans. In this paper,
we focus on the code comment generation task in software engineering and study the robustness issue of the DNNs when they
are applied to this task. We propose ACCENT (Adversarial Code Comment gENeraTor), an identifier substitution approach
to craft adversarial code snippets, which are syntactically correct and semantically close to the original code snippet, but
may mislead the DNNs to produce completely irrelevant code comments. In order to improve the robustness, ACCENT
also incorporates a novel training method, which can be applied to existing code comment generation models. We conduct
comprehensive experiments to evaluate our approach by attacking the mainstream encoder-decoder architectures on two
large-scale publicly available datasets. The results show that ACCENT efficiently produces stable attacks with functionality-
preserving adversarial examples, and the generated examples have better transferability compared with the baselines. We
also confirm, via experiments, the effectiveness in improving model robustness with our training method.

CCS Concepts: « Software and its engineering; - Computing methodologies — Artificial intelligence;

Additional Key Words and Phrases: Code Comment Generation, Adversarial Attack, Deep Learning, Robustness

1 INTRODUCTION

Code comment generation aims to generate readable natural language descriptions of source code snippets, which
plays an important role in facilitating program comprehension. Encouraged by the great success of deep learning
methods in typical application areas such as computer vision and natural language processing, researchers have
proposed deep neural network (DNN) based approaches for the code comment generation task [1, 14, 52], aiming
to improve the quality of the generated comments.

It is well-recognized that DNNs are not robust. In particular, adversarial examples, which can be crafted by
adding small perturbations to benign inputs of the model, may easily fool DNNs [12, 29], or at least elicit large
changes in the model output. This would greatly impede the usability of DNN models [33], since ideally the model
should generate indistinguishable comments for similar code snippets. In other words, minor semantic-preserving

“Corresponding author.

Authors’ addresses: Yu Zhou, zhouyu@nuaa.edu.cn; Xiaoqing Zhang, zhangxq@nuaa.edu.cn; Juanjuan Shen, shenjuanjuan@nuaa.edu.cn,
Nanjing University of Aeronautics and Astronautics, Nanjing, China; Tingting Han, t.han@bbk.ac.uk; Taolue Chen, t.chen@bbk.ac.uk,
Birkbeck, University of London, London, UK; Harald Gall, gall@ifi.uzh.ch, University of Zurich, Zurich, Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.

1049-331X/2022/1-ART $15.00

https://doi.org/10.1145/3501256

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3501256

2 « Y.Zhou, et al.

perturbation of the code snippets should have a minimum side-effect on the generated comments. As a result,
when neural networks are adopted, improving their robustness has become indispensable.

Adversarial examples have been shown to be an effective way of assessing and improving the robustness
of neural networks. In light of this, recently the deep learning community has seen a wide variety of methods
to generate adversarial examples, especially for image classification [8, 12] and some NLP tasks [18, 31, 53].
Likewise, when applying DNNs to programming and software engineering tasks, it is also vital to improve the
robustness of the model, which demands effective and efficient ways to generate adversarial examples. However,
this is considerably more challenging for the source code of programming languages. One of the reasons is
that it must satisfy various syntactic and semantic constraints, which are more stringent than the image or
NLP cases. For instance, the syntactic constraint stipulates that the adversarial code snippet must be compilable
and executable, whereas the semantic constraint stipulates that it must preserve the “meaning” of the original
code. Nonetheless, the perturbations reveal the weakness of the model only if they do not change the input so
significantly but can legitimately result in changes in the expected output. Another source of difficulty lies in
that, comparatively speaking, generating adversarial images is usually much easier because, fundamentally it is a
continuous optimization problem where powerful, gradient-based techniques can be utilized. In contrast, the
adversarial program is of discrete nature. Notice that, when applying deep learning methods to source code, the
program snippet is usually embedded into a vector space, giving rise to a continuous representation. However,
in general, there is no correspondence between the perturbed representation and the valid tokens in the code
snippet, which rules out a straightforward adaptation of the current approaches in image classification to the
domain of programs.

The current task is more akin to the NLP domain as both are dealing with discrete texts. The key difference
is that in the case of programs, one has to consider the rigid grammar imposed on programs; fundamentally a
programming language is an abstract language. In other words, the adversarial perturbed code must be compilable
and semantically equivalent for which natural languages (such as English) are much more liberal and easier to
achieve. In contrast, it becomes harder to synthesize adversarial examples for source code when applying NLP
methods directly.

In this paper, we propose a novel approach ACCENT (Adversarial Code Comment gENeraTor) to generate
adversarial examples and improve the robustness of neural networks for the code comment generation task. In
a nutshell, we identify the importance of different identifiers appearing in the code snippet and rename them
iteratively without breaking the syntactic structure and semantic of the code snippet. Furthermore, we adopt a
new training method to improve the robustness of code comment generation models.

Figure 1 exemplifies an adversarial example, where ‘in’ and ‘out’ refer to the input code snippet and the
generated comment by a comment generator based on the Transformer architecture [1]. This example substitutes
the function name ‘remove’ with ‘delete’ and ‘index’ with ‘index1’, which are syntactically correct and clearly
does not change the semantic or the functionality of the code (cf. adv-in), so should have very similar comments.
However, rather surprisingly, for this seemingly innocent new code snippet, the comment “deletes a refresh from
the specified name (does not exist)." is generated, which is completely irrelevant and indeed very distant from
the reference comment.

We carry out evaluations to assess the effectiveness of our approach. For the dataset, we use the publicly
available Java source code dataset [14] which was extracted from GitHub,! and Python dataset which was
extracted from [41]. We consider five sequence-to-sequence (seq2seq) models for comment generation for which
representative work of various architectures is selected. The experimental results show that ACCENT is capable
of attacking all different models and is beneficial to improve the adversarial robustness without jeopardizing the
performance (i.e., the quality of the generated comments).

https://github.com/

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation + 3

Original-in:

public JSONObject remove(String name) {
if (name ==null) {
throw new NullPointerException (STRING);
}
int index = indexOf (name);
if (index !=-_NUM) {
table.remove (index);
names.remove (index);
values.remove (index) ;

}

return this;

Out:

removes a member with the specified name from this object .

Adv-in:
public JSONObject delete(String name) {
if (name ==null) {
throw new NullPointerException (STRING);
}

int index1 = indexOf (name);

if (index1 !=-_NUM) {
table.remove (index1);
names.remove (index1);
values.remove (indexl) ;

}

return this;

}
Out:

deletes a refresh from the specified name (does not exist).
Reference:

removes a member with the specified name from this object .

Fig. 1. An adversarial attack example for a comment generation model

Our main contributions are summarized as follows.

e We propose a novel approach to assess and improve the robustness of neural source code models for the
comment generation task, including both adversarial examples generation and novel training methods. To
the best of our knowledge, it represents one of the first work addressing the model robustness of such a
task.

e We conduct comprehensive experiments to demonstrate the effectiveness of our approach, which also
confirms the transferability of the generated adversarial examples, crucial for black-box attacks.

ACM Trans. Softw. Eng. Methodol.

4 « Y.Zhou,etal.

¢ We make the implementation of our approach, as well as the datasets publicly available,? which not only
can facilitate the replication of our work, but also provides potential usage for related software engineering
research and practice.

Structure of the paper. The remainder of the paper is organized as follows. Section 2 introduces the background.
Section 3 describes the technical details of our approach, and Section 4 presents the experimental results.
Discussions are given in Section 5, followed by a discussion of the related work in Section 6. We conclude the
paper and outline future research plans in Section 7.

2 BACKGROUND
2.1 Source Code Comment Generation

Code comment generation is a typical software engineering task. Here both the code and the generated comment
are regarded as sequences of tokens that can be represented by vectors, for which sequence-to-sequence (seq2seq)
models are suitable and commonly adopted. In a nutshell, the seq2seq model turns one sequence into another
one utilizing a recurrent neural network (RNN) or variants thereof, such as long short-term memory (LSTM) or
gated recurrent unit (GRU) models, to avoid the problem of vanishing gradient. Typically, the model is based on
the encoder-decoder architecture where both encoder and decoder are neural networks; the former turns each
item into a corresponding hidden vector containing the item and its context, and the latter reverses the process,
turning the vector into an output item, using the previous output as the input context. In addition to the classic
RNN-based approaches [5], recent developments include various attention mechanisms [40] which allow the
decoder to look at the input sequence selectively rather than generate a single vector which stores the entire
context. A typical of example of the models with attentions is Transformer and BERT.

2.2 Adversarial Attacks

Adversarial attacks can be described as the process that, given the original input x, finds an adversarial perturbation
d such that x + § can dramatically degrade the model’s performance. Adversarial attacks can be conducted in
both white-box and black-box manners depending on the attacker’s knowledge on the model. For white-box
attacks [31, 36], attackers have full access to the target model, e.g., the architecture and parameters. For black-box
attacks [11], they have no or little knowledge about the target model. From another perspective, according to the
purpose of the attacker, there are targeted or non-targeted adversarial attacks. Take the classification model as an
example, attackers purposefully mislead the model to a selected label in the targeted attack, while they only aim
at fooling the model in the non-targeted attack.

One can adapt the adversarial attacks to the code comment generation setting in a rather straightforward
way. Given a (well-trained) code comment generation model M, an adversarial example can be generated by
identifying a perturbation ¢ that maximizes the model degradation L,4,,. Formally, x* = x + §, where

é := argmax {L,g4,(x + 8) — AC(5)}

[16]lp<e

Here, C(5) captures the semantic and syntactic constraints; A is the regularization penalty; ||§||, represents the
constraint on the perturbation §. Note this seemingly simple formulation does not lend itself to efficient solutions;
it merely provides a conceptual framework.

Transferability of adversarial examples. The transferability of adversarial examples has been widely exploited
in adversarial attacks, which refers to the phenomenon that examples generated on one model can also be used to
attack other models for similar tasks [12, 28]. Transferability is an important property reflecting the generalizability

Zhttps://github.com/zhangxq-1/ACCENT-repository

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation + 5

Adversarial example generation

Victim model
Attack
Original Train | e
Dataset !
|
— ; |
| |
i i
Sel : i i
S— \ electing ftuti
Original Test | _ Processing Extracting Selecting Best Candidate S;l.gsn:::;?(g Adversarial Test
Dataset Data Identifier Candidate and Reranking d pt'f' Dataset
Identifier entitiers

|
T
|

I
Adversarial training Selecting the Masked A Batch of y Attack
Identifiers Masked Samples T Robust model
P — | =——— Masking Training
Original Train | | o oo | J
A Batch of Samples

Fig. 2. The workflow of ACCENT

of the attack method, i.e., the higher the transferability of adversarial examples, the better the generalization
ability of the attack method.

2.3 Defense and Robustness

To thwart adversarial attacks, various defense methods have been proposed to protect DNN models. In general,
defense methods can be classified into two categories: detection and model enhancement [42]. For the former,
defenders try to detect adversarial examples so can shield the model from them. For the latter, the main task
is to train the model to enhance its robustness. Among others, adversarial training [12] is a widely adopted
model enhancement approach, which has been successfully applied to image processing [15] and NLP [4, 11, 22]
domains. In a nutshell, it mixes adversarial examples with the original dataset to synthesize a new dataset, which
is used to re-train the model.

Note that in literature there are a number of variants of adversarial training, which is usually used as an umbrella
term to refer to a family of training methods that utilize adversarial examples to improve the robustness of deep
learning models. For instance, Madry et al. [24] formulate the adversarial training as a min-max optimization
problem, which is challenging to solve. In this paper, we instead pursue a lightwight adversarial training method
in Section 3.2.

The robustness of the model has a far-reaching influence on deep learning in, for example, representation
learning and model interpretability. Ilyas et al. [16] claim that adversarial vulnerability is caused by non-robust
features. DNN models are vulnerable to attacks because of the well generalizing non-robust features in the data.
Although robust features and non-robust features are both useful, a robust model should learn the robust features,
rather than non-robust ones. Our work contributes to the understanding of the model robustness for a new
application domain, i.e., software engineering.

3 OUR APPROACH

The overview of ACCENT is given in Figure 2. There are mainly two parts in ACCENT, i.e., adversarial examples
generation and adversarial training. For the former, source code in the original test data-set goes through a series

ACM Trans. Softw. Eng. Methodol.

6 < Y.Zhou,etal.

of processing steps to generate the best candidate identifiers to substitute as adversarial examples. For the latter,
the original training data and the masked data are used together for the adversarial training. The details of these
two parts are described in Section 3.1 and Section 3.2 respectively.

Algorithm 1: Adversarial Example Generation Algorithm

Input: Code Comment Generation Model M;
Code Comment Generation DataSet D, where (p, com) € D, p is the original program snippet and com is the
comment;
Max Substitute Number max;
Candidate Identifier Number K;
Output: Adversarial DataSet D ,q,;
1 Initialize: Candidate Identifier Set V «), Adversarial DataSet D4, <« 0;
for each (p,com) € D do
‘ V « VU {w | w is an identifier and w is defined in p};
end
Training Identifier Embedding Embed;

W N

(3}

6 for each (p,com) € D do

7 Extract the identifier set V,, for p by V), < {w | w is an identifier and w is defined in p};

8 for each w € V,, do

9 Select K candidate substitute identifiers L,,C V — V), for the identifier w based on the cosine

similarity;
10 w* « arg max {score(p) — score(p[w « w'])};
w’€L,,

11 Extract the embedding of identifier w from Embed and the embedding of p from encoder;
12 Calculate the identifier saliency S(p, w);

13 Calculate H(p, p*, w);

14 end

15 For w € V},, reorder w according to H (p, p*, w) in descending order;

16 for index < 1 to max do

17 ‘ Generate p, 4, by replacing w with w*;

18 end

19 Dadv — Dadv U {(padva Com)}
20 end

21 return D,4,;

3.1 Adversarial Attack

For the adversarial attack, we mainly consider two types of programmer-defined identifiers, i.e., single-letter and
non-single-letter identifiers. For the former, we simply change it to a different letter randomly. For the latter, we
adopt a black-box, non-target search-based method to generate adversarial examples. We first extract identifiers
from all the program in the dataset to build up a candidate identifier set. For each identifier in the program, we
select the nearest K identifiers from the candidate set according to the cosine similarity to form a sub-candidate
set, from which the best candidate is identified based on its effect on the generated code comment. We then rank
these candidate identifiers based on their contextual relation to the program. Finally, we generate adversarial

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation + 7

examples by replacing the identifier with its best candidate according to the order determined in the ranking. In
the sequel, we elaborate these steps.

Step 1: Identifier Extraction (“Extracting Identifier” in Figure 2). The first step is to extract identifiers from
program snippets and build a candidate identifier set (cf. Line 2-3 in Algorithm 1). Since the functionality of a
program snippet does not depend on the programmer-defined identifiers, changing them should preserve the
execution of the program, which is more likely to preserve the semantics of the program. As a result, we choose
these identifiers such as method names and variable names as our target identifiers to be substituted.

To facilitate the extraction, we exploit abstract syntax trees (ASTs). We use Javalang® to obtain ASTs for Java
code, and the ast? lib for Python code. The identifiers are then extracted based on the node types in the ASTs;
afterwards, they are put into an identifier candidate set V.

Step 2: Candidate Selection (“Selecting Candidate” in Figure 2). The size of the extracted identifier set is usually
extremely large. To speed up the search for the optimal substitution identifier, for each identifier w in the program
p, we construct a subset L,, C V, which contains K identifiers that have the shortest distance to w (cf. Line 9
in Algorithm 1). Note that here K is a hyper-parameter. (In our experiment we set K = 5.) Each identifier in
L,, is then considered to be a candidate for the substitution of w. To obtain L,,, we train embeddings using
word2vec [26] with the skip-gram algorithm (cf. Line 5 in Algorithm 1). The skip-gram algorithm is to construct
word representations (i.e., word embedding) that are useful for predicting the surrounding words in a given
corpus. Given a sequence of training words wy, - - - , wy, the objective of the skip-gram is to maximize the average

logarithm of the probability:
1 n
0 Z Z logp(wysjlwe),

t=1 —c<j<c,j#0
where c is the training context. Note that we use the tokens split from the program snippet rather than identifiers
solely as the training corpus, and then extract the embeddings of the identifier set obtained in the previous step.
For each identifier w, we select the K nearest identifiers according to the cosine distance, viz.,

L., = topx (cos(w, V"))

Here, V"’ is the set of identifiers obtained by deleting the identifiers and formal parameters that appeared in V, so
we can make sure that the program after substitution is compilable. Each identifier in L,, is then considered to be
a candidate for the substitution of w.

Importantly, we adopt the cosine similarity in selecting the candidate replacement. The reason is, when the
identifier in the original program is substituted by one in the candidate set L,, to generate the adversarial examples,
the program semantics should not be changed significantly (which implies that the generated comments should
be similar for a robust model).

The following example shows that a naive approach would not serve the purpose. In this example, the original
program is

float avg_velocity(float distance, float time) {return distance/time;}

When we replace identifiers, possibly the method name “avg_velocity" is replaced by “density”, and the arguments
“distance" and “time" are replaced by “mass" and “volume" respectively. Namely, we obtain

float density(float mass, float volume) {return mass/volume;}

As one can argue easily, the resulting program is quite different from the original program in semantics and thus
should have a different comment. In other words, it should not be considered as an adversarial example. To rule
out these cases, we adopt a constrained substitution approach. Namely, we utilize the word embedding method

3https://github.com/c2nes/javalang
4https://docs.python.org/3/library/ast. html

ACM Trans. Softw. Eng. Methodol.

8 « Y.Zhou,etal.

(word2vec in our implementation) and cosine similarity to only allow those identifies which are semantically
related to the original identifies to be replaced. In this way, the obtained code snippet would be close to the
original one in semantics and would be functionality preserving, and, if its comment deviates from the original
comment significantly, it should be regarded as a valid adversarial example.

Step 3: Best Candidate Selection and Identifier Reranking (“Selecting Best Candidate and Reranking Identifier” in
Figure 2). For each identifier w extracted from the program, we have obtained a candidate set L,, that contains K
identifiers. Then we replace w with each w’ in L,, and calculate the score change of the generated comment after
substitution (cf. Line 9 in Algorithm 1). We define

w* = arg max{score(p) — score(p[w <« w'])}
w’€eL,,
where p[w « w’] is the new program obtained by replacing w with the candidate identifier w’ € L,,. In other
words, w* is the one which causes the most significant change and is replaced by w* to generate a new program
p*. score(p) is the output of the original deep code comment generation model by feeding the input p. For the code
comment generation task, we use the BLEU score as the metric for the generated comment in natural language.

The change on the result between p and p* represents the best attack effect that can be achieved after replacing
w, L.e., Ascore}, = score(p) — score(p*). For each identifier w, we iterate all candidate identifiers w* and calculate
the corresponding Ascore,.

A program snippet usually contains multiple identifiers, and each identifier may have different levels of
contextual relation to the original program. We then adopt identifier saliency to quantify the degree of the
contextual relation between the identifiers and the original program, which will be used to determine the
identifier substitution order. The saliency of an identifier w with respect to a program p, i.e., S(p, w), is computed
as cos(vec(w), vec(p)) where

vec(w) - vec(p)
cos(vec(w), vec(p)) Gecw)ll - Tvec)l]”
vec(w) is the embedding of w, and vec(p) is the contextual encoder of the program p. Here, we train an independent
encoder-decoder model based on a single-layer LSTM using the two publicly available datasets, and extract the
output of the encoder as the embedding of p (cf. Line 10 in Algorithm 1).

For all w extracted from p, we calculate the identifier saliency S(p, w) to obtain a saliency vector S(p) (cf. Line
11 in Algorithm 1). Then, for each identifier, we consider the change after substitution Ascore;, and the identifier
saliency S(p, w) to determine the order of substitution. We define a score function H(p, p*, w) to score each
identifier and sort all the identifiers in p in descending order based on H(p, p*, w) (cf. Line 12 in Algorithm 1).
The score function H(p, p*, w;) is defined as

S(p,w) - Ascore, S(p,w) # 0, Ascore;, # 0
S(p,w)-p S(p,w) # 0, Ascore}, =0
Ascore}, - a S(p,w) = 0, Ascore}, # 0

0 o.w.

H(p,p*,w) =

where @ and f € [0, 1] are the constant parameters.

The definition of the score function H considers both the change of the model output after identifier substitution
and the importance of the substituted identifier to the original program snippet. In particular, S(p, w) focuses on
describing the impact of the identifier w on the original program snippet, while Ascore;, focuses on the impact
on the model. In order to reduce the interference of the two metrics (i.e., to avoid the weighted score function
vanishes when one of them vanishes), we simply take one of them when the other vanishes.

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation + 9

Step 4: Adversarial Example Generation (“Substituting Top max Identifiers” in Figure 2). We reorder all iden-
tifiers according to H(p, p*, w) and select the top max identifiers to replace (cf. Line 15-18 in Algorithm 1).
To ensure that the program is compilable, we replace all occurrences where the identifier has appeared in the
program. For example, if we replace ‘A’ with ‘B’ in “void f() {int A=1; A++;}”, the new program becomes
‘void f() {int B=1; B=B++;}".

3.2 Robustness Improvement

Adversarial training aims to improve the robustness of deep learning models intrinsically. In the last few years, a
variety of adversarial training methods have been proposed. In the sequel, we propose masked training, which
considered to be a lightweight adversarial training method tailored to the code comment generation setting.

Algorithm 2: Masked Training Algorithm

Input: Code Comment Generation DataSet D;
The number of Masked Identifiers Count,, qsked;
Hyperparameter A;
Output: Trained model My, 4skeqs
1 Initializing the model parameters M, skeq according to the original deep code comment generation model
training method ;
2 for batch d of data € D do
3 for (p,com) € d do

4 ‘ Randomly mask Count,gskeq identifiers;

5 end

6 Calculate origin loss: Lo igin (p, com);

7 Calculate masked loss: Ly,gsked(p’, com);

8 Train the model M, 45keq according to

0* « argming (/1 * Lorigin(p, com) + (1= 1) # Liyaskea((p' com))

9 end
10 return M, sked;

As mentioned in Section 2.3, the low degree of robustness may be caused by the reliance on the so called
non-robust features. As a result, the general idea of masked training is to reduce the dependence of the model
on the non-robust features since any perturbations upon these features may cause great change on the output.
Algorithm 2 illustrates the workflow of the method. Given source code p, we generate the corresponding masked
code p’ (cf. Line 3-5 in Algorithm 2), which is constructed by randomly replacing k identifiers in p by < unk >.
The general objective function for the masked training is defined as

0* = arg mein L(p, com),
where L(p, com) is the negative log-likelihood

1 m
L(p,com) = - Z logP(comy|com <y, p)
=1

In particular, we employ two objective functions to improve the robustness of the model (cf. Line 6-8 in Algo-
rithm 2). Namely, Loig4in (p, com) which can guarantee good performance while keeping the stability of the model

ACM Trans. Softw. Eng. Methodol.

10 « Y.Zhou,etal.

and Ly,gskeq(p’, com), which can guide the model to generate the output com according to the masked input p’,
making the output of the model independent of the identifiers.
Formally, given a model and the training corpus, the masked training objective is

0* = arg m@il’l (/1 : Larigin (Ps com) + (1-2) - Lmasked(Pl, Com)) s
where A is a hyperparameter.

4 EVALUATION
4.1 Experiment setup

We conduct comprehensive experiments to demonstrate the effectiveness of the proposed approach on the Java
source code dataset [14] and the Python source code dataset [41], which are widely adopted benchmarks for the
code comment generation task. The statistics of the two datasets are shown in Table 1. For the Java dataset, we fol-
low the original work [14] which divided the
examples into train dataset, validation dataset and test dataset in the ratio
of 8:1:1. For the Python dataset, we also replicate the processing method
in the original work [41] to extract the train dataset, the validation dataset
and the test dataset. As a result, we obtain 50,400 examples for the train Dataset
dataset, 13,248 for the validation dataset and 13,216 for the test dataset.
For the Java dataset, the first summary sentence of the Javadoc annota-

Table 1. Statistics of datasets

Java | Python
Train 69,708 | 50,400
Validation | 8,714 | 13,248
Test 8,714 13,216

tions is usually used as the comment, which describes the functionality of
the Java method. To be consistent with the original work [14], we reuse
these extracted comments included in the public dataset. For the Python
dataset, we use the comment provided by the source code. Data instances of these datasets are in the form of
(p, comment) pair, where p is the source code snippet and comment is the reference comment. We pre-process
the dataset by the Javalang ® parser for the Java dataset and the ast* library for the Python dataset, and discard
those syntactically incorrect programs. Finally, we follow the processing steps [1] which splits camelCase and
snake_case tokens into their corresponding sub-tokens.

Victim models. The victim models (i.e., the target models under adversarial attacks) in our experiments are
based on LSTM, Transformer, GNN, a dual model (CSCG), and a retrieval-based neural source code summarization
model named Rencos.

e LSTM-based seq2seq model. A LSTM-based seq2seq model [1] contains 2-layers BiLSTM for encoder
and decoder with attention mechanism, encoding the source code to an intermediate representation and
translating it to natural language, i.e., comment.

o Transformer-based seq2seq model. Ahmad et al. [1] designed the Transformer-based seq2seq model for
code comment generation by introducing multi-head attention as encoder and decoder. To the best of our
knowledge, this model represents the state-of-the-art result on the Java dataset.

o GNN-based seq2seq model. LeClair et al. [2] employed two encoders, one is the GNN-based encoder to
model structural information and the other is the GRU-based encoder to model textual information and
GRU-based decoder to generate natural language comment.

e CSCG Dual model. Wei et al. [45] designed a dual learning framework to train a code summary i.e comment
generation and a code generation model simultaneously using the LSTM-based seq2seq model.

e Retrieval-based model (Rencos). Zhang et al. [51] leverage both neural and retrieval-based techniques to
enhance the neural model with the most similar code snippets at the syntax-level and the semantics-level.

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation « 11

We largely follow the settings of the respective original work; in particular, the hyperparameters of the victim
models are listed in Table 2. All models were trained and evaluated on a server running Ubuntu 20.04 LTS OS
with 2 Intel Xeon 4216 2.10GHz Silver CPUs , and 4 RTX2080Ti GPUs.

Table 2. Hyperparameters in our experiments

’ Hyperparameters LSTM Transformer GNN CSCG Rencos
n_layers 2 6 1 3 1
n_head - 8 - - -
d_k,dv - 64 - - S

d ff - 2048 - - Z
embed_size 512 512 256 512 256
hidden_size 512 - 256 512 512

optimizer adam adam adam adam adam
learning rate 0.002 0.0001 0.001 0.002 0.001
batch size 32 32 32 32 32

Baseline approaches for adversarial attack. Since we are the first to consider adversarial examples for code
comment generation tasks, the literature is short of algorithms for direct comparison. To demonstrate the
effectiveness of our approach, we adopt two algorithms as the baseline, i.e., the random substitute algorithm and
the algorithm based on Metropolis-Hastings sampling [49].

Random substitution. The random substitute algorithm is a naive algorithm where both the substituted
identifiers and candidate identifiers are randomly sampled.

Metropolis-Hastings algorithm. The Metropolis-Hastings sampling based algorithm was recently used to
generate adversarial examples for attacking source code classifiers [49]. Recall that the Metropolis-Hastings
algorithm is a classical Markov Chain Monte Carlo sampling approach, which can generate desirable
examples given the targeted stationary distribution and the transition proposal. We adapt the algorithm [9]
to our code comment generation task.

In general, we want the adversarial examples to be as close to the original example as possible. For this purpose,
we set max, the maximum number of identifiers that can be substituted. (In the current experiments we set max
to be 2 or 3.)

Metrics. As the generated comments are in natural language, we adopt the standard metrics from neural machine
translation, i.e., BLEU, METEOR, ROUGE-L to measure the quality of the generated comments. The lower these
values are after attack, the higher the degradation of comment generation models is, i.e., the less robust these
models are. Moreover, we introduce three additional metrics to evaluate the performance of different adversarial
example generation algorithms.

o Relative degradation. We follow Michel et al’s work [25] to measure the (relative) degradation of the model
under attack. Formally,

_ BLEU(y, refs) — BLEU(y’, refs)
4= BLEU(y, refs) ’

where refs denotes the reference comment, y is the original output, and y’ is output of the perturbed
program.

ACM Trans. Softw. Eng. Methodol.

12 - Y.Zhou,etal.

e Valid rate, which is defined as the percentage of generated adversarial examples which can pass the
compilation. Formally,
_ Countyalia
" Countyy
This metric is used to assess the quality of the generated adversarial examples, as well as the efficiency of
the generation process.
e Success rate, which is defined as the product of the relative degradation and the valid rate, providing a
comprehensive indicator of attack efficiency and example quality. Formally,

Sy =g * Up.

Essentially a higher success rate indicates the corresponding method can generate valid adversarial examples
with better attack capability, hence entails a more effective attack method.

4.2 Research questions and results
In our experiments, we primarily investigate the following four research questions (RQs).

RQ1. Are existing code comment generation models vulnerable to our adversarial attacks?

RQ2. How effective is our adversarial attack method, i.e., how successful can it achieve to attack code
comment generation models over the baseline methods?

RQ3. Do adversarial samples generated by our adversarial attack method have better transferability than the
baseline methods?

RQ4. How efficient is the masked training method in improving robustness?

ROQ1. Are existing code comment generation models vulnerable to our adversarial attacks?

To answer this research question, we generate adversarial examples on the test dataset using ACCENT to
attack four different models. The performance of different models before and after the attack is listed in Table 3.

We can observe that all code comment generation models are vulnerable to our adversarial attack. When
modifying maximum 2 or 3 identifiers in the source code, the performance of models degrades sharply in
general, although the impact of the adversarial attack differs among these models. The CSCG Dual model has the
worst performance on the two datasets. When we test the CSCG Dual model with max = 2, the BLEU value is
only 8.85 on the Java dataset and 11.90 on the Python dataset which means that the model’s output is almost
meaningless and of little help to program comprehension. The retrieval-based model Rencos performs better
under the adversarial attack. From Table 3 we can also see that models which are with the structural information
(GNN-based seq2seq model) or with the help of most similar code snippets (Rencos) are more robust than models
with only contextual information (LSTM-based, Transformer-based and CSCG Dual models).

To summarize, existing code comment generation models are of poor robustness under adversarial attacks,
especially the seq2seq models with only contextual information.

RQ2. How effective is our adversarial attack method, i.e., how successful can it achieve to attack code
comment generation models over the baseline methods?

For this research question, we analyze the effectiveness of different algorithms on the five models across two
datasets with max = 2 and max = 3. The results are given in Table 4, Table 5, and Table 6. As the input of the
GNN-based model and the retrieval-based model need to be compiled to generate AST, only a small part of the
samples generated by the random substitution algorithm are valid samples (i.e., can be compiled), hence only the
MH-based method and the ACCENT attack method are compared in the two models. In other models, baseline
algorithms contain random substitution algorithm, MH-based algorithm, and our ACCENT attack method. Taking
the original models” BLEU as the standard performance metric, the ACCENT attack method can reduce the
performance by 63.12% for LSTM, 70.32% for Transformer, 58.28% for GNN, 79.12% for CSCG and 7.55% for Rencos

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation « 13

Table 3. Results of adversarial attack on different models (‘max’ means the maximum substitution identifier number used in
different methods; ‘original’ is the result on the clean test set.)

Java Dataset Python Dataset
BLEU | METEOR | ROUGE-L | BLEU | METEOR | ROUGE-L

original | 3547 19.72 4757 30.83 17.06 41.77
LST K

ST™M attack | 4 g 6.83 21.75 18.30 8.62 27.24
max=2

attack |, 6.75 21.52 17.92 8.27 26.64
max=3

original | 44.58 26.43 54.76 33.15 18.96 44 50

Transformer | attack |,] 8.08 22.79 18.87 8.99 27.91
max=2

attack |5 7.90 22.42 18.54 8.57 27.29
max=3

original | 39.41 2332 46.65 31.24 15.77 38.28

GNN attack | 7.77 21.36 19.38 7.36 24.07
max=2

attack | 7.42 20.55 18.65 6.59 22.72
max=3

original | 42.39 25.77 53.61 30.82 17.67 48.14
K

CSCG attac 8.85 5.10 23.50 11.90 6.23 32.94
max=2

attack | o 5.02 23.44 12.08 6.15 32.83
max=3

original | 44.0 25.73 54.02 3334 18.65 4337

Rencos attack [0 68 23.09 49.17 31.02 15.78 38.84
max=2

attack™| 3 22.69 48.46 30.55 15.19 37.90
max=3

on the Java dataset, and 40.64% for LSTM, 43.08% for Transformer, 37.80% for GNN, 37.77% for CSCG and 6.96%
for Rencos with max = 2, which are considerably better than the baselines. When max is 3, our attacking method
can degrade the model performance even further. The effectiveness of the adversarial samples generated by the
random substitution algorithm is extremely low, while the adversarial samples generated by the ACCENT attack
method and the MH-based algorithm can guarantee 100% effectiveness. That means they are all correct code
snippets in grammar, and the ACCENT attack method can achieve a higher success rate.

To further investigate the effectiveness of our approach, we apply the Mann-Whitney U test. Particularly, we
compare ACCENT attack method with MH, and test whether the effectiveness of the former is significantly better
than the latter. We focus on the r; values of ACCENT and MH. For each run, we randomly sample 100 Java

ACM Trans. Softw. Eng. Methodol.

14 « Y.Zhou,etal.

Table 4. Evaluation of different adversarial examples generation algorithms

Java Dataset \ Python Dataset
max=2

ra(%) | vr(%) | sr(%) | ra(%) | ©vr(%) | sr(%)
Random | 31.38 | 30.82 | 9.67 | 23.39 | 27.48 6.43
LSTM MH 42.09 100 42.09 | 40.29 100 40.29
ACCENT | 63.12 100 63.12 | 40.64 100 40.64
Random | 3858 | 30.82 | 11.89 | 22.29 | 27.48 6.13
Transformer MH 64.72 100 64.72 | 41.45 100 41.45
ACCENT | 70.32 100 70.32 | 43.08 100 43.08
Random - - - - - -

GNN MH 57.14 100 57.14 | 34.41 100 34.41
ACCENT | 58.28 100 58.28 | 37.80 100 37.80
Random | 44.44 | 30.82 | 13.69 | 23.56 27.48 6.47

CSCG MH 68.25 100 68.25 | 37.77 100 37.77
ACCENT | 79.12 100 79.12 | 61.39 100 61.39
Random - - - - - -
Rencos MH 6.84 100 6.84 7.11 100 7.11
ACCENT | 7.55 100 7.55 6.96 100 6.96
max=3

ra(%) | vr(%) | sr(%) | 1ra(%) | vr(%) | s:(%)
Random | 32.03 29.7 9.51 21.89 27.81 6.08
LSTM MH 44.60 100 44.60 | 38.63 100 38.63
ACCENT | 63.15 100 63.15 | 41.87 100 41.87
Random | 45.76 29.7 13.59 | 25.52 27.81 7.09
Transformer MH 66.42 100 66.42 | 42.29 100 42.29
ACCENT | 70.52 100 70.52 | 44.07 100 44.07
Random - - - - -
GNN MH 58.51 100 58.51 | 36.33 100 36.33
ACCENT | 59.05 100 59.05 | 40.30 100 40.30
Random | 46.36 29.7 13.76 | 25.44 27.81 7.07

CSCG MH 68.88 100 68.88 | 39.00 100 39.00
ACCENT | 78.89 100 78.89 | 60.80 100 60.80
Random - - - - - -

Rencos MH 7.61 100 7.61 8.34 100 8.34

ACCENT | 8.57 100 8.57 8.37 100 8.37

code snippets, and 100 Python code snippets from the two datasets, and calculate the average ry values of the
generated comments by the two attack methods on the five base models as outcomes. The experiment is repeated
5 times with max=2 and max=3 respectively. As a result, there are in total of 20 experiments (i.e., max=2 or 3 for
five based models and for Java and Python datasets). For each one of them, we obtain two samples of size 5. In the
hypothesis test, we follow the convention to set @ = 0.05. For the Mann-Whitney U test, a majority of p-values (15
out of 20) are less than 0.05 (typically 0.005), which indicates that the improvements are statistically significant at

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation « 15

Table 5. Results of adversarial attack using Random substitution algorithm and MH-based algorithm on different models
with max = 2

Java Dataset Python Dataset
BLEU | METEOR | ROUGE-L | BLEU | METEOR | ROUGE-L

LSTM Random | 24.34 13.45 35.43 23.62 11.69 32.94
MH 20.54 10.81 30.3 18.41 8.77 27.85
Transformer Random | 27.38 15.61 37.26 25.76 13.35 35.81
MH 15.73 9.68 26.74 19.41 9.98 30.19

Random - - - - - -
GNN MH 16.89 8.38 22.13 20.49 8.10 25.21
CSCG Random | 23.55 13.50 39.65 23.56 12.08 40.23
MH 13.46 7.72 29.65 19.18 9.79 37.01

Rencos Random _ — _ _ _ _
MH 40.99 23.44 49.84 30.97 15.48 38.27

Table 6. Results of adversarial attack using Random substitution algorithm and MH-based algorithm on different models
with max = 3

Java Dataset Python Dataset
BLEU | METEOR | ROUGE-L | BLEU | METEOR | ROUGE-L

LSTM Random | 24.11 13.24 35.15 24.08 12.09 33.52
MH 19.65 10.2 28.99 18.92 9.23 28.64
Transformer Random | 24.18 19.72 42.13 24.69 12.60 34.76
MH 14.97 9.17 25.59 18.80 9.27 29.04

Random - - - - - -
GNN MH 16.35 7.70 20.95 19.89 7.37 24.17
CSCG Random | 22.74 12.96 38.99 22.98 11.54 39.49
MH 13.19 7.28 28.83 18.80 9.35 36.30

Rencos Rgpndom _ _ _ _ _ _
MH 40.65 23.19 49.42 30.56 14.99 37.57

the confidence level of 95%.° To conclude, the adversarial samples generated by ACCENT are effective, and our
attack method is superior to the baseline methods.

RQ3. Do adversarial samples generated by our adversarial attack method have better transferability
than the baseline methods?

Adversarial example generated for a certain model is considered to be transferable if it can successfully attack
other DNN models. To answer this research question, we tested the transferability of the adversarial examples
generated by our ACCENT attack method and compared them with the MH-based algorithm. The experiment uses
a cross-testing method, that is, among the five models, we use the adversarial samples generated from one model

The details of the samples can be retrieved in our replication package.

ACM Trans. Softw. Eng. Methodol.

16 « Y.Zhou,etal.

Table 7. BLEU scores of different algorithms for transferability on Java dataset (max = 2).

CSCG | LSTM | Transformer Rencos
Adversairal examples MH 17.69 | 18.91 22.26 43.37
generated for GNN ACCENT | 16.22 | 18.10 21.59 43.39
GNN | LSTM | Transformer Rencos
Adversairal examples MH 15.78 | 17.37 20.50 43.43
generated for CSCG ACCENT | 15.31 | 15.84 19.06 43.32
GNN | CSCG | Transformer Rencos
Adversairal examples MH 19.39 | 17.91 23.89 43.44
generated for LSTM ACCENT | 16.05 | 14.48 19.10 43.39
GNN | CSCG LSTM Rencos
Adversairal examples MH 16.11 | 15.07 16.59 43.43
generated for Transformer | ACCENT | 15.92 | 14.42 15.83 43.35
GNN | CSCG LSTM Transformer
Adversairal examples MH 17.69 | 19.95 21.28 24.46
generated for Rencos ACCENT | 17.50 | 18.85 20.26 24.12

Table 8. BLEU scores of different algorithms for transferability on Java dataset (max = 3).

CSCG | LSTM | Transformer Rencos
Adversairal examples MH 16.33 | 18.39 20.76 43.37
generated for GNN ACCENT | 1530 | 17.38 20.45 43.45
GNN | LSTM | Transformer Rencos
Adversairal examples MH 15.58 | 16.75 29.12 43.36
generated for CSCG ACCENT | 15.25 | 15.35 18.27 43.27
GNN | CSCG | Transformer Rencos
Adversairal examples MH 19.68 | 19.52 22.28 43.42
generated for LSTM ACCENT | 15.86 | 13.93 18.27 43.40
GNN | CSCG LSTM Rencos
Adversairal examples MH 15.81 | 14.71 16.00 43.40
generated for Transformer | ACCENT | 15.87 | 14.10 15.32 43.37
GNN | CSCG LSTM Transformer
Adversairal examples MH 16.82 | 17.87 19.26 22.24
generated for Rencos ACCENT | 15.19 | 16.71 18.48 21.70

to attack the other four models. For example, the adversarial examples generated from the Transformer-based
model are used to attack the LSTM-based, GNN-based, CSCGDual models and Rencos. The BLEU scores on the
Java and the Python datasets are shown in Figure 3-6 and Table 7-10.

It can be observed from Figure 3-Figure 7 that, except for the Rencos model, the r; values of the other four
models after attacks are decreased by 50% for the Java dataset, and 37% for the Python dataset, which means that
the performance of the model has dropped greatly, that is, the adversarial samples generated by our ACCENT
attack method can be successfully transferred to other models. At the same time, we can see that, compared
with the MH-based algorithm, the adversarial samples generated by the ACCENT attack method have better
transferability, as the ry of the ACCENT attack method is greater than the r; of the MH-based algorithm on

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation

Table 9. BLEU scores of different algorithms for transferability on Python dataset (max = 2).

CSCG | LSTM | Transformer Rencos
Adversairal examples MH 22.65 | 22.63 24.17 32.76
generated for GNN ACCENT | 2149 | 22.79 24.32 32.54
GNN | LSTM | Transformer Rencos
Adversairal examples MH 20.15 | 22.38 23.49 32.88
generated for CSCG ACCENT | 16.92 | 22.96 21.35 30.44
GNN | CSCG | Transformer Rencos
Adversairal examples MH 20.18 | 21.74 22.81 32.75
generated for LSTM ACCENT | 19.04 | 20.17 22.36 32.28
GNN | CSCG LSTM Rencos
Adversairal examples MH 20.27 | 21.99 21.39 32.82
generated for Transformer | ACCENT | 18.89 | 20.10 20.91 32.28
GNN | CSCG LSTM Transformer
Adversairal examples MH 20.58 | 22.67 22.85 23.95
generated for Rencos ACCENT | 19.69 | 22.18 22.92 24.71

Table 10. BLEU scores of different algorithms for transferability on Python dataset (max = 3).

CSCG | LSTM | Transformer Rencos
Adversairal examples MH 21.86 | 21.81 23.06 32.64
generated for GNN ACCENT | 20.46 | 21.66 22.90 32.46
GNN | LSTM | Transformer Rencos
Adversairal examples MH 19.88 | 21.49 22.60 32.79
generated for CSCG ACCENT | 16.61 | 20.57 21.94 30.46
| GNN | CSCG | Transformer Rencos
Adversairal examples MH | 20.06 | 19.78 21.80 32.68
generated for LSTM ACCENT | 18.65 | 19.42 21.32 32.25
GNN | CSCG LSTM Rencos
Adversairal examples MH 20.19 | 19.92 21.49 32.69
generated for Transformer | ACCENT | 18.46 | 19.40 20.50 32.17
GNN | CSCG LSTM Transformer
Adversairal examples MH 19.81 | 21.95 21.92 22.98
generated for Rencos ACCENT | 18.98 | 21.05 21.66 23.07

two datasets for all models. This demonstrates that our method can successfully find those identifiers that are
important and effective across different models.

RQ4. How efficient is the masked training method in improving robustness?

We evaluate the effectiveness of our masked training method in improving robustness, which can be evaluated
by the changes in performance metrics of DNNs. For each model, we report these metrics (i.e., BLEU, METEOR,
and ROGUE-L) over the original test dataset without any perturbations (i.e., ‘Clean’) and the adversarial examples
generated by our ACCENT method with max = 2 and max = 3 (i.e., ‘Adv’). We compare the performance of our
masked training method with data augmentation, which is a commonly adopted robustness improvement method.
In a nutshell, data augmentation improves the robustness by re-training the model with the mixed adversarial

ACM Trans. Softw. Eng. Methodol.

18 « Y.Zhou,etal.

Adversarial examples for LSTM Adversarial examples for LSTM
70.00% 50.00%
60.00% 40.00%
50.00%
10.00% 30.00%
30.00% 20.00%
20.00%
1000% 10.00%
0.00% —_— 0.00% —
€SCG Transformer Rencos cscG Transformer Rencos
W MH ® ACCENT W MH ® ACCENT
(a) Java Dataset with max = 2. (b) Python Dataset with max = 2.
Adversarial examples for LSTM Adversarial examples for LSTM
80.00% 50.00%
60.00% 40.00%
30.00%
10.00%
20.00%
20.00% 10.00%
0.00% — 0.00% =
€sCG Transformer Rencos €sSCG Transformer Rencos
B MH ® ACCENT W MH m ACCENT
(c) Java Dataset with max = 3. (d) Python Dataset with max = 3.

Fig. 3. The transferability of adversarial examples generated by different algorithms on LSTM model: the values r; are tested
by attacking GNN, CSCG, Transformer and Rencos model.

Adversarial examples for Transformer Adversarial examples for Transformer

70.00% 40.00%

60.00% -

50.00% | 30.00%

40.00% -

30.00% N 20.00%

20.00% - 10.00%

10.00%

0.00% —— 0.00% —
CSCG LSTM Rencos CSCG LST™ Rencos
= MH B ACCENT W MH B ACCENT
(a) Java Dataset with max = 2. (b) Python Dataset with max = 2.
Adversarial examples for Transformer Adversarial examples for Transformer

80.00% 50.00%

60.00% < 40.00%
30.00%

10.00%
20.00%

20.00% 10.00%

0.00% — 0.00% -
cscG LST™M Rencos cscG LST™M Rencos
W MH B ACCENT ® MH ® ACCENT
(c) Java Dataset with max = 3. (d) Python Dataset with max = 3.

Fig. 4. The transferability of adversarial examples generated by different algorithms on Transformer model: the values rg are
tested by attacking GNN, CSCG, LSTM and Rencos model.

dataset which combines the original training dataset with adversarial examples. Table 11 compares the results
of our method and the baseline. ‘Normal’ represents the model through the standard training process; ‘Aug’

ACM Trans. Softw. Eng. Methodol.

70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Adversarial examples generated for GNN

CSCG LSTM Transformer

= MH ® ACCENT

Rencos

(a) Java Dataset with max = 2.

Adversarial examples generated for GNN

CSCG Transformer

W MH B ACCENT

Rencos

(c) Java Dataset with max = 3.

35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

40.00%

30.00%

20.00%

10.00%

0.00%

Adversarial Robustness of Deep Code Comment Generation « 19

Adversarial examples for GNN
CSCG LSTM Transformer Rencos

= MH ® ACCENT

(b) Python Dataset with max = 2.

Adversarial examples for GNN
CSCG LSTM Transformer Rencos

= MH ® ACCENT

(d) Python Dataset with max = 3.

Fig. 5. The transferability of adversarial examples generated by different algorithms on GNN model: the values r; are tested

by attacking CSCG, LSTM, Transformer and Rencos model.

70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Adversarial examples for CSCG

i

LSTM Transformer

W MH ® ACCENT

Rencos

(a) Java Dataset with max = 2.

Adversarial examples for CSCG

1

LSTM Transformer

W MH ® ACCENT

Rencos

(c) Java Dataset with max = 3.

| 50.00%

40.00%
30.00%
20.00%

 10.00%

0.00%

50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Adversarial examples for CSCG

LST™M Transformer Rencos

W MH ® ACCENT

(b) Python Dataset with max = 2.

Adversarial examples for CSCG

LSTM Transformer Rencos

W MH ® ACCENT

(d) Python Dataset with max = 3.

Fig. 6. The transferability of adversarial examples generated by different algorithms on CSCG model: the values r; are tested

by attacking GNN, LSTM, Transformer and Rencos model.

represents the model trained by data augmentation and ‘Maksed’ represents the model trained by our masked

training method.

ACM Trans. Softw. Eng. Methodol.

20 « Y.Zhou,etal.

Adversarial examples for Rencos Adversarial examples for Rencos

60.00% 40.00%
50.00%

50.00% 30.00%
40.00%

30.00% 20.00%
20.00%

10.00%
10.00%

0.00% 0.00%

GNN CSCG LST™M Transformer GNN CSCG LSTM ‘Transformer
® MH ® ACCENT = MH ® ACCENT
(a) Java Dataset with max = 2. (b) Python Dataset with max = 2.
Adversarial examples for Transformer examples generated for Rencos

70.00% 40.00%
60.00%

50.00% 30.00%

40.00% 20.00%
30.00%

20.00% 10.00%
10.00%

0.00% 0.00%

GNN CsCG LSTM Transformer GNN CSCG LSTM Transformer
B MH B ACCENT m MH m ACCENT
(c) Java Dataset with max = 3. (d) Python Dataset with max = 3.

Fig. 7. The transferability of adversarial examples generated by different algorithms on Rencos model: the values r; are
tested by attacking GNN, LSTM CSCG and Transformer model.

Improving robustness may sacrifice the accuracy of the models on the clean dataset [6, 11, 23, 39]. From Table 11
we can observe that, as the robustness of the model increases, the original accuracy of the model does decrease.
However, our masked training method has less impact on accuracy, where the data augmentation method may
suffer from a significant drop. Furthermore, our training method can increase the accuracy of some models on
the clean datasets (4 out of 10). While the accuracy of some models on the clean dataset may slightly decrease,
the accuracy on the adversarial examples is improved through our masked training. For example, on the Java
dataset, the performance of the Transformer-based model after the masked training has increased to 40.10 and
39.24 on the adversarial examples with max = 2 and max = 3 respectively, while the data augmentation method
improves the performance to 18.10 and 17.82 respectively.

From Table 11, we can conclude that the masked training method can significantly boost the robustness across
different models at the same time maintain fairly good performance on the test dataset.

4.3 Human evaluation

To complement the above objective metrics, we also conduct a human evaluation to further assess the quality
of the comments generated by the masked training method, data augmentation and normal training method.
Generally, we follow the evaluation settings from the previous work [17, 46]. Particularly, the comments are
examined from three aspects, i.e., similarity, naturalness, and informativeness [46]. Similarity refers to how similar
the generated comment is to the reference comment; naturalness measures the grammaticality and fluency;
informativeness focuses on the content delivery from code snippet to the generated comments. For each of the
five base models, we randomly select 20 Java code snippets and 20 Python code snippets respectively, and use the
two adversarial training methods to generate comments. We obtain 600 generated comments and 200 references
in total. To facilitate comparison, for each code snippet we construct a tuple consisting of a reference and three
generated comments; we obtain 200 tuples accordingly.

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation « 21

We ask six graduate students studying in the Software Engineering programme to participate in the evaluation,
all of whom have at least three years of programming experience in both Java and Python, and are professionally
proficient in English. The subjects are evenly divided into two groups each of which has 3 students. The 200
comment triples are also evenly divided to two parts and assigned to the two groups randomly, with each group
of 100 triples. Participants manually inspect the 100 generated comment triples as well as the code snippets, and
rate them independently, which means that each comment triple is examined by three individuals. The grades are
given in the Likert scale ranging from 1 to 5, corresponding to ‘very poor’, ‘poor’, ‘neutral’, ‘good’, ‘very good’
respectively where a higher value indicates a better quality. To be fair, the labels of the generator information in
the triples are removed. Table 12 and Table 13 show the statistics of the collected results. We can observe that, on
both datasets and for all the three aspects, the average scores of the comments generated by the masked training
methods are consistently higher than those generated by the data augmentation method and normal training
method. Moreover, a majority of comments generated by the masked training method, receive scores above 3.

4.4 Examples

For qualitative analysis, Figure 8-Figure 11 show some examples where ‘Ref” refers to the reference comment,
‘Normal-Clean’ refers to the result of the clean example on the standard training model, ‘Nor-Adv’ refers to the
result of the adversarial example on the standard training model, and ‘Masked-Adv’ refers to the result of the
adversarial example on the masked training model.

We can see that, the adversarial examples generated by ACCENT are very similar to the original code snippet,
indicating that our approach can generate high-quality adversarial examples preserving original syntax, semantics
and functionality. We also find that, although the standard training model (‘Normal-Clean’) performed well on
original examples, the quality of the generated comments on the adversarial examples are poor ('Normal-AdV’).
On the other hand, the masked training method can effectively defense against attacks and generate the closest
comment (‘Masked-Adv’) to the reference (‘Ref”).

5 THREATS TO VALIDITY

Threats to internal validity are related to internal factors that could have influenced the results. One threat
that may make the results statistically unstable is the randomness from Step 2 in the adversarial attack method.
In this step, we randomly select K candidates for each identifier. To mitigate this, we randomly sample the K
candidates several times and have confirmed that our method outperforms the baselines consistently. Another
threat is related to the errors introduced in the implementation. To minimize these, we have double-checked and
peer-reviewed our code and repeatedly conducted the baseline methods to ensure the fairness of the results.

External validity concerns the generalizability of the results on the datasets other than the ones used in the
experiments [10]. Indeed, in our approach, we only focus on whether code comment generation models are
vulnerable to adversarial examples and how to improve the robustness of different models for Java and Python
methods. However, our approach is essentially independent of specific programming languages. Note that in the
adversarial attack method we intend to find the most important tokens with respect to the model, and in the
masked training, we only mask the programmer-defined identifiers in the method. Both of them can be easily
applied to other datasets. Another threat originates from replacing the programmer-defined identifiers with
meaningless labels as done in CODENN [17], which could invalidate ACCENT. However, in general, most of
the work includes the programmer-defined identifiers as part of the input to the deep code comment generation
model.

ACM Trans. Softw. Eng. Methodol.

22 « Y.Zhou, et al.

public byte [] bytes () throws HttpRequestException {
final ByteArrayOutputStream output = byteStream();

try {
copy(buffer(), output);

catch(IOException e){
throw new HttpRequestException (e);
}

return output.toByteArray() ;

public byte [] toBytes () throws HttpRequestException {
final ByteArrayOutputStream rawOutput = byteStream();

try {
copy(buffer(), rawOutput);

catch(IOException e){
throw new HttpRequestException (e);
}

return rawOutput.toByteArray() ;

Ref: getresponse as byte array.
Normal-Clean: getresponse as byte array.
Normal-Adv: get explicitly number of bytes from byte array.

Masked-Adv: getresponse as byte array.

Fig. 8. Examples and corresponding adversarial examples generated by ACCENT, where ‘Ref’ is the reference comment,
‘Normal-Clean’ is the result of the clean example on the standard training model, ‘Nor-Adv’ is the result of the adversarial
example on the standard training model and ‘Masked-Adv’ is the result of the adversarial example on the masked training
model.

6 RELATED WORK

Code Comment Generation. Code comment generation is an essential part of the software development cycle
and has attracted significant attention. Neural network based approaches have been applied to this task, which
is the main focus of the discussion. Alllamanis et al. [3] adopted convolutional attention neural network to
generate short and name-like comments. More recent work casts it as a seq2seq generation task and employs the
encoder-decoder model as the basic architecture. Based on different code representations, these approaches can
be divided into two categories, i.e., token sequence based and tree structural based approaches.

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation « 23

private void deleteInstance(EntryClass eclass) {
int idx = entryClasses.indexOf(eclass);
eclass = (EntryClassn)entryClasses.get(idx);
int num = eclass.getNumInstances() - _NUM;
if (num == _NUM)
entryClasses.remove(idx);
eclass.setNumInstances(num) ;

private void deleteInstances(EntryClass eclass) {
int idx2 = entryClasses.indexOf(eclass);
eclass = (EntryClassn)entryClasses.get(idx2);
int num = eclass.getNumInstances() - _NUM;
if (num == _NUM)
entryClasses.remove(idx2);
eclass.setNumInstances(num) ;

Ref: delete an instance of the entryclass , and remove the class from
entryclasses if this is the last such instance .

Normal-Clean: delete an instance of the entryclass , and remove the class
from entryclasses if this is the first such instance .

Normal-Adv: is the class a specific method.

Masked-Adv: remove an instance of the entryclass , and remove the class
from entryclasses if this is the last such instance .

Fig. 9. An example and corresponding adversarial example generated by ACCENT, where ‘Ref’ is the reference comment,
‘Normal-Clean’ is the result of the clean example on the standard training model, ‘Nor-Adv’ is the result of the adversarial
example on the standard training model and ‘Masked-Adv’ is the result of the adversarial example on the masked training
model.

For token sequence based approaches, Iyer et al. [17] presented an end-to-end neural attention model using
LSTMs to generate comments for C# and SQL language. Hu et al. [14] adopted a transfer learning method utilizing
API information to comment generation. Wei et al. [45] utilized dual learning to train a code comment generation
model and code generation model simultaneously. Ahmad et al. [1] adopted Transformer with absolute position
encoding to comment generation.

For tree structural based approaches, the general methodology is to encode the code as (variants of) ASTs which
are input to purpose-designed neural networks. Hu et al. [13] proposed a structure based traversal method to
flatten the AST. LeClair et al. [21] aimed to combine words from code with code structure from AST. Furthermore,
techniques have been put forward to enhance the performance, e.g., approaches based on reinforcement learning
[41] or aided with contextual information [52].

Adversarial Examples Generation. Adversarial examples were first proposed by Szegedy et al. in image
classification [38]. Their experiment shows that an imperceptible perturbation of the benign input image could

ACM Trans. Softw. Eng. Methodol.

24

Fig. 10. An example and corresponding adversarial example generated by ACCENT, where ‘Ref” is the reference comment,
‘Normal-Clean’ is the result of the clean example on the standard training model, ‘Nor-Adv’ is the result of the adversarial
example on the standard training model and ‘Masked-Adv’ is the result of the adversarial example on the masked training

Y. Zhou, et al.

model.

cause misclassification. A plethora of generation methods have been studied for image classification, a thorough
survey of which is clearly out of the scope of the current paper. Here we only mention some representational

final public void println (String s){
Writer out = this.out ;
if (out == null)
return ;
try {
if (s == null)
out.write (_nullChars , _NUM , _nullChars.length);
else
out.write (s , _NUM , s.length ());
out.write (_newline , _NUM , _newline.length);

catch (IOException e) {
log.log (Level.FINE , e.toString() , e);

}

final public void printWriter (String s){
Writer writeByte = this.out ;
if (writeByte == null)
return ;
try {
if (s == null)
writeByte.write (_nullChars , _NUM , _nullChars.length
)5
else
writeByte.write (s , _NUM , s.length ());
writeByte.write (_newline , _NUM , _newline.length);

catch (IOException e) {
log.log (Level.FINE , e.toString() , e);

}

Ref: writes a string followed by a newline .
Normal-Clean: prints an string followed by a newline .

Normal-Adv: print out a string to the output writer ,
using a new line character set (s line is small enough for formatting) .

Masked-Adv: writes the string followed by a newline .

work such as FGSM [12], Deepfool [27], BIM [20], JSMA [30], and the C&W method [8].

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation « 25

public int indexOf (Node elem, int index) {

runTo(- _NUM);

if(null == m_map) return - _NUM;

for(int 1 = index ; < m_firstFree ; i++) {
Node node = m_map [1];
if((null != node) && node.equals(elem))

return i;
}
return - _NUM ;

!

public int dotIndex (Node elem, int index) {
runTo(- _NUM);
if(null == m_map) return - _NUM;
for(int = index ; < m_firstFree ; c++) {
Node allNodes = m_map [c];
if((null !'= allNodes) && allNodes.equals(elem))
return c;

}
return - _NUM ;

Ref: searches for the first occurence of the given argument , beginning the search at
index , and testing for equality using the equals method.

Normal-Clean: searches for the first occurence of the given argument , beginning
the search at index , and testing for equality using the equals method.

Normal-Adv: find the dot nodes of the correct nodes.

Masked-Adv: searches for the first occurence of the given argument , beginning the
search at index , and testing for equality using the equals method .

Fig. 11. Examples and corresponding adversarial examples generated by ACCENT, where ‘Ref’ is the reference comment,
‘Normal-Clean’ is the result of the clean example on the standard training model, ‘Nor-Adv’ is the result of the adversarial
example on the standard training model and ‘Masked-Adv’ is the result of the adversarial example on the masked training
model.

Our work is more related to adversarial example generation in the NLP area which turns out to be more
challenging although the underlying principles are somewhat similar. Natural language texts are discrete and are
more difficult to be perturbed in a meaningful way. Papernot et al. [31] first studied the problems of adversarial
examples in text by adopting FGSM. Semanta et al. [36] combined FGSM and importance of word to select the top-k
words with highest importance to attack the text classification model. Similarly, Ren et al. [35] proposed PWWS
which based on word saliency to attack the text classification model. Jia et al. [19] added sentences to the ends of
paragraphs using crowdsourcing to fool reading comprehension system. Belinkov et al. [6] devised adversarial
examples depending on natural and synthetic language errors which can fool Neural Machine Translation (NMT)
system.

ACM Trans. Softw. Eng. Methodol.

26 « Y.Zhou, et al.

Comparing to the large body of work on adversarial examples for image and NLP, the corresponding work for
source code processing is in its infancy; this is especially the case for comment generation.

Bielik et al. [7] improved the adversarial robustness of models for the task of type inference by learning to
abstain if uncertain. Zhang et al. [49] studied the problem for the code classification tasks where they proposed
a sampling based method to generate adversarial examples. Note that this work is still of classification nature
whereas our work focuses on comment generation, which is of language translation or generation nature. Yefet
et al. [47] generated adversairal example based on gradient for CODE2VEC. Ramakrishnan et al. [33] and
Ravichandar et al. [34] both performed adversarial attacks and adversarial training on CODE2SEQ. They all
concentrate on method name prediction instead of generating long comment that help programmers understand.

Adversarial Defense. There have some relatively effective methods against adversarial attacks in NLP, which
can roughly be classified as detection and model enhancement methods. Li et al. [22] proposed to use a context-
aware spelling check service to detect spell errors in adversarial examples. Pruthi et al. [32] proposed a method
to combat adversarial spelling mistakes by placing a word recognition model in front of the downstream DNNs.
Wang et al. [44] proposed an adversarial defense method SEM, which inserts an encoder network before the
original model and trains it to eliminate adversarial perturbations.

In addition to the detection-based defense, adversarial training as a typical model enhancement method, is also
widely adopted. Javid et al. [18] used adversarial training to improve the robustness of text classification model.
Wang et al. [43] augmented original training dataset with adversarial examples generated by AddSentDiverse to
enhance the robustness of reading comprehension models. In order to improve the robustness of text classification,
Ren et al. [35] randomly selected clean examples from the training set to generate adversarial examples using
PWWS and mixed them with the training dataset to conduct adversarial training. Moreover, other work such as
[37, 48-50] adopted adversarial training to improve the robustness of DNN models.

7 CONCLUSION

In this paper, we have presented a novel approach ACCENT to address the adversarial robustness problem of
DNN models for code comment generation tasks, and demonstrated that the current mainstream code comment
generation architectures are of poor robustness. Simply replacing identifiers which results in functionality-
persevering and syntactically correct code snippets can degrade the performance of these representative models
greatly. Experiment results show that our method can generate more effective adversarial examples on two public
datasets across five mainstream code comment generation architectures. In addition, we demonstrated that the
adversarial examples generated by our method had better transferability. To improve robustness, we have also
proposed a novel training method. Our experimental results showed that this training method can achieve better
performance in the code comment generation setting compared to the data augmentation method which has
widely been used to improve robustness.

In the future, we plan to extend the existing framework and include more sophisticated, structure-rewriting
based adversarial example generation techniques. More generally, we plan to explore the robustness issues of
machine learning models for other software engineering tasks.

ACKNOWLEDGMENTS

This work was partially supported by the National Natural Science Foundation of China (NSFC, No. 61972197), the
Natural Science Foundation of Jiangsu Province (No. BK20201292), the Collaborative Innovation Center of Novel
Software Technology and Industrialization, and the Qing Lan Project. T. Chen is partially supported by Birkbeck
BEI School Project (ARTEFACT), NSFC grant (No. 61872340 and No. 62072309), UK EPSRC grant (EP/P00430X/1),
Guangdong Science and Technology Department grant (No. 2018B010107004) and an oversea grant from the
State Key Laboratory of Novel Software Technology, Nanjing University (KFKT2018A16).

ACM Trans. Softw. Eng. Methodol.

Adversarial Robustness of Deep Code Comment Generation « 27

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]

(11]

—
[
(=)}

=

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A Transformer-based Approach for Source Code
Summarization. arXiv preprint arXiv:2005.00653 (2020).

Lingfei Wu Collin McMillan Alex LeClair, Sakib Haque. 2020. Improved Code Summarization via a Graph Neural Network. In 2020
IEEE/ACM International Conference on Program Comprehension. https://doi.org/10.1145/3387904.3389268

Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal modelling of source code and natural language. In
International conference on machine learning. 2123-2132.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang. 2018. Generating natural
language adversarial examples. arXiv preprint arXiv:1804.07998 (2018).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473 (2014).

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic and natural noise both break neural machine translation. arXiv preprint
arXiv:1711.02173 (2017).

Pavol Bielik and Martin T. Vechev. 2020. Adversarial Robustness for Code. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event. 896—907.

Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness of Neural Networks. In 2017 IEEE Symposium on
Security and Privacy, SP 2017. 39-57.

Chib, Siddhartha, Greenberg, and Edward. 1995. Understanding the Metropolis-Hastings Algorithm. American Statistician (1995).
Robert Feldt and Ana Magazinius. 2010. Validity Threats in Empirical Software Engineering Research-An Initial Survey.. In SEKE.
374-379.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. 2018. Black-box generation of adversarial text sequences to evade deep learning
classifiers. In 2018 IEEE Security and Privacy Workshops (SPW). IEEE, 50-56.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing adversarial examples. In ICML.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In 2018 IEEE/ACM 26th International Conference
on Program Comprehension (ICPC). IEEE, 200-20010.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Summarizing Source Code with Transferred API Knowledge. In Twenty-Seventh
International Joint Conference on Artificial Intelligence IJCAI-18.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvari. 2015. Learning with a Strong Adversary. Computer ence (2015).
Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. 2019. Adversarial examples
are not bugs, they are features. In Advances in Neural Information Processing Systems. 125-136.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing Source Code using a Neural Attention Model.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

Ebrahimi Javid, Anyi Rao, Daniel Lowd, and Dejing Dou. 2017. Hotflip: White-box adversarial examples for text classification. arXiv
preprint arXiv:1712.06751 (2017).

Robin Jia and Percy Liang. 2017. Adversarial Examples for Evaluating Reading Comprehension Systems. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017. 2021-2031.
Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples in the physical world. In 5th International Conference
on Learning Representations, ICLR 2017,Toulon, France, April 24-26, 2017, Workshop Track Proceedings.

Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for generating natural language summaries of program
subroutines. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019. 795-806. https://doi.org/10.1109/ICSE.2019.00087

[22] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2018. Textbugger: Generating adversarial text against real-world applications.

(23]

[24]

[25]

[26]

arXiv preprint arXiv:1812.05271 (2018).

Pengcheng Li, Jinfeng Yi, Bowen Zhou, and Lijun Zhang. 2019. Improving the Robustness of Deep Neural Networks via Adversarial
Training with Triplet Loss. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019. 2909-2915.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards Deep Learning Models
Resistant to Adversarial Attacks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=rJzIBfZAb

Paul Michel, Xian Li, Graham Neubig, and Juan Miguel Pino. 2019. On evaluation of adversarial perturbations for sequence-to-sequence
models. arXiv preprint arXiv:1903.06620 (2019).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeffrey Dean. 2013. Distributed Representations of Words and Phrases
and their Compositionality. (2013), 3111-3119.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1109/ICSE.2019.00087
https://openreview.net/forum?id=rJzIBfZAb

28

[27]
(28]
[29]
(30]
(31]
(32]
(33]
(34]
(35]

(36]
(37]

(38]
(39]
(40]

[41]

[42]
(43]
[44]
[45]
[46]
(47]

(48]

[49]
(50]
[51]
(52]

(53]

e Y.Zhou, et al.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016. Deepfool: a simple and accurate method to fool deep
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2574-2582.

Muzammal Naseer, Salman Hameed Khan, Shafin Rahman, and Fatih Porikli. 2018. Distorting neural representations to generate highly
transferable adversarial examples. arXiv preprint arXiv:1811.09020 (2018).

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami. 2017. Practical black-box
attacks against machine learning. In Proceedings of the 2017 ACM on Asia conference on computer and communications security. 506—519.
Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. 2016. The limitations of
deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy (EuroS&P). IEEE, 372-387.

Nicolas Papernot, Patrick Mcdaniel, Ananthram Swami, and Richard Harang. 2016. Crafting Adversarial Input Sequences for Recurrent
Neural Networks. In Military Communications Conference.

Danish Pruthi, Bhuwan Dhingra, and Zachary C Lipton. 2019. Combating adversarial misspellings with robust word recognition. arXiv
preprint arXiv:1905.11268 (2019).

Goutham Ramakrishnan, Jordan Henkel, Zi Wang, Aws Albarghouthi, Somesh Jha, and Thomas Reps. 2020. Semantic robustness of
models of source code. arXiv preprint arXiv:2002.03043 (2020).

Harish Ravichandar, Kenneth Shaw, and Sonia Chernova. 2020. STRATA: unified framework for task assignments in large teams of
heterogeneous agents. Auton. Agents Multi Agent Syst. 34, 2 (2020), 38. https://doi.org/10.1007/s10458-020-09461-y

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 2019. Generating Natural Language Adversarial Examples through Probability
Weighted Word Saliency. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019).
Suranjana Samanta and Sameep Mehta. 2017. Towards crafting text adversarial samples. arXiv preprint arXiv:1707.02812 (2017).
Motoki Sato, Jun Suzuki, Hiroyuki Shindo, and Yuji Matsumoto. 2018. Interpretable adversarial perturbation in input embedding space
for text. arXiv preprint arXiv:1805.02917 (2018).

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan; Ian Goodfellow, and Rob Fergus. 2013. Intriguing
properties of neural networks. arXiv: Computer Vision and Pattern Recognition (2013).

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D. McDaniel. 2018. Ensemble Adversarial
Training: Attacks and Defenses. (2018).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Advances in neural information processing systems. 5998—-6008.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S Yu. 2018. Improving automatic source code
summarization via deep reinforcement learning. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 397-407.

W Wang, L Wang, B Tang, R Wang, and A Ye. 2019. Towards a robust deep neural network in text domain a survey. arXiv preprint
arXiv:1902.07285 (2019).

Yicheng Wang and Mohit Bansal. 2018. Robust machine comprehension models via adversarial training. arXiv preprint arXiv:1804.06473
(2018).

Zhaoyang Wang and Hongtao Wang. 2020. Defense of Word-level Adversarial Attacks via Random Substitution Encoding. arXiv preprint
arXiv:2005.00446 (2020).

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code Generation as a Dual Task of Code Summarization. In Advances in Neural
Information Processing Systems 32. 6563-6573.

Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and refine: exemplar-based neural comment generation. In 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 349-360.

Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models of code. Proc. ACM Program. Lang. 4, OOPSLA (2020),
162:1-162:30. https://doi.org/10.1145/3428230

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun. 2020. Word-level Textual Adversarial
Attacking as Combinatorial Optimization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 6066-6080.

Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating Adversarial Examples for Holding Robustness of
Source Code Processing Models. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 1169-1176.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li. 2019. Generating Fluent Adversarial Examples for Natural Languages. Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019) (2019).

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020. Retrieval-based neural source code summarization. In ICSE
’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020. 1385-1397.

Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang. 2019. Augmenting Java method comments generation with context
information based on neural networks. Journal of Systems and Software 156 (2019), 328-340.

Wei Zou, Shujian Huang, Jun Xie, Xinyu Dai, and Jiajun Chen. 2020. A Reinforced Generation of Adversarial Samples for Neural
Machine Translation. arXiv preprint arXiv:1911.03677 (2020).

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1007/s10458-020-09461-y
https://doi.org/10.1145/3428230

Adversarial Robustness of Deep Code Comment Generation « 29

Table 11. Results of different methods for improving robustness

Java Dataset Python Dataset

BLEU | METEOR | ROUGE-L | BLEU | METEOR | ROUGE-L
Normal-Clean 35.47 19.72 47.57 30.83 17.06 41.77
Normal-Adv(max=2) | 13.08 6.83 21.75 18.30 8.62 27.24
LSTM Normal-Adv(max=3) | 13.07 6.75 21.52 17.92 8.27 26.64
Aug-Clean 38.14 20.96 49.22 29.36 15.58 39.71
Aug-Adv(max=2) 22.62 11.98 32.73 23.45 10.93 31.67
Aug-Adv(max=3) 21.44 1131 31.60 23.06 10.60 31.10
Masked-Clean 39.60 23.24 39.60 30.64 16.70 40.54
Masked-Adv(max=2) | 31.88 18.23 41.48 27.26 13.92 36.28
Masked-Adv(max=3) | 31.31 17.84 40.85 26.81 13.56 35.72
Normal-Clean 44.58 26.43 54.76 33.15 18.96 44.50
Normal-Adv(max=2) | 13.23 8.08 22.79 18.87 8.99 27.91
Transformer | Normal-Adv(max=3) | 13.14 7.90 22.42 18.54 8.57 27.29
Aug-Clean 34.14 17.36 45.77 32.97 18.76 44.02
Aug-Adv(max=2) 18.10 9.10 27.89 24.71 12.34 33.82
Aug-Adv(max=3) 17.82 8.95 27.50 24.06 11.77 32.97
Masked-Clean 44.84 27.16 53.48 32.88 18.34 43.19
Masked-Adv(max=2) | 40.10 24.09 48.72 28.65 14.80 37.84
Masked-Adv(max=3) | 39.24 23.46 47.88 28.02 14.21 37.04
Normal-Clean 39.41 2332 46.65 31.24 15.77 38.28
Normal-Adv(max=2) | 16.44 7.71 21.36 19.38 7.36 24.07
GNN Normal-Adv(max=3) | 16.14 7.42 20.55 18.65 6.59 22.72
Aug-Clean 34.28 20.72 43.15 31.27 15.66 38.02
Aug-Adv(max=2) 17.32 9.13 23.69 22.65 9.26 27.71
Aug-Adv(max=3) 16.93 8.73 22.94 22.21 8.61 26.65
Masked-Clean 36.55 21.03 45.11 31.37 15.13 37.54
Masked-Adv(max=2) | 19.56 10.16 26.43 23.48 9.96 29.63
Masked-Adv(max=3) | 18.94 9.64 25.42 24.44 10.70 30.73
Normal-Clean 42.39 25.77 53.61 30.82 17.67 48.14
Normal-Adv(max=2) | 8.85 5.10 23.50 11.90 6.23 32.94
CSCG Normal-Adv(max=3) | 8.95 5.02 23.44 12.08 6.15 32.83
Aug-Clean 35.37 20.22 49.65 27.99 15.72 46.01
Aug-Adv(max=2) 15.93 8.44 31.51 19.86 10.02 38.25
Aug-Adv(max=3) 15.52 8.01 30.83 19.55 9.75 37.87
Masked-Clean 35.39 20.82 51.42 29.18 16.39 46.53
Masked-Adv(max=2) | 1837 10.38 34.44 16.61 8.04 35.04
Masked-Adv(max=3) | 17.75 9.96 33.77 16.23 7.67 34.52
Normal-Clean 44.0 25.73 54.02 33.34 18.65 43.37
Normal-Adv(max=2) | 40.68 23.09 29.17 31.02 15.78 38.84
Rencos Normal-Adv(max=3) | 40.23 22.69 48.46 30.55 15.19 37.90
Aug-Clean 41.47 24.18 51.59 15.58 3.83 17.53
Aug-Adv(max=2) 40.33 23.02 49.10 15.84 3.93 17.57
Aug-Adv(max=3) 40.27 22.93 48.84 15.93 3.98 17.68
Masked-Clean 43.73 25.26 52.53 33.05 18.25 42.58
Masked-Adv(max=2) | 43.51 24.88 51.69 32.46 17.39 41.09
Masked-Adv(max=3) | 43.48 24.86 51.62 32.32 17.21 40.77

ACM Trans. Softw. Eng. Methodol.

30 « Y.Zhou,etal
Table 12. The evaluation results of the generated comments
Score Java Python
Similarity | Naturalness | Informativeness | Similarity | Naturalness | Informativeness
5 113.67%) | 35(11.67%) 12(4%) 25(8.33%) 63(21%) 20(6.67%)
4 34(11.33%) | 95(31.67%) 40(13.33%) 58(19.33%) | 103(34.33%) 45(15%)
Normal
tratnin 3 67(22.33%) | 83(27.67%) 58(19.33%) 87(29%) 95(31.67%) 64(21.33%)
& 2 | 115(38.33%) | 59(19.67%) 52(17.33%) 68(22.67%) | 41(13.67%) 41(13.67%)
1 73(24.33%) | 28(9.33%) 138(46%) 62(20.67%) 8(2.67%) 130(43.33 %)
5 34(11.33%) | 178(59.33%) 33(11%) 43(14.33%) | 204(68%) 43(16%)
4 89(29.67%) | 56(18.67%) 41(13.67%) 58(19.33%) | 34(11.33%) 32(10.67%)
Data
augmentation 3 52(17.33%) 33(11%) 67(22.33%) 28(9.33%) 12(4%) 17(5.67%)
& 2 58(19.33%) | 22(7.33%) 55(18.33%) 70(23.33%) | 20(6.67%) 40(13.33%)
1 67(22.33%) | 11(3.67%) 104(34.67%) 101(33.67%) | 30(10%) 163(54.33%)
5 42(14%) 213(71%) 42(14%) 51(17%) 210(70%) 57(19%)
4 | 191(63.67%) | 43(14.33%) 112(37.33%) 167(55.67%) | 52(17.33%) 118(39.33%)
Masked
trainin 3 43(16%) 32(10.67%) 83(27.67%) 52(17.33%) 15(5%) 74(24.67%)
& 2 14(4.67%) 10(3.33%) 35(11.67%) 20(6.67%) 13(4.33%) 34(11.33%)
1 5(1.67%) 2(0.67%) 28(9.33%) 10(3.33%) 10(3.33%) 17(5.67%)
Table 13. The average results of the generated comments
Java Python
Similarity | Naturalness | Informative | Similarity | Naturalness | Informative
Normal
.. 2.32 3.17 2.12 2.72 3.67 2.28
training
Data
. 2.88 4.23 2.48 2.57 4.21 2.21
augmentation
Masked
.. 3.84 4.52 3.35 3.76 4.46 3.55
training

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Background
	2.1 Source Code Comment Generation
	2.2 Adversarial Attacks
	2.3 Defense and Robustness

	3 Our Approach
	3.1 Adversarial Attack
	3.2 Robustness Improvement

	4 Evaluation
	4.1 Experiment setup
	4.2 Research questions and results
	4.3 Human evaluation
	4.4 Examples

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

